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Thermal fluctuations in the coatings used to make high reflectors are becoming significant noise sources

in precision optical measurements and are particularly relevant to advanced gravitational-wave detectors.

There are two recognized sources of coating thermal noise; mechanical loss and thermal dissipation.

Thermal dissipation causes thermal fluctuations in the coating which produce noise via the thermoelastic

and thermorefractive mechanisms. We treat these mechanisms coherently, give a correction for finite

coating thickness, and evaluate the implications for Advanced LIGO.
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I. INTRODUCTION AND MAIN RESULT

Thermal fluctuations in the coatings used to make high
reflectors are becoming significant noise sources in preci-
sion optical measurements [1–3]. Though masked by other
noise sources in first generation interferometric
gravitational-wave antennas (e.g., GEO, LIGO, TAMA,
Virgo), designers of second generation gravitational-wave
antennas expect coating thermal noise to be the dominant
noise source in the detector’s most sensitive frequency
band [4]. Reduction of coating thermal noises has the
potential to significantly increase the sensitivity, and thus
the detection rate, of these large scale detectors.

Coating thermal noises are defined by differences be-
tween the coating material and the substrate material [5].
There are two recognized sources of coating thermal noise;
mechanical loss and thermal dissipation. The first of these
leads to ‘‘coating Brownian’’ noise, which, while not the
topic of this paper, serves as measure against which wewill
compare our results [6]. The second, thermal dissipation in
the coating, leads to temperature fluctuations, which can
cause variation in the apparent position of an optic via
thermal expansion of the coating, and thermal change in
refractive index of the coating material, collectively known
as ‘‘thermo-optic’’ noise [7].

Despite their common origin, coating thermoelastic
noise (resulting from thermal expansion of the coating)
and thermorefractive noise have not been treated in a
coherent way [8,9]. Since the two mechanisms have the
same order of magnitude, a coherent treatment has the
potential to greatly change the predicted magnitude of their
sum; thermo-optic noise.

The purpose of this paper is to unify the thermo-optic
mechanisms. The formulaic result of this unification is
presented later in this section, and derived in Sec. II. A
correction for coatings of non-negligible thickness is given
in III. In Sec. IV, we evaluate the thermo-optic and
Brownian noises expected to be present in Advanced
LIGO, given current understanding of coating material

parameters and detector design. Finally, in the appendices
we give equations for evaluating the average material
constants of a multilayer coating, we derive the depen-
dence of the reflection phase of a coating on its tempera-
ture, and we relate coating thermoelastic noise to substrate
thermoelastic noise.
The power spectrum of coating thermal fluctuations

responsible for thermo-optic noise, as observed by a sens-
ing beam with a Gaussian profile, is given by [9]

S�TTO ¼ 2
ffiffiffi
2

p
�

kBT
2

r2G
ffiffiffiffiffiffiffiffiffiffiffi
�C!

p (1)

(see Table I for a list of symbols, their definitions and units)
[10].
These thermal fluctuations produce fluctuations in the

phase of the field reflected by the mirror. This is equivalent
to a change in the sensed position of the mirror, �z, via the
simple relation [11]

TABLE I. The physical constants, material parameters, and
frequently used symbols in this paper.

Symbol Name SI unit

kB Boltzmann’s constant J=K
T Mean temperature K
! Angular frequency rad=s
C Heat capacity per volume J=Km3

� Thermal conductivity W=mK
n Refractive index

� Thermal expansion 1=K
� @n=@T
E Young’s Modulus N=m2

� Poisson ratio

� Beam wavelength m
rG Beam radius (1=e2 power) m
d Coating thickness m
@z� @�z=@� ¼ ��=4� m
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@�z

@T
¼ @�z

@�

@�

@T
¼ ��

4�

@�

@T
¼ @z�

@�

@T
; (2)

where we define @z� � ��=4� to avoid repetition.

We combine thermoelastic and thermorefractive (TE
and TR) mechanisms to write the total sensitivity to tem-
perature of the coating reflection phase as

@z�
@�c

@T
’ ��cd� ���; (3)

where ��c is the effective coefficient of thermal expansion
of the coating and �� is the effective thermorefractive
coefficient (defined in Appendices A and B). The deriva-
tions presented in the following sections lead us to express
the total thermo-optic noise spectrum as

S�zTO ’ S�TTO

�
��cd� ���� ��sd

Cc

Cs

�
2
: (4)

Though this paper includes some further refinements to
previous works, Eq. (4) contains the primary result: the
relative sign between the TE and TR mechanisms is nega-
tive. This relative sign can lead to cancellation and a
reduction in thermo-optic noise, some implications of
which are discussed further in Sec. IV.

A. Symbol definitions

The physical constants, material parameters, and fre-
quently used symbols in this paper are given in Table I.
Material parameters that appear with a subscript refer to
either the bulk substrate material parameter, subscript s,
the average coating parameter, subscript c, or to one of the
coating materials L, for low-refractive index, or H, for
high-refractive index.

Material parameters which appear without a subscript,
but as a function of ~r, take on the value of the material at
the location ~r. Thus, ��ð~rÞ is ��c when ~r describes a point in
the coating, and ��s for points in the substrate.

Bars are used above symbols to express an ‘‘effective’’
coefficient. These coefficients have the same units as their
barless counterparts and the same general meaning, though
taken in a specific context. For example, �� has the same
units as �, and is a thermal expansion coefficient, but only
in the context of a semi-infinite medium.

As a notational convention, SXY means ‘‘the power spec-
trum of fluctuations in X due to noise mechanism Y.’’ The
units of such a spectrum are the units of X2=Hz.

II. REFLECTION PHASE NOISE

This section will derive Eq. (4) from the fluctuation-
dissipation theorem (FDT) [12]. We start by deriving
Fejer’s result [13] for thermoelastic noise using Levin’s
simpler approach [9]. The solution to the more general
problem of thermo-optic noise is then found following the
same path.

The thermal fluctuations which are the source of thermo-
optic noise are important to optical measurements because
they change the result of position measurements based on
reflecting a field from a mirror. The fields used in these
measurements are well described by a normalized
Gaussian intensity profile [14]

Iðr?Þ ¼ 2

�r2G
e�2r2?=r

2
G ; (5)

where rG is the beam radius, and r2? ¼ x2 þ y2 is the

radius perpendicular to the beam’s propagation direction
(along the z axis).
To go from thermal fluctuations to measured displace-

ment noise we return to the foundation of this analysis. Our
application of the FDT starts with a gedanken experiment
in which we consider an oscillating power injection in a
small volume �V located at ~r:

P

�V
¼ TF0 sinð!tÞqð ~rÞ; (6)

where F0 is an arbitrary scale factor with SI units of m2 �
W=m3 ¼ N=s, and ! is the frequency of interest [15]. The
form factor qð ~rÞ connects the measurement variable ẑ to
temperature fluctuations �Tð~r; tÞ in the mirror via

ẑ ¼
I

�Tð ~r; tÞqð ~rÞ; (7)

where the integral is formally over all space, though the
integrand is presumably zero outside the mirror and its
coating.
Power injection leads to heat flow and thus dissipation as

expressed by

W ¼
�I �

T
ð ~r�TÞ2

�
; (8)

where the average h� � �i is over cycles of the power injec-
tion. Finally, the FDT relates this dissipation to the spectral
density of noise in the associated measurement variable by

S�z ¼ 8kBTW

F2
0

: (9)

In the next section, as an illustrative example, we will
derive Fejer’s result for thermoelastic noise using the
approach outlined above. The same approach is applied
to the more complicated problem of thermo-optic noise in
Sec. II B.

A. An example: Coating thermoelastic noise

As a concrete example, we will first apply the above
formalism to derive coating thermoelastic noise in the
absence of any thermorefractive mechanism, (previously
performed in [8,13]). The solution to the nontrivial prob-
lem of thermal expansion of a thin coating on a semi-
infinite substrate is presented in [13], appears in our Eq.
(A2), and is contained in the effective thermal expansion
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coefficient ��. Under the assumption that the coating elastic
coefficients are similar to those of the substrate material,
the effective thermal expansion coefficient simplifies to

�� c � 2�cð1þ �cÞ: (10)

The same expression is valid for the constrained thermal
expansion of the bulk material in a semi-infinite substrate,
��s.
Referring back to Eq. (7), the thermoelastic readout

variable

ẑ TE ¼
I

�Tð ~r; tÞqTEð ~rÞ (11)

describes the sensing beam’s averaging of the thermally
induced displacement of points on the mirror’s surface.
From this we can write simply

qTEð ~rÞ ¼ Iðr?Þ ��ð ~rÞ; (12)

which leads to a thermoelastic power injection

PTE

�V
¼ TF0 sinð!tÞIðr?Þ ��ð~rÞ: (13)

To remove the component of power injection which
results in little temperature gradient and thus little heat
flow, we subtract the substrate contribution

1

Cð~rÞ
PTEc

�V
¼ 1

Cð~rÞ
PTE

�V
� 1

Cs

PTEs

�V

¼ TF0 sinð!tÞIðr?Þ
�
��ð ~rÞ
Cð ~rÞ �

��s

Cs

�
:

We can then recast this into the form of (6) as

PTEc

�V
¼ TF0 sinð!tÞqTEc

ð~rÞ; (14)

where we have identified the coating thermoelastic readout
form factor

qTEc
ð~rÞ ¼ Iðr?Þ

�
��ð ~rÞ � ��s

Cð~rÞ
Cs

�
; (15)

which is zero in the substrate by design [16].
To maintain the simplicity of this example, we will

assume that the coating and substrate are uniform, and
that the coating is of thickness d which is small with
respect to the thermal diffusion length

rT ¼
ffiffiffiffiffiffiffiffi
�

C!

r
: (16)

With this assumption, we can consider all energy to be
generated in this thin layer at the surface of the substrate
and then flow inward. Integrating (14) over z we compute
the energy flux into the substrate to be

PTEc

�A
¼ TF0 sinð!tÞIðr?Þ� ��d; (17)

where

� �� ¼ ��c � ��s

Cc

Cs

: (18)

In order to connect this heat injection to W in (8) we
solve the diffusion equation

C
@�T

@t
¼ �r2�T (19)

with the boundary condition that the injected energy flows
inward

PTEc

�A
¼ ��s

@�T

@z

��������z¼0
; (20)

which ignores the very small radiation loss, as in [9].
Further assuming that rG � rT , we can ignore diffusion

in the transverse dimensions, which yields the solution

@�T

@z
’ �TF0

�s

eð�z=
ffiffi
2

p
rT Þ sin

�
!t� zffiffiffi

2
p

rT

�
Iðr?Þ� ��d;

(21)

from which we can compute the power dissipation

WTEc
’
�I �s

T

�
@�T

@z

�
2
�

WTEc
’ TF2

0

2
ffiffiffi
2

p
�r2G�s

rTð� ��dÞ2:
(22)

Finally, returning to (9), we arrive at the coating thermo-
elastic noise spectrum

S�zTEc
¼ 2

ffiffiffi
2

p
kBT

2

�r2G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sCs!

p ð� ��dÞ2 ¼ S�TTOð� ��dÞ2; (23)

which is equal to that of [8,13] under their simplifying
assumptions.

B. Coating thermo-optic noise

The thermoelastic noise described above assumes that
the relevant readout variable is based on the position of the
surface of the mirror. Interferometric sensors are, however,
actually sensitive to the reflection phase of a surface as well
as its position.
In the case of reflection from a planar surface, the

position and reflection phase are related simply by �z ¼
����=4� ¼ @z���, but for multilayer coatings the rela-

tionship can be more complicated. To account for this we
generalize (11) to yield the thermo-optic readout variable,

ẑ TO ¼ @z�

I
�Tð ~r; tÞIðr?Þ

�
@�ðzÞ
@T

� CðzÞ
Cs

@�s

@T

�
; (24)

where as before we have subtracted the substrate contribu-
tion so as to remove the component of heat injection which
can be handled adiabatically. From this we identify the
thermo-optic form factor
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qTOð~rÞ ¼ Iðr?Þ@z�
�
@�ðzÞ
@T

� CðzÞ
Cs

@�s

@T

�
; (25)

which is, as before, zero in the substrate.
Plugging into (6), we get

PTO

�V
¼ TF0 sinð!tÞIðr?Þ@z�

�
@�ðzÞ
@T

� CðzÞ
Cs

@�s

@T

�
:

Again we assume that the coating and substrate are uni-
form, and d � rT � rG, so we can integrate over z to get
the energy flux

PTO

�A
¼ TF0 sinð!tÞIðr?Þ

�
@z�

@�c

@T
� ��sd

Cc

Cs

�
; (26)

where

@�c

@T
¼

Z d

0
dz

@�ðzÞ
@T

(27)

is the overall reflection phase sensitivity of the coating to
temperature, as described in Appendix B.

Following the path used for (23) above, we arrive at

WTO ’ TF2
0

2
ffiffiffi
2

p
�r2G�s

rT

�
@z�

@�c

@T
� ��sd

Cc

Cs

�
2

(28)

and thus

S�zTO ¼ S�TTO

�
@z�

@�c

@T
� ��sd

Cc

Cs

�
2
; (29)

which accounts for both thermo-optic mechanisms in
@�c=@T, the coating’s overall reflection phase sensitivity
to temperature. This can be combined with the approxi-
mate expression in Eq. (3) to arrive at our main result,
Eq. (4). To obtain a more precise result, the thickness of the
coating must be corrected for as described in Sec. III, and
the value of @�c=@T computed as described in
Appendix B.

III. THICK COATING CORRECTION

Here we will allow for finite thickness coatings by
removing the assumption that d � rT , while continuing
to assume rG � rT [17]. To do this we will need to solve
the heat diffusion equation accounting for power deposi-
tion and diffusion in the coating. Generalizing (19) to
include a source term, but limiting heat flow to the z axis

C
@�T

@t
¼ �

@2�T

@z2
þ P

�L
(30)

with the one-dimensional power injection

PTO

�L
¼ 1

Iðr?Þ
PTO

�V
¼ TF0 sinð!tÞ

�
@z�

@�ðzÞ
@T

� ��s

Cc

Cs

�
:

(31)

We will approximate the thermo-optic power deposition
in the coating with a constant thermoelastic component,

and a Dirac delta function for the thermorefractive compo-
nent since its effect is limited to the first few layers of the
coating. We can express this as

PTO

�L
’ TF0 sinð!tÞ

�
��c � �ðzÞ�TR � ��s

Cc

Cs

�
; (32)

where we define

�TR ¼ ��cd� @z�
@�c

@T
’ ��� (33)

with @�c=@T and �� as given in Appendix B.
Following the method used in [13], we transform (30) to

a second-order differential equation in z:

	ðzÞ � 1


2

@2	ðzÞ
@z2

¼ ��ðzÞ; (34)

where the relationships between the new and old variables
are

�Tðz; tÞ ¼ Reðei!t	ðzÞÞ
Pðz; tÞ
�L

¼ !CReð�iei!t�ðzÞÞ


 ¼
ffiffiffiffiffiffiffiffiffiffi
i
!C

�

s
¼

ffiffi
i

p
rT

:

(35)

The homogeneous solutions to this equation in the coating
and substrate are

	hcðzÞ ¼ 	dc coshð
czÞ 	hsðzÞ ¼ 	ds expð�
szÞ;
where the coefficients 	d will be determined by boundary
conditions at z ¼ d. These equations satisfy the boundary
conditions of no heat flow at z ¼ 0 or z ¼ 1.
The particular solutions needed are for the two kinds of

sources, TE and TR, both of which are limited to the
coating. The source terms are

�TE ¼ TF0

!Cc

�
��c � ��s

Cc

Cs

�
¼ TF0

!Cc

� ��

�TRðzÞ ¼ ��ðzÞ TF0

!Cc

�TR ¼ �ðzÞ ��TR

and the corresponding particular solutions are

	pTE ¼ ��TE 	pTRðzÞ ¼ �
c ��TR expð�
czÞ:
We put all this together with boundary conditions at z ¼ d
that ensure continuity of temperature and conservation of
energy

	hsðdÞ ¼ 	pTE þ 	pTRðdÞ þ 	hcðdÞ
�s

@

@z
	hsðdÞ ¼ �c

@

@z
ð	pTRðdÞ þ 	hcðdÞÞ

to find
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	dc ¼ �TE þ ��TR
c expð�
cdÞð1� RÞ=c d

	ds ¼ �R expð
sdÞð�TE sinhð
cdÞ þ ��TR
cÞ=c d

c d ¼ coshð
cdÞ þ R sinhð
cdÞ

R ¼
ffiffiffiffiffiffiffiffiffiffiffi
�cCc

�sCs

s
¼ �c
c

�s
s

¼ �crTs
�srTc

:

(36)

Before we lose ourselves among the equations, recall
that our goal is to find the time averaged dissipation W,
which is related to the temperature gradient in Eq. (8). We
now have 	ðzÞ in hand, and (35) relates this to �T, so our
destination is near. Summing the homogeneous and par-
ticular solutions to get 	ðzÞ, and taking the derivative with
respect to z, we find

@	cðzÞ
@z

¼ 
cð	dc sinhð
czÞ þ 
c ��TR expð�
czÞÞ
@	sðzÞ
@z

¼ �
s	ds expð�
szÞ:

From Eqs. (8) and (35) we can see that

W thick
TO ’ 1

�r2G

�Z 1

0
dz

�

T

�
@�T

@z

�
2
�

’ 1

2�r2G

Z 1

0
dz

�

T

��������@	ðzÞ
@z

��������2

; (37)

where the transverse integrals over Iðr?Þ2 have already
been performed.

To arrive at a correction factor for thick coatings, we
normalize the corrected thermo-optic dissipation above by
that of a thin coating given in Eq. (28),

�tc ¼ W thick
TO

WTO

¼ S�zthickTO

S�zTO
: (38)

Taking the integral over the coating and substrate, we end
with a complicated expression for the correction factor

�tc ¼ p2
E�0 þ pEpR��1 þ p2

R�
2�2

R�2�D

�0 ¼ 2ðsinhð�Þ � sinð�ÞÞ þ 2Rðcoshð�Þ � cosð�ÞÞ
�1 ¼ 8 sinð�=2ÞðR coshð�=2Þ þ sinhð�=2ÞÞ
�2 ¼ ð1þ R2Þ sinhð�Þ þ ð1� R2Þ sinð�Þ þ 2R coshð�Þ
�D ¼ ð1þ R2Þ coshð�Þ þ ð1� R2Þ cosð�Þ þ 2R sinhð�Þ;

(39)

where we have made the following substitutions

pR ¼ ��TR

d�TE þ ��TR

; pE ¼ d�TE

d�TE þ ��TR

(40)

using the dimensionless, frequency dependent, scale factor

� ¼
ffiffiffi
2

p
d

rTc
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2!Cc

�c

s
d: (41)

Note that the power deposition fractions pE and pR can
also be written as

pR ¼ � ���

� ��d� ���
; pE ¼ � ��d

� ��d� ���
: (42)

Applying this correction to Eq. (4) gives

S�zTO ¼ S�TTO�tcð� ��d� ���Þ2: (43)

For d � rTc or � � 1, we can use the much simpler
expansion

�tc ’ 1þ p2
E þ 3ðpR � R2Þ

3R
�� pE � 3ð1� R2Þ

6
�2;

(44)

which goes to 1 as � goes to 0. In the case of a very thick
coating, with d � rTc, the thermal fluctuations which
generate noise via TE and TR mechanisms become inde-
pendent, and thus they add in quadrature [18]

�tc ’ 2p2
E

Rð1þ RÞ�2
þ p2

R

R
: (45)

Thus, this correction expands our understanding beyond
the simple notion that the TE and TR mechanisms have a
relative negative sign. Now we can say that TE and TR
mechanisms have a relative negative sign if d � rTc, are
partially coherent and partially canceling if d� rTc, and
act as independent noises if d � rTc.

IV. IMPLICATIONS FOR ADVANCED LIGO

Having clarified the relationship between the thermo-
optic mechanisms, a recomputation of the impact of this
noise source is in order. We will also take this opportunity
to use the most recent information about the physical
properties of the materials involved, and to apply an addi-
tional correction factor for the less-than-infinite size of the
mirror. To highlight the implications of this work, the
results will be compared with Harry’s result for coating
Brownian noise [6].
The Advanced LIGO mirrors are high reflectors with a

multilayer coating of alternating SiO2 and Ta2O5. The
input mirrors will have a power transmission of T ¼
1:4% with rG ¼ 5:5 cm, while the end mirrors will have
T ’ 5 ppm with rG ¼ 6:2 cm. The mirrors are made of
fused silica, are 34 cm in diameter and 20 cm thick for a
total mass of 40 kg. In Figs. 1 and 2 we plot the coating
related noises for coatings made of 1=4-wave doublets.
We take the finite test-mass correction from [19] which,

with the mirror and beam-size parameters given above, is
Cfsm ’ 0:98. This multiplicative factor affects only the

thermoelastic mechanism,
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� ��fsm ¼ Cfsm� ��; (46)

as it represents a bending of the optic due to strains
produced by the coating. Adding this correction to Eq.
(43) gives

S�zTO ¼ S�TTO�tcð� ��fsmd� ���Þ2; (47)

where we use � ��fsm in (42) when computing �tc.

Figure 3 shows a representative Advanced LIGO sensi-
tivity curve [20]. While the difference between the result of
Eq. (47) and a conservative estimate which simply takes
the sum of the TR and TE mechanisms is less than 10%,
our coherent treatment of TO noise makes clear that it

should not be considered a driving force in Advanced
LIGO coating design.
The material parameters used to make the figures in this

section are given in Table II. It should be noted that some of
these parameters are poorly constrained. The thermal con-
ductivity of Ta2O5 is simply assumed to match that of
sapphire [13]. Fortunately this only affects the thick coat-
ing correction factor, and no reasonable value significantly
changes the result below 1 kHz. The value of � for Ta2O5

is also poorly constrained, but again the range of tolerable
values is large. Thermo-optic noise remains below the
conservative ‘‘OLD’’ curve in Fig. 3 for values between
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FIG. 2 (color online). Thermo-optic noises and Brownian
noise for an Advanced LIGO end mirror.
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FIG. 3 (color online). An Advanced LIGO sensitivity curve.
The thermo-optic curve labeled ‘‘NEW’’ uses Eq. (47), while the
‘‘OLD’’ curve uses a conservative estimate of TO noise: the sum
of TR and TE, with the TE correction factor of 1.56 from [8].
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FIG. 1 (color online). Thermo-optic noises and Brownian
noise for an Advanced LIGO input mirror.

TABLE II. The values of material parameters used for Figs. 1–
3. These values are taken from [13], with the exception of �Ta2O5

noted in the text.

Symbol Ta2O5 Unit

� 3.6 10�6=K
� 14 10�6=K
� 33 W=mK
C 2.1 GJ=Km3

E 140 GPa

� 0.23

nH 2.06

Symbol SiO2 Unit

� 0.51 10�6=K
� 8 10�6=K
� 1.38 W=mK
C 1.64 GJ=Km3

E 72 GPa

� 0.17

nL 1.45
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�10�4=K and 3� 10�4=K. The value of �Ta2O5
used

herein, from Gretarsson [19], is comparable to previous
values [21,22].

V. CONCLUSION

Thermo-optic noise results from thermal fluctuations in
the coatings used to make high-reflection mirrors. These
thermal fluctuations affect the measured position of a
mirror through the thermoelastic and thermorefractive
mechanisms. While both of these mechanisms have been
known for some years, they were not treated coherently.
The coherent treatment presented herein shows that these
two mechanisms appear with a relative negative sign. The
effect is to essentially reduce thermo-optic noise to the
point of insignificance for second generation gravitational-
wave antennas. While it is true that our current knowledge
of the properties of coating materials is imprecise, it seems
unlikely that better measurements, while desirable, will
bring thermo-optic noise back into the realm of relevance.
This fact should help to guide coating research in the
coming years.

APPENDIX A: COATING AVERAGE PROPERTIES

Optical coatings are made from alternating layers of
materials with different refractive indices. For properties
other than the refractive index, as long as the length scales
involved (rT and rG) are large compared to the layer
thickness (typically <�=2), we can use suitably averaged
material properties to represent the coating. The equations
given in this section are all taken from [13], and are
repeated here only for completeness and clarity.

The thermal expansion coefficient for a given layer k in
the coating is

�� k ¼ �k

1þ �s

1� �k

�
1þ �k

1þ �s

þ ð1� 2�sÞEk

Es

�
(A1)

and the volume average coefficient for a coating with N
layers each of thickness dk is

�� c ¼
XN
k¼1

��k

dk
d
; (A2)

where d is the total coating thickness

d ¼ XN
k¼1

dk: (A3)

To compute the correction factor in Sec. III the average
thermal properties of the coating are needed. The heat
capacity is a simple volume average,

Cc ¼
XN
k¼1

Ck

dk
d
; (A4)

while the average thermal conductivity involves the in-

verse,

�c ¼
�XN
k¼1

1

�k

dk
d

��1
: (A5)

APPENDIX B: REFLECTION PHASE OFA
MULTILAYER COATING

In this Appendix we describe the method we use for
computing the reflection phase of a multilayer coating. The
initial discussion is somewhat pedantic, but it serves to give
us a consistent notation which we develop in the subsec-
tions detailing the thermoelastic and thermorefractive
mechanisms.
We start with the effective reflectivity of the interface

between materials with refractive indices n1 and n2, pass-
ing from material 1 to material 2,

r1;2 ¼ n1 � n2
n1 þ n2

: (B1)

Given two such transitions, from 1 to 2 and from 2 to 3, we
can equate the reflectivity to that of a two mirror cavity

r1;2;3 ¼ �r2;1 þ r2;3e
�i�2

1� r2;1r2;3e
�i�2

; (B2)

where �2 is the round-trip phase in material 2.
Note that the reflectivity of the 2 to 1 transition appears

in (B2) with the indices in the order seen from inside the
cavity. In the following text we will use the relation
rkþ1;k ¼ �rk;kþ1 to keep the indices in increasing order,

and then drop the second index, such that rk � rk;kþ1.

If we number the interfaces in our coating in the order of
increasing depth (i.e., the coating layer in contact with the
vacuum is 1, and the layer in contact with the substrate is
N), we can define a recursion relation using (B2)

�r k ¼ e�i�k
rk þ �rkþ1

1þ rk �rkþ1

; (B3)

where �rk ¼ e�i�krk;kþ1;...;N is the effective reflectivity of a

coating layer, including the round-trip in that layer. The
base case for this recursion relation is the transition from
the Nth coating layer to the substrate,

�r N ¼ e�i�NrN;s; (B4)

which can be evaluated with (B1).
Extending our coating to include the external vacuum as

layer 0 provides a natural end to the recursion. The reflec-
tivity of the coating is then given by rc ¼ �r0, and we can
use �0 to account for the overall expansion of the coating
into the vacuum with �0 ¼ �c=@

z
�, where �c is the total

change in coating thickness.
To use (B3) to compute changes in reflection phase, one

must take the derivative with respect to the round-trip
phase in each layer. Here we give the recursion relation
and base case for these derivatives,
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@�rk
@�j

¼
8><
>:
e�i�k

1�r2
k

ð1þrk �rkþ1Þ2
@�rkþ1

@�j
k < j

�i �rk k ¼ j
0 k > j:

(B5)

From the derivatives of the reflectivity of each layer, the
derivative of the reflection phase of the coating as a whole
is

@�c

@�k

¼ @ argð�r0Þ
@�k

¼ Im
�
1

�r0

@�r0
@�k

�
: (B6)

For any quarter or half-wave coating, �r0 is entirely real and
its phase derivatives are entirely imaginary, so much of the
apparent complexity is not real.

1. Thermally induced changes

For phase changes induced by a uniform change in
temperature we have

@�c

@T
¼ XN

k¼0

@�c

@�k

@�k

@T
: (B7)

The phase change due to thermoelastic and thermorefrac-
tive effects in a coating with layers of thickness dk are

@�k

@T
¼ 4�

�
ð�k þ ��knkÞdk ¼ 4�

�
Bkdk

@�0

@T
¼ � 4�

�

XN
k¼1

��kdk ¼ ��c

d

@z�
;

(B8)

where, as previously noted, we use �0 to account for the
overall expansion of the coating. For any real coating, one
can evaluate this expression numerically, and thus find
@�c=@T for that coating.

2. Relative sign of TE and TR in 1=4-wave coatings

Of particular interest are high-reflection coatings made
of 1=4-wave layers of alternating low-n and high-n mate-
rial. For simplicity, we will assume that the high-n layers
have nH > ns and that the low-n layers have nL ¼ ns.
Thus, the reflectivity from high n to low n is

rH ¼ nH � nL
nL þ nH

: (B9)

As a transition from the vacuum, the first layer is of low-n
material and 1=2 wave in optical thickness, such that

r0 ¼ 1� nL
1þ nL

: (B10)

Summarizing, these coatings have the following proper-
ties:

e�i�k ¼
	
1 k&lt;¼ 1
�1 k > 1

rk ¼
8<
:
r0 k ¼ 0
rH k even
�rH k odd:

From the above we can at least determine the signs of the
various phase derivatives. We start by noting that

sign ð �rkÞ ¼
8><
>:
�1 k ¼ 1
�1 k even
1 k odd

and that (B5) inverts the sign of the derivative for each
layer with k > 1. Even numbered layers start with @�rk=@�k

positive, experience k� 2 sign inversions, and thus end
with a positive sign. Odd numbered layers, on the other
hand, start with @�rk=@�k negative, experience an odd
number of sign inversions, and thus these also end with a
positive sign. Since �r0 is negative, we are ensured that

sign

�
@�c

@�k

�
¼ �1; for all k: (B11)

It follows that, for any high-reflection coating of this
construction, thermoelastic and thermorefractive effects
will appear with opposite sign in (B7), thanks to the
relative minus sign in (B8).

3. Approximation for high reflectors

While Eqs. (B7) and (B8) are accurate and easy to use in
numerical computation, they offer little intuitive under-
standing and fail to provide a concise expression for the
thermo-optic mechanisms. To address this, we give an
approximation which is useful for high-reflection coatings.
The thermoelastic mechanism, which arises from mo-

tion of the coating’s surface, is accounted for by the k ¼ 0
term in Eq. (B7) [also the second line in Eq. (B8)]. This
term can be expressed in terms of the average coating
expansion coefficient as

@zTE
@T

¼ @z�
@�0

@T
¼ ��cd: (B12)

The thermorefractive mechanism is accounted for by the
terms with k > 0 in (B7), which can be thought of as the
change in reflection phase as measured at a point on the
coating’s surface. Both @n=@T and thermal expansion play
a role in changing the reflection phase of a coating, so
while this mechanism is refereed to as ‘‘thermorefractive,’’
this is something of a misnomer. We define an effective TR
coefficient �� such that [23]

@zTR
@T

¼ � ���: (B13)

For a coating made entirely of 1=4-wave doublets, �� can
be approximated by

�� QW ’ n2LBH þ n2HBL

4ðn2H � n2LÞ
; (B14)

where BX is the fractional change in optical path length
with respect to temperature in material X:

BX ¼ �X þ ��XnX; (B15)
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with X 2 fL;Hg either the low-index material L or the
high-index material H, as given in [7]. A 1=4-wave cap
layer is, however, counterproductive and not used in high
reflectors.

To find �� for the common high reflection coating (made
of 1=4-wave doublets with a 1=2-wave cap layer, as shown
in Fig. 4), we modify ��QW by approximating �rk ’ signð�rkÞ.
Since the sign of �r0 is minus in the 1=4-wave case and plus
in the 1=2-wave case, each term in (B5) with j > 0 is
reduced by

ð1þ r0Þ2
ð1� r0Þ2

¼ 1

n2L
: (B16)

Furthermore, we must include the additional 1=4 wave of
material in the thicker cap layer

@�c;HW

@�1

¼ 1þ r0
1� r0

¼ 1

nL
(B17)

so that the additional temperature sensitivity is

��L

@�c;HW

@�1

1

4nL
¼ ��L

1

4n2L
: (B18)

Putting these corrections together gives

�� ’
��QW

n2L
þ BL

4n2L
(B19)

which can be rearranged to

�� ’ BH þ BLð2ðnH=nLÞ2 � 1Þ
4ðn2H � n2LÞ

: (B20)

Returning to the motive for this exploration, Eq. (3)
arises simply from the sum of TE and TR terms:

@z�
@�c

@T
¼ @zTE

@T
þ @zTR

@T
’ ��cd� ���: (B21)

For alternating layers of SiO2 and Ta2O5, this approxima-
tion is within a few percent for coatings with more than�6
doublets.

APPENDIX C: RELATIONSHIP TO SUBSTRATE
THERMOELASTIC NOISE

The spectrum of thermal fluctuations described by (1),
and derived previously in [8,9], can be rearranged with the
help of the thermal diffusion length. If we rewrite (1) as

S�TTO ¼
ffiffiffi
2

p
kBT

2

!Csr
3
T

2r2T
�r2G

;

we can see that the first fraction is the spectral density of
the thermodynamic fluctuation in a volume defined by the
diffusion length, while the second is the Gaussian beam
average over these volumes.
The coating thermo-optic coupling is designed such that

a similar equation applied to the substrate would result in
zero. The reason for this is that the loss associated with the
coating results from nonadiabatic heat flow due to the
difference between the coating and substrate. The substrate
thermoelastic noise, on the other hand, results from adia-
batic heat flow on the scale of the beam radius rG, and is
thus smaller by a factor of �rT=rG. See, for instance,
Eq. (2) in [8] which can be written in our notation as

S�zTEs
¼ 4kBT

2ffiffiffiffi
�

p
!Csr

3
G

ð ��srTÞ2 ¼ S�TTO
ffiffiffiffiffiffiffi
2�

p rT
rG

ð ��srTÞ2: (C1)

To give an idea of the relative importance of substrate
and coating thermoelastic noise, we divide the coating
thermoelastic noise in (23) by (C1) and define the thermo-
elastic ratio

RTE � S�zTEc

S�zTEs

¼ d2rGffiffiffiffiffiffiffi
2�

p
r3T

� ��2

��2
s

: (C2)

In the case of a gravitational-wave interferometer we have
roughly rG � 5 cm and d� 5 
m. For a fused-silica sub-
strate, rT � 40 
m around 100 Hz, such that RTE �
10ð� ��= ��sÞ2 � 150, indicating that the substrate contribu-
tion is insignificant. For a sapphire substrate (rT �
130 
m and �s ¼ 5:6� 10�6), on the other hand, the
substrate contribution is dominant RTE � 0:2ð� ��= ��sÞ2 �
0:1.

FIG. 4 (color online). A high-reflection coating made of
1=4-wave doublets with a 1=2-wave cap layer.
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