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We study quark mass matrices in the Randall-Sundrum (RS) model with bulk symmetry SUð2ÞL �
SUð2ÞR �Uð1ÞB�L. The Yukawa couplings are assumed to be within an order of magnitude of each other,

and perturbative. We find that quark mass matrices of the symmetrical form proposed by Koide et al. [Y.

Koide, H. Nishiura, K. Matsuda, T. Kikuchi, and T. Fukuyama, Phys. Rev. D 66, 093006 (2002)] can be

accommodated in the RS framework with the assumption of hierarchyless Yukawa couplings, but not the

Hermitian Fritzsch-type mass matrices. General asymmetrical mass matrices are also found which fit well

simultaneously with the quark masses and the Cabibbo-Kobayashi-Maskawa matrix. Both left-handed

(LH) and right-handed (RH) quark rotation matrices are obtained that allow analysis of flavor changing

decay of both LH and RH top quarks. At a warped down scale of 1.65 TeV, the total branching ratio of

t ! Zþ jets can be as high as �5� 10�6 for symmetrical mass matrices and �2� 10�5 for asym-

metrical ones. This level of signal is within reach of the LHC.

DOI: 10.1103/PhysRevD.78.096003 PACS numbers: 11.30.Hv, 12.15.Ff, 13.85.�t, 14.65.Ha

I. INTRODUCTION

The idea of extra dimensions is by now a well-known
one. It has led to new solutions to the gauge hierarchy
problem without imposing supersymmetry [1,2], and it has
opened up new avenues to attack the flavor puzzle in the
standard model (SM). One such application is the seminal
proposal of split fermions by Arkani-Hamed and Schmaltz
[3] that fermion mass hierarchy can be generated from the
wave function overlap of fermions located differently in
the extra dimension. The split fermion scenario had been
implemented in both flat extra dimension models [3,4], and
warped extra dimension Randall-Sundrum (RS) models
[5,6]. Subsequently, phenomenologically successful mass
matrices were found in the case of one flat extra dimension
without much fine-tuning of the Yukawa couplings [7], and
in the case of warped extra dimensions, realistic fermion
masses and mixing pattern can be reproduced with almost
universal bulk Yukawa couplings [8–10].

To date, many attempts in understanding the fermion
flavor structure come in terms of symmetries. Fermion
mass matrix ansatz with a high degree of symmetry were
constructed to fit simultaneously the observed mass hier-
archy and flavor mixing patterns. It is an interesting ques-
tion whether in the pure geometrical setting of the RS
framework where there are no flavor symmetries a priori,
such symmetrical forms can arise and arise naturally with-
out fine-tuning of the Yukawa couplings, i.e. whether

symmetries in the fermion mass matrices can be compat-
ible with a natural, hierarchyless Yukawa structure in the
RS framework, and to what degree.
Another interesting and related question is whether or

not one can experimentally discern if the fermion mass
matrices are symmetric in the RS framework. In the SM,
only the left-handed (LH) fermion mixings such as the
Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix is
measurable, but not the right-handed (RH) ones.
However, in the RS framework the RH fermion mixings
become measurable through the effective couplings of the
gauge bosons to the fermions induced from the Kaluza-
Klein (KK) interactions. If the fermion mass matrices are
symmetric, the LH and RH mixing matrices would be the
same. Thus, the most direct way of searching for the effects
of these RH mixings would be through the induced RH
fermion couplings in flavor changing processes that are
either not present or very much suppressed in the SM.
In this work we study how well the RS setting serves as a

framework for flavor physics either with or without sym-
metries in the fermion mass matrices, and if the two
scenarios can be distinguished experimentally. We concen-
trate on the quark (and especially the top) sector, and we
study the issues involved in the RS1 model [2] with an
SUð2ÞL � SUð2ÞR �Uð1ÞX bulk symmetry, which we
shall refer to as the minimal custodial RS (MCRS) model.
The Uð1ÞX is customarily identified with Uð1ÞB�L. The
enlarged electroweak symmetry contains a custodial iso-
spin symmetry which protects the SM � parameter from
receiving excessive corrections, and the model has been
shown to be a complete one that can pass all electroweak
precision tests (EWPT) at a scale of �3 to 4 TeV [11].
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The organization of the paper is as follows. In Sec. II we
quickly review the details of the MCRS model to fix our
notations. In Sec. III we investigate which type of mass
matrix ansatz is compatible with Yukawa couplings that are
perturbative and not fine-tuned by matching the ansatz
form to that in the MCRS model. Relevant matching for-
mulas and EWPT limits on the controlling parameters are
collected into the two Appendices. We also investigate
possible patterns in the mass matrices by numerically
scanning the EWPT allowed parameter space for those
that can reproduce simultaneously the observed quark
masses and the CKM mixing matrix. In Sec. IV we study
the effects of quark mass matrices being symmetrical or
not are having on flavor changing top decays, t ! cðuÞZ,
which are expected to have the clearest signal at the LHC.
We summarized our findings in Sec. V.

II. REVIEW OF THE MCRS MODEL

In this section, we briefly review the setup of the MCRS
model. We summarize relevant results on the KK reduction
and the interactions of the bulk gauge fields and fermions,
and establish the notation to be used below.

A. General setup and gauge symmetry breaking

The MCRS model is formulated in a five-dimensional
(5D) background geometry based on a slice of AdS5 space
of size�rc, where rc denotes the radius of the compactified
fifth dimension. Two 3-branes are located at the boundaries
of the AdS5 slice, which are also the orbifold fixed points.
They are taken to be � ¼ 0 (UV) and � ¼ � (IR), respec-
tively. The metric is given by

ds2 ¼ GABdx
AdxB ¼ e�2�ð�Þ���dx

�dx� � r2cd�
2; (1)

where �ð�Þ ¼ krcj�j, ��� ¼ diagð1;�1;�1;�1Þ, k is

the AdS5 curvature, and �� � � � �.
The model has SUð2ÞL � SUð2ÞR �Uð1ÞX as its bulk

gauge symmetry group. The fermions reside in the bulk,
while the SM Higgs, which is now a bidoublet, is localized
on the IR brane to avoid fine-tuning. The 5D action of the
model is given by [11]

S ¼
Z

d4x
Z �

0
d�

ffiffiffiffi
G

p ½Lg þLf þLUV�ð�Þ
þLIR�ð�� �Þ�; (2)

where Lg and Lf are the bulk Lagrangian for the gauge

fields and fermions, respectively, andLIR contains both the
Yukawa and Higgs interactions.

The gauge field Lagrangian is given by

L g ¼ �1
4ðWABW

AB þ ~WAB
~WAB þ ~BAB

~BABÞ; (3)

where W, ~W, ~B are field strength tensors of SUð2ÞL,
SUð2ÞR, and Uð1ÞX, respectively. On the IR brane,
SUð2ÞL � SUð2ÞR is spontaneously broken down to
SUð2ÞV when the SMHiggs acquires a vacuum expectation

value (VEV). On the UV brane, first the custodial SUð2ÞR
is broken down to Uð1ÞR by orbifold boundary conditions;
this involves assigning orbifold parities under S1=ðZ2 �
Z0
2Þ to the � components of the gauge fields: one assigns

ð�þÞ for ~W1;2
� , and ðþþÞ for all other gauge fields, where

the first (second) entry refers to the parity on the UV (IR)
boundary. Then, Uð1ÞR �Uð1ÞX is further broken down to
Uð1ÞY spontaneously (via a VEV), leaving just SUð2ÞL �
Uð1ÞY as the unbroken symmetry group.

B. Bulk gauge fields

Let AMðx;�Þ be a massless 5D bulk gauge field,M ¼ 0,
1, 2, 3, 5. Working in the unitary gauge where A5 ¼ 0, the
KK decomposition of A�ðx;�Þ is given by (see e.g. [6,12])

A�ðx;�Þ ¼ 1ffiffiffiffiffiffiffiffi
rc�

p
X
n

AðnÞ
� ðxÞ	nð�Þ; (4)

where 	n are functions of the general form

	n ¼ e�

Nn

½J1ðzne�Þ þ b1ðmnÞY1ðzne�Þ�; zn ¼ mn

k
;

(5)

that solve the eigenvalue equation�
1

r2c
@�e

�2�@� �m2
n

�
	n ¼ 0; (6)

subject to the orthonormality condition

1

�

Z �

0
d�	n	m ¼ �mn: (7)

Depending on the boundary condition imposed on the
gauge field, the coefficient function b1ðmnÞ is given by

ðþþÞ B:C:: b1ðmnÞ ¼ � J0ðzne�ð�ÞÞ
Y0ðzne�ð�ÞÞ

¼ � J0ðznÞ
Y0ðznÞ ; (8)

ð�þÞ B:C:: b1ðmnÞ ¼ � J0ðzne�ð�ÞÞ
Y0ðzne�ð�ÞÞ

¼ � J1ðznÞ
Y1ðznÞ ; (9)

which in turn determine the gauge KK eigenmasses, mn.
For fields with the ðþþÞ boundary condition, the lowest

mode is a massless state Að0Þ
� with a flat profile

	0 ¼ 1; (10)

while no zero mode exists if it is the ð�þÞ boundary
condition. The SM gauge boson is identified with the
zero mode of the appropriate bulk gauge field after KK
reduction.

C. Bulk fermions

The free 5D bulk fermion action can be written as (see
e.g. [5,6])
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Sf ¼
Z

d4x
Z �

0
d�

ffiffiffiffi
G

p �
EM
a

�
i

2
��
að ~@M � @QMÞ�

�

þm sgnð�Þ ���

�
; (11)

where 
a ¼ ð
�; i
5Þ are the 5D Dirac gamma matrices in
flat space, G is the metric given in Eq. (1), EA

a the inverse
vielbein, and m ¼ ck is the bulk Dirac mass parameter.
There is no contribution from the spin connection because
the metric is diagonal [5]. The form of the mass term is
dictated by the requirement of Z2 orbifold symmetry [5].
The KK expansion of the fermion field takes the form

�L;Rðx;�Þ ¼ e3�=2ffiffiffiffiffiffiffiffi
rc�

p
X1
n¼0

c ðnÞ
L;RðxÞfnL;Rð�Þ; (12)

where the subscripts L and R label the chirality of the
fields, and fnL;R form two distinct sets of complete ortho-

normal functions, which are found to satisfy the equations�
1

rc
@� �

�
1

2
þ c

�
k

�
fnR ¼ mne

�fnL;�
� 1

rc
@� þ

�
1

2
� c

�
k

�
fnL ¼ mne

�fnR;

(13)

with the orthonormality condition given by

1

�

Z �

0
d�fn?L;Rð�ÞfmL;Rð�Þ ¼ �mn: (14)

Of particular interest are the zero modes which are to be
identified as SM fermions:

f0L;Rð�; cL;RÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krc�ð1� 2cL;RÞ
ekrc�ð1�2cL;RÞ � 1

s
eð1=2�cL;RÞkrc�; (15)

where the upper (lower) sign applies to the LH (RH) label.
Depending on the Z2 parity of the fermion, one of the
chiralities is projected out. It can be seen that the LH
zero mode is localized towards the UV (IR) brane if cL >
1=2 (cL < 1=2), while the RH zero mode is localized
towards the UV (IR) brane when cR <�1=2 (cR >�1=2).

The higher fermion KK modes have the general form

fnL;R ¼ e�

Nn

B�ðzne�Þ;

B�ðzne�Þ ¼ J�ðzne�Þ þ b�ðmnÞY�ðzne�Þ;
(16)

where � ¼ jc� 1=2j with the LH (RH) mode takes the
upper (lower) sign. Depending on the type of the boundary
condition a fermion field has, the coefficient function
b�ðmnÞ takes the form [11]

ðþþÞ B:C:: b�ðmnÞ ¼ � J��1ðzne�ð�ÞÞ
Y��1ðzne�ð�ÞÞ

¼ � J��1ðznÞ
Y��1ðznÞ ;

(17)

ð�þÞ B:C:: b�ðmnÞ ¼ � J��1ðzne�ð�ÞÞ
Y��1ðzne�ð�ÞÞ

¼ � J�ðznÞ
Y�ðznÞ ;

(18)

and normalization factor can be written as [11]

ðþþÞ B:C:: N2
n ¼ e2�ð�Þ

2krc�
B2
�ðzne�ð�ÞÞj�¼�

�¼0 ; (19)

ð�þÞ B:C:: N2
n ¼ 1

2krc�
½e2�ð�ÞB2

�ðzne�ð�ÞÞ � B2
��1ðznÞ�:

(20)

The upper sign in the order of the Bessel functions above
applies to the LH (RH) mode when cL >�1=2 (cR <
1=2), while the lower sign applies to the LH (RH) mode
when cL <�1=2 (cR > 1=2). The spectrum of fermion
KK masses is found from the coefficient function relations
given by Eqs. (17) and (18).
Now there is an additional SUð2ÞR gauge symmetry over

the SM in the bulk, and the fermions have to be embedded
into its representations. Below we chose the simplest way
of doing this, viz. the LH fermions are embedded as
SUð2ÞR singlets, while the RH fermions are doublets
[11]. Note that since the SUð2ÞR is broken on the UV brane
by the orbifold boundary condition, one component of the
doublet under it must be even under the Z2 parity, and the
other odd. This forces a doubling of RH doublets where the
upper component, say the up-type quark, of one doublet,
and the lower component of the other doublet, the down-
type, are even.

D. Fermion interactions

In 5D, the interaction between fermions and a bulk
gauge boson is given by

Sf �fA ¼ g5
Z

d4xd�
ffiffiffiffi
G

p
EM
a
��
aAM�þ H:c:; (21)

where g5 is the 5D gauge coupling constant. After KK
reduction, couplings of the KK modes in the 4D effective
theory arise from the overlap of the wave functions in the
bulk. In particular, the coupling of themth and nth fermion
KK modes to the qth gauge KK mode is given by

gmnq

f �fA
¼ g4

�

Z �

0
d�fmL;Rf

n
L;R	q; g4 ¼ g5ffiffiffiffiffiffiffiffi

rc�
p ; (22)

where g4 � gSM is the 4D SM gauge coupling constant.
Note that since the gauge zero mode has a flat profile
[Eq. (10)], by the orthonormality condition of the fermions
wave functions, Eq. (14), only fermions of the same KK
level couple to the gauge zero mode, and the 4D coupling is
simply given by gmm0

f �fA
¼ g4.

With the Higgs field � localized on the IR brane, the
Yukawa interactions are contained entirely in LIR of the
5D action (2). The relevant action on the IR brane is given
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by

SYuk ¼
Z

d4xd�
ffiffiffiffi
G

p
�ð�� �Þ

� �5;ij

krc
��iðx;�Þ�jðx;�Þ�ðxÞ þ H:c:; (23)

where �5;ij are the dimensionless 5DYukawa coupling, and

i, j the family indices. Rescaling the Higgs field to HðxÞ ¼
e�krc��ðxÞ so that it is canonically normalized, the effec-
tive 4D Yukawa interaction obtained after spontaneous
symmetry breaking is given by

SYuk ¼
Z
d4xvW

�5;ij

krc�

X
m;n

�c ðmÞ
iL ðxÞc ðnÞ

jR ðxÞfmL ð�;cLi ÞfnRð�;cRj Þ

þH:c:; (24)

where hHi ¼ vW ¼ 174 GeV is the VEV acquired by the
Higgs field. The zero modes give rise to the SM mass
terms, and the resulting mass matrix reads

ðMRS
f Þij ¼ vW

�f
5;ij

krc�
f0Lð�; cLfiÞf0Rð�; cRfjÞ

� vW

�f
5;ij

krc�
FLðcLfiÞFRðcRfjÞ; f ¼ u; d; (25)

where the label f denotes up-type or down-type quark
species. Note that the Yukawa couplings are in general

complex, and so take the form �f
5;ij � �f

ije
i�ij , with �f

ij,�ij

the magnitude and the phase, respectively.

III. STRUCTURE OF THE QUARK MASS
MATRICES

In this section, we investigate the possible quark flavor
structure in the RS framework. One immediate require-
ment on the candidate structures is that the experimentally
observed quark mass spectrum and mixing pattern are
reproduced. Another would be that the 5D Yukawa cou-
plings are all of the same order, in accordance with the
philosophy of the RS framework that there is no intrinsic
hierarchy. We also required that constraints from EWPT
are satisfied.

To arrive at the candidate structures, we follow two
strategies. One is to start with a known SM quark mass
matrix ansatz which reproduces the observed quark mass
spectrum and mixing pattern. The ansatz form is then
matched onto the RS mass matrix to see if the above
requirements are satisfied. The other strategy is to generate
RS mass matrices at random and then pick out those that
satisfy the requirements above.1

To solve the hierarchy problem, we take krc ¼ 11:7 and

the warped down scale to be ~k ¼ ke�krc� ¼ 1:65 TeV.

Since new physics first arise at the TeV scale in the RS
framework, it is also where experimental data are matched
to the RS model below. We will assume that the CKM
matrix evolves slowly between � ¼ MZ and � ¼ 1 TeV
so that the PDG values can be adopted, and we will use the
running quark mass central values at � ¼ 1 TeV from
Ref. [13].

A. Structure from mass matrix ansatz

In trying to understand the pattern of quark flavor mix-
ing, many ansatz for the SM quark mass matrices have
been proposed over the years. There are two common types
of mass matrix ansatz consistent with the current CKM
data. One type is the Hermitian ansatz first proposed by
Fritzsch some time ago [14], which has been recently
updated to better accommodate jVcbj [15]. The other type
is the symmetric ansatz proposed by Koide et al. [16],
which was inspired by the nearly bimaximal mixing pat-
tern in the lepton sector.2 Using these ansatz as templates,
we find that only the Koide-type ansatz admit hierarchy-
free 5D Yukawa couplings; this property is demonstrated
below. That Fritzsch-type ansatz generically lead to hier-
archical Yukawa couplings is shown in Appendix A.
The admissible ansatz we found takes the form

Mf ¼ Py
fM̂fP

y
f ; f ¼ u; d; (26)

where Pf ¼ diagfei�f
1 ; ei�

f
2 ; ei�

f
3 g is a diagonal pure phase

matrix, and

M̂ f ¼
f Cf Cf

Cf Af Bf

Cf Bf Af

0
@

1
A; (27)

with all entries real and f much less than all other entries.

When f ¼ 0, the ansatz of Ref. [16] is recovered.

The real symmetric matrix M̂f is diagonalized by the

orthogonal matrix

OT
fM̂fOf ¼

�f
1 0 0

0 �f
2 0

0 0 �f
3

0
B@

1
CA;

Of ¼
cf 0 sf
� sfffiffi

2
p � 1ffiffi

2
p cfffiffi

2
p

� sfffiffi
2

p 1ffiffi
2

p cfffiffi
2

p

0
B@

1
CA;

(28)

where the eigenvalues are given by

1This has been tried before in Ref. [8], but it was done for the
case with mKK > 10 TeV where there is a little hierarchy.

2In the SM, because of the freedom in choosing the RH flavor
rotation, quark mass matrices can always be made Hermitian.
But this need not be the case in the RS framework as we show
below.
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�f
1 ¼ 1

2½Af þ Bf þ f �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8C2

f þ ðAf þ Bf � fÞ2
q

�;
�f
2 ¼ Af � Bf;

�f
3 ¼ 1

2½Af þ Bf þ f þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8C2

f þ ðAf þ Bf � fÞ2
q

�;
(29)

and the mixing angles are given by

cf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f
3 � f

�f
3 � �f

1

vuut ; sf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f � �f

1

�f
3 � �f

1

vuut : (30)

Note that the components of M̂f can be expressed as

Af ¼ 1
2ð�f

3 � �f
2 þ �f

1 � fÞ;
Bf ¼ 1

2ð�f
3 þ �f

2 þ �f
1 � fÞ;

Cf ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�f

3 � uÞðu � �f
1Þ

q
:

(31)

To reproduce the observed mass spectrum mf
1 <mf

2 <

mf
3 , the eigenvalues �

f
i , i ¼ 1, 2, 3, are assigned to be the

appropriate quark masses. For the Koide ansatz (the f ¼
0 case), it was pointed out in Ref. [17] that different
assignments are needed for the up and down sectors to fit
jVubj better. Since the ansatz, Eq. (26), is really a perturbed
Koide ansatz, we follow the same assignments here:

�u
1 ¼ �mu

1 ; �u
2 ¼ mu

2 ; �u
3 ¼ mu

3 ;

�d
1 ¼ �md

1 ; �d
2 ¼ md

3 ; �d
3 ¼ md

2 :
(32)

Now since OT
dM̂dOd ¼ diagf�md

1 ; m
d
3 ; m

d
2g for the

down-type quarks, to put the eigenvalues into hierarchical
order, the diagonalization matrix becomes O0

d ¼ OdT23,

where

T23 ¼
1 0 0
0 0 1
0 1 0

0
@

1
A: (33)

The quark mixing matrix is then given by

Vmix ¼ OT
uPuP

y
dO

0
d

¼
cucd þ �susd cusd � �sucd ��su

��sd �cd �
sucd � �cusd susd þ �susd ��cu

0
@

1
A; (34)

where

� ¼ 1
2ðei�3 þ ei�2Þ; � ¼ 1

2ðei�3 � ei�2Þ;
�i ¼ �u

i � �d
i ; i ¼ 1; 2; 3:

(35)

Without loss of generality, �1 is taken to be zero.
The matrix Vmix depends on four free parameters, �2;3

and u;d. A good fit to the CKM matrix is found by

demanding the following set of conditions:

j�j ¼ jVcbj ¼ 0:041 60; j�jsu ¼ jVubj ¼ 0:004 01;

j�jsd ¼ jVcdj ¼ 0:227 25; (36)

and �CP ¼ �ð�3 þ �2Þ=2 ¼ 59	. These imply

�2 ¼ �2:558 93; �3 ¼ �0:499 44;

u ¼ 1:362 26� 10�3; d ¼ 6:505 70� 10�5;

(37)

which in turn lead to a Jarlskog invariant of J ¼
3:164 15� 10�5 and

jVmixj ¼
0:973 80 0:227 36 0:004 01
0:227 25 0:972 94 0:041 60
0:008 16 0:040 99 0:999 13

0
@

1
A; (38)

both of which are in very good agreement with the globally
fitted data.

With �u;d determined, so are M̂u;d also. From Eq. (31)

we have

Au ¼ 77:322 26; Ad ¼ 1:262 69;

Bu ¼ 76:775 26; Bd ¼ �1:217 31;

Cu ¼ 0:437 33; Cd ¼ 7:916 84� 10�3:

(39)

Parameters of the RS mass matrix (25) can now be solved
for by matching the RS mass matrix onto the ansatz (26).
Starting with MRS

u , there are a total of 24 parameters to be
determined: six fermion wave function values, FLðcQi

Þ and
FRðcUi

Þ, nine Yukawa magnitudes, �u
ij, and nine Yukawa

phases, �u
ij, where i, j ¼ 1, 2, 3.3 Matching MRS

u to Mu

results in nine conditions for both magnitudes and phases.
Thus all the up-type Yukawa phases are determined by the
three phases �u

i , while six magnitudes are left as free
independent parameters. These we chose to be FLðcQ3

Þ
and FRðcU3

Þ, which are constrained by EWPT, and �u
11,

�u
21, �

u
31, �

u
32.

Next we match MRS
d to Md. Since FLðcQi

Þ have already
been determined, there are only 21 parameters left inMRS

d :

FRðcDi
Þ, �d

ij, and �d
ij. Again all the down-type Yukawa

phases are determined by the three phases, �d
i , leaving

three free magnitudes which we chose to be �d
31, �

d
32, and

�d
33. We collect all relevant results from the matching

processes into Appendix B.
To see that the ansatz (26) does not lead to a hierarchy in

the Yukawa couplings, note from Eq. (31) we have

Af � jBfj �mf
3

2
; Cu �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mu

3m
u
1

p
2

; Cd �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
md

2m
d
1

q
2

:

(40)

3We will denote using subscripts Q, U, and D respectively, for
the left-handed quark doublet, and the right-handed up- and
down-type singlets of SUð2ÞL.
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Given this and Eq. (37), we see from Eqs. (B1) and (B4)
that as long as

�d
31 � �d

32 � �d
33 � �u

11 � �u
21 � �u

31 � �u
32 � �u

33; (41)

all Yukawa couplings would be of the same order in
magnitude. It is amusing to note that if we begin by
imposing the condition that the 5D Yukawa couplings are
hierarchy-free instead of first fitting the CKM data, we find

u �mu
1 � 10�3; d �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
md

2m
d
1

q ffiffiffiffiffiffiffi
mu

1

mu
3

s
� 3� 10�5;

(42)

which give the correct order of magnitude for u;d neces-

sary for Vmix to fit the experimental CKM values.
From relations (B1), (B3), and (B6), for mass matrices

given by the ansatz (26), all localization parameters can be
determined from just that of the third generation SUð2ÞL
doublet, cQ3

, and the Yukawa coupling magnitudes listed in

Eq. (41). To satisfy the bounds from flavor-changing
neutral-currents (FCNCs), LH light quarks from the first
two generations should be localized towards the UV brane.
As discussed in Appendix B, for generic choices of
Yukawa couplings this is so for the first generation LH
quarks, but not for the second generation. In order to have
cQ2

> 0:5 while still satisfying constraints from Eqs. (B8)

and (B9) and the EWPT constraint cU3
< 0:2, we choose

�u
31

�u
21

¼ 0:2615; �u
11 ¼ �u

31 ¼ 0:7; �u
33 ¼ 0:85;

�u
32 ¼ �d

31 ¼ �d
31 ¼ �d

33 ¼ 1: (43)

We also have to shorten the EWPT allowed range of cQ3
to

(0.3, 0.4) so that cQ2
> 0:5 is always satisfied. Note that

relation (B3) constrains cU2
to be greater than �0:5 if the

perturbativity constraint, �5 < 4, is to be met.
The localization parameters increase monotonically as

cQ3
increases. Except for cU2;3

, the variation of the local-

ization parameters is small. We list below their range
variation as cQ3

varies from 0.3 to 0.4 given the choice of

the Yukawa couplings (43):

0:65< cQ1
< 0:66; 0:50< cQ2

< 0:52;

�0:62< cU1
<�0:61; �0:26< cU2

<�0:01;

�0:16< cU3
< 0:18; � 0:75< cD1

<�0:74;

� 0:60< cD2;3
<�0:59: (44)

B. Structure from numerical search

The RS mass matrix given by Eq. (25) has a productlike
form:

MRS �
a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

0
@

1
A;

ai ¼ FLðcLi Þ; bi ¼ FRðcRi Þ;
(45)

and it can be brought into the diagonal form by a unitary
transformation

ðUf
LÞyMRS

f Uf
R ¼

�f
1 0 0

0 �f
2 0

0 0 �f
3

0
B@

1
CA; f ¼ u; d: (46)

Suppose there is just one universal 5D Yukawa coupling,
say �5 ¼ 1, then the RS mass matrix MRS

f would be

singular with two zero eigenvalues, and both the LH and
RH quark mixing matrices would be the identity matrix,

i.e. VL;R
mix ¼ ðUu

L;RÞyUd
L;R ¼ 13�3. Thus, in order to obtain

realistic quark masses and CKM mixing angles (VL
mix �

VCKM), one cannot assume one universal Yukawa coupling.
Rather, for each configuration of localization parameters,
the magnitudes and phases of the 5D Yukawa coupling
constants, �ij and �ij, will be randomly chosen from the

intervals [1.0, 3.0] and ½0; 2�� respectively, and we take a
sample size of 105.
The numerical search is done with 0:5< cQ1;2

< 1 and

�1< cU1;2
, cD1;2;3

<�0:5 so that the first two generation

quarks, as well as the third generation RH quarks of theD3

doublet are localized towards the UV brane. For the third
generation, 0:25< cQ3

< 0:4 and �0:5< cU3
< 0:2 are

required so the EWPT constraints are satisfied (see
Appendix B). We averaged the quark masses and CKM
mixing angles over the entire sample for each configuration
of localization parameters, and these choices yielded aver-
aged values that are within one statistical deviation of the
experimental values at � ¼ 1 TeV as given in Ref. [13].
Below we give three representative configurations from the
admissible configurations found after an extensive search.
(i) Configuration I:

cQ ¼ f0:634; 0:556; 0:256g;
cU ¼ f�0:664;�0:536; 0:185g;
cD ¼ f�0:641;�0:572;�0:616g:

(47)

In units of GeV, the mass matrices averaged over the
whole sample are given by

hjMuji ¼
8:97� 10�4 0:049 0:767

0:010 0:554 8:69
0:166 9:06 142:19

0
B@

1
CA;

hjMdji ¼
0:0019 0:017 0:0044
0:022 0:196 0:050
0:352 3:209 0:813

0
@

1
A;

(48)

which have eigenvalues
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mt ¼ 109ð52Þ; mb ¼ 2:59� 1:11;

mc ¼ 0:56ð59Þ; ms ¼ 0:048ð32Þ;
mu ¼ 0:0011ð12Þ; md ¼ 0:0017ð12Þ:

(49)

The resulting mixing matrices are given by

jVL
usj ¼ 0:16ð14Þ; jVR

usj ¼ 0:42ð24Þ;
jVL

ubj ¼ 0:009ð11Þ; jVR
ubj ¼ 0:12ð10Þ;

jVL
cbj ¼ 0:079ð74Þ; jVR

cbj ¼ 0:89ð13Þ;
(50)

which give rise to an averaged Jarlskog invariant
consistent with zero with a standard error of 1:3�
10�4.

(ii) Configuration II:

cQ ¼ f0:629; 0:546; 0:285g;
cU ¼ f�0:662;�0:550; 0:080g;
cD ¼ f�0:580;�0:629;�0:627g:

(51)

In units of GeV, the mass matrices averaged over the
entire sample are given by

hjMuji ¼
0:0011 0:039 0:834
0:014 0:492 10:55
0:16 5:726 122:87

0
@

1
A;

hjMdji ¼
0:017 0:0034 0:0036
0:209 0:043 0:046
2:43 0:506 0:539

0
@

1
A;

(52)

which have eigenvalues

mt ¼ 95ð45Þ; mb ¼ 2:01ð83Þ;
mc ¼ 0:49ð50Þ; ms ¼ 0:057ð35Þ;
mu ¼ 0:0014ð16Þ; md ¼ 0:0022ð15Þ:

(53)

The resulting mixing matrices are given by

jVL
usj ¼ 0:14ð12Þ; jVR

usj ¼ 0:30ð20Þ;
jVL

ubj ¼ 0:011ð13Þ; jVR
ubj ¼ 0:90ð12Þ;

jVL
cbj ¼ 0:11ð10Þ; jVR

cbj ¼ 0:23ð15Þ;
(54)

which give rise to an averaged Jarlskog invariant
consistent with zero with a standard error of 2:3�
10�4.

(iii) Configuration III:

cQ ¼ f0:627; 0:571; 0:272g;
cU ¼ f�0:518;�0:664; 0:180g;
cD ¼ f�0:576;�0:610;�0:638g;

(55)

In units of GeV, the mass matrices averaged over the
entire sample are given by

hjMuji ¼
0:092 0:0010 0:940
0:554 0:0065 5:66
13:4 0:158 136:9

0
@

1
A;

hjMdji ¼
0:019 0:0066 0:0026
0:114 0:039 0:016
2:774 0:955 0:376

0
@

1
A;

(56)

which have eigenvalues

mt ¼ 106ð50Þ; mb ¼ 2:32ð94Þ;
mc ¼ 0:56ð55Þ; ms ¼ 0:036ð21Þ;
mu ¼ 0:0013ð12Þ; md ¼ 0:0023ð16Þ:

(57)

The resulting mixing matrices are given by

jVL
usj ¼ 0:27ð19Þ; jVR

usj ¼ 0:77ð19Þ;
jVL

ubj ¼ 0:010ð10Þ; jVR
ubj ¼ 0:36ð21Þ;

jVL
cbj ¼ 0:048ð44Þ; jVR

cbj ¼ 0:85ð15Þ;
(58)

which give rise to an averaged Jarlskog invariant
consistent with zero with a standard error of 1:9�
10�4.

In summary, from the numerical study we found that, in
the RS framework, there is neither a preferred form for the
mass matrix nor a universal RH mixing pattern. Note that
the RH mixing matrix is in general quite different from its
LH counterpart, viz. the CKM matrix.

IV. FLAVOR VIOLATING TOP QUARK DECAYS

In this section we study the consequences the different
forms of quark mass matrices have on FCNC processes.
We focus below on the decay, t ! cðuÞZ ! cðuÞl�l, where
l ¼ e, �, �, �. Modes which decay into a real Z and cðuÞ
jets are expected to have a much higher rate than those
involving a photon or a light Higgs, which happen through
loop effects. Moreover, much cleaner signatures at the
LHC can be provided by leptonic Z decays.

A. Tree-level flavor violations in MCRS

Tree-level FCNCs are generic in extradimensional mod-
els, for both a flat background geometry [18] and a warped
one [8,19,20]. Because of the KK interactions, the cou-
plings of the Z to the fermions are shifted from their SM
values. These shifts are not universal in general, and so
flavor violations necessarily result when the fermions are
rotated from the weak to the mass eigenbasis.
More concretely, consider the Zf �f coupling in the weak

eigenbasis:

L NC 
 gZZ�

�
QZðfLÞ

X
i;j

ð�ij þ �L
ijÞ �fiL
�fjL

þQZðfRÞ
X
i;j

ð�ij þ �R
ijÞ �fiR
�fjR

�
; (59)
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where i, j are family indices, �ij ¼ diagð�1; �2; �3Þ, and
QZðfÞ ¼ T3

LðfÞ � s2Qf;

Qf ¼ T3
LðfÞ þ T3

RðfÞ þQXðfÞ ¼ T3
LðfÞ þ

Yf

2
;

(60)

where Qf is the electric charge of the fermion, Yf=2 the

hypercharge, TL;RðfÞ the weak isospin under SUð2ÞL;R, and
QXðfÞ the charge under Uð1ÞX. We define �ij � �gL;Ri;j =gZ
to be the shift in the weak eigenbasis Z couplings to
fermions relative to its SM value given by gZ � e=ðscÞ,
as well as the usual quantities

e ¼ gLg
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2L þ g02
q ; g0 ¼ gRgX

g2R þ g2X
;

s ¼ e

gL
; c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
;

(61)

where gL ¼ g5L=
ffiffiffiffiffiffiffiffi
rc�

p
is the 4D gauge coupling constant

of SUð2ÞL (and similarly for the rest). Rotating to the mass
eigenbasis of the SM quarks defined by f0 ¼ Uyf, where
the unitary matrix U diagonalizes the SM quark mass
matrix, flavor off-diagonal terms appear:

L FCNC 
 gZZ�

�
QZðfLÞ

X
a;b

�̂L
ab

�f0aL
�f0bL

þQZðfRÞ
X
a;b

�̂R
ab

�f0aR
�f0bR
�
; (62)

where the mass eigenbasis flavor off-diagonal couplings
are given by

�̂ L;R
ab ¼ X

i;j

ðUy
L;RÞai�L;R

ij ðUL;RÞjb: (63)

Note that the off-diagonal terms would vanish only if � is
proportional to the identity matrix.

In the RS framework, one leading source of corrections
to the SM neutral current interaction comes from the ex-
changes of heavy KK neutral gauge bosons as depicted in
Fig. 1. The effect of gauge KK exchanges gives rise only to
the diagonal terms of �. It can be efficiently calculated
with the help of the massive gauge 5D mixed position-

momentum space propagators, which automatically sums
up contributions from all the KK modes [11,21].
The leading contributions can be computed in terms of

the overlap integral,

GL;R
f ðcL;RÞ ¼ v2

W

2
rc
Z �

0
d�jf0L;Rð�; cL;RÞj2 ~Gp¼0ð�;�Þ;

(64)

where ~Gp¼0 is the zero-mode subtracted gauge propagator

evaluated at zero 4D momentum. For KK modes obeying

the ðþþÞ boundary condition, ~Gp¼0 is given by [21]

~GðþþÞ
p¼0 ð�;�0Þ¼ 1

4kðkrc�Þ
�
1�e2krc�

krc�
þe2krc�<ð1�2krc�<Þ

þe2krc�>½1þ2krcð���>Þ�
�
; (65)

and those obeying the ð�þÞ boundary condition

~G ð�þÞ
p¼0 ð�;�0Þ ¼ � 1

2k
ðe2krc�< � 1Þ; (66)

where �< (�>) is the minimum (maximum) of � and �0.
The gauge KK correction to the Z coupling is thus �g

ij ¼
�g
qi�ij, with �g

qi given by [22]

ð�g
qiÞL;R ¼ e2

s2c2

�
G

qiL;R
þþ � G

qiL;R
�þ

QZðqiL;RÞ

�
�
g2R
g2L

c2T3
RðqiL;RÞ � s2

YqiL;R

2

��
; (67)

where the label q denotes the fermion species. Note that
when the fermions are localized towards the UV brane
(cL * 0:6 and cR & �0:6), G�þ is negligible, while
Gþþ becomes essentially flavor independent [22].
Another source of corrections to the Zf �f coupling arises

from the mixings between the fermion zero modes and the
fermion KK modes brought about by the Yukawa interac-
tions. These generate diagonal as well as off-diagonal
terms in �. The diagram involved is depicted in Fig. 2.
The effects of the fermion mixings may be similarly

calculated by using the fermion analogue of the gauge
propagators. It is however much more convenient to deal

FIG. 1. Correction to the Zf �f coupling due to the exchange of
gauge KK modes. The fermions are in the weak eigenbasis, and
X ¼ Z, Z0.

FIG. 2. Correction to the Zf �f coupling due to SM fermions
mixing with the KK modes. The fermions are in the weak
eigenbasis.
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directly with the KK modes here. The KK fermion correc-
tions to the weak eigenbasis Z couplings can be written as

ð�f
ijÞL ¼ X

�

X1
n¼1

m�
i�mj�

ðm�
n Þ2

F�
R;

ð�f
ijÞR ¼ X

�

X1
n¼1

m�im
�
�j

ðm�
n Þ2

F�
L;

(68)

wheremn is the nth level KK fermion mass,mi� are entries
of the weak eigenbasis RS mass matrix (25) with � a
generation index,4 and

F �
R;L ¼

��������fnR;Lð�; cR;L� Þ
f0R;Lð�; cR;L� Þ

��������2QZðfR;LÞ
QZðfL;RÞ ; (69)

with the argument of QZ, f ¼ u, d, denoting up-type or
down-type quark species. Note that for cL� < 1=2 and cR� >
�1=2, jfnL;Rð�; cL;R� Þj � ffiffiffiffiffiffiffiffiffiffiffiffiffi

2krc�
p

.

To determine �̂ab in Eq. (63), one needs to know the
rotation matrices UL and UR. In the case where the weak
eigenbasis mass matrices are given by the symmetric an-
satz (26), the analytical form of the rotation matrices is
known. By rephasing the quark fields so that �u

i ¼ 0 and all
the Yukawa phases reside in down sector, the up-type
rotation matrix is just the orthogonal diagonalization ma-
trix given by Eq. (28). Using the solution of the CKM fit
given in Eq. (37), we have

Uu
L ¼ Uu

R ¼ Uu;

Uu ¼ Ou ¼
0:999 99 0 0:004 01
�0:002 84 � 1ffiffi

2
p 0:707 10

�0:002 84 1ffiffi
2

p 0:707 10

0
B@

1
CA: (70)

Since we are interested in flavor violating top decays, the
relevant mass eigenbasis off-diagonal corrections are

�̂3r ¼ �̂g
3r þ �̂f

3r, r ¼ 1, 2. For the discussion below, using

relations (B1), (B3), and (B6) we will trade the depen-

dences of �̂L;R
ab on all the different localization parameters

for just a single dependence on cQ3
, and the Yukawa

coupling magnitudes which we fix to take the values given
in Eq. (43). Recall that with this choice of the Yukawa
coupling magnitudes, the EWPT allowed range for cQ3

is

between 0.3 and 0.4.
Since �g

ij ¼ �g
qi�ij, the gauge KK contributions is sim-

ply �̂g
3r ¼

P
i�

g
qiðUuÞy3iUu

ir, with

�̂g
tu ¼ 2:006 72� 10�3ð2�g

u � �g
c � �g

t Þ;
�̂g
tc ¼ 0:50ð�g

t � �g
cÞ:

(71)

We plot �̂g
3r as a function of cQ3

in Fig. 3.

For the fermion KK contributions, since the decoupling
of the higher KKmodes is very efficient, hence just the first
KK mode provides a very good approximation to the full

tower. We plot using this approximation j�̂f
3rj as functions

of cQ3
in Fig. 4.

B. Experimental signatures at the LHC

The branching ratio of the decay t ! cðuÞZ is given by

Brðt ! cðuÞZÞ ¼ 2

c2
ðjQZðtLÞ�̂L

tcðuÞj2 þ jQZðtRÞ�̂R
tcðuÞj2Þ

�
�
1� xt
1� yt

�
2
�
1þ 2xt
1þ 2yt

�
yt
xt
; (72)

FIG. 3 (color online). Gauge KK contribution in the case of symmetrical mass matrices to (a) �̂tu and (b) �̂tc. The labels LH and RH
indicate whether it is for the LH or RH coupling.

4For shift in the LH couplings, the index � runs over the
generations of both types of SUð2ÞR doublets, U and D, both of
which contain KK modes that can mix with LH zero modes. For
shift in the RH couplings, � runs over just the generations of the
only type of SUð2ÞL doublets, Q.
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where xt ¼ m2
Z=m

2
t and yt ¼ m2

W=m
2
t . In Fig. 5 we plot the

branching ratio as a function of cQ3
in the case where the

weak eigenbasis mass matrix has the symmetric ansatz
form of (26). It is clear that the dominant channel is t !
cZ. The branching ratio is at the level of a few 10�6, which
is to be compared to the SM prediction of Oð10�13Þ [23].
As cQ3

increases, the decay changes from being mostly

coming from the LH tops at the low end of the allowed
range of cQ3

, to having comparable contributions from both

quark helicities at the high end. Note that one can in
principle differentiate whether the quark rotation is LH
or RH by studying the polarized top decays.

For the case of asymmetrical quark mass matrix con-
figurations found in Sec. III B, the resultant branching
ratios and the associated gauge and fermion KK flavor
off-diagonal contributions are tabulated in Table I. We
give results only for the decay into charm quarks since
this channel dominates over that into the up-quarks. The
magnitude of our branching ratios for both cases of sym-
metrical and asymmetrical quark mass matrices is consis-
tent with the previous estimate in the RS framework [24].

It is interesting to note from Fig. 5(b) and Table I that, in
t ! cZ decays, the LH decays dominate over the RH ones
in the case of both symmetrical and asymmetrical quark
mass matrices. The reason for this is however different for

the two cases. In the symmetric case, Mu ¼ My
u and so

Uu
L ¼ Uu

R ¼ Uu. Thus the difference between the LH and
RH decays is due to the differences in the weak eigenbasis
couplings, as can be seen from Eq. (71), and QZ. By
comparing Fig. 4(b) to 3(b) we see j�̂tcj � j�̂g

tcj, and
from Fig. 3(b) we have 0:9 & jð�̂g

tcÞRj=jð�̂g
tcÞLj & 2.5

FIG. 4 (color online). Fermion KK contribution in the case of symmetrical mass matrices to (a) �̂tu and (b) �̂tc. The labels LH and
RH indicate whether it is for the LH or RH coupling. The plots are made using the first KK mode to approximate the full KK tower.

FIG. 5 (color online). Branching ratio in the case of symmetrical mass matrices as a function of cQ3
for the decay (a) t ! uZ and

(b) t ! cZ. The labels LH and RH indicate LH or RH top decay.

5It may seem counterintuitive that jð�̂g
tcÞRj can be smaller than

jð�̂g
tcÞLj (for cQ3

< 0:32), as one may expect that the couplings to
be dominated by the top contribution, and the coupling to the RH
top to be larger than that to the LH top due to the fact that the RH
top is localized closer to the IR brane. However, such expecta-
tions can be misleading. Because of the mixing matrices, the
mass eigenbasis coupling, �̂g

tc, is not just a simple sum of the
weak eigenbasis couplings, �g

qi , but involves their differences as
already mentioned. Moreover, although the greatest contribution
comes from the top, the contribution from the second generation
may not be completely negligible, as is the case here for ð�g

cÞR
for the particular symmetric ansatz that we study.
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However, as jQZðtLÞj * j2QZðtRÞj, the net effect is that the
LH decay dominates [see Eq. (72)].

In the asymmetrical case, Mu � My
u and Uu

L � Uu
R with

no pattern relating the LH to the RHmixings. In each of the
configurations of localization parameters listed in Table I,
while jð�̂g

tcÞLj  jð�̂g
tcÞRj, it turns out that not only

jð�̂g
tcÞRj � jð�̂f

tcÞRj and jð�̂f
tcÞLj � jð�̂f

tcÞRj, there is also a
relative minus sign between the gauge and the fermion KK
contributions, which results in a destructive interference
that leads to a greater branching ratio for the LH decay.
This is to be contrasted with Ref. [24] where it is the RH
mode that is found to dominate. There it appears that the
possibility of having a cancellation between the gauge and
fermion KK contributions was not considered.

We note and emphasize here the crucial role the quark
mass and mixing matrices play in determining the mass
eigenbasis flavor off-diagonal couplings �̂ab. Most impor-
tantly, �̂ab do not depend on the fermion localizations
alone. Whether or not there is a cancellation between the
gauge and fermion KK contributions depends very much
on the combination of the particular quark mass and mix-
ing matrices considered just as well as the configuration of
fermion localizations used. Such cancellation is by no
mean generic, and has to be checked whenever a new
combination of admissible configuration of fermion local-
izations, and quark mass and mixing matrices arise. In
addition, since 5D gauge and Yukawa couplings are inde-
pendent parameters, whether or not jð�̂g

abÞLj  jð�̂g
abÞRj

does not mean the same has to hold between jð�̂f
abÞLj and

jð�̂f
abÞRj. Since �g

ij and �f
ij have very different structures

[see Eqs. (67) and (68)], the combined effect when con-
volved with the particular quark mixing matrices can be
quite different, as is the case for the three asymmetrical
configurations listed in Table I.

It is expected that both the single top and the �tt pair
production rates will be high at the LHC, with the latter
about a factor of 2 higher still than the former. To a small
correction, the single tops are always produced in the LH
helicity, while both helicities are produced in pair produc-
tions. Thus a simple way of testing the above at the LHC is
to compare the decay rates of t ! Zþ jets in single top
production events (e.g. in the associated tW productions) to
that from the pair productions, so that information of both
LH and RH decays can be extracted. Note that both the
single and pair production channels should give compa-
rable branching ratios initially at the discovery stage. Of

course, a higher branching ratio would be obtained from
pair productions after several years of measurements.

V. SUMMARY

We have performed a detailed study of the admissible
forms of quark mass matrices in the MCRS model which
reproduce the experimentally well-determined quark mass
hierarchy and CKM mixing matrix, assuming a perturba-
tive and hierarchyless Yukawa structure that is not fine-
tuned.
We arrived at the admissible forms in two different

ways. In one we examined several quark mass matrix
ansatz which are constructed to fit the quark masses and
the CKM matrix. These ansatz have a high degree of
symmetries built in which allows the localization of the
quarks (that give rise to the mass hierarchy in the RS
setting) to be analytically determined. We found that the
Koide-type symmetrical ansatz is compatible with the
assumption of a hierarchyless Yukawa structure in the
MCRS model, but not the Fritzsch-type Hermitian ansatz.
Because the ansatzed mass matrices are symmetrical, both
LH and RH quark mixing matrices are the same.
In the other way, no a priori quark mass structures were

assumed. A numerical multiparameter search for configu-
rations of quark localization parameters and Yukawa cou-
plings that give admissible quark mass matrices was
performed. Admissible configurations were found after
an extensive search. No discernible symmetries or pattern
were found in the quark mass matrices for both the up-type
and down-type quarks. The LH and RH mixing matrices
are found to be different as is expected given the asym-
metrical form of the mass matrices.
We studied the possibility of differentiating between the

case of symmetrical and asymmetrical quark mass matrices
from flavor changing top decays, t ! Zþ jets. We found
the dominant mode of decay is that with a final state charm
jet. The total branching ratio is calculated to be �3 to 5�
10�6 in the symmetrical case and �9� 10�6 to 2� 10�5

in the asymmetrical case. The signal is within reach of the
LHC which has been estimated to be 6:5� 10�5 for a 5�
signal at 100 fb�1 [25]. However, the difference between
the two cases may be difficult to discern.
We have also investigated the decay tR ! bRW as a

large number of top quarks are expected to be produced
at the LHC. We found a branching ratio at the level of
Oð10�5Þ is possible. Although the signal is not negligible,

TABLE I. Branching ratios of t ! cZ and the associated gauge and fermion KK flavor off-diagonal contributions for the case of
asymmetrical mass matrices found from numerical searches.

Configuration j�̂g
Lj j�̂g

Rj j�̂f
Lj j�̂f

Rj BrðtLÞ BrðtRÞ
I 3:5� 10�4 7:7� 10�3 8:2� 10�3 4:7� 10�3 1:4� 10�5 4:1� 10�6

II 4:3� 10�4 5:8� 10�3 9:9� 10�3 2:9� 10�3 2:1� 10�5 2:0� 10�6

III 2:1� 10�4 3:8� 10�3 5:0� 10�3 7:0� 10�3 5:4� 10�6 3:2� 10�6
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given the huge SM background, its detection is still a very
challenging task, and a careful feasibility study is needed.
This is beyond the scope of the present paper.
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Note added:—After the completion of this work, we
became aware of Ref. [28] which finds that flavor bounds
from the �F ¼ 2 processes in the meson sector, in par-
ticular that from �K, might require the KK mass scale to be
genericallyOð10Þ TeV in the MCRS model. We will show
in an ensuing publication [29] that parameter space generi-
cally exists where KK mass scale of a few TeV is still
consistent with all the flavor constraints from meson mix-
ings, and that our conclusions with regard to the top decay
in this work continue to hold.

APPENDIX A: THE HERMITIAN MASS MATRIX
ANSATZ

In this Appendix we show that generically, the Fritzsch-
type ansatz cannot be accommodated in the RS framework
without requiring a hierarchy in the 5DYukawa couplings.
We consider below a general Hermitian mass matrix ansatz
for which the Fritzsch-type ansatz is a special case of.

1. General analytical structure

The Hermitian mass matrix ansatz takes the form

Mf ¼ Py
fM̂fPf; f ¼ u; d; (A1)

where Pf ¼ diagf1; ei�Cf ; e
ið�Bf

þ�Cf
Þg is a diagonal pure

phase matrix, and

M̂ f ¼
Uf jCfj Vf

jCfj Df jBfj
V?
f jBfj Af

0
B@

1
CA; Vf ¼ jVfjei!f ;

!f ¼ �Bf
þ�Cf

��Vf
;

(A2)

with�X � argðXÞ and Af, Df, Uf, jXj, �X 2 R. Note that
the Fritzsch-type ansatz with four texture zeros [15] is
recovered when Uf ¼ Vf ¼ 0 (the six-zero texture case

[14] hasDf ¼ 0 also). For simplicity, we take !f 2 f0; �g
below so that Vf ¼ �jVfj.6 We will ignore the fermion

label below for convenience.

The matrix M̂ can be diagonalized via an orthogonal
transformation

OTM̂O ¼
�1 0 0
0 �2 0
0 0 �3

0
@

1
A; j�1j< j�2j< j�3j:

(A3)

The eigenvalues j�ij, i ¼ 1, 2, 3, can be either positive or
negative. To reproduce the observed mass spectrum, we set
j�ij ¼ mi. From the observed quark mass hierarchy, it is

expected in general that jAj be the largest entries in M̂, and
jAj & j�3j. Without loss of generality, we take A and �3 to
be positive.
By applying the Cayley-Hamilton theorem, three inde-

pendent relations between the six parameters of M̂ to its
three eigenvalues can be deduced:

S1 � A�D�U ¼ 0;

S2 þ jBj2 þ jCj2 þ V2 � AD� ðAþDÞU ¼ 0;

S3 þ AjCj2 þDV2 þUjBj2 � ADU� 2jBjjCjV ¼ 0;

(A4)

where

S1 ¼
X
i

�i; S2 ¼
X
i<j

�i�j; S3 ¼
Y
i

�i:

Choosing A, U, V to be the free parameters, Eq. (A4) can
be solved for jBj, jCj, and D:

D ¼ S1 � A�U;

jBj ¼ VY þ ZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðA�UÞX � 2VðVY þ ZÞp ;

jCj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA�UÞX � 2VðVY � ZÞ

ðA�UÞ2 þ 4V2

s
;

(A5)

where

X ¼ U3 þ ðAþ 2UÞV2 � ðU2 þ V2ÞS1 þUS2 � S3;

Y ¼ A2 þ V2 þ ðAþUÞðU� S1Þ þ S2;

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2Y2 þ ðU� AÞXY � X2

q
: (A6)

If jUj, jVj  j�1j  jAj so that Eq. (A1) is a perturbation
of the Fritzsch four-zero texture ansatz, jBj and jCj can be
expanded as

jBj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�1

A

Y
i

ðA� �iÞ
s �

1þ �U
2

� �VRþOð�2U; �2VÞ
�

þ VA3=2ffiffiffiffiffiffiffiffiffiffi�S3
p

�
1� S1

A
þ S2

A2

��
1þUS2

2S3
þ �U

2
� �VRðAÞ

þOð�2U; �2VÞ
�
;

jCj ¼
ffiffiffiffiffiffiffiffiffiffi
�S3
A

s �
1�US2

2S3
þ �U

2
� �VRþOð�2U; �2VÞ

�
; (A7)6Such case has been considered in Ref. [26], and was shown to

be consistent with the current experimental CKM data.
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where

�U ¼ U

A
; �V ¼ V

A
; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S3

Y
i

ðA� �iÞ
s

: (A8)

Given that we have taken A < �3 and A, �3 > 0, it is
required that S3 < 0 (or �1�2 < 0) for jBj and jCj to be
real. This is consistent with the expectation from the con-
siderations of Ref. [15]. In the limit U, V ! 0, the exact
Fritzsch four-zero texture ansatz is recovered.

With M̂ determined by the three free parameters which
we chose to be A, U, and V, so are its eigenvectors. For
each eigenvalue �i, its associated eigenvector takes the
form

v i ¼
jCjðA� �iÞ � jBjV

V2 � ðA� �iÞðU� �iÞjBjðU� �iÞ � jCjV

0
@

1
A: (A9)

The orthogonal matrix O is then given by

O ¼
j j j
�v1 �v2 �v3

j j j

0
@

1
A; �vi � vi

k vi k ; i ¼ 1; 2; 3;

(A10)

and the quark mixing matrix by Vmix � OT
uðPuP

y
d ÞOd.

2. Matching to the RS mass matrix

To reproduce the Hermitian mass matrix ansatz (A1) by
the RS mass matrix (25), we match them and solve for the
parameters determining the RS mass matrix. For the pur-
pose of checking if hierarchy arises in the 5D Yukawa
couplings from the matching, we may start matching in
either the up or the down sector. For simplicity, the fermion
species label is ignored below.

There are a total of 24 parameters in MRS to be deter-
mined: six fermion wave function values, FLðcLi Þ and
FRðcRi Þ, nine Yukawa magnitudes, �ij, and nine Yukawa

phases, �ij, where i, j ¼ 1, 2, 3. Matching results in nine

conditions for both the magnitudes and the phases. Thus all
the Yukawa phases are determined by �B;C, while six

magnitudes are left as free independent parameters.
These we chose to be FLðcL3 Þ and FRðcR3 Þ, which are con-

strained by EWPT, and �11, �21, �31, �32. The determined
parameters are then the five Yukawa magnitudes:

�13 ¼ kL

FLðcL3 ÞFRðcR3 Þ
V2

vWU

�11

�31

;

�23 ¼ kL

FLðcL3 ÞFRðcR3 Þ
VjBj
vW jCj

�21

�31

;

�33 ¼ kL

FLðcL3 ÞFRðcR3 Þ
A

vW

;

�12 ¼ jCjV
jBjU

�11�32

�31

;

�22 ¼ DV

jBjjCj
�21�32

�31

;

(A11)

the nine Yukawa phases:

ð�ijÞ ¼
0 �C �B þ�C

��C 0 �B

��B ��C ��B 0

0
@

1
A; (A12)

and the four fermion wave function values:

FLðcL1 Þ ¼ FLðcL3 Þ
U

V

�31

�11

; FLðcL2 Þ ¼ FLðcL3 Þ
jCj
V

�31

�21

;

FRðcR1 Þ ¼
V

vW

kL

FLðcL3 Þ�31

; FRðcR2 Þ ¼
jBj
vW

kL

FLðcL3 Þ�32

:

(A13)

Note that there are only three independent Yukawa phases
because the mass matrix ansatz is Hermitian. Note also that
since fermion wave functions are always positive, V and
thus U have to be positive implying that ! ¼ 0.
From Eq. (A11), in order for the Yukawa couplings to be

of the same order, it is required that �11 � �21 � �31 �
�32 � �33, and

jCjV
jBjU � 1;

DV

jBjjCj � 1;
V2

UA
� 1

) V

U
� A

V
� jBj

jCj :
(A14)

For generic sets of parameters we find jBuj=jCuj �Oð103Þ
and jBdj=jCdj �Oð50Þ. However, parameter sets that re-
produce all entries of the CKM matrix and also the
Jarlskog invariant to within two standard error can only
be found if Vu �Uu and Vd � 10Ud. Thus hierarchy in the
5D Yukawa couplings cannot be avoided if the Hermitian
mass matrix ansatz (A1) is to be accommodated in the RS
framework.

APPENDIX B: RS MATCHING OF THE
SYMMETRIC ANSATZ

In this Appendix, we give analytical expressions for the
parameters determined from matching the RS mass matrix
(25) to the mass matrix ansatz (26). Starting with the up
sector, the determined parameters are the five up-type
Yukawa magnitudes:
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�u
13 ¼

kL

FLðcQ3
ÞFRðcU3

Þ
C2
u

vWu

�u
11

�u
31

;

�u
23 ¼

kL

FLðcQ3
ÞFRðcU3

Þ
Bu

vW

�u
21

�u
31

;

�u
33 ¼

kL

FLðcQ3
ÞFRðcU3

Þ
Au

vW

;

�u
12 ¼

C2
u

Buu

�u
11�

u
32

�u
31

;

�u
22 ¼

Au

Bu

�u
21�

u
32

�u
31

;

(B1)

the nine up-type Yukawa phases:

ð�u
ijÞ ¼

��2�u
i ; i ¼ j

��u
i � �u

j ; i � j;
(B2)

and the four fermion wave function values:

FLðcQ1
Þ ¼ FLðcQ3

Þ u

Cu

�u
31

�u
11

;

FLðcQ2
Þ ¼ FLðcQ3

Þ�
u
31

�u
21

;

FRðcU1
Þ ¼ kL

FLðcQ3
Þ
Cu

vW

1

�u
31

;

FRðcU2
Þ ¼ kL

FLðcQ3
Þ
Bu

vW

1

�u
32

:

(B3)

Next is the down sector. Given the information on the up
sector, the determined parameters are the six down-type
Yukawa magnitudes:

�d
11 ¼

FLðcQ3
Þ

FLðcQ1
Þ
d

Cd

�d
31 ¼

Cu

u

d

Cd

�u
11

�u
31

�d
31;

�d
21 ¼

FLðcQ3
Þ

FLðcQ2
Þ�

d
32 ¼

�u
21

�u
31

�d
31;

�d
12 ¼

FLðcQ3
Þ

FLðcQ1
Þ
Cd

jBdj�
d
32 ¼

Cu

u

Cd

jBdj
�u
11

�u
31

�d
32;

�d
22 ¼

FLðcQ3
Þ

FLðcQ2
Þ
Ad

jBdj�
d
32 ¼

Ad

jBdj
�u
21

�u
31

�d
32;

�d
13 ¼

FLðcQ3
Þ

FLðcQ1
Þ
Cd

Ad

�d
33 ¼

Cu

u

Cd

Ad

�u
11

�u
31

�d
33;

�d
23 ¼

FLðcQ3
Þ

FLðcQ2
Þ
jBdj
Ad

�d
33 ¼

jBdj
Ad

�u
21

�u
31

�d
33;

(B4)

the nine down-type Yukawa phases:

ð�d
ijÞ ¼

��2�d
i ; i ¼ j

��d
i � �d

j þ �ð�2i�3j þ �2j�3iÞ; i � j;

(B5)

and the three fermion wave function values:

FRðcD1
Þ ¼ Cd

vW

kL

FLðcQ3
Þ

1

�d
31

;

FRðcD2
Þ ¼ jBdj

vW

kL

FLðcQ3
Þ

1

�d
32

;

FRðcD3
Þ ¼ Ad

vW

kL

FLðcQ3
Þ

1

�d
33

:

(B6)

Note that there are only six independent up-type Yukawa
phases and six for the down-type Yukawa phases since the
mass matrix ansatz is symmetric. With the texture phases

�f
1;2;3 determined by fitting the CKM data, there are three

more relations, i.e. �d
1 ¼ �u

1 ¼ 0 and �2;3 ¼ �u
2;3 � �d

2;3,

which further reduce the number of independent Yukawa
phases from a total of 12 down to nine.
In order to be consistent with EWPT

(�gZbL �bL
=gZbL �bL

& 0:017) and to avoid too large a correc-

tion to the Peskin-Takeuchi S and T parameters, it is

required that 0:25< cQ3
< 0:4, cU3

< 0:2, so thatmð1Þ
gauge &

4 TeV [11]. To have the theory weakly coupled for at least
the first two KK modes, j�5j< 4 is required also [20]. It
follows that 2:70< FLðcQ3

Þ< 4:27, FRðcU3
Þ< 7:15, and

�u;d
ij < 4, which when combined with Eqs. (B1), (B4), (37),

and (39) imply

4:06< FLðcQ3
ÞFRðcU3

Þ< 30:57; 0:53<�u
33 < 4;

(B7)

and

�u
11

�u
31

< 0:14FLðcQ3
ÞFRðcU3

Þ;
�u
21

�u
31

< 0:25FLðcQ3
ÞFRðcU3

Þ;
(B8)

7The bound we adopted here is that from the PDG. Studies of
similar model but differing details where a complete electroweak
analysis was carried out have produced a more stringent bound,
e.g. & 0:0025 [27]. Such complete EWPT analysis, however, is
beyond the scope of the present work.
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�u
11

�u
31

�u
32 < 2:19;

�u
11

�u
31

�d
31 < 1:52;

�u
11

�u
31

�d
32 < 1:92;

�u
11

�u
31

�d
33 < 1:99;

�u
21

�u
31

�u
32 < 3:97;

�u
21

�u
31

�d
31 < 4;

�u
21

�u
31

�d
32 < 3:86;

�u
21

�u
31

�d
33 < 4:15:

(B9)

Observe from Eq. (B3) that the second generation
SUð2ÞL doublet,Q2, is localized towards the UV (IR) brane
if �u

31=�
u
21 is less (greater) than FLð0:5þ �Þ=FLðcQ3

Þ
ðFLð0:5� �Þ=FLðcQ3

ÞÞ. Note that FLð0:5� �Þ �
1� �krc� for �  1=ð2krc�Þ. We plot in Fig. 6 the
critical value of �u

31=�
u
21 below (above) which Q2 is local-

ized towards the UV (IR) brane. The same logic shows that
the first generation SUð2ÞL doublet, Q1, is generically
localized towards the UV brane because of the suppression
factor u=Cu � 10�2 (even if �u

31=�
u
11 * 1).

[1] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys.
Lett. B 429, 263 (1998); I. Antoniadis, N. Arkani-Hamed,
S. Dimopoulos, and G. R. Dvali, Phys. Lett. B 436, 257
(1998).

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370
(1999).

[3] N. Arkani-Hamed and M. Schmaltz, Phys. Rev. D 61,
033005 (2000).

[4] See e.g. G. R. Dvali and M.A. Shifman, Phys. Lett. B 475,
295 (2000); D. E. Kaplan and T.M. P. Tait, J. High Energy
Phys. 06 (2000) 020; 11 (2001) 051; M.V. Libanov and
S. V. Troitsky, Nucl. Phys. B599, 319 (2001); J.M. Frere,
M.V. Libanov, and S. V. Troitsky, Phys. Lett. B 512, 169
(2001).

[5] Y. Grossman and M. Neubert, Phys. Lett. B 474, 361
(2000).

[6] T. Gherghetta and A. Pomarol, Nucl. Phys. B586, 141
(2000); S. J. Huber and Q. Shafi, Phys. Lett. B 498, 256
(2001).

[7] E. A. Mirabelli and M. Schmaltz, Phys. Rev. D 61, 113011
(2000); W. F. Chang and J. N. Ng, J. High Energy Phys. 12
(2002) 077.

[8] S. J. Huber, Nucl. Phys. B666, 269 (2003).
[9] S. Chang, C. S. Kim, and M. Yamaguchi, Phys. Rev. D 73,

033002 (2006).
[10] G. Moreau and J. I. Silva-Marcos, J. High Energy Phys. 01

(2006) 048; 03 (2006) 090.
[11] K. Agashe, A. Delgado, M. J. May, and R. Sundrum, J.

High Energy Phys. 08 (2003) 050.
[12] A. Pomarol, Phys. Lett. B 486, 153 (2000).
[13] Z. Z. Xing, H. Zhang, and S. Zhou, Phys. Rev. D 77,

113016 (2008).
[14] H. Fritzsch, Phys. Lett. 73B, 317 (1978); Nucl. Phys.

B155, 189 (1979).
[15] H. Fritzsch and Z. Z. Xing, Phys. Lett. B 555, 63 (2003).
[16] Y. Koide, H. Nishiura, K. Matsuda, T. Kikuchi, and T.

Fukuyama, Phys. Rev. D 66, 093006 (2002).
[17] K. Matsuda and H. Nishiura, Phys. Rev. D 69, 053005

(2004).
[18] A. Delgado, A. Pomarol, and M. Quiro, J. High Energy

Phys. 01 (2000) 030; W. F. Chang, I.-L. Ho, and J. N. Ng,
Phys. Rev. D 66, 076004 (2002); S. Khalil and R.
Mohapatra, Nucl. Phys. B695, 313 (2004).

[19] See e.g. R. Kitano, Phys. Lett. B 481, 39 (2000); G.
Burdman, Phys. Rev. D 66, 076003 (2002); C. S. Kim,
J. D. Kim, and J. H. Song, Phys. Rev. D 67, 015001 (2003).

[20] K. Agashe, G. Perez, and A. Soni, Phys. Rev. D 71,
016002 (2005).

[21] M. S. Carena, A. Delgado, E. Ponton, T.M. P. Tait, and
C. E.M. Wagner, Phys. Rev. D 68, 035010 (2003).

[22] M. S. Carena, E. Ponton, J. Santiago, and C. E.M. Wagner,
Nucl. Phys. B759, 202 (2006).

[23] J. L. Dı́az-Cruz, R. Martı́nez, M.A. Pérez, and A. Rosado,
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FIG. 6. The critical value of �u
31=�

u
21 as a function of cQ3

in the
range allowed by EWPT. For values of �u

31=�
u
21 in the ‘‘UV’’

(‘‘IR’’) region, cQ2
is greater (less) than 0.5.
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