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Greybody factors in black-hole physics modify the naive Planckian spectrum that is predicted for

Hawking radiation when working in the limit of geometrical optics. We consider the Schwarzschild

geometry in ð3þ 1Þ dimensions, and analyze the Regge-Wheeler equation for arbitrary particle spin s and

wave-mode angular momentum ‘, deriving rigorous bounds on the greybody factors as a function of s, ‘,

wave frequency !, and the black-hole mass m.
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I. INTRODUCTION

Black-hole greybody factors modify the spectrum of
Hawking radiation seen at spatial infinity [1], so that it is
not quite Planckian [2]. There is a vast scientific literature
dealing with estimates of these black-hole greybody fac-
tors, using a wide variety of techniques (see, for instance,
[3]).

Unfortunately, most of these calculations adopt various
approximations that move one away from the physically
most important regions of parameter space. Sometimes one
is forced into the extremal limit, sometimes one is forced to
asymptotically high or low frequencies, sometimes tech-
niques work only away from ð3þ 1Þ dimensions, and
sometimes the nature of the approximation is uncontrolled.
As a specific example, monodromy techniques fail for
s ¼ 1 (photons) [4], which is observationally one of the
most important cases one would wish to consider.

Faced with these limitations, we ask a slightly different
question: Restricting attention to the physically most im-
portant situations [Schwarzschild black holes, ð3þ 1Þ di-
mensions, intermediate frequencies, unconstrained spin,
and unconstrained angular momentum], is it possible to
at least place rigorous (and hopefully simple) analytic
bounds on the greybody factors?

By considering the Regge-Wheeler equation for excita-
tions around Schwarzschild spacetime, and adopting a
specific implementation of the general analysis of
Refs. [5,6], we shall demonstrate that rigorous analytic
bounds are indeed achievable. While these bounds may
not answer all the physical questions one might legiti-
mately wish to ask, they are a solid step in the right
direction.

II. REGGE-WHEELER EQUATION

In terms of the tortoise coordinate r� the Regge-Wheeler
equation (GN ! 1) is

d2c

dr2�
¼ ½!2 � VðrÞ�c ; (1)

where for the specific case of a Schwarzschild black hole

dr

dr�
¼ 1� 2m

r
; (2)

and the Regge-Wheeler potential is

VðrÞ ¼
�
1� 2m

r

��
‘ð‘þ 1Þ

r2
þ 2mð1� s2Þ

r3

�
: (3)

Here s is the spin of the particle and ‘ is the angular
momentum of the specific wave mode under consideration,
with ‘ � s. Thus VðrÞ � 0 outside the horizon, where r 2
ð2m;1Þ. The greybody factors we are interested in are just
the transmission probabilities for wave modes propagating
through this Regge-Wheeler potential.
(i) Despite comments often encountered in the litera-

ture, one can explicitly solve for r as a function of
the tortoise coordinate r�; in terms of Lambert W
functions we have

rðr�Þ ¼ 2m½1þWðe½r��2m�=2mÞ�; (4)

whereas

r�ðrÞ ¼ rþ 2m ln

�
r� 2m

2m

�
: (5)

Unfortunately, this formal result is less useful than
one might suppose.

(ii) Despite other comments often encountered in the
literature, one can also explicitly solve the Regge-
Wheeler equation—now in terms of Heun functions
[7]. Unfortunately, this is again less useful than one
might suppose, this time because relatively little is
known about the analytical behavior of Heun func-
tions—this is an area of ongoing research in mathe-
matical analysis [8].
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III. BOUNDS

The general bounds developed in Refs. [5,6] can, in the
current situation, be written as

T � sech2
�Z 1

�1
#dr�

�
: (6)

Here T is the transmission probability (greybody factor),
and # is the function

# ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh0Þ2 þ ½!2 � V � h2�2p

2h
: (7)

Furthermore, h is some positive function, hðr�Þ> 0, sat-
isfying the limits hð�1Þ ¼ hðþ1Þ ¼ !, which is other-
wise arbitrary. Two different derivations of this general
result, and numerous consistency checks, can be found in
Refs. [5,6].

(These bounds were originally developed as a technical
step when studying the completely unrelated issue of so-
noluminescence [9], and since then have also been used to
place limits on particle production in analogue spacetimes
[10] and resonant cavities [11], to investigate qubit master
equations [12], and to motivate further general investiga-
tions of one-dimensional scattering theory [13].)

For current purposes, the most useful practical results
are obtained by considering two special cases:

(1) If we set h ¼ ! then

T � sech2
�
1

2!

Z 1

�1
Vðr�Þdr�

�
; (8)

whence

T � sech2
�
1

2!

Z 1

2m

�
‘ð‘þ 1Þ

r2
þ 2mð1� s2Þ

r3

�
dr

�
: (9)

Therefore, since the remaining integral is trivial, we obtain
our first explicit bound:

T � sech2
�
2‘ð‘þ 1Þ þ ð1� s2Þ

8!m

�
: (10)

That is,

T � sech2
�ð‘þ 1Þ2 þ ð‘2 � s2Þ

8!m

�
: (11)

Note that this bound is meaningful for all frequencies. This
is sufficient to tell us that at high frequencies the Regge-
Wheeler barrier is almost fully transparent, while even at
arbitrarily low frequencies some nonzero fraction of the
Hawking flux will tunnel through. A particularly nice
feature of this first bound is that it is so easy to write
down for arbitrary s and ‘.

At high frequencies this present bound yields

T � 1�O½m�2!�2�; (12)

which is certainly compatible with the result obtained via
the Born approximation (see, for instance, related discus-

sion in [5]):

T � 1� jBð!Þj2
!2

: (13)

However, we shall soon drastically improve this result.

(2) If we now set h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � V

p
, which in this case

implicitly means that we are not permitting any classically
forbidden region, then

T � sech2
�
1

2

Z 1

�1

��������
h0

h

��������dr�
�
: (14)

Since for arbitrary s and ‘ the Regge-Wheeler potential is
easily seen to have a unique peak at which it is a maximum,
this becomes

T � sech2
�
ln

�
hpeak

h1

��
(15)

¼ sech2
�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � Vpeak

q
!

��
; (16)

which is easily seen to be monotonic decreasing as a
function of Vpeak. However, calculating the location of

the peak, and the value of the Regge-Wheeler potential at
the peak, is somewhat more tedious than evaluating the
previous bound (10). Note that the present bound fails, and
gives no useful information, once !2 <Vpeak, correspond-

ing to a classically forbidden region. More explicitly, this
second bound can be rewritten as

T � 4!2ð!2 � VpeakÞ
ð2!2 � VpeakÞ2

¼ 1� V2
peak

ð2!2 � VpeakÞ2
: (17)

Let us now consider various subcases:
(i) For s ¼ 1 (i.e., photons) the situation simplifies

considerably. (Remember, this is the case for which
monodromy techniques fail [4].) For s ¼ 1 we have
rpeak ¼ 3m and

Vpeak ¼ ‘ð‘þ 1Þ
27m2

: (18)

Consequently,

Ts¼1 � 108!2m2½27!2m2 � ‘ð‘þ 1Þ�
½54!2m2 � ‘ð‘þ 1Þ�2 : (19)

In almost the entire region where this bound applies
(!2 >Vpeak), it is in fact a better bound than (10) and

(11) above.
(ii) For s ¼ 0 (i.e., scalars) and ‘ ¼ 0 (the s-wave), we

have rpeak ¼ 8m=3 and

Vpeak ¼ 27

1024m2
: (20)

Consequently,

PETARPA BOONSERM AND MATT VISSER PHYSICAL REVIEW D 78, 101502(R) (2008)

RAPID COMMUNICATIONS

101502-2



Ts¼0;‘¼0 � 4096!2m2½1024!2m2 � 27�
½2048!2m2 � 27�2 : (21)

In a large fraction of the region where this bound
applies, it is in fact a better bound than (10) and (11)
above.

(iii) For s ¼ 0 but ‘ � 1 it is easy to see that throughout
the black-hole exterior, 8r 2 ð2m;1Þ, we have

Vs¼0;‘�1ðrÞ<
�
1� 2m

r

��
‘2 þ ‘þ 1

r2

�
; (22)

which is the s ¼ 1 potential with the replacement
‘ð‘þ 1Þ ! ‘2 þ ‘þ 1. This bound on the poten-
tial has its maximum at rpeak ¼ 3m, implying

Vpeak;s¼0;‘�1 <
‘2 þ ‘þ 1

27m2
: (23)

Therefore the monotonicity of the bound on the
greybody factor implies

Ts¼0;‘�1 >
108!2m2½27!2m2 � ð‘2 þ ‘þ 1Þ�

½54!2m2 � ð‘2 þ ‘þ 1Þ�2
(24)

(for !, m, and ‘ held fixed, and subject to s � ‘).
(iv) For s > 1 it is easy to see that throughout the black-

hole exterior, 8r 2 ð2m;1Þ, keeping ‘ held fixed,
we have Vs>1ðrÞ<Vs¼1ðrÞ. Therefore

Vpeak;s>1 < Vpeak;s¼1: (25)

Then the monotonicity of the bound on the grey-
body factor implies

Ts>1 >
108!2m2½27!2m2 � ‘ð‘þ 1Þ�

½54!2m2 � ‘ð‘þ 1Þ�2 (26)

(for !, m, and ‘ held fixed, and subject to s � ‘).
(v) More generally, it is useful to define

� ¼ 1� s2

‘ð‘þ 1Þ : (27)

Excluding the case ðs; ‘Þ ¼ ð0; 0Þ, which was explic-
itly dealt with above, the remainder of the physically
interesting region is confined to the range � 2
ð�1;þ1=2�. Then a brief computation yields

rpeak ¼ 3m

�
1� �

9
þOð�2Þ

�
(28)

and

Vpeak ¼ ‘ð‘þ 1Þ
27m2

�
1þ 2�

3
þOð�2Þ

�
: (29)

In fact, one can show that

Vpeak <
‘ð‘þ 1Þ
20m2

(30)

over the physically interesting range. [This bound
on Vpeak is tightest for ðs; ‘Þ ¼ ð0; 1Þ, corresponding
to � ¼ þ1=2, where it provides a better than 1%
estimate, and becomes progressively weaker as one
moves to � ¼ �1.] This then implies

Tðs;‘Þ�ð0;0Þ >
80!2m2½20!2m2 � ‘ð‘þ 1Þ�

½40!2m2 � ‘ð‘þ 1Þ�2 : (31)

As always, there is a trade-off between the strength
of the bound and the ease with which it can be
written down.

While this second set of bounds has required a little more
case by case analysis, observe that this second set of
bounds provides much stronger information at very high
frequencies, where in fact

T � 1�O½Vpeak!
�4�: (32)

In contrast, monodromy techniques [4], when they are
applicable, suggest (but do not rigorously prove)

T � 1�O½expð�8�m!Þ�: (33)

Thus the rigorous bounds we have established are certainly
not the best possible bounds.
Unfortunately, this second set of bounds is (because of

details in the derivation, see [5,6]) not capable of providing
information once the frequency has dropped low enough
for the problem to develop classical turning points—in
other words, a problem with a classically forbidden region
is not amenable to treatment using bounds of the second
class considered above. For sufficiently low frequencies,
bounds of the form (10) and (11) are more appropriate,
with

T � Oðexpf�C=!gÞ: (34)

In this same limit the known approximate form of the
transmission coefficients is [2]

T � Cðm!Þ‘þ1: (35)

Again, we see that the rigorous bounds we have established
are certainly not the best possible bounds. What we have
not done, at least not yet, is to use the full generality
implicit in Eq. (7). Subject to rather mild constraints, there
is a freely specifiable function hðr�Þ available that can
potentially be used to extract tighter bounds. Work along
these lines is continuing.

IV. DISCUSSION

The study of black-hole greybody factors [3], and (once
one moves into the complex plane) the closely related
problem of locating the quasinormal modes [4,14,15], is
a subject that has attracted a vast amount of interest. In the
present article we have developed a complementary set of
results—we have sought and obtained several rigorous
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analytic bounds that can be placed on the greybody factors.
While these bounds are not necessarily tight bounds on the
exact greybody factors, they do serve to focus attention on
general and robust features of these greybody factors, and
provide a new way of extracting physical information.

For instance, in the current formalism (as opposed to, for
instance, monodromy techniques [4]), it is manifestly clear
that one does not have to know anything about what is
going on inside the black hole in order to obtain informa-
tion regarding the greybody factors. This is as it should be,
since physically the greybody factors are simply trans-
mission coefficients relating the horizon to spatial infinity,
and they make no intrinsic reference to the nature of the
central singularity.

Looking further afield, here should be no intrinsic diffi-
culty in extending these results to Reissner-Nordström
black holes, dilaton black holes, or to higher dimen-

sions—all that is really needed is an exact expression for
the Regge-Wheeler potential. Ultimately, it is perhaps
more interesting to see if one can significantly improve
these bounds in some qualitative manner, perhaps by mak-
ing a more strategic choice for the essentially free function
hðr�Þ.
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