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We calculate the thermal evolution of �-� scattering lengths, in the framework of the Nambu–Jona-

Lasinio model. The thermal corrections were calculated at the one-loop level using thermofield dynamics.

We present also results for the pion thermal mass. Our procedure implies the modeling of a propagating

scalar meson as a resumation of chains of quark bubbles, which is presented explicitly. We compare our

results with previous analysis of this problem in the framework of different theoretical approaches.
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I. INTRODUCTION

The Nambu–Jona-Lasinio model (NJL) is an effective,
nonrenormalizable, low-energy description of hadron dy-
namics [1,2]. The main motivation for this model is the
natural way in which the phenomenon of chiral symmetry
breaking appears. The model has the same global symme-
tries of QCD, being therefore appropriate for describing
low-energy hadronic phenomenology. Of special interest
are processes involving pions, since they play a quite
special role among hadrons. They are the lightest hadrons,
being also pseudoscalar Goldstone bosons.

In heavy ion relativistic collisions, it turns out that the
pion multiplicity dominates by far any other hadronic
signature, being dominant in the particle content of the
central rapidity region, where we expect the quark gluon
plasma to be created. This suggests that pion interactions,
i.e. scattering processes, will be important. Since those
scattering processes occur in the presence of a thermal
environment, our discussion should be presented in the
frame of finite temperature quantum field theory. The
main parameters associated to low energy �-� scattering
are the so-called scattering lengths, which depend on the
isospin channel. The first measurements of �-� scattering
lengths was done by Rosselet et al. [3]. A review about the
present experimental status of �-� scattering lengths can
be found in [4].

In this paper we address once again the problem of
determining the thermal behavior of the �-� scattering
lengths, in the frame of the Nambu–Jona-Lasinio (NJL)
model, using the thermofield dynamics (TFD) formalism.
For details about this formalism see [5,6]. The novelty of
our discussion is mainly technical, including the resuma-
tion in TFD of bubble diagrams associated to a propagating
sigma meson, how to regularize products of distributions,

as well as other nontrivial intermediate steps that appear in
the calculation of the diagrams.
It should be noticed that the thermal behavior of the�-�

scattering lengths in the NJL model has being discussed
long time ago in the imaginary time formalism, or
Matsubara approach [7]. Our results, specially for a2ðTÞ,
do not agree with this paper. We do agree qualitatively,
however, with the discussion of the thermal behavior of
�-� scattering lengths in the frame of chiral perturbation
theory [8], and with a recent analysis based on the linear
sigma model [9]. Our results indicate that the variation of
the scattering lengths as function of temperature, in par-
ticular, for a2ðTÞ, begin at much lower values of tempera-
tures than the behavior found in [8,9].
The plan of this article is the following: after presenting

the general formalism, we classify the relevant diagrams
for getting the �-� scattering lengths according to the NJL
model. Then, we proceed to extend our calculation to the
finite temperature scenario. For this purpose, a resumation
procedure of quark bubbles is presented in order to de-
scribe the thermal sigma meson. As a by-product of our
analysis we found also the thermal evolution of the pion
mass. Finally, we compare our results with previous ar-
ticles about this subject.

II. SCATTERING LENGTHS AND THE RELEVANT
DIAGRAMS AT ZERO TEMPERATURE

In general, the �-� scattering amplitude can be parame-
trized according to

T��;�� ¼ Aðs; t; uÞ������ þ Aðt; s; uÞ������

þ Aðu; t; sÞ������; (1)

where the �, �, �, and � denote isospin components.
By using appropriate projection operators it is possible

to get the following isospin-dependent scattering ampli-
tudes

T0 ¼ 3Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; t; sÞ; (2)
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T1 ¼ Aðt; s; uÞ � Aðu; t; sÞ; (3)

T2 ¼ Aðt; s; uÞ þ Aðu; t; sÞ; (4)

where TI denotes a scattering amplitude in a given isospin
channel.

Below the inelastic threshold the partial scattering am-
plitudes can be parametrized as [10]

TI
‘ ¼

�
s

s� 4m�2

�
1=2 1

2i
ðe2i�I

‘
ðsÞ � 1Þ; (5)

where �‘ is a phase shift in the ‘ channel. In fact our last
expression can be expanded according to

<ðTI
‘Þ ¼

�
p2

m2
�

�
‘
�
aI‘ þ

p2

m2
�

bI‘ þ . . .

�
: (6)

The parameters aI‘ and bI‘ are the scattering lengths and

scattering slopes, respectively. In general the scattering
lengths satisfy ja0j> ja1j> ja2j> . . . . If we are only
interested in the scattering lengths aI0, it is enough to

calculate the scattering amplitude TI in the static limit or
at threshold i.e. when s ! 4m2

�, t ! 0, and u ! 0

aI0 ¼
1

32�
TIðs ! 4m2

�; t ! 0; u ! 0Þ: (7)

Our Lagrangian is given by

L NJL ¼ �c ði@6 �m0Þc þGðð �c c Þ2 þ ð �c i�5�c Þ2Þ; (8)

where c denotes the quark fields, G is a coupling constant
and m0 denotes the current quark mass. We will also
consider an effective coupling g�qq between the internal

quark lines and the external pions. Notice that the model
does not include a field associated to the scalar sigma
meson. The propagator of the sigma meson is represented
in the random phase approximation (RPA) trough a geo-
metrical sum of quark bubbles’s chains. See Fig. 1, where
we show the effective exchange of a sigma meson in the s
channel.

The lowest-order diagrams that contribute to the �-�
scattering lengths in the NJL model are shown in Fig. 2,
where the lines with an arrow inside the loops denote the
quarks, and the double lines the sigma meson. The external
legs are of course the physical pions with momentum p
which couple to the quarks trough the effective coupling
g�qq.

At zero temperature these diagrams have been calcu-
lated by Schulze [11].

It is important to remark that the fermion propagators
include the constituent quark massm, instead of the current
quark mass m0, because our calculations are done in the
chiral broken phase. The quarks acquire their constituent
mass due to a condensation of quark-antiquark pairs that
appear in a completely analogous way to the Cooper pairs
in the BCS theory of superconductivity. This quark-
antiquark pairing mechanism implies the appearance of
the constituent mass trough the so-called gap equation

1 ¼ m0

m
þ 8iGNcNf

Z d4l

ð2�Þ4
1

l2 �m2 þ i"
; (9)

whereN ¼ NcNf, beingNc ¼ 3 the numbers of colors and

Nf the numbers of flavors. In our case we will takeNf ¼ 2.

III. THERMOFIELD DYNAMICS AND THE
EFFECTIVE SIGMA MESON PROPAGATOR

In TFD we have to double the number of degrees of
freedom in order to express any thermal average in the
ensemble as a vacuum expectation value in a populated
vacuum. The extra fields are called thermal ghosts and,
therefore, the propagators in general will be given by a two
by two matrix. In the case of fermions, the matrix propa-
gator has the form

SFðlÞ ¼ S11 S12
S21 S22

� �
; (10)

where
FIG. 1. Effective meson exchange modeled as a chain of quark
bubbles.

FIG. 2. Relevant Feynman diagrams for the calculation of the
�-� scattering lengths.
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S11 ¼ ðl6 þmÞ
�

i

l2 �m2 þ i"
� 2��ðl2 �m2Þ

ejloj=T þ 1

�
;

S12 ¼ ðl6 þmÞ "ðl0Þ2��ðl
2 �m2Þejloj=2T

ejloj=T þ 1
¼ S21;

S22 ¼ ðl6 þmÞ
�

i

l2 �m2 � i"
þ 2��ðl2 �m2Þ

ejloj=T þ 1

�
;

(11)

where " is the sign function. Note that the S11 element is
exactly the fermion Dolan–Jackiw propagator [12]. We

may define S11ðpÞ ¼ S0FðpÞ þ S�FðpÞ, separating explicitly
the zero temperature from the finite temperature contribu-
tion. The other components of the matrix propagator ap-
pear only in internal lines which do not couple to external
physical particles. Therefore, in our case, we will have to
deal with the full-matrix propagator structure, at the one-
loop level, only for the diagrams where a sigma meson is
exchanged. As we said, it is given as a sum of chains of
quark bubbles. Notice also that in general, there are two
different coupling constants for the four quark vertices,
depending on the type of quark lines that come together
[5,6].

We will now construct the effective thermal sigma me-
son propagator. In general, the chain of bubbles will imply
a resumation of the type

P1
n¼0 D

n, where

D ¼ D11 D12

D21 D22

� �
(12)

is a matrix whose elements Dij represent a bubble with an

‘‘open vertex’’ of type i at the left side of the bubble, and
with a vertex of type j at the right side (i, j ¼ 1, 2). In order
to avoid double counting of vertices when powers of D are
considered, we have to introduce quark bubbles with an
open vertex only at the left side. It is clear that each
element D2

ij involves the sum of the two possibilities to

build a chain with two bubbles, in such a way that we have
an open vertex of type i at the left side and a vertex of type j
at the right side. This means that the two possible values for
the vertex in between are included. The same happens for
every matrix element of some power n of D.

It is convenient to define the following matrix

Z � 1

1�D11 �D22 þD11D22 �D12D21

� v1ð1�D22Þ v1D12

v2D21 v2ð1�D11Þ
� �

(13)

that essentially corresponds to
P1

n¼0 D
n, where, we have

explicitly introduced the vertices vi associated to the left
side of the sum of the quark bubbles. A similar treatment
was introduced previously in the discussion of thermal
renormalons in the ��4 theory [13].

In order to appreciate the role of the Z matrix let us
consider diagrams (d), (e), and (f) of Fig. 2. There we have
quark triangles that couple to the effective sigma meson
trough open vertices. To be more explicit, let us denote by

�i the triangle diagram with an internal open vertex of type
i. Then we introduce the vectors

Y > ¼ ð�1 �2 Þ; Y ¼ �1
�2

� �
: (14)

In this way, the complete amplitude for these kind of
diagrams, including both the zero as well as the finite
temperature parts, is given in this matrix language by

T ¼ Y>ZY: (15)

In the case of the triangle diagrams (d), (e), and (f) of
Fig. 2, we need the following elements

D11 ¼
�
1

i
�0 þ 2

1

i
��

�
v1 (16)

D12 ¼ 0 (17)

D21 ¼ 0 (18)

D22 ¼
�
1

i
�0 � 2

1

i
��

�
v2 (19)

to build the Z matrix. In the above expression
�i�0ð�i��Þ denotes a zero (finite) temperature single
bubble contribution. Notice that D12 ¼ D21 ¼ 0 because
there is no support for the corresponding integrals, as can
be checked, since we are using constituent quark massesm,
being m> 2m�. In order to handle other singular contri-
butions, like products of delta functions with the same
argument, it was necessary to take different external pion
momenta, i.e. a kinematical configuration away from the
threshold. In this way, singularities disappear and we are
able to compute the corresponding integrals, finding that
they vanish identically when the limit to the threshold
configuration is taken. Because of the same reasons, the
triangle diagram �2 which couples to the sigma meson
trough a vertex v2, vanishes. In this way, for the triangle
diagrams we found

�1 ¼ �0
d þ 4��

d ; (20)

�2 ¼ 0; (21)

where

��
d ¼ 2m

�2
Nðg��qqÞ2

Z �

0
dl

l2nFðElÞ
Elð4E2

l �m2
�Þ

; (22)

where El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþm22

p
and nF is the usual Fermi–Dirac

distribution

nFðzÞ � 1

ejz0j=T þ 1
: (23)

We have introduced a temperature dependent coupling

g��qq between pions and quarks. This coupling can be
obtained as
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ðg��qqÞ�2 ¼
�
@�ps

@p2
þ 2

@��
ps

@p2

���������p2¼ðm�
�Þ2
; (24)

where �i�ps is the single quark bubble (pseudoscalar

case) shown in Fig. 3. At this point it is worthwhile to
remember that such a quark bubble is used to model a pion
in the NJL approach. T selects the isospin channel: Ti ¼
Tj ¼ �3 corresponds to the �0 and/or Ti ¼ �ð�Þ and Tj ¼
�ð�Þ are associated to the �ð�Þ. In the previous equation,

m�
� is the thermal pion mass which is obtained in the next

section.

IV. TEMPERATURE CORRECTIONS TO THE �-�
SCATTERING LENGTHS

Following the notation introduced by Schulze [11], all
diagrams at zero temperature are given in terms of the three
following integrals

IðpÞ ¼
Z � d4l

ð2�Þ4
1

ðl2 �m2 þ i"Þððlþ pÞ2 �m2 þ i"Þ ;

KðpÞ ¼
Z � d4l

ð2�Þ4
1

ðl2 �m2 þ i"Þ2ððlþ pÞ2 �m2 þ i"Þ ;

LðpÞ ¼
Z � d4l

ð2�Þ4
1

ðl2 �m2 þ i"Þ2ððlþ pÞ2 �m2 þ i"Þ2 ;

(25)

where � is a 3-momentum cutoff. After performing the
angular and the l0 integrals, we found

IðpÞ ¼ i

2�2

Z �

0
dl

l2

Elð4E2
l � p2Þ ; (26)

KðpÞ ¼ i

8�2

Z �

0
dl

l2ðp2 � 12E2
l Þ

E3
l ð4E2

l � p2Þ2 ; (27)

LðpÞ ¼ i

4�2

Z �

0
dl

l2ð20E2
l � p2Þ

E3
l ð4E2

l � p2Þ3 : (28)

In the NJL approach, the gap equation plays a funda-
mental role. At finite temperature [2] it acquires the form

1 ¼ m0

m
þ 8iGN

Z � d4l

ð2�Þ4
1

l2 �m2 þ i"

þ 8iGN
Z � d3l

ð2�Þ3
inFðElÞ

El

: (29)

The thermal corrections to the effective sigma meson
propagator, at the level of a single quark bubble are shown
in the Fig. 3, but where the i�5T has been replaced by the
identity matrix according to the NJL Lagrangian. This loop
is given by

1

i
��ðpÞ ¼ 2iN

�Z � d3l

ð2�Þ3
nFðElÞ
El

þ ð4m2 � p2ÞJðpÞ
�
;

(30)

where JðpÞ is

JðpÞ ¼ 1

2�2

Z �

0
dl

l2nFðElÞ
Elðp2 � 4E2

l Þ
: (31)

Notice that at this level the Dolan–Jackiw propagators are
enough. In particular, the thermal contributions arise from

the insertion of only one pure thermal propagator S�F in the
loop. The other propagator has to be the normal one at zero
temperature. It is easy to see that two thermal propagators
do not contribute. The denominator DZðpÞ that appears in
the Z matrix (13) is given by

DZðpÞ ¼ 1� 2G�0
psðpÞ � 4G��

psðpÞ: (32)

Using the thermal mass gap Eq. (29) this expression can be
written as

DZðpÞ ¼ m0

m
þ 4iGNp2ðIðpÞ þ 2iJðpÞÞ: (33)

Following the same procedure, we could also construct an
effective pion propagator, which is not necessary for our
purpose of getting the �-� scattering lengths. From this
analysis, however, we get the thermal pion mass deter-
mined from the pole of the effective propagator

ðm�
�Þ2 ¼ �m0

m

1

4iGNðIðm�Þ þ 2iJðm�ÞÞ : (34)

The behavior of m�
� is shown in Fig. 4. This allows us to

express the quotient m0=m in terms of the other quantities
that appear in the previous equations. Replacing m0=m in
(33) we get

DZðpÞ ¼ 4iGNðp2 � 4m2ÞðIðpÞ þ 2iJðpÞÞ
� 4iGNm2

�ðIðm�Þ þ 2iJðm�ÞÞ: (35)

An expression for m�
� was also found trough the mass gap

equation in the Matsubara or imaginary time formalism by
previous authors [14]. We agree qualitatively with them.
It is important to remark that in Eq. (35),m� is the usual

pion mass at zero temperature because we are implement-

ing a calculation at the one-loop level. The inclusion ofm�
�

in the last expression goes beyond this approximation.
Finally, we get the following expression, consistent at

the one-loop perturbation theory, for the effective sigma
meson propagator

FIG. 3. The single quark bubble that model a pion in the NJL
approach.
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D0þ�
	 ðpÞ ¼ 1

2N

4iGN

DZðpÞ : (36)

In addition to the triangle diagram given in Eq. (22), we
need, also associated to the diagram 2(e), the following
quantities

��
e� ¼ 4m

�2
Nðg��qqÞ2

Z �

0

l2nFðElÞð4E2
l þm2

�Þ
Elð4E2

l �m2
�Þ2

dl;

��
e0 ¼

8

�2
Nðg��qqÞ2

Z �

0

@

@m2

�
ml2nFðElÞEl

ð4E2
l �m2

�Þ
�
dl

� 2

�2m
Nðg��qqÞ2Me;

(37)

where

Me ¼
Z �

0

l2nFðElÞðm2
�m

2 þ ð4m2 þ 2m2
�ÞE2

l � 8E4
l Þ

Elð4E2
l �m2

�Þ2
dl:

(38)

For the diagrams (d), (e), and (f) of Fig. 2, we get

T 0þ�
d ¼ D0þ�

	 ð2m�Þð�0
d þ 4��

d Þ2;
T 0þ�

e ¼ D0þ�
	 ð0Þð�0

e þ ��
e� þ 2��

e0Þ2;
T 0þ�

f ¼ T 0þ�
e ;

(39)

where [11]

�0
d ¼ �8NmIðm�Þðg0�qqÞ2;

�0
e ¼ �8NmðIð0Þ �m2

�Kðm�ÞÞðg0�qqÞ2:
(40)

g0�qq can be read from the first term in Eq. (24). In terms of

our integrals IðpÞ and KðpÞ, it can be rewritten as

g0�qq ¼ ð�NiðIð0Þ þ Iðm�Þ �m2
�Kðm�ÞÞÞ�1=2: (41)

We find g0�qq ¼ 3:56.

Concerning the temperature corrections to the box dia-
grams (a), (b), and (c) in Fig. 2, we only need the Dolan–
Jackiw fermion propagators. For the same reasons we
mentioned previously, in each box diagram will survive
only the insertion of one pure thermal fermion propagator
S�, which can be any of the four propagators inside the
box. Two, three, or four thermal insertions vanish identi-
cally. The results are

T 0þ�
a ¼ T 0

a þ 2T �
a� þ 2T �

a0 ; T 0þ�
b ¼ T 0þ�

a ;

T 0þ�
c ¼ T 0

c þ 4T �
c� ; (42)

where

T �
a� ¼ 8i

�2
Nðg��qqÞ4

Z �

0

l2nFðElÞEl

ð4E2
l �m2

�Þ2
dl;

T �
a0 ¼ � 4i

�2
Nðg��qqÞ4

Z �

0

@

@m2

�
l2nFðElÞEl

ð4E2
l �m2

�Þ
�
dl

� 2im2
�

�2
Nðg��qqÞ4

Z �

0

l2nFðElÞ
Elð4E2

l �m2
�Þ2

dl;

T �
c� ¼ 4Nðg��qqÞ4

i�2

Z �

0

@

@m2

�
l2nFðElÞElð4E2

l þm2
�Þ

ð4E2
l �m2

�Þ2
�
dl

� 2m2
�i

�2
Nðg��qqÞ4

Z �

0

l2nFðElÞðm2
� þ 12E2

l Þ
Elð4E2

l �m2
�Þ3

dl:

(43)

T 0
a and T 0

c were also obtained in [11], and are given by

T 0
a ¼ 4Nðg��qqÞ4ðm2

�Kðm�Þ � Ið0Þ � Iðm�ÞÞ;
T 0

c ¼ 8Nðg��qqÞ4
�
2m2

�Kðm�Þ � Ið0Þ � 1

2
m4

�Lðm�Þ
�
:

(44)

Using these results, we are able to find the thermal �-�
scattering lengths. For each diagram in Fig. 2, the total
amplitude is given as the sum of the zero temperature and
the finite temperature parts. In this way we get

T 0þ�
a ¼ T 0

a þ 2T �
a� þ 2T �

a0 ;

T 0þ�
b ¼ T 0þ�

a ;

T 0þ�
c ¼ T 0

c þ 4T �
c� ;

T 0þ�
d ¼ D0þ�

	 ð2m�Þð�0
d þ 4��

d Þ2;
T 0þ�

e ¼ D0þ�
	 ð0Þð�0

e þ ��
e� þ 2��

e0Þ2;
T 0þ�

f ¼ T 0þ�
e ;

(45)

where the superscript 0 refers to zero temperature terms,
which are given in [11]. To express them, we have used our
functions I, K, and L. Finally, the scattering lengths are
given by

FIG. 4. Thermal evolution of the pion mass.
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a0þ�
0 ¼ 1

32�
ð6T 0þ�

a �T 0þ�
c þ 3T 0þ�

d þ 2T 0þ�
e Þ;

a0þ�
2 ¼ 1

32�
ð2T 0þ�

c þ 2T 0þ�
e Þ: (46)

Their thermal dependence is shown in Fig. 5.
The parameters we used in the calculation are � ¼

631 MeV, m ¼ 339 MeV, m�ð¼ m�
�ðT ¼ 0ÞÞ ’

138 MeV. This set of parameters implies also m0 ¼
5:5 MeV (the average between the lightest quark masses,
mu ’ 4 MeV, md ’ 7 MeV), f� ¼ 93 MeV, and G ’
5:51 GeV�2. These values for the parameters are standard
in the literature for the case with a 3-dimensional
cutoff [7].

At zero temperature we found a0 ’ 0:161, a2 ’ �0:043.
These numbers are in agreement with Weinberg’s results
[15] aW0 ¼ 7m2

�=32�f
2
� ¼ 0:16, and aW2 ¼

�2m2
�=32�f

2
� ¼ �0:044. However, they disagree with

the experimental results [3], a0 ¼ 0:26� 0:05 and a2 ¼
�0:028� 0:012. Nevertheless, our goal here was to find
the thermal evolution of the scattering lengths normalized
by the zero temperature values.
Our results agree qualitatively well with two previous

calculations. The first one [8], was done in the frame of the
chiral perturbation theory at the one-loop level, whereas
the linear sigma model was used in the second analysis [9].
In our case, the scattering lengths vary faster as function of
temperature compared with the other two papers. However,
we disagree qualitatively with the results obtained in [7].
This calculation was done also in the frame of the NJL
model, but using the imaginary time formalism to compute
the thermal corrections.
The reason behind our disagreement with the results in

[7] is because the authors go beyond the one-loop order
perturbation theory when they introduced a temperature
dependent pion mass in their expression for the sigma
meson propagator which already emerged from a one-
loop calculation (after resumation).
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FIG. 5. Thermal dependence of the �-� scattering lengths,
normalized to its zero-temperature value. The upper curve cor-
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Temperatures are in MeV.
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