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I visually explore the features of geodesic orbits in arbitrary stationary axisymmetric vacuum (SAV)
spacetimes that are constructed from a complex Ernst potential. Some of the geometric features of
integrable and chaotic orbits are highlighted. The geodesic problem for these SAV spacetimes is rewritten
as a 2 degree of freedom problem and the connection between current ideas in dynamical systems and the
study of two manifolds sought. The relationship between the Hamilton-Jacobi equations, canonical
transformations, constants of motion, and Killing tensors are commented on. Wherever possible I
illustrate the concepts by means of examples from general relativity. This investigation is designed to
build the readers’ intuition about how integrability arises, and to summarize some of the known facts
about 2 degree of freedom systems. Evidence is given, in the form of an orbit-crossing structure, that
geodesics in SAV spacetimes might admit a fourth constant of motion that is quartic in momentum (by

contrast with Kerr spacetime, where Carter’s fourth constant is quadratic).
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I. INTRODUCTION

The Carter constant associated with a Kerr spacetime
plays a crucial role in current LIGO (Laser Interferometer
Gravitational Wave Observatory) and LISA (Laser
Interferometer Space Antenna) extreme and intermediate
mass ratio inspiral (EMRI/ IMRI) waveform calculations.
Its generalization to arbitrary stationary axisymmetric vac-
uum (SAV) spacetimes, could lead to an algorithm to map
spacetimes around a compact object described by a general
set of multipole moments; see [1] and paper I of this series
[2]. Such an algorithm may provide a method of determin-
ing the nature of compact objects by asymptotically ob-
serving gravitational and electromagnetic radiation from
an EMRI or IMRI.

The geodesic problem in Kerr spacetime is completely
solved by the specification of four isolating integrals or
constants of motion, namely, rest mass, energy, axial an-
gular momentum, and the Carter constant (u, E, L, Q).
The generalization of the first three constants of motion,
namely, (u, E, L) to SAV spacetimes is trivial. These
constants result from the absence of an explicit dependence
of the Lagrangian on proper time, coordinate time, and the
axial angular coordinate, respectively (7, #, ¢). The mean-
ing of the fourth constant Q, first discovered by Brandon
Carter by separation of the Hamilton-Jacobi equations
(HJEs) [3,4] is a little more obscure. It is this fourth
constant that allows the reduction of the geodesic equations
to first order quadratures, and the complete solution of the
geodesic problem. The geometric interpretation of this
fourth constant and the conditions for its existence are
explored in this and subsequent papers in this series [5,6].

The present paper visually characterizes the geodesics in
some of the axisymmetric spacetimes that are generated
from an Ernst potential. In particular, the Manko-Novikov
[7-9] and Zipoy-Voorhees metrics [10,11] are considered.

1550-7998/2008 /78(10)/102002(12)

102002-1

PACS numbers: 04.80.Cc, 04.20.Jb, 04.30.Db

The geodesic problem is formulated as a 2 degree of free-
dom (2-DOF) problem in dynamical systems. Ideas from
the field of integrable systems are collated and introduced
by means of a series of visual examples. For historic
purposes, the role of the HJE is put in context. Possible
tests for integrability are addressed. The concepts of phase
and energy space are introduced and illustrated by means
of an example. The role and possible forms of the addi-
tional invariant are explored and a geometric interpretation
of Killing tensors given.

Finally, some of the frustrations and computational dif-
ficulties when dealing with 2-DOF Hamiltonians are men-
tioned, and the implications of the numerical experiments
in SAV spacetimes for the existence of a generalized Carter
constant are described.

II. EQUATIONS OF MOTION

I begin with the general SAV spacetime line element of
the form

ds® = k*e 2Y[e*(dp® + dz*) + R*d¢?]
— 2V (dt — wd¢)>?, (1)

where ¢, v, w, and R are functions of p and z, and k is a
real constant. The vacuum field equations relate these
functions to solutions of the Ernst equation for the complex
potential &,

R(E)VE = VE - VE, (2)

where V2 = 9, T+ %ap + 0.,V =1(3,, 9,), and the dot is
the flat-space inner product. In particular, the function
e?? = N(E) denotes the real part of the potential. The
functions vy and w can be obtained by means of line
integrals of the potential once it is known. A gauge free-
dom in the form of the harmonic function R obeying R, +

R,, = 0 exists in this metric. Often this freedom is used to
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set R = p, however, for the sake of later comparison with
solution generation techniques, I shall retain this
generality.

The Hamiltonian associated with geodesics of this met-
ric is

H (g, p) = 18" pups 3)

where, following the notation of Goldstein [12], g =
(p,z, ¢, 1) are the generalized coordinates and p =
(Pp» P2 Pg» ;) are the conjugate momenta.

In order to write the equations of motion in compact
form, I make use of the Poisson brackets. The Poisson
bracket of two functions g and /& with respect to the
canonical variables is defined as

dg 0h dg 0h
[ 4] = 355 20— 18 1) 4)
T \9q; 3Pk Ipr 9q;

The geodesic equations can now be expressed in first order
form using Hamilton’s equations, namely

)7 = [q;u j{]) " = [p/u j-[]: (5)

where the dot - indicates the total derivative with respect to
proper time 7.

Using this notation it is immediately obvious that the
absence of any explicit metric dependence on ¢ and ¢
results in p, = py = 0. By setting these quantities equal
to the standard constants p, = —E'and p, = L., the study
of geodesic motion in four-dimensional spacetime is re-
duced to the study of a 2-DOF dynamical system with an
effective potential. The reduced Hamiltonian can be ex-
pressed as

1/1
Hip.2ppp) =5 (303 + 40 -G). ©

where the two potentials V and G have been introduced to
simplify notation, and are defined as

Vip, z) = k*e?772¥, @)

G(E, L, p 2)=—g"8paps ®)

with A, B indicating the components #, ¢, and let i, j range
over p, z. The Hamiltonian constant H = —1/2u? fixes
the sum of the squares of the conjugate momenta to

pptp2=(G—p)V=JpzELp) O
and the equations of motion become

Di . aq;J
v Ty
Upon introducing the nonaffine parameter A such that
VdA = dt, and letting ' indicate differentiation with re-
spect to A, the equations further simplify to

P =10, (11)

qi= (10)

q9; = pi»
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The problem of finding a generalized Carter constant in
SAV spacetimes can be expressed most generally as the
hunt for a function Q(p,z p,, p.) distinct from the
Hamiltonian H(p, z, Pp pz), that remains constant along
an orbit of the two-dimensional Hamiltonian H, i.e. a
function such that [Q, H] = 0. Alternatively this can be
stated as the study of the geodesics of the two manifold
with metric g; and associated ‘“Jacobi”” Hamiltonian H,
_(pp+pd) _1

H —
I 2

L =J8
ngj 2]

ij (12)
A more general and rigorous treatment of these ideas is
given in [13].

In general, for a generic two-dimensional Hamiltonian
H g» DO such integral of motion Qg exists and the
Hamiltonian is chaotic. In most textbooks on dynamical
systems completely integrable systems are given but brief
mention [12,14,15]. Explicit examples are rare. A thorough

review summarizing most of the known examples can be
found at [16].

III. A FEW WORDS ABOUT THE
HAMILTON-JACOBI EQUATION

Carter’s original derivation [3] of the fourth invariant for
the Kerr metric was performed by means of separation of
the HJE for the Jacobi function S,

1 aS aS

§ = L gnv

28 agt aq”’

13)

The Jacobi function generates the canonical transformation
to action-angle variables [12]. Once § is known, the prob-
lem of finding the full set of constants of motion is solved.
One method of solution of (13), and the only one so far
used in practice, is by means of separation of variables.

Lack of separation of variables, however, does not nec-
essarily imply that the system is not integrable or the
absence of . An example that does not have its origin
in the vacuum field equations is the Fokas-Lagerstrom
Hamiltonian [17]

(px + py) + ()C - )’2) 2/3 (14)
which admits an orbital invariant

= (pz — p})(xp, — yp,)
—4(xp, + yp)(x? — y2) "3, (15)

No separation of variables for the HJE associated with (14)
has ever been found.

In the case of the SAV spacetimes, all metrics admitting
a second-rank Killing tensor have separable HJEs [4,18] in
some coordinate system. This feature will be considered in
greater detail in paper III of this series [5] where I will
catalog the coordinate systems where this occurs.
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IV. TESTS FOR INTEGRABILITY

To my knowledge, there exist no conclusive algebraic
tests for integrability for a given 2-DOF Hamiltonian H.
Many of the difficulties in carrying out a test are summa-
rized in [16] and some will be demonstrated later in this
paper. Partial tests, such as the Painlevé test, can be carried
out and all dynamical systems that pass this test have been
found to be integrable. Failure to pass the Painlevé test,
however, does not imply that a particular Hamiltonian will
fail the test in another coordinate system.

The Zipoy-Voorhees metric [10,11] fails the Painlevé
test in the same manner that the Fokas-Lagerstrom
Hamiltonian expressed in the form (14) does. This fact is
inconclusive since after a number of difficult transforma-
tions a formulation of the Fokas-Lagerstrom Hamiltonian
was found that passes the Painlevé test [16].

Possibly the strongest indication that integrability fails is
the finding that numerical integration yields a Poincaré
map without closed curves. A Poincaré map that displays
closed curves is indicative that the Hamiltonian may be
integrable, but it does not provide proof of the existence of
an additional constant of motion.

If a Hamiltonian H is close to an integrable Hamiltonian
H, with invariant Q,, it is always possible, following a
perturbative scheme developed by Deprit [19], to compute
an approximate invariant Q associated with H, and thus to
produce an approximate Poincaré map with closed curves.
A perturbative invariant so constructed, however, may not
give an accurate rendition of the phase space of the per-
turbed Hamiltonian H in a strongly chaotic regime. The
classical example where this is clearly illustrated is the
Hénon-Heiles problem [20]. A perturbative analysis is not
sufficient to prove or disprove integrability.

Attempting to use the Deprit scheme of canonical per-
turbation theory to construct invariants for SAV spacetimes
is prohibitively expensive computationally, and is not fea-
sible if a solution for all SAV spacetimes is sought.

Indications of integrability can also be gleaned by ob-
serving the structure of the orbits in configuration space.
This will be discussed in greater detail in subsequent
paragraphs.

In paper IV of this series [6] I will propose a test to see if
SAV spacetimes admit invariants that are polynomial in
momenta.

V. ORBITS, PHASE SPACE, AND ENERGY SPACE

Integrable systems have a surprisingly simple structure
[14]. If expressed in terms of action-angle variables, the
orbits are found to trace out tori in the four-dimensional
phase space (p, z, p,, p;). Although four dimensions are
difficult to visualize, it is possible to see what these orbits
look like in the three-dimensional energy space by intro-
ducing a momentum phase angle 6 such that

Pp = VJ cosé, p, = VJ siné. (16)
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Doing so explicitly imposes the Hamiltonian constraint (9),
so the orbit can be visualized in (6, p, z) energy space, as
depicted in Fig. 3. Note that if the light blue lines in this
figure are “‘squashed”, i.e. projected down onto the (p, z)
plane, a rotated version of Fig. 2 is obtained.

One method of characterizing a curve in the (p, z) plane
(Fig. 2) that is independent of the parameterization of the
curve is to compute its curvature k. (The curvature of a
curve is a measure of how rapidly the curve is moving
away from its tangent line.)

The curvature of a curve parameterized by (p(7), z(7))
can be expressed as

ip—pi

K(’T) = W

a7)

Using the momentum phase angle 6, this simplifies to
Kk = 3(sindd ,(InJ) — cosfd (InJ)). (18)

There are special points along a curve at which the curva-
ture stops changing, or reaches an extremum, namely,
when k = 0. These points are indicated by means of a
dark blue line in Fig. 2. The surfaces in energy space on
which these extrema occur can be computed for any J (See
Appendix A). The brown surfaces shown in Fig. 3 are the
extreme curvature surfaces.

The rate of change of the phase angle along a particular
geodesic can be calculated and expressed compactly in
terms of the curvature as

0 = — kT, (19)

p

FIG. 1 (color online). Constant J potential surfaces for a
geodesic in the Schwarzschild metric with £ = 0.95, L, = 3,
pm = 1. Contour Spacing 0.5. The explicit form of the metric
functions can be found in Appendix C.
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FIG. 2 (color online). Configuration (p, z) space depiction of a
geodesic orbit for the potential J shown in Fig. 1 (Schwarzschild
metric with £ =095, L, =3, u = 1).

If the geodesics are integrable, as is the case in Figs. 2
and 3, the orbits sweeps out a surface in the energy space
(Fig. 3). The locus of points at which the orbit reaches a
point of extreme curvature forms a curve in configuration
space (Fig. 2). The points of contact with the / = 0 contour
are unique, and are determined by the constant Q.
Furthermore, if a Poincaré map is drawn it is constituted
out of closed curves.

If the geodesic problem is not integrable (no Q exists)
and the orbit is strongly chaotic, it will wander all over

FIG. 3 (color online).

Three-dimensional energy space depic-
tion of the torus of the orbit displayed in Fig. 2. The orbit is
depicted in cyan lines. The surfaces depicted correspond to the
surfaces in phase space at which the orbit in configuration space
reaches an extremum in curvature.
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energy space. If the geodesic problem is not integrable and
the Hamiltonian H is close to an integrable Hamiltonian
H, the orbit can be confined to a small volume in phase
space, and appear integrable. If both H and H, meet certain
criteria [14], the manner in which the surfaces in energy
space, or tori in configuration space, that exist for H, are
destroyed are quantified by the Kolmogorov-Arnold-
Moser (KAM) theorem [14].

VI. METHODS FOR CONSTRUCTING AN
ADDITIONAL INVARIANT Q

Suppose now that you suspect that an additional invari-
ant Q exists, due to a numerical exploration that yielded a
Poincaré map with closed curves or due to the fact that the
points of extreme curvature all lie on a curve or due to your
Hamiltonian passing the Painlevé test; and suppose you
would like to construct an explicit expression for Q. The
rules of engagement to date appear to be simple: you guess
its form and hope that you are right. One method of
guessing is to postulate that the invariant Q is polynomial
in momenta p. This is equivalent to guessing that you have
a Killing tensor on your two manifold. This is by no means
the only form an invariant can take; however most of the
known examples of integrable two-dimensional
Hamiltonians have polynomial Q’s [16]. (For a further
discussion on the generality of this form of guessing, see
[21].)

The task of finding an additional invariant Q polynomial
in momenta for a 2-DOF problem in dynamical systems
has a long history. In some avenues of literature it is know
as Whittaker’s problem [14,22]. Hall [21] provides a very
complete and readable reference and the analysis adopted
here is guided largely by his treatment of the problem. This
analysis will become particularly useful in paper IV [6] in
this series when I return to a four-dimensional representa-
tion of the geodesic problem, and attempt to understand the
coupling between the Weyl tensor of SAV spacetimes and
the possible existence of Killing tensors. This method of
analyzing the additional invariant appears to identify the
most important quantities that should be considered, and
provides a geometric picture of what they are. Some of the
difficulties in checking why a given Hamiltonian is inte-
grable are also illustrated. Furthermore, this approach
highlights other properties an integrable orbit has. The
problem was also considered by [16,23] and in different
notation by [24-27].

Before I begin the analysis it is useful to introduce the
complex variable ¢ = 1/2(p + iz). Let { = 1/2(p — iz)
denote its complex conjugate. In terms of this complex
variable the orbital curvature in the (p, z) plane can be
expressed as

1 . )
K= E(e'ﬁa; - 67’065) InJ, (20)

and derivatives along the geodesic parameterized by A
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become
JI . »
Iy = p,d, + po, = T(elﬂag +e79;). (21)

Let us exploit the phase angle introduced in Eq. (16) to
express our additional invariant Q, which is assumed to be
a general Nth order polynomial in the momenta, p, and p_,
as [cf. Equation (16)]

1 & .
00,40 =5 3 Que™, (22)

n=—N

where the Q, are complex valued functions of the configu-
ration space variables, Q, = Q,(£, {), n is a positive in-
teger, and Q_, = Q,. In effect, we are building up a
Fourier series representation of the surface the orbit sweeps
out in energy space; Fig. 3.

The condition that Q is invariant along the orbit, in other
words that Q" = 0, results in differential equations for the
functions Q,. Explicitly, computing d, (22) and making
use of 0 = —k+/J yields,

N
\{1‘7 n_ZN Jn/ZB{(QnJ*n/Z)ei(nJrl)G
N
\/‘7 Z J*H/ZGZ(Qan/Z)ei(n*I)H' (23)

n=—N

+
If this expression is to hold for all 8, the coefficients of ¢’

must vanish for all —(N + 1) <k < (N + 1), which trans-
lates into the conditions

Qn _ —
a§<1n/2) =0, forn=NN-—1,

On—1

- 1/2)y — _—

0 Q1 JOHID) = — {<—J«nﬁ1) /2)),
for0<n=N-—1, (24)

where Q, is real and Eﬁ(&éz(Ql\/j)) = (. For negative n
values we get the complex conjugates of the above ex-
pressions. These equations can be identified directly with
the Killing equations for a two manifold. The correspon-
dence is shown in detail in Appendix B. The lessons
learned here will be exploited in that setting in my paper
IV [6].

Just as in a Fourier decomposition, the equations for odd
and even n decouple. Furthermore, the first condition of
(24) implies that

% = gy(d) (25)

is an analytic function of ¢ and indicates an inherent
“gauge” freedom in the Killing equations. It is this free-
dom that makes the identification of integrable 2-DOF
Hamiltonians so difficult. The integrability conditions
that the functions Q,, exist result in conditions on the
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conformal factor J. As a result, you can write down the
differential equations the conformal factor J must obey if it
is to admit a Killing tensor in some coordinate system.
However, if you are given a sample Hamiltonian to check
for integrability, you have no idea what transformation
leads to the coordinate system where we can conduct the
check. An additional difficulty is that the conditions on the
conformal factor for N > 2 are highly nonlinear.

In the case of SAV spacetimes that admits a second-rank
Killing tensor (Carter spacetimes) it is possible to exploit
the coordinate freedom to our advantage by coupling it to
the gauge freedom in the metric [The R function in
Eq. (1)]. A derivation of Carter spacetimes using this
method is given in paper III of this series [5].

The case where N = 1, i.e. where the invariant Q is
linear in the momenta, corresponds to a two metric with
conformal factor J that admits a Killing vector. This im-
plies that it is a manifold of constant curvature (of the two
manifold, not the orbit). The curvature of the two manifold
is given by

K = 30,:(InJ). (26)

The three possibilities include flat space (K = 0), the two
sphere (K > 0), and the Lobachevskii plane (K < 0) which
can be visualized as the surface of a bugle.

The problem of an invariant quadratic in the momenta
(N = 2), on a two manifold was solved by Koenigs [26] in
1889, who distinguished four types that are closely related
to the four separable coordinate systems found by Carter (a
derivation is given in paper III [5]) and to the superintegr-
able systems studied by Kalnins et al [24,25]. The alge-
braic properties of two manifolds of this type are classified
in [24,25]. Koenigs provided a very accurate geometric
description of what the second quadratic invariant actually
represents. This geometric picture was revisited and gen-
eralized by Moser [28], and clearly illustrated by Knorrer
[29] in his study of geodesic flow on an ellipsoid. The
second invariant corresponds to the Hamiltonian constant
on a two manifold distinct from the first and there exists a
very simple geometric construction mapping the geodesics
on the one manifold to the next.

For the N =4 case, very few examples are known
[16,30]. It is my thesis that a large class of these two
manifolds are generated by SAV spacetimes. I further
suggest that the quartic structure is very closely related
to the algebraic structure of the Weyl tensor, and that
solution generation techniques for two manifolds already
exist in the form of the solution generation techniques for
SAV spacetimes. A test to see whether the SAV spacetimes
admit a fourth order Killing tensor is proposed in paper IV
of this series [6]. Numerical evidence that indicates that
SAV spacetimes might generate two manifolds with fourth
order Killing tensor is given in Sec. VIL
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VIL. NUMERICAL EXPERIMENTS AND ORBITAL
STRUCTURE

The existence of an invariant Q of the form of Eq. (22),
equivalently a Killing tensor, has direct implications for the
orbital appearance of a geodesic. Consider a specific point
in configuration space, for example, a point in Fig. 4, and
consider the possible tangent directions that the geodesic
could have leaving that point. The invariant Q restricts the
possible exiting tangent directions to the number of zeros
of Eq. (22).

To see this explicitly for the N = 4 case, consider a
specific point P along an orbit characterized by the coor-
dinates (pp, zp) in configuration space as displayed in
Fig. 4. Suppose that the orbit admits an invariant of the
form given in Eq. (22) and that Q denotes the constant
along the orbit. Writing out Eq. (22) in terms of real
quantities, and recalling that odd and even terms decouple,
it becomes,

K§ cos46 + K3 sindf + K cos26 + K5 sin26 + K, = 0,
27)

where for a specific point P the constants K, K&, and K?
are defined in terms of the series coefficients Q,, that enter
Eq. (22) as Ky = Qp — 20, K€ = Q; + Q,, and K} =
i(Q; — Q;). The angle, 6, or tangent direction along which
the orbit leaves point P is fixed using Eq. (27) to a number
of discrete possibilities. In the N = 4 case, the oscillatory
nature of Eq. (27) dictates that at most 8 values 6, €
[0, 277) can be found that lead to a solution. If in addition,
the orbit can be traversed both ways, as in the SAV case,
another constraint is introduced. Namely, that Eq. (27)

S ms—— i >
""'" )

2
b QR
QKR

3 3.1 32 33 34 35 36

FIG. 4 (color online). An orbit in the Zipoy-Voorhees metric
with 6 = 2. Orbital parameters are £ = 0.95, L =3, u = 1.
The black dots and blue stars indicate extrema in orbital curva-
ture.
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should also hold if # — 7 — #. The number of allowed
exit directions from point P is halved. As a result, only 4
possible crossing directions (two crossing curves) are al-
lowed at each point. This argument holds for every point P
along the orbit. Orbits admitting a fourth order invariant
thus display a very ordered, crosshatched appearance seen
in Figs. 4 and 6 (region B). Many numerically explored
SAV spacetimes display this crosshatching pattern.

In the preceding sentence, the meaning of the word
“many’’ is intentionally vague and may best be interpreted
as “‘surprisingly many”’. Surprising enough to warrant a
more in depth exploration into the cause of the phenome-
non. In mathematical terms, the number of SAV spacetimes
explored numerically amounts to almost nothing, a set of
measure zero. A careful accounting of the spacetimes ex-
plored as opposed to those available for exploration merely
serves to underscore the absurdity of trying to quantify the
geodesic nature of SAV spacetimes numerically.
Furthermore, it gives a flavor of the ad hoc approach
adopted thus far in this and other numerical explorations.
Consider the class of all SAV spacetimes, each spacetime
can be represented by a bi-infinite series of mass and spin
multipole moments [31,32]. For a particular spacetime,
different sets of orbital constants E, L, and u are associ-
ated with one or more regions that admit a two metric J.
Given a particular J the numerical exploration can proceed
for individual orbits via, for example, Poincaré maps, or by
observing its extreme curvature points, orbital structure,
etc. In addition to the large number of parameters already
mentioned, the freedom to choose the initial positions
within the allowed two-dimensional region as well as the
initial tangent direction still remains. The approach
adopted numerically was to go looking for trouble in the
form of chaotic, nonintegrable behavior. Orbital constants
were chosen so that the orbit was near the strong-field
region of the spacetime. For the resulting two metric J,
initial conditions were randomly chosen. Of the bi-infinite
parameterized class of available spacetimes, no more than
5 parameters were adjusted off their Kerr values, however,
for a given parameter such as the quadrupole moment a
large range of values were explored. It was the subjective
impression that trouble was hard to find when compared to
other well-known 2-DOF systems [20] explored by the
author that sparked the original investigation into the prob-
lem. Integrable systems are rare, a set of measure zero.
Consequently, repeatedly observing orbital behavior simi-
lar to that displayed in Fig. 4 and 6 (region B) albeit with
slightly distorted potentials and angles in the crosshatching
patterns was an unexpected surprise. The examples singled
out in the following paragraphs are generic of the behavior
observed to date. This does not preclude the possibility of
getting into trouble and observing chaotic behavior upon
more rigorous investigation. Ultimately, for precise state-
ments to be made with respect to all SAV spacetimes or
even to quantify with certainty the geodesic behavior of a
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single spacetime that is not of type D, an algebraic check is
required.

One example for which this crosshatched orbital struc-
ture is observed for all parameter values I explored, is the
Zipoy-Voorhees metric [10,11]. A special case of the Weyl
class, this metric has the multipole structure of a finite rod.
The metric functions are given explicitly in Appendix D. It
represents the one parameter (8) family of spacetimes that
links flat space (6 = 0) to the Schwarzschild solution (6 =
1). The orbital structure is displayed in Fig. 4.

An example of possibly greater astrophysical applica-
tion in the EMRI problem is the Manko-Novikov space-
time [7-9] whose metric components are given in
Appendix C. This parameterized metric allows one to
explicitly adjust all the mass multipole moments as well
as the spin of the central object. The initial exploration into
the orbits of this spacetime was performed by Gair et al.
[33], and unusual orbital behavior was observed.

Some of the properties of the Manko-Novikov spacetime
are sketched in Fig. 10 and the functional form of the
metric functions given in Appendix C. Figure 5 character-
izes the nature of the metric functions close to the horizon.

In large regions of the parameter space of this spacetime,
for example, region B of Fig. 6, the geodesic orbits display
the characteristic fourth order crossing structure. There are,
however, regions discovered by Gair et al. [33], where
integrability fails and the orbit is chaotic. One such region
in which chaos occurs is displayed in Fig. 6, region A. The
inset provides the contours of the potential function J, for
this region; it lies outside the ergoregions displayed in
Fig. 5. The Poincaré maps for this orbit fail to display
closed curves [33] and the random orbital crossing struc-
ture implies that a Killing tensor on this manifold will
never be found. I know of no similar example, in the
literature of 2-DOF dynamical systems, where the orbits
appear entirely integrable in one region and chaotic in
another.

The numerical experiments conducted by Gair et al. [33]
lead them to conclude that inspiralling orbits are unlikely
to sample the ‘““chaotic™ region, so the possibility of ob-
serving such orbital behavior during a gravitational wave
inspiral event is small, a conclusion with which I concur.
However, conventional wisdom holds that if one observes
the failure of integrability in some region of phase space it
should preclude the construction of an invariant for the
Hamiltonian in another. It would be an unfortunate and
strange irony if chaotic behavior in a region of phase space
that is observationally inaccessible prevents us from ob-
taining an explicit expression for an invariant in the region
of phase space from which observable gravitational radia-
tion results. It is this quantity that will give us theoretical
power in describing inspiralling orbits in an algorithm for
mapping spacetime.

Since the two regions A and B are disjoint, they can be
considered as two separate two manifolds J, and Jg, and

PHYSICAL REVIEW D 78, 102002 (2008)

w
—

I
>0 \
Y4
25 T “) gtt
= = .
R goregions
oy [
Rt
(e} >
: i 2 <0
| |}
0.5 \) r S
>0 E 1
AR g l' g.lq'n.
0 0.5 1 1.5 2 25 3 3.5 4
o]
sl
V4
2.5

Horizon

e
%]
T

FIG. 5 (color online). Metric components of the Manko-
Novikov spacetime. Thick black contours indicate zero values,
red contours or regions marked by >0 admit positive values, and
blue contours or <0, negative values.

following the analysis performed in this paper there is
nothing that implies the chaos observed in region A pre-
cludes the existence of a Killing tensor on the two manifold
Jg. To date the origin of the chaos in region A has not been
carefully characterized. It is unclear whether the KAM
theorem can be applied to this case, as the region A has
no counterpart in the integrable Kerr spacetime, to which it
reverts if the anomalous multipole moments are set to zero.
In many ways the explanation of the orbital behavior in
region A remains a very interesting puzzle.

VIII. CONCLUSION

This paper formulates the problem of finding the fourth
invariant, more precisely, the generalization of Carter’s
constant to all SAV spacetimes, as a 2-DOF problem in
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FIG. 6 (color online).

Two orbits in the Manko-Novikov spacetime. The metric functions for this spacetime are given at the end of

Appendix C, and the following parameters were used: a = 0.626789, a, = 11.4708, and k = (1 — @?)/(1 + @?). The orbital
parameters associated with the orbit in the figure are £ = 9.5, L = —3, and u = 1.

dynamical systems. Equivalently stated, the problem can
be formulated as the study of geodesic flow on a two
manifold admitting a two metric with conformal factor J.
A combination of the original metric functions in Eq. (1)
and the constants that can be easily obtained from the
metric symmetries determine J [Eq. (9)]. I summarize
some related developments in dynamical systems and in
the study of two manifolds, which may help this problem
and point out some of the difficulties faced. In particular, I
emphasize the absence of a conclusive algebraic check of
whether a two manifold is integrable (or more specifically,
possibly admits a Killing tensor), and the absence of a
constructive method to construct invariants.

The two manifold approach to the problem has the great
benefit that one can visually characterize the orbits and
identify the possibility of integrable behavior. It further
allows one to illustrate the geometric meaning of a Killing
tensor. One problem faced during calculations is that the
conformal factor J is very complicated, making the com-
plete characterization of spacetimes for a given metric a
formidable task and the characterization of all SAV space-
times nearly impossible, using this approach.

A large class of SAV spacetimes have orbits that appear
numerically to admit a fourth order invariant. This fact and
the possibility of direct observational application if it does
(paper I of this series [2]), has motivated a more in depth
study (paper IV [6]). It turns out that in the context of the
SAV spacetimes it may be possible to formulate an alge-
braic check that will determine whether a particular space-
time admits a higher order Killing tensor and thus quantify
the relationship between the nonlocal metric distortion on a
SAV spacetime described by the Weyl tensor and the

dynamical behavior of particle motion within the space-
time. This formulation, however, requires the full power of
the tetrad formalism and the solution generation tech-
niques, which I will review in paper IV [6].
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FIG. 7 (color online). Points of extreme orbital curvature in
Schwarzschild E = 0.95, L = 3, u = 1. Black dots correspond
to n = *1 surfaces. Blue stars have n = 0, 2 in Eq. (A3).
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APPENDIX A: SURFACES OF EXTREME ORBITAL
CURVATURE

Points where an extremum of orbital curvature is
reached can be computed by setting «(7) = 0. The points
at which extrema in orbital curvature are reached, are
shown in Figs.4 and 7 for an orbit in the Zipoy-Voorhees
and Schwarzschild backgrounds, respectively. After some
algebra one obtains

. _ 1 20 i .
k=|k H]|= W(Q(COS 0 — sin®0) + 2b cosO sinh),

(AD)

where a and b are functions of (u? E, L, p, z) defined as
follows:

-3
a=20,00.0 —Jd,.J,

1 3 2 2 (A2)
b=3Jd,, — 3. ) —5(0,])> — (3.])°).

As a result, curves in configuration space on which an

extremum in curvature is reached (k = 0) can be parame-
terized by the phase angle . at the point where

1 a T
6, = —arctan| —— )+ n—,

= +
2 b 5 n==x012

(A3)
The function 6.(p, z, E, L, ,uz) has four possible solution
surfaces with 6, € (—1r, 7] (depicted in Fig. 8) This func-
tion can be thought of as a phase angle surface on which all
points of extremal curvature must fall.

For each surface a branch cut occurs if b = 0. Curves of
extreme orbital curvature provide an accurate way of
quantifying where, given a particular J, a particular orbit
will be confined in configuration space. In effect, what is

Different branches of 9, Surfaces

FIG. 8 (color online). The four branches on which solution
points with extremal curvature can lie 6, phase E = 0.95, L =
3, pw=—1.
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FIG. 9 (color online). Lines of extreme orbital curvature for
several orbits of a given J. Schwarzschild E = 0.95, L, = 3,

m=1.

constructed is a coordinate system ideally suited to the
orbits. In Fig. 9, the extreme orbital curvature lines for
several orbits for the J given in Fig. 2 are computed and the
four points of contact with the J = 0 contour shown. Orbits
on the left, that are not bound by a four pointed box, plunge
through the horizon.

Many quantities associated with the curvature and with
extreme curvature surfaces can be most compactly ex-
pressed in complex notation. Introduce the complex vari-
able ¢ =1/2(p +iz) and the complex function
¢ = b + ia. Using Eq. (A2), ¢ can be expressed in terms
of the potential J as follows

1 3 1
and the extreme curvature conditions is
e?ee — ¢72i0cE = (), (A5)

APPENDIX B: KILLING TENSORS IN 2D

The correspondence between the components of a phase
space expansion @, for calculating the invariant Q
[Eq. (22)] and polynomial in momenta and components
of a Killing tensor on the two manifold is given.

Consider the two metric g 5, = 0,; on a two manifold

admitting a totally symmetric Killing tensor 7(®1 @) of
order N.
The Killing equations

Tl aw), =0, (B1)
imply that

Qr = T pg, =+ pa, (B2)
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remains constant along the geodesic. Making use of the
definition of the momentum phase angle, Eq. (16), the
invariant Q7 can be rewritten as

—a;)T

N (1
= JN/2layay) (9 +
Or [Tcos >

i=1

) (B3)

where a; = 1 indicates the index p and a; = 2 the index z.
To put this in the form of Eq. (22), let Py, y)(i, j) denote the
jth entry of the ith permutation of a list of a total of N
elements containing N — n entries equal to 1 and n entries
equal to —1. Let p(n) denote the number of permutations.
As an example of the notation, let N =4. Then
P4 (1, j) = (1,1,1,1) has one permutation, P 4 has 4
permutations, and P, 4) has 6; these are explicitly listed as
follows:

Puy(1,))=(-1L111),
Pug3,)=(11,-11),

Puy2))=(1,-111),
Puyj)=(11,-1),

Poy(L)=(1L—-1L11), Pupy2j)=(-11-11),

Poy(3)=(=1L1L1~=1), Ppydj)=(1-1L-11),

Poy(5,)=(1,—1,1,—1), Pupy6,j)=1,1-1,-1).
(B4)

For clarity assume N is even. (The result also holds for odd
N but more care has to be taken with the index ranges.) The
product of cosines can then be expressed as

N/2  p(N—21/2)

l_[cos(ﬁ + B;) = 2N Z Z e2ilt

I=—N/2 k=1
N

X CXP(Z iB;Pn—2/2.mk j))- (B5)

j=1
Thus the correspondence between the even terms in the

series for even N and the Killing tensor components is

N/2 p(N=21/2)

Oy = 2J2—N Tl

(EN V(=) P(y—21/2,n) (K, J))
k=1
(B6)

In the case where N = 21, the analytic function, mentioned
in Eq. (29), is

L a5, (=a))

gn() = \/-N =255 (B7)

The explicit expressions for the analytic function and Q,
term of the lowest order case N = 2 are

gy = MTPP — T = 2iTP%), = J(TP? + T%).

(B8)

For the N = 4 case the expansion terms Q,, expressed as a
sum of the fourth order Killing tensor components are

PHYSICAL REVIEW D 78, 102002 (2008)

qs = %(TPPPP + T%%2 — QT%2PP 4 4(TPPPZ — TPZET)),
]2
0, = 7(Tpppp — T — 2j(TPPPE + TPR)),
3J?
Qg = T(TPPPP + 2T%PP + T2222), (B9)

APPENDIX C: MANKO-NOVIKOV METRIC

The metric of the Manko-Novikov spacetime [7] used to
generate the plots in Figs. 5 and 6 and whose properties are
sketched in Fig. 10, can be generated from the Ernst

potential of the form & = ¢2?A_ /A, where

=x(1 + ab) + iy(b —a) ¥ (1 — ia)(1 — ib),
0 (ChH

< +\

A

and the coordinates x = coshp and y = cosz are called the
Weyl coordinates. The metric functions that enter Eq. (1)
are

R* = = 1)1 —»?),
2y A(x2 - )’2)

2y =
TS0 -
2 = 20 f_‘,
B
_C 4k
w=2ke 2 2 - 5, (C2)

where

Manko-Novikov Spacetime

Any set of mass multipole
moments and spin can be
specified.

RijZO

Vacuum

Horizon Area is
explicitly determined
by multipole moments

Curvature Singularity on
Horizon Equator
(No singularities outside)

Event
Horizon

FIG. 10 (color online).
spacetime.

Properties of the Manko-Novikov
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A= (2= 1)1+ ab)? — (1 - )b — aP,
B=[x+1+(x—1DabP +[(1+y)a+ (1—yb]
C=x>—=1)(1+ab)b—a—yla+b)]
+ (1 —y*) (b —a)l + ab + x(1 — ab)]. (C3)

The functions a and b obey a set of differential equations
stated in [7], and one example of a solution is given below.

The solution for which the plots are made is a quad-
rupolar spacetime. Let r= (x2+y2 — 1)"/2 and u =
xy/r, and define the required Legendre polynomials to be

Po(u) =1, Py(u) =u, Py(u)=—1/2+ (3/2)u? and
P5(u) = u(5u*> — 3)/2. Then

P, P, P
ln(—a ) = —2a2[(x - y)(—o + —21 + —32 - 1],
roortoor

—a
b Py, P, P
ln<—) = —2a2[(x + y)(—o - —21 + —22) - 1],
o roor r
~ P
Y= 012—32,
’
1 2-1 1
?zflnx - (ln<i)+ln(—))
2% —y? -« a
o3 2P§ — P%

PHYSICAL REVIEW D 78, 102002 (2008)

Note that ¢/ and ¥ are members of the Weyl class of static
metrics, « is a parameter that scales the spin, and «; is the
quadrupole moment. The Geroch-Hanson multipole mo-
ments for this metric can be found in [7] along with a more
general solution parameterized by arbitrary mass multipole
moments. In the event that « = 0 and a, = 0, the metric
reduces to the Schwarzschild metric with metric functions

20 (x—l) 2y <x2—1)
eV = , ey = ,
x+1 x2—y2

R? = (x2 = 1)(1 —y?), w =0, k=1

(C5)

APPENDIX D: ZIPOY-VOORHEES METRIC

The Zipoy-Voorhees metric [10,11] is a static spacetime
with metric functions

2
‘(321//:)6—11S 27 — x* —1)\¢
x+1/)° x2—=y2) "’

R? = (x2 — 1)(1 —y?), w =0, k=1.

(D1)

All numerical experiments performed in this metric thus
far appear to admit integrable orbits similar to that por-
trayed in Fig. 4.
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