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We consider the conditions for integrating out heavy chiral fields and moduli in N ¼ 1 supergravity,

subject to two explicit requirements. First, the expectation values of the heavy fields should be unaffected

by low energy phenomena. Second, the low energy effective action should be described by N ¼ 1

supergravity. This leads to a working definition of decoupling in N ¼ 1 supergravity that is different

from the usual condition of gravitational strength couplings between sectors, and that is the relevant one

for inflation with moduli stabilization, where some light fields (the inflaton) can have long excursions in

field space. It is also important for finding de Sitter vacua in flux compactifications such as LARGE

volume and Kachru-Kallosh-Linde-Trivedi (KKLT) scenarios, since failure of the decoupling condition

invalidates the implicit assumption that the stabilization and uplifting potentials have a low energy

supergravity description. We derive a sufficient condition for supersymmetric decoupling, namely, that the

Kähler invariant function G ¼ K þ logjWj2 is of the form G ¼ Lðlight; HðheavyÞÞ with H and L arbitrary

functions, which includes the particular case G ¼ LðlightÞ þHðheavyÞ. The consistency condition does

not hold in general for the ansatz K ¼ KðlightÞ þ KðheavyÞ, W ¼ WðlightÞ þWðheavyÞ and we discuss

under what circumstances it does hold.
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The viability of theories based on extra dimensions, in
particular, string theory, relies on being able to stabilize
and integrate out the fields (moduli) that describe the
shapes and sizes of those extra dimensions, for which so
far there is no observational evidence. In flux compactifi-
cations [1] some moduli are stabilized at a high energy
scale and decouple from the low energy theory. From that
moment on we never see them in the effective low energy
description.

Unlike in global supersymmetry, complete decoupling is
of course impossible in supergravity—even in principle—
because gravity couples to all fields; so at low energies one
is usually satisfied with gravitational strength couplings
between the heavy, stabilized, fields and the low energy
fields. However, such interaction terms are of order
OðGNewtonE

2Þ ¼ OðE2=M2
PÞ, where E is the energy scale

andMP � 2:4� 1018 GeV the reduced Planck mass. Even
if they are strongly suppressed at low energy and in particle
accelerators, these couplings become sizeable at the energy
scales relevant to the early Universe, and one must look for
a more robust definition of decoupling that can be extrapo-
lated over a wide range of energy scales. The purpose of
this note is to provide such a definition and a simple test of
whether it holds in specific models.

There are at least two situations in which the details of
decoupling are important. One is supersymmetry breaking,
which will affect the heavy fields in a way that is not
accounted for in the low energy effective action.
Uplifting in Kachru-Kallosh-Linde-Trivedi (KKLT) sce-
narios [2] is a prime example. The second is inflation
with moduli stabilization, because the inflaton, which is a

low energy field in this language, can have its expectation
value vary over many Planck masses.
Here we take a bottom-up approach and try to find for

what types of supergravity couplings we can be sure that
the heavy moduli will not shift from their expectation
values due to low energy processes. We do not require
small gravitational coupling to the light(er) fields because
instead we rely on supersymmetry to partially protect the
expectation values of the heavy moduli.
It must be stressed that what we are proposing here,

building on arguments by other authors [3–7], is a simple
consistency test. It checks explicitly what is implicitly
assumed by the very use of a low energy effective action.
So it is somewhat surprising to find that the most common
ansatz for decoupled fields in the literature, the standard
‘‘gravitational strength coupling’’ ansatz, generically fails
the test. It partly explains the difficulties encountered in
supergravity models of inflation with moduli stabilization.
The problem essentially disappears for consistently de-
coupled moduli (see [7,8]).

I. NOTATION AND CONVENTIONS

Wewill use units in whichMP ¼ 1. We start by recalling
that the N ¼ 1 supergravity action involving scalars and
gauge fields (chiral and gauge superfields)

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
Rþ T � V þLgauge

�
(1)

is entirely described by three functions of the scalars: the
Kähler potential Kðz; �zÞ, the holomorphic superpotential
WðzÞ, and the gauge kinetic functions fabðzÞ. The action
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and the supersymmetry transformations are invariant under
Kähler transformations,

K ! K þ hðzÞ þ �hð�zÞ; W ! We�hðzÞ; (2)

with hðzÞ an arbitrary holomorphic function. Actually, if
W � 0, they only depend on the Kähler invariant function
G ¼ K þ logjWj2 and the gauge kinetic functions.

In terms of these functions, the different terms of the
action [Eq. (1)] are

T ¼ Gi�|D�z
iD� �z�|; (3a)

Gi�| � @i@�|G ¼ @i@�|K; (3b)

where D�z
i ¼ @�z

i �Wa
��a

iðzÞ, with �a
iðzÞ the Killing

vector that defines the gauge transformations of the scalars,
�az

i ¼ �a
iðzÞ�a, where �a is the gauge parameter. The

scalar potential includes a contribution from F terms andD
terms

V ¼ VF þ VD; (4)

where VF and VD are

VF ¼ Gi�|F
iF �| � 3eG; (5a)

VD ¼ 1
2 ReðfabÞDaDb: (5b)

The Fi and Da are the auxiliary fields of the chiral and
gauge superfields, respectively. They have equations of
motion that can be solved algebraically in terms of the
chiral fields

Fi ¼ eG=2Gi�|G�|; (6a)

Db ¼ iðRefabÞ�1�a
iGi: (6b)

We are assuming that there are no constant Fayet-
Iliopoulos terms present; these require a more careful
treatment that will be given elsewhere.

The (holomorphic) gauge kinetic functions fabðzÞ deter-
mine the kinetic terms of the gauge fields,

L gauge ¼ � 1

4
ðRefabÞFa

��F
b�� þ 1

4
ffiffiffiffiffiffiffi�g

p

�ðImfabÞFa
���

����Fb
��: (7)

II. CONSISTENT DECOUPLING OF SCALAR
FIELDS IN N ¼ 1 SUPERGRAVITY

In what follows we consider two sets of fields, heavy (H)
and light (L), and assume the heavy fields are stabilized at
an expectation value H ¼ H0, an extremum of the scalar
potential for the heavy moduli. If the heavy field is a singlet
under all low energy symmetries and its mass is large
enough it will decouple from low energy phenomena and
can be integrated out, leaving an effective theory for the
light degrees of freedom. To make this distinction, we will
from now on use hatted quantities to indicate the full
theory, including heavy and light fields, and unhatted

quantities for the effective theory involving light fields
only

SðL; �LÞ ¼ ŜðH0; �H0; L; �LÞ: (8)

We are interested in the case in which the resulting
effective theory is also described by N ¼ 1 supergravity.
In this case, there should be an effective K and W (or G)
depending only on the light fields, from which to compute
the low energy action S and supersymmetry transforma-
tions

G½L; �L� ¼ Ĝ½L; �L;H0; �H0�; (9)

��L ¼ �̂�LjH0
¼ f½L;GðL; �LÞ�; (10)

�̂ �HjH0
¼ 0: (11)

Notice that the F terms [Eq. (6a)] of the heavy fields must
vanish because the supersymmetry transformations read,

�̂ �H � 	�; �̂�	� 6@H�� 1
2F�; (12)

and if the F terms are nonzero a supersymmetry trans-
formation will generate light fermions that are not in the
low energy effective action. Thus, the heavy fields cannot
contribute to supersymmetry breaking, leading to

@HĜjH0
¼ 0 or D̂HŴjH0

¼ 0 (13)

(see also [4]), where D̂iŴ ¼ @iŴ þ ð@iK̂ÞŴ is the Kähler

covariant derivative that transforms as D̂iŴ ! e�hðzÞD̂iŴ

under Kähler transformations. Note that D̂HŴ ¼ 0 is the
condition used in flux compactifications [1] and by exten-
sion in KKLT [2] and LARGE volume scenarios [9], where
the complex structure moduli are stabilized at a supersym-
metric point before uplifting.
The Kähler metric should be block diagonal in the light

and heavy fields when evaluated at H0, otherwise propa-
gators will mix these two sets of fields. Additionally, the
truncation H ¼ H0 must of course be a consistent trunca-
tion. This means that the equations of motion of the light
fields derived from the effective theory are the same as the
equations of motion obtained from the full theory. To
zeroth order in the fluctuations of the heavy fields:

�Ŝ

�L

��������H0

¼ �ŜjH0

�L
¼ �S

�L
; (14)

ensuring that the fluctuations of H are not sourced by the
light fields. In particular, the heavy fields should be singlets
under the surviving gauge group at low energies (otherwise
they remain coupled to the light fields by the gauge inter-
action). In what follows we will consider fab independent
of the heavy fields. In that case they do not contribute to the
D terms, which will only involve light fields.

ANA ACHÚCARRO, SJOERD HARDEMAN, AND KEPA SOUSA PHYSICAL REVIEW D 78, 101901(R) (2008)

RAPID COMMUNICATIONS

101901-2



III. ANALYSIS OF THE CONSISTENCY
CONDITIONS

The heavy fields thus need to be stabilized at an expec-
tation value H0, where H0 is the solution to Eq. (13)

½@HŴðH;LÞ þ @HK̂ðH; �H;L; �LÞŴðH;LÞ�jH0
¼ 0; (15)

which implies @HV̂jH0
¼ 0. The left-hand side is some

function of both the heavy and the light fields, let us call
it�ðH; �H;L; �LÞ. In general, the condition� ¼ 0 (together

with its complex conjugate �� ¼ 0) relate the heavy and
light fields. If we can solve for H we obtain an expression
of H0 as a function of the light fields,

H ¼ H0ðL; �LÞ; (16)

which can be substituted back into K̂, Ŵ to give an effec-
tive action for the light fields

SðL; �LÞ ¼ ŜðH0ðL; �LÞ; �H0ðL; �LÞ; L; �LÞ: (17)

An immediate concern with the consistency of this
procedure, pointed out in [4], is that in general this leads
to a nonholomorphic expression for the would-be effective

superpotential W ¼ ŴðH0ðL; �LÞ; LÞ. However, this prob-

lem is easily avoided: it does not arise if Ŵ is independent

of H. The case Ŵ ¼ 0 is obvious, so consider Ŵ � 0. It is
always possible to perform a Kähler transformation that

makes Ŵ constant

Ŵ ! 1; (18a)

K̂ ! K̂ þ logŴ þ log �̂W ¼ Ĝ: (18b)

In this so-called Kähler gauge, Eq. (15) reads

@HĜðH; �H;L; �LÞ ¼ 0; (19)

from which we can extract H ¼ H0ðL; �LÞ and make the
previous substitution directly into the Kähler invariant
function without any inconsistency (see also [10]):

G ¼ ĜðH0ðL; �LÞ; �H0ðL; �LÞ; L; �LÞ: (20)

In fact, the issue is not whether H0ðL; �LÞ is holomorphic
but rather whether it is a (nontrivial) function at all. The
assumption that the heavy fields are stabilized atH ¼ H0 is
simply the condition that H0ðL; �LÞ ¼ constant. Any other
dependence on the light moduli would translate into a
constraint on the light fields which would have to be
accounted for explicitly in the low energy action [5].
This is what we have to avoid.

To summarize: the (rather obvious) mathematical con-
dition for the heavy fields to be integrated out consistently
with an expectation value H0 and to decouple from the low
energy fields is that the system of equations

@HĜ � �ðH; �H;L; �LÞ ¼ 0; (21)

which is the same as (15) defined in the Kähler gauge [Eq.
(18)], admits the constant solution

H¼H0ðL; �LÞ¼ const; �H¼ �H0ðL; �LÞ¼ const: (22)

In spite of being obvious, this condition is not empty. For
instance, we will see below that it fails generically for
standard couplings of the form K ¼ K1 þ K2 and W ¼
W1 þW2. But let us first consider two specific situations in
which the decoupling condition does hold.
(1) The consistency condition is trivially satisfied if the

function �ðH; �H;L; �LÞ has no explicit dependence
on the light fields. In this case integrating Eq. (21)
recovers the condition found in [6]

@HĜ¼�ðH; �HÞ! Ĝ¼ Ĝ1ðH; �HÞþĜ2ðL; �LÞ (23)

and it is obvious that the Kähler metric is block
diagonal in this case. This ansatz has a long history
[11] and allows a detailed stability analysis of the
heavy fields [7,12], in particular, in the context of
the F-term uplifting of flux compactifications.

(2) On the other hand, this requirement is too restrictive.
It is sufficient if the function �ðH; �H;L; �LÞ factor-
izes:

�ðH; �H;L; �LÞ¼�1ðH; �H;L; �LÞ�2ðH; �HÞ¼0 (24)

in which case we just solve �2 ¼ ��2 ¼ 0 to get
constantH0, �H0. We cannot give the general form of

Ĝ for which this factorization occurs, but it will

certainly hold if Ĝ has the following functional
form:

Ĝ ¼ fðL; �L; gðH; �HÞÞ (25)

since in that case Eq. (13) is replaced by

@HgðH; �HÞ ¼ 0: (26)

The first situation, Eq. (23), is a special case of Eq. (26),
with �1 constant. In both cases, the same condition that

makes ĜHjH0
¼ 0 also implies that the Kähler metric and

the Hessian of V are block diagonal for any �1. Indeed,
from Eq. (26) we find that

Ĝ LHjH0
¼@L@gfðL; �L;gðH; �HÞÞ@HgðH; �HÞjH0

¼0 (27)

and further all mixed derivatives with only one derivative
with respect to the heavy field vanish. As VLH always

contains terms / ĜH or / ð@LÞnĜH, which vanish at H0,

the Hessian of V is block diagonal.1

IV. CONSISTENT DECOUPLING VERSUS
STANDARD GRAVITATIONAL COUPLINGS

Finally, we stress that the condition derived here has no
direct relation to the condition usually associated with

1Note that it is always possible to diagonalize the Kähler
metric or the Hessian of V at one point, but it is not necessarily
the case that both diagonalizations are compatible, as we have
here.
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gravitational strength coupling. In fact, the ansatz

K̂ ¼ K1ðH; �HÞ þ K2ðL; �LÞ; (28a)

Ŵ ¼ W1ðHÞ þW2ðLÞ (28b)

does not satisfy the decoupling condition in general.
Suppose Eq. (13) admits a constant solutionH ¼ H0. Then

0 ¼ @HW1jH0
þ @HK1jH0

½W1ðH0Þ þW2ðLÞ�; (29)

which only holds if

@HK1jH0
¼ 0 ) @HW1jH0

¼ 0;

@HK1jH0
� 0 ) W2ðLÞ ¼ � @HW1jH0

@HK1jH0

�W1ðH0Þ

¼ const:

(30)

Another way to see this: since D̂HŴ ¼ 0 does not
factorize, the (Kähler-gauge covariant) requirement that
it is independent of the light fields is (see also [13])

D̂ LðD̂HŴÞ ¼ 0: (31)

Inserting the ansatz [Eq. (28)] then gives

@HK1jH0
@LW2 ¼ 0: (32)

Unless K1ðH; �HÞ has no linear terms orW2ðLÞ ¼ constant,
the condition will not be met. However, if W2ðLÞ ¼
constant (e.g. no scale models [1,14]) then Eq. (23) holds

and Ŵ is trivially a product. On the other hand, we can
always expand K1ðH; �HÞ around H0 and remove the linear
terms by a Kähler transformation [Eq. (2)], but this spoils
the separability of the superpotential [Eq. (28b)].

In other words, if two sets of fields have separable
Kähler functions K ¼ K1ðheavyÞ þ K2ðlightÞ, the addition
of their superpotentials does not respect the decoupling
condition except in special cases (and, incidentally, neither
does it guarantee gravitational strength couplings if
K1ðheavyÞ ¼ OðM2

pÞ, as is usual for moduli).

V. DISCUSSION

In this paper we have studied how to integrate out heavy
scalars and moduli and their superpartners in N ¼ 1
supergravity, subject to two explicit requirements. First,
the expectation values of the heavy fields should be un-
affected by low energy phenomena, in particular, super-
symmetry breaking. Second, the low energy effective
action should be described by N ¼ 1 supergravity. This
is what we call consistent decoupling.

If the heavy fields are stabilized at a critical point of the
potential, integration of the whole superfield requires that
the F terms should be zero [6]. The criterion for consistent
decoupling is that the expectation value of the heavy
scalars H should not depend on the light fields L [5]. Our
main result is a class of Kähler invariant functions that
satisfy the condition, given in Eq. (25):

Ĝ ¼ fðL; �L; gðH; �HÞÞ:
This functional form guarantees that the Kähler metric

and Hessian of V are simultaneously block diagonal in the
heavy and light fields. It also allows the embedding of
Bogomol’nyi-Prasad-Sommerfield (BPS) solutions of the
low energy effective theory into the full theory without
destroying their BPS character (if the F terms of the heavy
fields are zero and in the absence of constant Fayet-
Iliopoulos terms, the supersymmetric transformation of
the gravitino depends only on the light fields). We would
expect the BPS character to survive quantum corrections—
now in the full theory. So at least in this special case it
would seem possible to ‘‘screen’’ the heavy, decoupled
fields from the effects of (partial) supersymmetry breaking
in the low energy sector.
We only have experimental access to G, the effective

low energy theory, and there is a large class of supergravity
models (read a landscape of compactifications), character-

ized by Ĝ, in which the low energy theory could be

embedded. Here, Ĝ includes all stringy, perturbative, and
nonperturbative effects. The decoupling condition restricts

the allowed functional form of Ĝ and therefore the class of
models that are consistent with the assumption of decou-
pling that is implicit in our use ofG. From the point of view
of model building, it provides a simple test that has not
been considered before. There are string compactifications
which approximately satisfy the decoupling condition in
the form (23), such as some LARGE volume scenarios
(LVS) [9,15–17].
To see this, note first of all that the tree level or

Giddings-Kachru-Polchinski (GKP) limit [1] of Ĝ satisfies
Eq. (23) with the complex structure moduli and the dilaton
S playing the role of the heavy fields. Assume the usual
form for the leading nonperturbative and �0 corrections,
Ŵ ¼ WGKPðHÞ þWnpðLÞ, �K̂ � 2ðSþ �SÞ3=2=vol. Ignor-

ing for a moment the dilaton dependence of �K, we find
for the complex structure moduli

@HĜ ¼ @HKheavyðHÞ þ @HWGKPðHÞ
WGKPðHÞ ½1þ �ðL;HÞ��1;

(33)

where � ¼ WnpðLÞ=WGKPðHÞ. Including dilaton effects

adds a correction �� ðSþ �SÞ3=2=vol (whichever is larger).
The condition of consistent decoupling is violated by the L
dependence of �. It is negligible, ��Oð10�10Þ, for a LVS
vacuum with parameters A� 1, WGKPðH0Þ � 10, vol�
1010, Ae�a4
4 � 1=vol (see [9]). In the mirror mediation
scenarios [17] � is even smaller. By contrast, ��Oð1Þ in a
KKLT vacuum with parameters A�Oð1Þ, WGKPðH0Þ �
Oð10�4Þ, aL�Oð10Þ (see [2]).2

2References [18,19] suggest that string loop corrections to K̂
scale as ðvolÞ�2=3 and would lead to � < 10�6. We thank M.
Cicoli for this remark.
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Finally, we emphasize that the condition [Eq. (25)] is not
easily expressed in terms of K and W, in particular, it has
nothing to do with gravitational strength couplings. When
K ¼ K1ðheavyÞ þ K2ðlightÞ, the addition of superpoten-
tials does not lead to consistent decoupling in general
(whereas the product always does). The problem consid-
ered here illustrates once again the dangers of extrapolat-
ing our low energy, weak gravity intuition, based on K and
W, to the very high energy regimes encountered in the
early Universe. Inflation model building is hard enough as
it is without these unnecessary complications.
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