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If a new massive vector boson with nonzero axial couplings to fermions will be observed at LHC, then

an upper limit on the scale of new physics could be derived from unitarity of S matrix. The new physics

will involve either new massive fermions, or scalars, or even a strongly coupled sector. We derive a model

independent bound on the scale of new physics. If MG=gA < 3 TeV and the fermion is a top quark, the

upper limit is 78 TeV.
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I. INTRODUCTION

We are at a stage of exploring new physics at the energy
scale of TeV. The Large Hadron Collider (LHC) will break
us into such a new energy frontier and seek for the possible
signals of new physics. Typically, most models beyond the
standard model (SM) predict some massive spin one par-
ticles, whose masses come from spontaneous gauge sym-
metry breaking (SGSB) of an extended gauge sector or
compactification of extra dimensions with natural bound-
ary conditions. The fact that gauge symmetry is broken
spontaneously is important because the ‘‘bad’’ high energy
behavior induced by the longitudinal components of the
massive gauge bosons is vitiated by the Ward identity so
that unitarity is not violated in perturbation theory [1,2].
Although this is automatically guaranteed from a model-
building point of view, unitarity might be violated in the
theory we reconstruct from LHC observables for two rea-
sons. The first one is that the new SGSB sector becomes
strongly coupled at high energies [3,4] so that high order
diagrams will come to rescue the tree-level unitarity vio-
lation. The second one is the apparent explicit violation of
gauge invariance as one cannot observe the full SGSB
sector. The heavy massive particles and especially their
interactions to the light particles we observe do play an
important role to maintain the Ward identity of the sponta-
neous broken gauge symmetry. Since the theory we are
interested in is either a four dimensional theory with some
SGSB sector or with compactified extra dimensions, we
will use the language of deconstruction [5,6] as a unified
description in different simple models to illustrate how the
new physics at high energy maintains unitarity.

Before talking about the unitarity bounds seriously, we
must determine which particles could be found and what
couplings could be measured at LHC. For fermions and
gauge bosons, we will make two simple assumptions. First,
fermions tend to be harder to discover than gauge bosons
with the same mass as they are usually pair produced, so

we may only discover the massive gauge bosons but
‘‘miss’’ the massive fermions with similar masses.
Second, measuring the new massive gauge boson self-
couplings is very hard at LHC. With such assumptions,
we will choose a minimal set of particles and interactions
to begin with. Although it is very simple, it does illustrate
all related physics and could be the realistic case that we
observe at LHC. In the mean time, it is also very easy to
extend to more complicated cases which I will on comment
at the end of this paper.

II. UNITARITY BOUNDS

Let us imagine that we observe a massive spin one
particle G1 with mass MG at LHC. G1 will decay into
some fermion c 0 with mass m0. We measure its couplings
to the left and right components of c 0 and we find the axial
coupling gA � ðg1L � g1RÞ=2 is nonzero.1 We know noth-
ing about the G1 self-interactions and perhaps we do not
know if it couples to other light gauge bosons or not, so we
will not consider the four gauge boson scattering amplitude
to give a unitarity bound. Instead, we consider �c 0c 0 !
G1G1. There are Feymann diagrams from the t channel and
u channel c 0 exchange and s channel G1 and other gauge
boson exchange if G1 is charged under some non-Abelian
gauge group. However, only the symmetric part of the t
channel and u channel c 0 exchange will contribute to the
J ¼ 0 partial wave scattering amplitude. The leading order
bad behaved processes are from the chirality-conserving
channel such as �c 0

Rc
0
L ! G1G1 and they are proportional

to s, where
ffiffiffi
s

p
is the center of mass energy. However, the

J ¼ 0 partial wave scattering amplitude from the t channel
and u channel c 0 exchange will cancel each other. The
next leading order ones are from chirality-nonconserving
channels such as �c 0

Lc
0
L ! G1G1 and they are proportional

*jshu@theory.uchicago.edu

1In this case, the theory we observe at LHC also has nonzero
gauge anomalies. However, bounds from gauge anomalies are
always less constraining than bounds from the unitarity of the S
matrix as the latter is a tree-level effect. We will clarify the issue
of gauge anomalies in a separate paper.
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to m0

ffiffiffi
s

p
. The corresponding Feymann diagrams with one

mass insertion from the t channel c 0 exchange are pre-
sented in Fig. 1. The total amplitude for the Abelian case is
[7]

M ¼ 4g2A
m0

M2
G

�vðp2ÞPLuðp1Þ � 4g2A
m0

M2
G

ffiffiffi
s

p
; (1)

where we assume s � m2
0, M

2
G. For the non-Abelian case

SUðNÞ, the color factorC is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½tatbtbta�=Np

where we drop
the piece proportional to fabcTc in the amplitude which
does not contribute to the J ¼ 0 partial wave scattering
amplitude.

To satisfy the partial wave unitarity, the tree-level J ¼ 0
partial wave amplitude extracted from Eq. (1)

a0 ¼ 1

32�

Z 1

�1
d cos�M ¼ Cg2Am0

ffiffiffi
s

p
4�M2

G

(2)

must be smaller than 1=2. C represents the color factor
where C ¼ 1 is for the Abelian case and C ¼ CF ¼ ðN2 �
1Þ=2N is for the non-Abelian case. This produces the
bound

ffiffiffi
s

p
& EU ¼ 2�M2

G=Cg
2
Am0. If we define the spin-

singlet combination for the initial state fermions, 1ffiffi
2

p �
½c L

�c Li � c R
�c Ri� [8,9], we may make the bounds

slightly tighter,

ffiffiffi
s

p
& EU ¼

ffiffiffi
2

p
�M2

G

Cg2Am0

: (3)

III. TWO SITE MOOSE UV COMPLETIONS

We consider two site SUðNÞ moose models with com-
pletely different new physics that maintains the unitarity.
In the first model A, there is a newmassive fermion c 1

L that
contributes to scattering �c 0

Lc
0
L ! G1G1. The correspond-

ing moose diagram is presented in Fig. 2. The gauge
coupling in each moose is gA and gB, respectively. The
fermion charged under gauge group SUðNÞB has a Dirac
mass term �M �c B

Lc
B
R þ H:c: The bifundamental scalar

field �, which we will call the ‘‘link’’ field, has a
Yukawa coupling y �c A

L�c B
R þ H:c:

The link field gets a vacuum expectation value h�i �ki ¼
u�i �k and spontaneously breaks SUðNÞA and SUðNÞB into
the diagonal group SUðNÞ0. Such a spontaneous symmetry

breaking could be realized both linearly and nonlinearly in
our case and it will not affect the main results in our
discussion. The kinetic term for the link field will become
the mass term for the massive gauge boson Tr½ðD��Þy �
ðD��Þ� � u2ðgAAa

� � gBB
a
�Þ2=2 ¼ u2g2ðG1a

� Þ2=2. The

decomposition between gauge bosons in the mass eigen-
state and gauge eigenstate are

G1
�

G0
�

 !
¼ sg �cg

cg sg

� �
A�

B�

� �
; (4)

where we define g �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2A þ g2B

q
, sg � gA=g, and cg �

gB=g.
For the fermion sector, the Yukawa coupling and Dirac

mass term y �c A
L�c B

R �M �c B
Lc

B
R þ H:c: contribute to the

fermion mass term m1
�c 1
Lc

1
R þ H:c: We define m1 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðyuÞ2 þM2

p
, sf � yu=m1, and cf � �M=m1. The de-

composition between left-handed fermions in the mass
eigenstate and gauge eigenstate are

c 1
L

c 0
L

� �
¼ sf cf

�cf sf

� �
c A

L

c B
L

� �
: (5)

While for the right-handed fermions, the gauge eigenstate
is the mass eigenstate, which is c 0

R ¼ c A
R and c 1

R ¼ c B
R.

If we write the gauge boson-fermion interactions in the
mass eigenstate, we will find the couplings between mass-
less gauge boson G0 and fermions are universal g0 ¼
gsgcg because of SUðNÞ0 gauge invariance. The couplings
between massive gauge boson G1 and different Weyl fer-
mions are different, and they are presented in Fig. 3.
The fermion c 0 is massless, and we can introduce its

mass through a gauge invariant mass term M0 �c Ac A ¼
m0

�c 0
Lc

0
R þm0 �c 1

Lc
0
R þ H:c: Such a mass term could

come from a Yukawa interaction y0 �c Ac A� with a singlet
scalar field � in the moose. We can see that the mass term
for c 0 is always accompanied with a mixed mass term and
the ratio is m0=m0 ¼ �sf=cf.

R
0

L
0

R
0

G1

G1

m

(a)

L
0 G1

G1

G1

G1

R
0

R
0

R
0

R
0L

0

L
0 m

(c)

L
0

L
0

m

(b)

FIG. 1. Different Feymann diagrams that contribute to
�c 0
Lc

0
L ! G1G1 in terms of one mass insertion. Here we omit

those with u-channel fermion exchange.

FIG. 2. The moose diagram for model A. An arrow into the site
means that the particle transforms under the fundamental repre-
sentation of the relevant site and an arrow out of the site means
that particle transforms under the antifundamental representa-
tion. The solid lines stand for Weyl fermions and the dashed line
represents the scalar.
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Armed with these interactions and mass terms, we can
compute the amplitudes from all Feymann diagrams with
different interactions and mass insertions. Those from the t
channel fermion exchange are presented in Fig. 4(a)–4(g).
If we omit the common factor Cm0

ffiffiffi
s

p
=M2, those ampli-

tudes from different diagrams are:
(a) �2g1Lg1R ¼ �2ðg2s4g � g2s2gs

2
fÞ

(b) g1Lg1L ¼ g2ðs2g � s2fÞ2
(c) g1Rg1R ¼ g2s4g
(d) �2gmixg1Rðm0=m0Þ ¼ �2ðg2s2gs2fÞ
(e) g1Lgmixðm0=m0Þ ¼ g2s2gs

2
f � g2s4f

(f) gmixg
0
1Lðm0=m0Þ ¼ g2s4f � g2c2gs

2
f

(g) g2mix ¼ g2s2fc
2
f.

Summing over all amplitudes from diagram 4(a)–4(g), we
can see that the whole result proportional to

ffiffiffi
s

p
is zero and

unitarity is not violated.
The mixed mass term m0 �c 1

Lc
0
R þ H:c: will rotate the

mass eigenstate and introduce extra pieces for the new

mass eigenstate ~c 1 and ~c 0. In the limit M0 � m1, if we
only keep the leading order expansion on m1, we will find

that ~c 0
L ¼ c 0

L,
~c 1
L ¼ c 1

L and ~c 0
R ¼ c 0

R � ðm0=m1Þ �c 1
R,

~c 1
R ¼ c 1

R þ ðm0=m1Þ �c 0
R. Thus there is an additional piece

for �~c
0
L
~c 0
L ! G1G1 coming from �c 1

Lc
0
L ! G1G1 with a

factor ðm0=m1Þ. However, we can find that this part is
separated from the previous one, and the

ffiffiffi
s

p
part in the

�c 1
Lc

0
L ! G1G1 will cancel if we observe the full theory.

We do not show this here in detail.
The second model B has a physical Higgs field which is

the diagonal part of the link field � that contributes to
scattering �c 0

Lc
0
L ! G1G1. The corresponding moose dia-

gram is presented in Fig. 5. We choose y0 large so that c B
L

and c A
R are decoupled from the low energy effective theory

except for a Wess-Zumino-Witten term that cancels the
gauge anomaly. The fermions we observe are c 0

L ¼ c A
L

and c 0
R ¼ c B

R. They have a Yukawa interaction

L c 0 ¼ y �c A
L�c B

R þ H:c:; (6)

which gives them a Dirac mass m ¼ yu and the corre-
sponding couplings to the massive gauge boson G1 are
g1L ¼ gs2g and g1R ¼ �gc2g, respectively. Unitarity in
�c 0
Lc

0
L ! G1G1 is recovered from the s channel � ex-

change (see Fig. 4(h)) if the SGSB sector is linearly
realized. Another possibility is that the SGSB is triggered
by a strongly coupled dynamic (for instance, fermion pair
condensation) and the unitarity bound suggests the energy
scale in which the theory becomes strongly coupled. In
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FIG. 4. Different Feymann diagrams that contribute to
�c 0
Lc

0
L ! G1G1 in terms of one mass insertion in model A

and B. Here we omit those with u-channel fermion exchange. FIG. 5. The moose diagram for model B.
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FIG. 3. Feymann rules for the massive gauge boson and fer-
mion interactions in model A.
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both cases of model B, the physics is very similar to the one
in the scattering �tt ! ZZ in the SM.

IV. DISCUSSIONS AND A STRONGER BOUND

Let us take model A, and assume that we fail to observe
the massive fermion c 1 and its interactions and gauge
invariance is violated explicitly. We can see this from the
fact that the Goldstone equivalence theorem does not apply
here because the Goldstone � eaten by G1 does not couple
to fermion c 0 (the link field � does not couple to c 0),
which tells us that the nonzero result �c 0

Lc
0
L ! G1G1 in the

incomplete theory (without c 1) is different from �c 0
Lc

0
L !

�� which is zero.2 Such a violation of the Goldstone
equivalence theorem is a direct way to see how the Ward
identity of the spontaneously broken gauge symmetry is
violated.3 In general, cutting the theory on certain towers
of gauge bosons and fermions will make the mass eigen-
state basis incomplete and gauge invariance requires the
completeness of such a basis.4 When we fail to observe
some massive particles (like the c 1 in our case), we will
always find a nonunitary mixing matrix for the light fields
at low energy which is a part of a larger unitary mixing
matrix [like the unitary mixing matrix in Eq. (5) of
model A], which involves the missing heavy particles. In
model B, we fail to observe the physical Higgs that is
responsible for the c 0 mass generation. In this case, the
mass of c 0 comes purely from the SGSB sector that gives
G1 mass and Goldstone equivalence theorem does apply. In
general, part of the c 0 mass generation may come from the
same SGSB sector that gives G1 mass. Both the massive
fermions and physical Higgs in the linearly realized moose
will contribute to the scattering �c 0

Lc
0
L ! G1G1. Because

we still fail to observe the massive fermions which would
form a complete mass eigenstate basis of fermions, gauge
invariance, and the Ward identity of the spontaneously
broken gauge symmetry are still violated and we cannot
apply the Goldstone equivalence theorem.

In the SM, unitarity bounds from fermion-antifermion-
pair scattering into pairs of longitudinally polarized elec-
troweak gauge bosons are interpreted as the scale of the
fermion mass generation [7,8,13,14]. In those cases, both
the fermions in the initial state and massive gauge bosons
in the final state during the scattering gain their mass

through electroweak symmetry breaking. In the case that
fermions and massive gauge bosons gain their mass
through different spontaneous symmetry breaking sectors,
for instance Model A,5 we can see that the unitarity bounds
are no longer related to the scale of c 0 mass generation.
Instead, it is the energy scale of c 1 mass at which c 1

maintains the unitarity in the scattering �c 0
Lc

0
L ! G1G1 at

high energy. It is interesting to notice that in the SM, if we
did find the Higgs but missed the top quark, the unitarity
bound from �bb ! Wþ

L W
�
L would have put an upper scale

on the top quark mass.
In Refs. [8,14], the bound is generalized to a 2 ! n

inelastic scattering in the SM, which gives a much stronger
bound for light fermions. The calculation is based on the
Goldstone equivalence theorem. In general, the Goldstone
equivalence theorem may not apply in our case because
gauge symmetry is violated if we fail to observe some parts
of the underlying theory (for instance in model A).
However, for a given set of observables MG, g1L, and
g1R, we can imagine that model B is the UV completion
and use the Goldstone equivalence theorem in model B to
calculate �c 0

Lc
0
L ! nG1. We can derive the fermion-

Goldstone interaction Lagrangian from Eq. (6) by writing
the link field in its nonlinear form � ¼ exp½i�aTa=u�,

L c 0 ¼ X1
n¼1

ð�1Þn=2
unn!

½m0
�c 0ð�aTaÞnc 0�: (7)

The helicity amplitude of scattering �c 0
Lc

0
L ! n� (n ¼

even) is given by

M ¼ ð�CFÞn=2
un

m0

ffiffiffi
s

p
(8)

from the contact interactions between fermions and
Goldstone bosons6 of the type c 0 � �c 0 � n�. The
n-dependent part of the exact n-body phase space integra-
tion could be written as J n ¼ ðs=4�Þn�2=ðsðn� 1Þ!ðn�
2Þ!Þ. The total inelastic cross section �inel½2 ! n� ¼
ðm0=u

nÞ2J n is bounded as �inel½2 ! n� 	 4�=s by as-
suming the 2 ! 2 elastic channel is dominated by
s-partial wave. After some calculations, the estimated

unitarity bound could be estimated as EU �
4�uðu=m0Þ1=nðn=eÞ using Stirling’s formula.
Following Ref. [8], we calculate the precise unitarity

bound and write it in terms of observed quantities so that

2A careful calculation on �~c
0
L
~c 0
L ! G1G1 shows that

Goldstone equivalence theorem is also violated in this case.
3In Refs. [10,11], the authors introduce the Kaluza-Klein

equivalence theorem. In their paper, unitarity of the level n
vector boson scattering occurs through the introduction of level
2n of vector bosons (if we truncate the theory just above level n,
we will miss the level 2n vector bosons), while there is no
unitarity violation of the level n Goldstone regardless of where
you truncate the theory.

4For a five dimensional gauge theory compactified on a S1=Z2

orbifold, 5D gauge invariance is proved from the 4D point of
view by using the fact that the 4D fermion basis is complete in
Ref. [12].

5Another example is the t�t ! Wþ
L W

�
L scattering process in the

deconstructed Higgsless model [9], where the top quarks gain
their mass from its mixing with the heavy fermion whose mass is
generated at another scale MF.

6There are diagrams that involve Goldstone self-interactions.
Those diagrams only enhance the unitarity bound by a factor of
½Oð2� 3Þ�1=ðn�1Þ which is very close to 1 for large n [8] and they
correspond to diagrams that involve G1 self-interactions in the
scattering �c 0

Lc
0
L ! nG1 which we could not measure at LHC.
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the bound is model independent. The result is

EU ¼ 2�MG

CgA

��
MG

2gAm0

�
2 1

R

�
1=2ðn�1Þ

; (9)

where

R ¼ 2n�1ðn2 !Þ2
ðn!Þ2ðn� 1Þ!ðn� 2Þ! (10)

and C ¼ ðCFÞn=2ðn�1Þ is the color factor. Our color factor is
slightly different from the one in Ref. [8] as G1 is in the
adjoint representation of SUðNÞ.

We can compare the unitarity bound in Eq. (9) with m1,
which is the true new physics scale in model A. We can
write the unitarity bound in terms of the parameters in

model A and approximate it as EU � ð4�u=s2fÞ�
ðu=m0s

2
fÞ1=ðn�1Þðn=eÞ. If we require m1 ¼ yu=sf < EU,

we can find the equations reduce to y < ð4�=sfÞ�
ðu=m0s

2
fÞ1=ðn�1Þðn=eÞ, which is always satisfied for a

weakly coupled Yukawa coupling y < 4�. The bound is
difficult to saturate because of the competition between the
linear growth on n, the strong power suppression

ðu=m0s
2
fÞ1=ðn�1Þ, and the finite mixing (sf < 1). For real-

istic cases, as we can see later in Fig. 6, the nmin is small

and sf is large so that EU and m1 are at the same order. In

the case of model B, just like the SM, the bound in Eq. (9)

is always weaker than E>
ffiffiffiffiffiffiffi
4�

p
u, which is the mass scale

of the physical Higgs at which the self-interaction of the
physical Higgs becomes strongly coupled.

V. EXPERIMENTAL DISCOVERYAND
APPLICATIONS

The discovery of a massive gauge bosonG1 and its mass
determination comes from its resonant production. If the
c 0 from G1 decay is highly boosted, which is always the
case at LHC, the chirality of the G1 � c 0 � c 0 coupling
will be the same as the observed chirality of c 0. Then such
chirality could be measured by looking at the angular
distribution of the light decay products in the c 0 rest frame
(typically light leptons from W decay) whose helicity is
correlated to the initial c 0 chirality [15]. In order to
measure the chirality of c 0 from its decay, if c 0 is colored,
we will restrict our c 0 to those with widths bigger than
�QCD, so that they will first decay instead of hadronize.

Typical examples of the c 0 are the top quark or the new
quarks which decay through a W boson into SM quarks (t0
quarks). Knowing the relative ratio of theG1 decaying into
different chiralities of c 0, which is g1L=g1R, and the over-
all decay width of G1 ! �c 0c 0, which is proportional to
g21L þ g21R, we can calculate the axial coupling gA. It is
important to notice that the angular distribution of the light
decay products in the c 0 rest frame fromG1 decay or some
redefined variables such as ‘‘polarization asymmetry’’ sug-
gested in Ref. [16] offers a direct way to check the nonzero
axial coupling at LHC which indicates that the tree-level
unitarity is violated from scattering �c 0c 0 ! nG1. Indeed,
such collider signals for a massive spin one particle with an
axial coupling to fermions have been discussed in
Refs. [17,18].
Measuring the polarization of c 0 requires reconstruct-

ing the c 0 rest frame from observables in the event, which
makes it very difficult to measure the axial coupling in
models with discrete parity that lead to missing energy.
The reason is that the pair produced c 0 fermions will
further decay into some lightest neutral stable particles,
and the missing energy from two such lightest neutral
stable particles makes it very difficult to reconstruct the
c 0 rest frame. Here are two examples: In little Higgs with
T parity [19], the T-oddG1 will decay into a T-odd fermion
and a T-even fermion. The two T-odd fermions from pair
produced G1 will further decay into two lightest neutral
stable particles, which makes it very difficult to reconstruct
the c 0 rest frame. In the universal extra dimension model
[20], if the G1 has an odd Kaluza-Klein mechanism (KK)
parity, the situation will be the same as in the case of little
Higgs with T parity. If the G1 has an even KK parity (the
second tower of SM gauge boson), its coupling to the zero
mode KK-even fermion is vectorlike. If we consider the
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FIG. 6 (color online). Precise unitarity bound as a function of
integer n for the scattering �c 0c 0 ! nG1 in different models.
We choose MG ¼ 3 TeV universally. (a) The origin warped
extra dimension model with SM fermions in the bulk, G1 is
the first KK gluon and c 0 is the top quark. g1L ¼ �0:2gs, g1R ¼
4gs [27], EU ¼ 29:2 TeV. (b) The warped extra dimension
model with an extended custodial symmetry, G1 is the first
KK gluon and c 0 is the top quark. g1L ¼ 0:07gs, g1R ¼
2:76gs [28], EU ¼ 52:7 TeV. (c) The same model as (b) but
c 0 is the a t0 like quark with mass 370 GeV. g1L ¼ �0:2gs,
g1R ¼ 6:35gs [29], EU ¼ 7:6 TeV. (d) The top quark seesaw
model, G1 is the coloron and c 0 is the top quark. g1L ¼ 4:85gs,
g1R ¼ �0:2gs [30], EU ¼ 22:9 TeV.
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KK-evenG1 decaying into a pair of KK-odd fermions, then
there are still the two lightest stable KK particles from KK-
odd fermion decay and again, we cannot reconstruct the c 0

rest frame.
In Fig. 6, we have listed the precise unitarity bound as

a function of integer n for the scattering �c 0c 0 ! nG1

in different models that have a massive gauge boson with
a nonzero axial coupling to fermions.7 Other models
that our analysis can be applied to are the warped
Higgsless model [21,22], viable little Higgs model without
T parity [23], deconstructed models [24–26], or any super-
symmetrized version of the above models we have
mentioned or presented in Fig. 6. The strongest bound
(minimum of the curve) still occurs at small n (n ¼ 2,
3), as the axial coupling is not small. There is an important
numerical result to notice from Eq. (9). If MG ¼ 3 TeV,
and we assume gA ¼ 1 and the fermion c 0 is a top
quark, the unitarity bound8 is at 78 TeV. This provides a
very good reason to build the Very Large Hadron Collider
(VLHC) to probe these states via direct production at
high energies if we do observe such signals at LHC.
Indirect test of these high energy states may also be pos-
sible at a high energy lepton collider, such as a TeV
International Linear Collider.

VI. CONCLUSION

Many models beyond SM predict a new massive vector
boson G1 with a nonzero axial coupling to fermion c 0. If
we observe such collider signals at LHC, it offers us an
important first insight in the structure of those models.
More importantly, it provides us an upper limit on the scale
of new physics from unitarity of the S matrix. How the new
physics maintains unitarity is illustrated in the two site
moose models A and B, respectively. In general, unlike
the case in SM, the unitarity bounds are no longer inter-
preted as the scale of c 0 mass generation. We generalize
the unitarity bounds to a 2 ! n inelastic scattering and
applying the bounds to some realistic models that would
have such collider signals. We find that the unitarity vio-
lation energy scale EU must be less than 78 TeV if
MG=gA < 3 TeV and the fermion is a top quark, which
provides a very good reason for VLHC setup to prove the
new physics via direct production of heavy states. Further
information from VLHC (if possible) will discriminate the
models that describe particle interactions at a more funda-
mental level.
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