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2Università di Milano-Bicocca and INFN, Sezione di Milano-Bicocca Piazza della Scienza 3, I-20126 Milano, Italy

3Departamento de Fı́sica e Centro de Fı́sica do Porto, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687,
4169-007 Porto, Portugal

(Received 9 June 2008; published 17 November 2008)

We analyze deep inelastic scattering at small Bjorken x, using the approximate conformal invariance of

QCD at high energies. Hard Pomeron exchanges are resummed eikonally, restoring unitarity at large

values of the phase shift in the dual anti-de Sitter (AdS) geometry. At weak coupling this phase is

imaginary, corresponding to a black disk in AdS space. In this saturated regime, cross sections exhibit

geometric scaling and have a simple universal form, which we test against available experimental data for

the proton structure function F2ðx;Q2Þ. We predict, in particular, the dependence of the cross section on

the scaling variable ðQ=QsÞ2 in the deeply saturated region, whereQs is the usual saturation scale. We find

agreement with current data on F2 in the kinematical region 0:5<Q2 < 10 GeV2, x < 10�2, with an

average 6% accuracy. We conclude by discussing the relation of our approach with the commonly used

dipole formalism.
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I. INTRODUCTION

The high energy behavior of QCD is greatly simplified
by the asymptotic weakness of the coupling and the ap-
proximate conformal invariance of the theory. Of great
interest, in this respect, is the study of interaction processes
in the Regge limit of high center of mass energy, with the
other kinematical invariants kept fixed. This kinematical
regime is, for instance, relevant to the analysis of deep
inelastic scattering (DIS) experiments at fixed photon vir-
tuality Q2 in the limit of vanishing Bjorken x.

To the extent that QCD can be approximated by a
conformal field theory (CFT), we must, in general, analyze
CFT correlators of the form

hO1ðq1ÞO2ðq2ÞO?
1 ðq3ÞO?

2 ðq4Þi (1)

in the limit of large s ¼ �ðq1 þ q2Þ2 and at fixed virtual-
itiesQ2

i ¼ q2i and momentum transfer t ¼ �ðq1 þ q3Þ2. In
the high energy limit, the correlator (1) is best analyzed in
impact parameter space. The correct representation is sug-
gested by the AdS/CFT duality [1], although let us stress
that all of the results in this paper are purely based on
simple implications of conformal symmetry and could be
derived also in the field theory language. Considering (1)
as a high energy process in AdS5, the relevant transverse
space is then the three-dimensional hyperbolic space H3,
holographically dual to the usual two-dimensional plane
transverse to the high energy process described by (1), as
shown in Fig. 1. Representing four-dimensional vectors as
ðxþ; x�;xÞ, with x� light cone variables and x a two-
dimensional transverse vector, we can parametrize H3 us-

ing Poincaré coordinates �;x with metric ��2ðd�2 þ dx2Þ
and volume form ��3d�d2x, with � > 0 the distance to the
holographic boundary of H3. Following the results in [2–
10], we may write the impact parameter representation for
the correlator (1). Choosing, for simplicity of exposition,
external scalar operators, it is given by

2s
Z

d2beib�qe2i�ðs;bÞ; (2)

where q is the transverse momentum transfer with �t ¼
q2 and where b is the usual impact parameter. The phase

3H

b

ρx

R

x ρ

2

B

FIG. 1 (color online). Impact points �;x and ��; �x in H3,
separated by a geodesic distance B. Dropping the radial coor-
dinates � and ��, we obtain the impact points x and �x in the plane
transverse to the high energy process R2, with impact parameter
b ¼ x� �x.
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shift �ðs;bÞ is itself given by

e2i�ðs;bÞ ¼
Z d�

�3
f1ð�Þf3ð�Þ

Z d ��

��3
f2ð ��Þf4ð ��Þe2i�ðS;BÞ;

(3)

with �ðS; BÞ the phase shift in anti-de Sitter (AdS) space,
which depends on the AdS energy squared and impact
parameter S and B, according to1

S ¼ � ��s; coshB ¼ �2 þ ��2 þ b2

2� ��
: (4)

In particular, B is the geodesic distance between the points
�;x and ��; �x in H3, with b ¼ x� �x. These represent the
impact points of the operators O1 and O2 in the transverse
space. Finally, the functions fi are the radial wave
functions for the scattering states. For scalar operators
O1 and O2 of dimension �1 and �2, they are given by
fi / Qi�

2K�1�2ðQi�Þ for i ¼ 1; 3 and by fi /
Qi ��

2K�2�2ðQi ��Þ for i ¼ 2; 4 [11]. We normalize the

wave functions so that

Z d�

�3
f1ð�Þf3ð�Þ ¼

Z d ��

��3
f2ð ��Þf4ð ��Þ ¼ 1: (5)

As shown in [5], the impact parameter representation (2)
and (3) approximates the conformal partial wave decom-
position of the correlator (1) in the channel O1O2 !
O?

1O
?
2 , with intermediate states of conformal dimension

and spin, respectively, given by
ffiffiffi
S

p
coshðB=2Þ andffiffiffi

S
p

sinhðB=2Þ. In analogy with the usual results for scat-
tering in flat space, we then expect that AdS unitarity
implies [9,10]

Im�ðS; BÞ � 0;

even though the phase shift �ðs;bÞ does not satisfy a
simple unitarity constraint.

We shall focus, for concreteness, on the very relevant
and simple case of vanishing momentum transfer q ¼ 0
and equal virtualities for the incoming and outgoing states
Q ¼ Q1 ¼ Q3 and �Q ¼ Q2 ¼ Q4. It is then natural to
construct, from the correlator (2), the following effective
cross section:

�ðs; Q; �QÞ ¼ 2
Z

d2bReð1� e2i�ðs;bÞÞ:

Using (3), the cross section � can be conveniently written
as

2
Z d�

�3
f1ð�Þf3ð�Þ

Z d ��

��3
f2ð ��Þf4ð ��Þ�ðs; �; ��Þ; (6)

where we have defined the unintegrated cross sections

�ðs; �; ��Þ ¼
Z

d2b�ðs; �; ��;bÞ;
�ðs; �; ��;bÞ ¼ Reð1� e2i�ðS;BÞÞ:

(7)

In this language, �ðs; �; ��;bÞ is the natural object which
automatically satisfies the unitarity bound 0 � � � 2 due
to AdS unitarity Im� � 0. Moreover, for a black disk
region we have � ! 1, corresponding to a phase shift �
with a large imaginary part.
In general, we cannot evaluate the integral over the

impact parameter b. We may, on the other hand, use the
relation (4) between b and the AdS impact parameter B to
rewrite the cross section �ðs; �; ��Þ in (7) as

�ðs; �; ��Þ ¼ 2�� ��
Z 1

j lnð ��=�Þj
dB sinhBReð1� e2i�ðs� ��;BÞÞ:

(8)

It is now apparent that we are probing the phase�ðS; BÞ for
fixed S ¼ s� �� and for B � j lnð ��=�Þj. Finally, note that
the unintegrated cross sections satisfy, due to conformal
invariance, nontrivial relations under the transformation
� ! ��2=� with s ! sð�2= ��2Þ, b ! bð ��=�Þ, which leave
invariant S and B. More precisely,�ðs; �; ��;bÞ is invariant,
whereas

�2

��2
�

�
s
�2

��2
;
��2

�
; ��

�
¼ �ðs; �; ��Þ:

The phase shift �ðS; BÞ depends both on the number of
colors N and on the ’t Hooft coupling ��s ¼ �sN=� of the
theory. For large energy squared and impact parameter S
and B, the phase�will be dominated by the leading Regge
pole of the planar diagrams of the theory [9,10] and will
have a general representation of the form2

�ðS; BÞ ¼ 1

N2

Z
d��ð�ÞSjð�Þ�1�i�ðBÞ; (9)

where the Regge spin jð�Þ and residue �ð�Þ depend im-
plicitly only on the ’t Hooft coupling ��s and are even
functions of �. The function �i�ðBÞ computes radial
Fourier transforms in H3, satisfies ðhH3

þ �2 þ 1Þ�i� ¼
0, and is given explicitly by

�i�ðBÞ ¼ 1

4�2

� sin�B

sinhB
:

Whenever the AdS phase satisfies j�j � 1, the full
cross section is well approximated by a single Reggeon
exchange, and we may write

�ðs; �; ��;bÞ ’ 2 Im�ðS; BÞ: (10)

In this case, the integral over the impact parameter b can be
explicitly performed. In fact, using the Regge representa-

1We take the AdS quantities S and B to be dimensionless,
measured in units of the AdS radius.

2In this paper, in order to have a uniform notation, we use
slightly different conventions than in [9,10]. In particular, � ¼
���there and �here ¼ ���there.
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tion (9) for the phase shift, together with3

Z
d2b�i�ðBÞ ¼ 1

2�
� ��

�
��

�

��i�
;

coming from the integral representation [10]

�i�ðBÞ ¼ �2

4�3

Z
d2z

�
�

�2 þ ðb� zÞ2
�
1þi�

�
��

��2 þ z2

�
1�i�

;

we may evaluate the cross section �ðs; �; ��Þ to be

�ðs; �; ��Þ ’ � ��

2�N2
Im

Z
d��ð�Þðs� ��Þjð�Þ�1

�
��

�

��i�
:

(11)

II. THE CROSS SECTION DEEP INTO
SATURATION

At fixed AdS energy squared S, the phase �ðS; BÞ will,
in general, vanish in the limit B ! 1. On the other hand, as
we approach smaller and smaller impact parameters, �
will, in general, grow and reach saturation at B ’ BsðSÞ,
where � is of order one.

We will be mostly interested in weakly coupled gauge
theories, where the phase is predominantly imaginary
[12].4 In this case, saturation is reached at5

2 Im�ðS;BsðSÞÞ ’ 1:

A typical plot of the saturation line in the ðB; lnSÞ plane is
given in Fig. 2. In particular, for large S we have the linear
relation

B sðSÞ ’ ! lnSþ � � � ; (12)

where � � � represents subleading terms in S. This can be
shown, as is customary [17], by approximating the integral
in (9) at the saddle point iB ¼ j0ð�Þ lnS. Saturation is then
reached when the phase in (9) vanishes at the saddle—i.e.
when ð1þ i�sÞBs ¼ ðjð�sÞ � 1Þ lnS. These conditions im-
ply that

! ¼ �ij0ð�sÞ;

where the saturation saddle point �s is defined in terms of
the Regge trajectory jð�Þ by

ð1þ i�sÞ! ¼ jð�sÞ � 1:

The cross section �ðs; �; ��Þ near saturation j lnð ��=�Þj *
Bsðs� ��Þ exhibits geometric scaling [18]. More precisely,
the integral (11) has a leading behavior given by

�ðs; �; ��Þ � ��2��ð1þi�sÞðð1�!Þ=2Þ; (13)

where we have defined the scaling variable

� ¼ ��2

�2
ðs�2Þ�ð2!=1�!Þ: (14)

On the other hand, we are interested in the analysis of the
cross section �ðs; �; ��Þ deep inside saturation, that is, for

j lnð ��=�Þj & Bsðs� ��Þ: (15)

In this case, the integral (8) is dominated by the region B &
Bs, where we may replace �ðs; �; ��;bÞ ’ 1. This situation
corresponds to a simple black disk in AdS space, even
though this is less transparent from the four-dimensional
perspective. We then obtain the approximate expression for
the cross section

�ðs; �; ��Þ ’ 2�� ��
Z Bs

j lnð ��=�Þj
dB sinhB

’ �� ��

�
2 coshBsðs� ��Þ � �

��
� ��

�

�
: (16)

ln S

BB

FIG. 2. Saturation line BsðSÞ in the B� lnðSÞ plane. As we
increase S, the saturation line starts at a minimal value of S of the
order of ���1

s and reaches the asymptotic linear behavior, shown
with a dashed line, for large S. We extended the graph to the left
of the B ¼ 0 axis symmetrically, drawing the mirror image of the
saturation line. This is convenient, since B ¼ Bð�; ��; bÞ is in-
variant under � $ �� and we wish to show separately regions
with � > �� and � < ��.

3In order to correctly compute the normalization of this
Fourier transform, as well as of the ones in the remainder of
this paper, it is safest to compute at nonzero momentum transfer
and then take the limit q ! 0.

4On the other hand, at strong coupling and for large impact
parameters, the phase shift is predominantly real and is given by
the gravi-Reggeon exchange in AdS space. Studies of DIS in this
regime include Ref. [13]. Saturation effects at strong coupling
have also been analyzed in [14], and a conjectured relation to
black hole formation was put forward in [15].

5Note that it is usually believed that, when Im� ’ 1, nonlinear
Balitsky-Kovchegov (BK) corrections to � of order N�4 due to
fan diagrams also become relevant [16]. As long as those
corrections are negligible for impact parameters larger than the
saturation line, they are irrelevant in the discussion which
follows, since they will predominantly affect the phase shift in
the black disk region.
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Moreover, when S ¼ s� �� is large and we are in the linear
regime (12), we have the simpler approximate expression

�ðs; �; ��Þ ’ �� ��

�
ðs� ��Þ! þ ðs� ��Þ�! � �

��
� ��

�

�
; (17)

where we neglect any subleading term in (12). Note that,
for Bs � j lnð ��=�Þj � 1, Eq. (17) is dominated by the first
term, and we obtain

�ðs; �; ��Þ � ��2��ð1�!=2Þ;

to be contrasted with (13), valid near saturation. Finally
note that, even in the deeply saturated region, the cross
section �ðs; �; ��Þ grows with s with a power law, violating
the Froissart bound. Recall though that (17) has been
derived by assuming an exact conformal symmetry and
that, in a conformal theory, the Froissart bound is not
relevant since there is no mass scale.

For the sake of clarity, let us discuss a specific example,
which is at the same time simple and instructive, since it
contains most of the relevant physics. We will work with
the maximally superconformal version of QCD, N ¼ 4
super Yang-Mills with SUðNÞ gauge group, and we will
consider the scalar operators O1 ¼ TrðZ2Þ and O2 ¼
TrðW2Þ of dimension �1 ¼ �2 ¼ 2, with Z and W two
of the three complex adjoint scalars of the theory. To
leading order in ��s, we have the well known Balitsky,
Fadin, Kuraev, and Lipatov (BFKL) result [12]

jð�Þ ’ 1þ ��s

�
2�ð1Þ ��

�
1þ i�

2

�
��

�
1� i�

2

��

and [10]

�ð�Þ ’ i16�4 ��2
s

tanh��2
�ð1þ �2Þ2 : (18)

At vanishing lnS, the integral (9) can be explicitly com-
puted to be

�ðS ¼ 1; BÞ ¼ i

3
�2
s

�
ð6B2 þ 12B� �2Þ e�B

sinhB

� 12 lnð1� e�2BÞ þ 6

tanhB
Li2ðe�2BÞ

�
:

In particular, we see that at B ¼ 0 we have 2 Im�ðS ¼
1; B ¼ 0Þ ’ 6:6�2

s , which for a typical value of �s is well
below saturation. At B ¼ 0 the saturation line starts for
��s lnS ’ 1, as can be seen from the integral expression (9)
for the phase. The asymptotic linear regime (12) is reached
for lnS * 2= ��s, with i�s ’ 0:26 and

! ’ 2:44 ��s:

The above are clearly leading order results. However, as we
shall explain in more detail in the next section, the experi-
mental value of ! in DIS experiments is lower. For ex-
ample, in the analysis of [19], one finds! ’ 0:14, since the
scaling variable � has the form (14) with 2!=ð1�!Þ ’

0:32. Therefore, as is well known, next to leading order
corrections to the leading BFKL results (which also dis-
tinguish between QCD and its supersymmetric extensions)
are important to match to experiment.

III. DEEP INELASTIC SCATTERING IN QCD AT
SMALL x

We now explore the phenomenological consequences of
our results on deeply saturated cross sections for DIS in
QCD at small Bjorken x. Throughout the discussion, we
shall assume that we are working in the conformal setting,
thus neglecting the running of the coupling constant and all
quark masses. We will associate the scalar operators O1

and O2, respectively, to the photon and the proton. Note
that, deep into saturation, the spin of the external particles
plays a minor role, since amplitudes are dominated by the
black disk region with�ðs; �; ��;bÞ ’ 1. As usual,Q2 is the
photon virtuality and s ’ Q2=x. Moreover, the scale �Qwill
now represent a phenomenological parameter, related to
the proton wave function, of the order of the relevant
proton scales. The wave functions f1; f3 and f2; f4 are
localized, respectively, around ��Q�1 and ��� �Q�1.
Therefore, the total cross section �ðs;Q; �QÞ in (6) can be
approximately computed using the saturated cross section
�ðs; �; ��Þ in (16) whenever

j lnðQ= �QÞj & Bsðs=Q �QÞ: (19)

Moreover, for large s=Q �Q, the saturation line BsðSÞ is
approximately linear, and �ðs; �; ��Þ is given by the simple
expression (17). In this case, we may easily compute the
radial integrals in (6) since, on purely dimensional
grounds, we must have

Z d�

�3
f1ð�Þf3ð�Þ�	 ¼ Q�	
ð	Þ

for some constants 
ð	Þ of order unity and similarly for the
proton wave functions. Hence, in the deeply saturated
regime at high s=Q �Q, we expect a rather simple form for
the total cross section �ðs;Q; �QÞ. Recalling that the cross
section � is proportional to Q�2F2, where F2ðx; Q2Þ is the
usual DIS proton structure function, we obtain

F2ðx;Q2Þ ’ c
Q

�

��
Q

x�

�
! þ

�
Q

x�

��!
�
� ~c

Q
~�

�
Q
~�
þ

~�

Q

�
;

(20)

where the constants c and ~c and the scales � and ~� are the
only remnants of our lack of precise knowledge of the

scattering radial wave functions. In particular, � and ~�
will be of the same order as �Q. Had we included the spin of
the particles in the discussion, the parameters c, ~c, �, and
~� would carry also this kinematical information. The
exponent ! is, on the other hand, universal and depends
uniquely on the spin of the Pomeron. Note that, since! �
1, the constants of order unity coming from the first two
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terms of (17) are essentially identical, and we may safely
take

� ’ �Q

in the first approximation.
As in (17), when Bsðs=Q �QÞ � j lnðQ= �QÞj � 1, the

cross section � is dominated by the first term in (20) and
exhibits the geometric scaling

�� 1
�Q2

��ð1�!=2Þ; (21)

where we define the scaling variable � as usual as [18]

� ¼ Q2

Q2
s

; Q2
s ¼ �Q2

�
1

x

�ð2!=1�!Þ
:

Recall that the power of 1=x in the saturation scale Q2
s is

observed experimentally, following [19], to be given by
2!=ð1�!Þ ¼ 0:321� 0:056, so that

! ¼ 0:138� 0:021: (22)

Deep into saturation, we predict that � evolves with � with
the specific exponent in (21), which is uniquely fixed by the
measurement of! at the saturation scaleQ2

s . This has to be
contrasted with the behavior of� near saturation following
from (13), where the exponent of � is not fixed uniquely by
!.

We wish to test this prediction against the available
experimental data on F2ðx;Q2Þ. Measurements have been
performed at values of x and Q2 shown in Fig. 3, as
discussed in [20], which collects all available data from
[21]. In this figure, we present the data in the lnQ– lnQ=x
plane, with all energy scales measured in GeV from now
on. These are the natural variables to discuss saturation,
since they enter directly into (19). We will fit the available
F2 values using (20) in its plausible region of validity. First
of all, we will take

Q>Qmin;

with Qmin � 1 GeV so that, in the first approximation, the
running of the coupling can be neglected. Second, we wish
to choose points inside the saturation line (19). The exact
determination of this line depends crucially on the phe-
nomenological parameter �Q and, in turn, on the strongly
coupled dynamics of the proton. We expect the value of �Q
to be in the range of available scales—i.e. the QCD scale
and the proton mass. Assuming that radial wave functions
are localized around ��Q�1 and ��� �Q�1, the saturation
line in the lnQ– lnQ=x plane is then given by the saturation
line for the AdS phase� shown in Fig. 2, where we replace
B and lnS, respectively, by j lnQ= �Qj and lnQ=ðx �QÞ. In
practice, this amounts to drawing the saturation line of
Fig. 2 onto Fig. 3, offsetting the origin along the line x ¼

1 by ln �Q. We shall then take points with

! ln
Q

x �Q
> ln

Q
�Q

ð �Q� 0:2–1 GeVÞ:

Third, we wish to consider data points with high values of
Q=ð �QxÞ, so as to be into the linear regime of the saturation
line. As explained in the previous section, the leading order
BFKL analysis suggests that the linear regime starts around
lnS * 2= ��s, so that we shall take data with

Q
�Qx

* 10� ð� * 3Þ:

To proceed, let us choose Qmin ¼ 0:7 GeV, �Q ¼
0:6 GeV, and � ¼ 3. We will show later that the main
results are insensitive to this specific choice. The selected
data are shown in the shaded region of Fig. 3. We shall test
our theoretical prediction against the real data in [21] as
well as against the very accurate neural network interpo-
lation to world DIS data in [22]. In particular, we shall
minimize the average square deviation of the data from the
predicted theoretical form (20). Since the parameters c, ~c,

and ~c=~�2 enter linearly in (20), minimization reduces to a
linear system parametrized by the single parameter !.

As a function of !, the parameters c, ~c, and ~c=~�2 are
easily determined both for real as well as for simulated
data. As is clear from (20), the parameter ! controls the
growth of F2 as 1=x increases. More precisely, at fixed Q,
the coefficients c and ! determine the slope as well as the
convexity of the function F2 in the experimental region of
interest, shaded in Fig. 3. Unfortunately, the relevant kine-

Q/x

Q

10
5

10
4

10
3

10
2

10

1

10
-1

1 10 10
2

GeV

GeV

FIG. 3 (color online). Shown are the available measurements
of F2ðx;Q2Þ in [21], in the log10ðQÞ � log10ðQ=xÞ plane, with
energies measured in GeV. All points lie above the line x ¼ 1.
Shown also is the shaded region of points considered when
analyzing (20). It corresponds to the region delimited by the
vertical line, setting Q>Qmin, the horizontal one, setting
log10ðQ=x �QÞ>�, and the asymptotic linear saturation line.
This is shown with a thicker line and is obtained by offsetting
the graph in Fig. 2 by log10ð �QÞ along the x ¼ 1 line.
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matics is on the boundary of the currently accessible
experimental settings, resulting in data of relatively poor
quality with large experimental uncertainty. This is re-
flected in the fact that the error function, although it
presents a minimum for ! ’ 0:136, is essentially constant
in the range 0.1–0.17 plotted in Fig. 4. On the other hand, as
shown in the same figure, if we use the more accurate
simulated function F2 computed at the same values of x
and Q2 available in the real data [22], we obtain a rather
sharp minimum for the error function at

! ’ 0:126:

Therefore, from now on, we shall determine the optimal
value of ! using the simulated data only. At this point we
wish to emphasize that this value of !, obtained from data
inside the saturated kinematical region, is within the ex-
perimental range ! ¼ 0:138� 0:021, obtained indepen-
dently from geometric scaling. The values for the other

relevant parameters can be determined to be ~� ’ 1:0 GeV,

c ’ 0:13, and ~c ’ 0:14 for the real data and ~� ’ 1:0 GeV,
c ’ 0:11, and ~c ’ 0:08 for the simulated one.

The real data are presented in Figs. 5 and 6, where we
show the data together with the theoretical curves from
(20). We plot F2=Q as a function of log10Q, and each graph
contains data points with values of log10ðQ=xÞ in the range
Y � 0:1, for 2 � Y � 5 in increments of 0.2. Theoretical
curves are shown in red for both the minimal and the
maximal values of log10ðQ=xÞ. Finally, the shaded area
corresponds to the region delimited by the choice of pa-
rameters �Q, �, and Qmin, as also shown in Fig. 3.
Analogously, Figs. 7 and 8 show the simulated data.

Let us note that the AdS black disk form of the structure
function given in (20), with the above choice of parame-
ters, approximates the available real data with an average
6% accuracy in the rather large region of parameter space
0:5<Q2 < 10 and x < 10�2.
Because of uncertainty on the precise location of the

saturation line, we have repeated the analysis with different
values of �Q, Qmin, and �, to test the robustness of the
predicted value for !. Within the range 0:7<Qmin < 1
and 0:3< �Q< 1, the fitted value for! varies from 0.090 to
0.152, as shown in Table I, thus mostly within the predicted
range (the optimal value of ! is rather insensitive to the
choice of �> 3 which we keep fixed). Note that, although
the first two entries of Table I are outside the predicted
range, they are based on a very small number of data
points.
As already stressed, available data are on the boundary

of the deeply saturated region, and one would need to reach
higher energies in order to better test these predictions.
Possibly, future data from LHC will be of use to confirm
the above results.

IV. RELATION TO THE DIPOLE FORMALISM

We will conclude this paper by discussing the relation
between the above results and the dipole formalism [23],
which is usually employed in the analysis of saturation
effects. In this context, it is customary to analyze the so-
called dipole-dipole cross section �DDðs; r; �r;bÞ instead of
�ðs; �; ��;bÞ, with the full cross section�ðs;Q; �QÞ given by
integrals over the dipole transverse orientations r and �r

2

ð2�Þ2
Z d2r

r4
d2 �r

�r4
WðrÞ�DDðs; r; �rÞ �Wð�rÞ;

�DDðs; r; �rÞ ¼
Z

d2b�DDðs; r; �r;bÞ;
(23)

where WðrÞ and �Wð�rÞ are the so-called dipole impact
factors.
Let us first note that, although the dipole formalism is

quite useful due to its intuitive physical description of the
high energy process and of the linear BFKL and nonlinear
BK evolutions [16], it is not well suited for the discussion
of unitarization, since the natural object which satisfies the
unitarity constraint 0 � � � 2 is �ðs; �; ��;bÞ, instead of
�DDðs; r; �r;bÞ. This fact is quite clear in gauge theories
which are exactly conformal, like N ¼ 4 super Yang-
Mills, where the dipole formalism can still be applied (as
well as the BK equation, which is explicitly conformally
invariant). In this case, the theory has no asymptotic states
or an S matrix to which to apply the usual unitarity con-
straints. Moreover, even in a confining theory like QCD,
which possesses asymptotic states, the dipole state is not a
single particle state at infinity and therefore does not enter
in a usual S-matrix element. In fact, in the standard dis-
cussions of DIS at small x, the dipole picture is often used

FIG. 4 (color online). Error functions for real and simulated
data, plotted as a function of !. For comparison, both functions
have been normalized to 1 at their respective minima. The error
for the simulated data exhibits a sharp minimum, while the
corresponding error for real data is more insensitive to !, due
to a large experimental uncertainty. We therefore choose to fix !
using the simulated data. The yellow stripe corresponds to the
range ! ¼ 0:138� 0:021 obtained from geometric scaling.
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to describe the wave function of an off-shell spacelike
photon.

At any rate, in order to make contact with the standard
literature, we will briefly analyze, in what follows, the
above expressions in the unsaturated regime of small
AdS phase shift j�j � 1.

Let us first analyze the impact factors WðrÞ and �Wð�rÞ,
leaving to the second part of this section the discussion on
�DDðs; r; �r;bÞ and on saturation in the context of the dipole
formalism. We recall the BFKL representation of � ana-
lyzed in [10]. More precisely, to leading order in the
coupling we have

0.5 1.0 2.0 4.0

Q [GeV]
0.5 1.0 2.0 4.0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

F
2/Q

Y = 3.6Y = 3.8

Y = 4.0Y = 4.2

Y = 4.6 Y = 4.4

Y = 4.8Y = 5.0

FIG. 5 (color online). Real data F2=Q as a function of Q. Each graph contains data points with values of log10ðQ=xÞ in the range
Y � 0:1, for 3:6 � Y � 5 in increments of 0.2. Theoretical curves are shown in red for both the minimal and the maximal values of
log10ðQ=xÞ. The shaded area corresponds to the region delimited by the choice of parameters Qmin ¼ 0:7 GeV, �Q ¼ 0:6 GeV, and
� ¼ 3, as also shown in Fig. 3.
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2� ¼ i

N2

Z d2r

r4
d2 �r

�r4
d2yd2 �yWð�; r;x� yÞFðr; �r; y � �yÞ

	 �Wð ��; �r; �x� �yÞ;
with b ¼ x� �x. The impact factorW depends on the point
�, x in H3 and on the two intermediate points y � r=2 on
the boundary of H3, as represented in Fig. 9. Similar com-

ments apply to the impact factor �W. Moreover, Fðr; �r; y �
�yÞ is the leading order two-gluon exchange kernel from y �
r=2 to �y � �r=2. Integrating against

2
Z

d2b
Z d�

�3
f1ð�Þf3ð�Þ

Z d ��

��3
f2ð ��Þf4ð ��Þ

and using the approximate relation (10) valid in the small

0.5 1.0 2.0 4.0

Q [GeV]
0.5 1.0 2.0 4.0

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

F
2/Q

Y = 2.0Y = 2.2

Y = 2.4Y = 2.6

8.2=Y0.3=Y

Y = 3.2Y = 3.4

FIG. 6 (color online). Real data F2=Q as a function of Q. Each graph contains data points with values of log10ðQ=xÞ in the range
Y � 0:1, for 2 � Y � 3:4 in increments of 0.2. Theoretical curves are shown in red for both the minimal and the maximal values of
log10ðQ=xÞ. The shaded area corresponds to the region delimited by the choice of parameters Qmin ¼ 0:7 GeV, �Q ¼ 0:6 GeV, and
� ¼ 3, as also shown in Fig. 3.

LORENZO CORNALBA AND MIGUEL S. COSTA PHYSICAL REVIEW D 78, 096010 (2008)

096010-8



phase regime, we obtain an expression of the form (23),
where

�DDðs; r; �rÞ ’ c �c
ð2�Þ2
N2

Re
Z

d2wFðr; �r;wÞ;

WðrÞ ¼ 1

c

Z d�

�3
f1ð�Þf3ð�Þ

Z
d2wWð�; r;wÞ;

(24)

and similarly for �Wð�rÞ. The constants c and �c are fixed by
the normalization conditions

1

2�

Z d2r

r4
WðrÞ ¼ 1

2�

Z d2 �r

�r4
�Wð�rÞ ¼ 1

analogous to (5).
Let us discuss the impact factorW in detail. As shown in

[10], conformal invariance highly constrains Wð�; r;wÞ to
be a function of the unique cross ratio

r2�2

½�2 þ ðw� r
2Þ2
½�2 þ ðwþ r

2Þ2

;

0.5 1.0 2.0 4.0

Q [GeV]
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0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

F
2/Q

Y = 3.6Y = 3.8

Y = 4.0Y = 4.2

4.4=Y6.4=Y

Y = 4.8Y = 5.0

FIG. 7 (color online). The same as Fig. 5 for the simulated function F2 computed at evenly spaced values of Q for fixed Y ¼
log10ðQ=xÞ.
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which can be conveniently written in the following integral
representation6:

1

64�5

Z
d��2ð1þ �2Þ �2ð1�i�

2 Þ
�ð1� i�ÞWð�Þ

	
Z

d2z

�
�

�2 þ ðw� zÞ2
�
1þi�

	
�

r2

ðz� r
2Þ2ðzþ r

2Þ2
�ð1�i�=2Þ

; (25)

where the transformsWð�Þ and �Wð�Þ determine the Regge

0.5 1.0 2.0 4.0

Q [GeV]
0.5 1.0 2.0 4.0

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

F
2/Q

Y = 2.0Y = 2.2

Y = 2.4Y = 2.6

8.2=Y0.3=Y

Y = 3.2Y = 3.4

FIG. 8 (color online). The same as Fig. 6 for the simulated function F2 computed at evenly spaced values of Q for fixed Y ¼
log10ðQ=xÞ.

6In the notation of [10], Wð�Þ is given by Vð�Þ=Vminð�; 1Þ,
with Vð�Þ the impact factor for the full amplitude and with
Vminð�; 1Þ ¼ �ð2�1�1þi�

2 Þ�ð2�1�1�i�
2 Þ=ð�ð�1Þ�ð�1 � 1ÞÞ, where

�1 is the dimension of the external operator O1, and similarly
for �W.
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residue �ð�Þ to be

�ð�Þ ¼ i

4�
Wð�Þ tanhð��=2Þ �Wð�Þ:

Moving to momentum space in the transverse E2 plane by
integrating against

R
d2w, we obtain

1

32�3

Z
d�ð1þ �2ÞWð�Þ

	
Z 1

0

d	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ð1� 	Þp �jrj

�
	ð1� 	Þr2

�2

�ði�=2Þ
; (26)

where 	 is the Feynman parameter related to the denom-
inators in the last parentheses of (25).

For concreteness, let us return to the specific example
already discussed in Sec. II, with �ð�Þ given by (18). We
have that Wð�Þ ¼ 8�2 ��s=ð1þ �2Þ. Then WðrÞ can be

computed from (26), since the � integral fixes � ¼
jrj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	ð1� 	Þp
. After integrating against c�1

R
d���3f1f3,

we obtain

WðrÞ ¼
Z 1

0

d	

	ð1� 	Þ f1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ð1� 	Þ

p
jrjÞf3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ð1� 	Þ

p
jrjÞ;

with c ¼ ��s=2. Using the fact that fið�Þ ¼ffiffiffi
2

p
Qi�

2K0ðQi�Þ for i ¼ 1; 3, we have just obtained the
usual expression in terms of dipole wave functions [23].
To conclude this section, let us recall the form of the

dipole-dipole cross section �DDðs; r; �rÞ, in the unsaturated
case (24). It is given by the usual BFKL kernel

�DDðs;r; �rÞ ’ jrjj�rj
2�N2

Z
d�

16�3 ��2
s

ð1þ�2Þ2 ðsjrjj�rjÞ
jð�Þ�1

��������
�r

r

��������
�i�

;

which should be compared with (11), with �ð�Þ given by
(18). Recall also that the above expression is the zero
momentum contribution to the full BFKL expression for
�DDðs; r; �r;bÞ given by [24]

�DDðs; r; �r;bÞ ’ i

2�2N2

Z
d���ð�Þ

	 ðsjrjj�rjÞjð�Þ�1T i�ðr; �r;bÞ; (27)

where

�ð�Þ ¼ 16�3 ��2
s

ð1þ �2Þ2
�ð1� i�Þ
�ð1�i�

2 Þ2
�ð1þi�

2 Þ2
�ð1þ i�Þ

and where T i�ðr; �r;bÞ is the two-dimensional conformal
partial wave of spin 0 and conformal dimension 1þ i� at
the four points ðb� rÞ=2, ð�b� �rÞ=2. Because of trans-
verse conformal invariance, T i� depends uniquely on the
cross-ratio combinations

z�z ¼ r2 �r2

ðb� r
2 þ �r

2Þ2ðbþ r
2 � �r

2Þ2
;

z�z

ð1� zÞð1� �zÞ ¼
r2 �r2

ðb� r
2 � �r

2Þ2ðbþ r
2 þ �r

2Þ2

and is given explicitly by

T i�ðr; �r;bÞ ¼ ð�zÞhð��zÞhFðh; h; 2h; zÞFðh; h; 2h; �zÞ;
h ¼ 1þ i�

2
;

where F is the hypergeometric function 2F1.
The expression (27) should be confronted with

�ðs; �; ��;bÞ derived from Eqs. (9) and (10) in the limit
of small AdS phase shift j�j � 1:

TABLE I. Number of experimentally available data points n
and predicted value of ! for different values of �Q and Qmin.

�Q Qmin � n !

0.3 0.7 3 58 0.104

0.3 1 3 23 0.090

0.6 0.7 3 138 0.126

0.6 1 3 104 0.130

1 0.7 3 200 0.141

1 1 3 171 0.152

H

R2

y

y−y

3

r

ρ(x,  )

(x,  )ρ

r
y

FIG. 9 (color online). Relation to dipole formalism. While the
dipole-dipole cross section �DDðs; r; �r; y � �yÞ depends on four
points in R2, the cross section �ðs; �; ��;x� �xÞ, which is the one
constrained by unitarity, depends only on two points in H3. The
role of the dipole vectors r and �r is now played by the radial
coordinates � and ��.
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�ðs; �; ��;bÞ ’ i

2�2N2

Z
d�� Im�ð�ÞSjð�Þ�1 e

�i�B

sinhB
:

(28)

Given the similarity of the expressions for �DD and �, we
may try to follow the program of Sec. II and consider the
saturation region in the transverse impact parameter b
space where, at fixed energy s and dipole orientations r
and �r, the cross section �DDðs; r; �r;bÞ becomes greater
than unity. On the other hand, this program cannot be
carried out, in general. In fact, while the cross section
�ðs; �; ��;bÞ depends, aside from energy, on a single con-
formal cross ratio B, the cross section �DDðs; r; �r;bÞ de-
pends on energy and on two cross ratios z and �z which
reflect the orientations of the two dipoles (the scalar quan-
tities � and �� are replaced by the dipole transverse vectors
r and �r, respectively). Moreover, both B and lnS enter
exponentially in (28) and allow for a simple saddle ap-
proximation of the integral and for the determination of the
saturation line as in (12). On the other hand, the depen-
dence of the integrand in (27) on z and �z is now highly
nontrivial, since it involves not only the norms but also the
orientations of r, �r, and b. Most importantly, it does not
allow for a simple approximation of the integral at a saddle
point and a simple determination of the saturation line.

The analysis of the saturation region for �DD can be
carried out only in the limit jrj; j�rj � jbj. In fact, in this
limit, one may use the operator product expansion and
obtain

T i�ðr; �r;bÞ ’
�jrjj�rj

b2

�
1þi�

(29)

of the simple exponential form. Similarly, in the same limit
�; �� � jbj, one has B ’ lnðb2=� ��Þ, and one may substi-
tute in (28)

e�i�B

sinhB
’
�
� ��

b2

�
1þi�

;

obtaining an expression analogous to (29). From here on
we may follow the usual steps reviewed in Sec. II to

determine the saturation radius, which is given, in general,
by lnðb2=jrjj�rjÞ ’ ! lnðsjrjj�rjÞ, leading to a black disk
cross section given by �b2 ’ �jrjj�rjðsjrjj�rjÞ!.
With this procedure we recover an expression analogous

to the first term of (17) just as easily in the dipole formal-
ism. On the other hand, as we already pointed out, the usual
saddling argument works in (28) for generic values of �, ��,
and b. This fact allows us to determine the other terms in
Eq. (17), which could not have been deduced in the dipole
language. Note that the extra three terms in (17), and
correspondingly in (20), are crucial in order to have a
qualitatively good fit for the relevant F2 data at hand. In
fact, the expression for F2=Q exhibits a nontrivial depen-
dence on Q at fixed Q=x, which is qualitatively correctly
captured by the third and fourth terms in (20) proportional
to

�Q
~�
�

~�

Q
:

These terms give a concave behavior with a maximum at

Q ’ ~�, which is a clear feature of the F2 data, as can be
seen from the plots in Figs. 5–8. A pure term of the form
ðQ=xÞ!, as could be determined by the above arguments
also in the usual dipole formalism, is clearly insufficient to
reproduce the Q dependence at fixed Q=x inside the satu-
ration region.
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