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The Schwinger mechanism, the production of charged particle-antiparticle pairs in a macroscopic

external electric field, is derived for 2þ 1-dimensional theories. The rate of pair production per unit area

for four species of massless fermions, with charge q, in a constant electric field E is given by

��2
@
�3=2~c�1=2ðqEÞ3=2 where ~c is the speed of light for the two-dimensional system. To the extent

undoped graphene behaves like the quantum field-theoretic vacuum for massless fermions in 2þ 1

dimensions, the Schwinger mechanism should be testable experimentally. A possible experimental

configuration for this is proposed. Effects due to deviations from this idealized picture of graphene are

briefly considered. It is argued that with present day samples of graphene, tests of the Schwinger formula

may be possible.
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I. INTRODUCTION

The Schwinger mechanism refers to the production of
charged particle-antiparticle pairs out of the vacuum by a
classical electric field which is homogenous over a large
volume in space. More than half a century ago, Schwinger
computed [1] the rate associated with vacuum breakdown
via pair production per unit volume for the case of a
constant electric field. Over the years, the Schwinger
mechanism has spawned a vast literature. Invoked to gain
insights on topics as diverse as the string breaking rate in
QCD [2,3] and on black hole physics [4], this mechanism
has become a textbook topic in quantum field theory [5].
Topics such as backreaction [6] and finite size effects [7]
have been addressed.

A key issue is the rate of pair production from a static
electric field. Schwinger originally addressed this question
by noting that the probability that a system with zero
electrons or positrons remains in the fermionic vacuum
state decays exponentially in time [1]. Treating the electric
field classically—i.e. the formal limit of q ! 0, E ! 1
with qE fixed—Schwinger calculated the vacuum persis-
tence probability, PvacðtÞ, as a function of time:

PvacðtÞ � jhvacjUðtÞjvacij2 ¼ expð�wVtÞ (1)

with w ¼ ðqEÞ2
4�3

@
2c

X1
n¼1

1

n2
exp

�
� n�m2c3

qE@

�
; (2)

where V is the spatial volume of the system and w is the
rate of vacuum decay per unit volume.

Schwinger’s interpretation [1] of Eqs. (1) and (2) was
straightforward: w was taken to be the local rate of pro-
duction per unit volume of fermion-antifermion pairs by
the electric field. This interpretation has been widely ac-
cepted in much of the literature on the Schwinger mecha-
nism. However, while the Schwinger formula of Eq. (2) is
very well known, it has been argued that its interpretation
as the pair production rate is not correct [8]. Despite the
very natural interpretation of w in Eq. (2) as the rate of
production of pairs per unit volume, an explicit calculation
gives the rate of pair production per unit volume, which we
denote �, as

� ¼ ðqEÞ2
4�3

@
2c

exp

�
��m2c3

qE@

�
: (3)

This rate does not agree with w: the entire rate is given by
the first term in the series for w. For a recent, pedagogical,
discussion highlighting the theoretical distinction between
these two rates, see Ref. [9].
Despite its theoretical significance, there has been no

direct experimental signature of the Schwinger mecha-
nism, of charged pair creation in electric fields. This is
particularly unfortunate given the common confusion be-
tween the rate of pair creation � and w the rate of vacuum
decay. It would be very useful to concoct an experimental
test to distinguish between the two directly. Moreover,
apart from the distinction between w and � the derivation
of the rate of pair production via the Schwinger mechanism
raises a number of subtle issues associated with the im-
plementation of appropriate boundary conditions
[3,4,7,10]; it is important to test whether these are handled
correctly. Ultimately the most compelling test would be
experimental.
The reason that the Schwinger mechanism has never

been tested experimentally is very easy to understand:
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the exponential factor in the pair production rate is very
small for static macroscopic E fields realizable in the lab. It
only becomes of order unity when E is large enough so that
qE times the electron’s Compton wavelength is greater
than mc2: this requires an electric field of order

1016 V=cm; for E ¼ 106 V
cm , expð� �m2c3

qE@ Þ � expð�4�
1010Þ.

One might hope to test the Schwinger formula experi-
mentally in a condensed matter system which simulates
light or massless, electrically charged, relativistic fermi-
ons. In this context, the condensed matter system acts as an
analog computer to test the underlying result from relativ-
istic field theory. Fortunately, it has been known for more
than two decades that charged quasiparticle excitations in a
potential with a two-dimensional hexagonal symmetry
have a region of momenta over which their dispersion
relation is linear-ð�� �0Þ2 ¼ ~c2ðp2

x þ p2
yÞ [11]. This is

precisely the dispersion relation of a massless relativistic
particle with energy measured relative to �0 and has ~c
playing the role of c. Graphene (i.e., a single sheet of
graphite) has such a symmetry. Moreover, in undoped
graphene, the Fermi level is at �0. Thus, to the extent
that a single particle description holds in graphene, the
quantum ground state of a filled Fermi sea is the precise
analog of a filled Dirac sea—i.e. the vacuum of a two-
dimensional noninteracting field theory for fermions. The
recent development of techniques to produce samples of
graphene and measure its properties [12,13] has focused
significant attention to its analogy with massless Dirac
particles: graphene has been proposed as a testing ground
for the standard relativistic quantum mechanical effects of
zitterbewegung and Klein/Landau-Zener tunneling
[14,15]. This paper explores the possibility of using gra-
phene to test experimentally the more subtle dynamics of
the Schwinger mechanism.

II. THE SCHWINGER PAIR CREATION RATE IN
GRAPHENE

One can adapt Schwinger’s calculation [1] for smaller
dimensions [10,16,17]; in ð2þ 1Þ dimensions the proba-
bility that the system has remained in the (fermionic)
vacuum after time t, PvacðtÞ, is

P2þ1
vac ðtÞ ¼ expð�w2þ1AtÞ (4)

with w2þ1 ¼ fðqEÞ3=2
4�2
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4�2
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for m ¼ 0; (5)

where A is the spatial area, ~c is the speed of light for the 2-d
system, � is the Riemann zeta function with �ð3=2Þ �
2:612, and f is the number of species of fermion (i.e.,
four for graphene). Similarly, the local rate of pair creation,
�2þ1, is given by the first term of this series [8–10],

�2þ1 ¼ fðqEÞ3=2
4�2
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�
�n�m2~c3

qE@

�
: (6)

These derivations hold for classical, constant, and exter-
nally fixed electric fields. Consequently these relations are
valid only when it is legitimate to neglect: (i) macroscopic
backreaction to the applied field due to this same charged
particle production rate [6]; (ii) the production of real
photons as the charged particles accelerate in the electric
field; and (iii) interactions between the fermions mediated
by the exchange of virtual photons.
Alternative derivations [2,9] to Schwinger’s original

calculation [1] focus on the nature of a single particle level
for the Dirac equation in the presence of an electric field,
switched on in the distant past. These derivations have the
twin virtues of clarifying both the role of boundary con-
ditions and the distinction between the rate associated with
vacuum breakdown, w, and the rate of pair creation, �.
Here we will discuss the derivation done in the time
independent gauge, Ei ¼ �@iA0ðxjÞ [2,7]. In this gauge,

we see that the electric field alters the single particle energy
levels. The shifts in energy due to the potential have
opposite signs on either side of the field region, allowing
filled levels on one side to become degenerate with empty
ones on the other. This yields an effective potential through
which filled levels in the Dirac sea can tunnel, leaving a
hole on one side and yielding a particle type state on the
other.
This tunneling problem is conceptually simple for an

electric field of limited spatial extent [7]. Consider an
infinite plane with an electric field independent of y, with
magnitude E, oriented in the �x direction and confined to
the region between�L=2 � x � L=2. A useful basis is the
in-state wave functions which correspond to solutions of
the Dirac equation with unit flux moving towards the
region of the electric field from either the left or right.
The states have amplitude T (times a flux-normalizing
kinematic factor) to be found on the far side of the field
region. T may be computed directly as a tunneling problem
in an effective energy-dependent Schrödinger equation
derivable from the underlying Dirac equation.
Suppose that the system is in the ‘‘in-state vacuum’’ (the

left image in Fig. 1). All of the in-states below the Dirac sea
on the left, c Lin

�;pT
, are occupied for � <�qEL=2 and all of

the states below the Dirac sea on the right, c Rin
�;pT

, are

occupied for � < qEL=2. Turning on the electric field in
the distant past has merely shifted the energies of the states
relative to the local vacuum, not their occupation number.
The pair production rate for a particle with energy � and
transverse momentum pT is proportional to the transmis-
sion probability for a filled in-state from the left
�qEL=2 � � � qEL=2. In essence a filled level moving
in the elevated Dirac sea towards the region of the electric
field propagates through and emerges on the other side,
with probability jTj2, where it appears as a particle. The
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rate of pair production per unit width per unit � per unit pT

is computed analogously to the 3þ 1-dimensional case
[2]. Integration over � and pT gives the rate of pairs per
unit width:

d2N

dtdW
¼

Z �max

��max
d�

Z pmax
T

�pmax
T

dpT

d4N

d�dpTdWdt
;

�max ¼ qEL

2
�m~c2;

pmax
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�� qELÞ2 � 4m2~c4
p

2~c
;

d4N

d�dpTdWdt
¼ f

jTð�; pTÞj2
4�2

@
2

:

(7)

In the large L limit, the WKB result is increasingly valid,

and jTj2 ¼ expð� �ðm2þp2
T Þ~c3

qE@ Þ [2]. Evaluating T within the

WKB approximation for arbitrary L, and equating d2N
dtdW

with �2þ1, one arrives at the 2þ 1-dimensional
Schwinger formula of Eq. (6) for L2 � @~c=qE. If L is
not large one must compute T from the Dirac equation and
numerically integrate over � and pT . The ratio of the rate at
finite L to the Schwinger rate depends only on the ratio

L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@~c=qE

p
. The numerically calculated rate smoothly con-

verges to the Schwinger rate; see Fig. 2.
It should be noted that while the preceding derivation is

modeled on the derivation (in 3þ 1 dimensions) of
Ref. [7] there is one crucial distinction: Ref. [7] computed
� (the vaccum decay rate) which was implicitly assumed to
be the pair production rate w. This difference only appears
in the last line of Eq. (7): to computew2þ1 rather than �2þ1

one replaces� logð1� jTð�; pTÞj2Þ (used in Ref. [7]) with
jTð�; pTÞj2.

III. A PROPOSED EXPERIMENT

The previous derivation depends on the system being in
the in-state vacuum. Intuitively, after a certain transient
time during which the system equilibrates, the rate should
be dominated by incoming levels from far away. Since the
time scale for such transient behavior is finite at infinite L
[3], the natural time scale associated with transients does
not depend on L. This transient time scale can be obtained

via simple dimensional analysis: �trans ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð~cqEÞp

.
The analysis crucially requires the fermionic ‘‘vacuum’’

to be placed in an external electric field which remains
constant over time. To experimentally realize this with
graphene, one must fix an external voltage by placing a
region of the graphene sheet between two conducting
plates, held at constant voltage. Pair production is driven
by differences in level occupation on either side of the
field. Particles and holes created in the field region are
carried into the regions of the graphene sample on either
side of the field regions which serve as reservoirs for
particles and holes. After a finite time, the accessible states
fill substantially and the system leaves the regime of va-
lidity of the Schwinger formula; the reservoirs develop an
excess of holes or particles and the system more closely
resembles p-n junctions, under extensive study in the con-
text of Landau-Zener tunneling [15]; see Fig. 1. The natu-
ral time scale needed to deplete a substantial fraction of the

reservoir and depart from the Schwinger regime is �fill �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qE=ð@~c3Þp

LLres.
An experiment to test the Schwinger formula is thus

conceptually straightforward: a sheet of graphene of width
W, and length 2Lres þ L is placed in an apparatus whose
cross section is given schematically in Fig. 3; L is the
length the field region and Lres is the length of the reser-
voirs to either side. An electric field of magnitude V0=L is
turned at t ¼ 0; the Schwinger formula (6) should be
accurate for �trans � t � �fill, bringing about a two-
dimensional current density J from the Schwinger pairs.
For �trans � t � �fill, the current density just beyond the
field regions to good approximation is

J Sch � q�2þ1L ¼ qðqV0Þ3=2
�2

@
3=2~c1=2L1=2

: (8)
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FIG. 2 (color online). The ratio of the pair production rate at
finite L to the (infinite L) Schwinger formula rate for a 2þ
1-dimensional system. L is measured in units of L0 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@~c=ðqEÞp

.

FIG. 1. The dispersion relations are shifted on either side of
the electric field. The image on the left is a cartoon picture of the
in-state vacuum, where the Schwinger mechanism applies. After
�fill the level occupations change, and the system falls into a p-n
type system, depicted on the right.
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As charge flows into the reservoirs, an external current I ¼
J SchW must flow to the conductors to maintain them at
fixed voltages of �V0=2. This current I can be monitored
to determine J . Note that the graphene sheet is fully
insulated electrically and is not part of a closed circuit.
Thus, the current is necessarily transient and the experi-
ment does not measure the usual conductance. This pro-
posed method of testing Schwinger mechanism in
graphene has a key feature in common with conductance
in graphene p-n junctions in the ballistic regime: both
systems depend on quantum tunnelling of massless Dirac
particles [15].

Effects due to nonzero temperature, nonzero lattice
spacing, impurities, finite size effects, and temporal tran-
sients present in real systems can affect the results of the
measurements. One expects to be in the regime of validity
for the Schwinger formula if the parameters satisfy:

ffiffiffiffiffiffiffiffiffi
qE0

@~c3

s
LLres � t �

ffiffiffiffiffiffiffiffiffiffiffi
@

qE0~c

s
; (9)

L;W; lmfp �
ffiffiffiffiffiffiffiffiffi
@~c

qE0

s
; (10)

V0 � @~c

qa
� 2:5V; (11)

T �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@~cðqE0Þ3L2=k4B

4

q
; (12)

where E0 � V0=L, a is the lattice spacing and lmfp is an

effective mean-free path. Conditions (9) and (10) for L
relate to time transient effects and finite length issues
associated with the WKB formalism, respectively; they
are discussed above. The analogous condition for W fol-

lows from the requirement that the discrete mode sum in
pT is approximated by the Gaussian integral in Eq. (7).
Since the distance scale for the creation of pairs in the

Schwinger mechanism is L0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@~c=ðqEÞp

, the Schwinger
formula only applies when the dynamics are well described
by the simple Dirac description over that scale, requiring
lmfp � L0. Condition (11) encodes the requirement of a

linear dispersion relation; this fails for momenta compa-
rable to a. Finally, Condition (12) applies to thermal fluc-
tuations, which imply a density of particles and holes in the
reservoirs. These can randomly wander into, and get trans-
ported across, the field region, creating a current. The
condition ensures that the Schwinger current dominates.
The experimental configuration does not directly mea-

sure conductivity since current flow is necessarily tran-
sient. Still one might worry that the dynamics associated
with the usual conductivity could mask the Schwinger
effect. However, Eqs. (6) and (8) imply that J Sch ¼
ð4q2E0

h Þ½ 1
2�	

ffiffiffiffiffiffiffiffiffiffi
L2qE0

@~c

q
. The term in parenthesis is of the scale

expected from standard conductivity mechanisms: in gra-
phene it is �
 4q2=h [13]. The term in square brackets is
of order unity; Condition (10) implies that the square root
factor is large. Thus, the transient current density induced
by the Schwinger mechanism dominates over what is ex-
pected from the usual conductivity.
Whether Conditions (9)–(12) can be satisfied in practice

depends critically on both the size of the graphene sample
and its purity. In practice, with samples with sizes re-
stricted to
100 �m and impurity concentrations reported
in [18,19], the conditions appear to require extremely fast
measurements but do not seem to be beyond current tech-
nology. For the purpose of making estimates we will
assume that the size of the sample is 
100 �m; for con-
creteness we will take W ¼ 100 �m, L ¼ 1 �m, and
Lres ¼ 49 �m. We also take V0 ¼ 1 V which effectively
satisfies Condition (11) [18]. With the values above,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@~c=qE0

p ¼ 25 nm, and Condition (10) is satisfied by a
factor of 40 for L and a factor of 4000 for W. Condition
(12) is also well satisfied provided T � 1800 �K.
Condition (10) for lmfp depends on a quasiparticle’s

energy, �. It has been argued with current samples the
dominant contribution is from Coulomb impurities [19].
For the purposes of estimating lmfp, this will be assumed to

be correct. Coulomb scattering has an infinite cross section
and the mean-free path is not well defined. However, an
effective mean-free path in the sense of the characteristic
distance a quasiparticle travels before it is substantially
affected by the impurities can be estimated. It is the dis-
tance a quasiparticle travels before entering a region in
which the Coulomb energy is comparable to the kinetic
energy, yielding lmfp 
 ��ð@c�nimpÞ�1 where � is the

dielectric constant of the insulator and nimp is the density

of impurities. For Schwinger pairs, � is of order (but less

than) qV0; Condition (10) becomes ��
@c�nimp

�
ffiffiffiffiffiffi
@~cL
qV0

q
.

V0

2

V0

2

Conductor

Insulator

Graphene

L reservoirL

A

FIG. 3. Schematic depiction of the cross-sectional view of a
possible experiment measuring the rate of production of
Schwinger pairs.
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Samples with nimp as small as 
2� 1011 cm�2 have been

reported [19]. Using this value, the left-hand side of the
inequality is 350� nm. The right-hand side is 25 nm. Thus,
the condition appears to be satisfied at least moderately
well. Using the results in Fig. 2 as a guide in estimating
errors suggests that at the least, a semiquantitative test of
the Schwinger mechanism should be possible. If a sub-
strate with relatively large � proves viable, the condition
may bewell satisfied. It appears possible that the mean-free
paths are long enough to allow for a meaningful test of the
Schwinger mechanism with currently available samples.
Precision tests will probably require cleaner samples which
one hopes may become available in the future.

With the parameters given above, �fill �
ffiffiffiffiffiffiffiffi
qV0L
@~c3

q
Lres �

1:9� 10�9 s while �trans �
ffiffiffiffiffiffiffiffi
@L
qV0~c

q
� 2:6� 10�14 s. It is

easy to ensure t � �trans. The restriction t � �fill, how-
ever, requires taking data at a very high rate—considerably
faster than 1 GHz. Fortunately, it is possible to take data at
rates much faster than 1 GHz. If future sample sizes
increase significantly, one could increase the size of Lres

and thereby �fill and thus reduce the technical challenges
associated with very rapid measurements.

IV. CONCLUSION

To summarize, even with presently available samples,
there is good reason to believe that the regime of validity of
the Schwinger formula can be realized experimentally, at
least at a semiquantitative level. As larger and higher
quality samples become available in the future, practical
tests of the Schwinger formula with increasing accuracy
ought to become possible. It is reasonable to expect that
such experimental probes should become sufficient to test
quantitatively the pair production of the Schwinger mecha-
nism; it is important that such measurements are accurate
enough to distinguish between the predicted rate of pair
production and the rate of vacuum decay.
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