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(Received 21 April 2008; revised manuscript received 6 September 2008; published 3 November 2008)

We show that the Mellin summation technique (MST) is a well-defined and useful tool to compute loop

integrals at finite temperature in the imaginary-time formulation of thermal field theory, especially when

interested in the infrared limit of such integrals. The method makes use of the Feynman parametrization

which has been claimed to have problems when the analytical continuation from discrete to arbitrary

complex values of the Matsubara frequency is performed. We show that without the use of the MST, such

problems are not intrinsic to the Feynman parametrization but instead, they arise as a result of (a) not

implementing the periodicity brought about by the possible values taken by the discrete Matsubara

frequencies before the analytical continuation is made and (b) to the changing of the original domain of

the Feynman parameter integration, which seemingly simplifies the expression but in practice introduces a

spurious end point singularity. Using the MST, there are no problems related to the implementation of the

periodicity but instead, care has to be taken when the sum of denominators of the original amplitude

vanishes. We apply the method to the computation of loop integrals appearing when the effects of external

weak magnetic fields on the propagation of scalar particles is considered.

DOI: 10.1103/PhysRevD.78.096001 PACS numbers: 11.10.Wx, 12.38.Bx

I. INTRODUCTION

At finite temperature, unlike in vacuum, momentum
dependent loop integrals in general depend separately on
the time (p0) and space (p) components of the momentum
P� ¼ ðp0;pÞ, since Lorentz invariance is lost due to the
presence of the medium. As a consequence, the limiting
behavior of these integrals, as the momentum components
approach given values, may depend on the way the limit is
taken. For instance, in one-loop self-energy calculations,
the infrared limit ðp0 ¼ 0; p ¼ jpj ! 0Þ that accounts for
the plasma screening properties does not necessarily coin-
cide with the static limit ðp0 ! 0; p ¼ jpj ¼ 0Þ that ac-
counts for the long wavelength plasma oscillations. In
physical terms, this nonanalyticity as P� ! 0 is due to
the cut structure of the self-energy at finite temperature,
where branch cuts appear representing scattering processes
not allowed in vacuum.

The above behavior was originally not fully recognized
since there were results indicating that the aforementioned
two limits commuted when computing the real part of the
self-energy in a �3 theory [1,2]. In the imaginary-time
formalism (ITF), the problem with these calculations was
traced back to an incorrect analytic continuation when the
discrete frequency takes on arbitrary complex values [3].
Since the erroneous result was obtained from an analysis
based on the use of the Feynman parametrization at finite

temperature, it is often thought that such a parametrization
is also endemic to the source of the error.
In the ITF, the introduction of the Feynman parametri-

zation for the computation of loop integrals containing two
propagators can be avoided since there are techniques that
allow to perform the sum over Matsubara frequencies in a
straightforward manner. However, it has been recently
shown that when studying the influence of weak magnetic
fields over physical processes at finite temperature, the
loop integrals that appear involve products of powers of
two or more propagatorlike denominators [4]. Although it
is possible to generalize the standard techniques to carry
out the sum over Matsubara frequencies from the product
of two propagators to the case of a product of powers of
these, the calculations become extremely cumbersome. It
is therefore desirable to have a more direct method to
perform these calculations. One of such is the Mellin
summation technique (MST). The method [5] calls for
the use of Feynman parametrization, which allows to con-
dense products of powers of propagators into a single
propagatorlike factor raised to some power. This is par-
ticularly useful when one seeks an answer in terms of a
power series involving a small parameter, for instance, at a
high temperature T, the ratiom=T, wherem is the particle’s
mass.
In light of the well-known mishaps with the use of the

Feynman parametrization [3] in finite temperature calcu-
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lations, it is important to establish that the MST in the ITF
has the correct analytical properties when the discrete
Matsubara frequency is continued to arbitrary complex
values. In this work we undertake such a study. We perform
an explicit calculation of the one-loop self-energy in a �3

theory as a guiding tool to find out how the Feynman
parametrization should be used in the ITF of thermal field
theory. The work is organized as follows: In Sec. II we give
a brief summary of the previous analyses that have dealt
with this problem and compare their results. In Sec. III, we
give a detailed derivation of the standard calculation using
conventional techniques. We explore the case when the
external momentum approaches zero and, in particular,
give the explicit result in the infrared limit. As we want
to compare with the MST, the answer is given in terms of
an expansion in powers of m=T for the case when T � m.
We also point out the importance of considering that the
external frequency takes on discrete values and therefore
implementing the periodicity of the resulting expressions
before taking the analytical continuation to arbitrary com-
plex values. In Sec. IV we perform the calculation using
the MST which involves the use of the Feynman parame-
trization. We underline the importance of carrying out the
integral over the Feynman parameter x 2 ½0; 1� to avoid
the appearance of spurious end point singularities. We
carefully show how the simple Feynman parametrization
has to be corrected to account for the case where the sum of
denominators in the Feynman formula vanishes and em-
phasize that this correction term accounts for the whole
dependence on the way the momentum approaches zero, in
agreement with the analysis in Ref. [3]. In Sec. V we apply
the results for the computation of integrals describing the
self-energy of a neutral scalar interacting with charged
ones in the presence of a magnetic field. We finally present
our conclusions and give an outlook in Sec. VI. We leave
for the appendices the demonstration of important inter-
mediate results and alternative derivations of the calcula-
tions arising in the discussion of Secs. III and IV.

II. NONANALYTICITYAND MISHAPS WITH
FEYNMAN PARAMETRIZATION

The problem of the nonanalyticity of thermal field the-
ory calculations as the momentum components approach
zero, has been analyzed by several authors. The landscape
of findings is, at first sight, rather blurred since there are
many details in the calculations that are sources of more
extended discussions. Among these we can mention: the
implementation of derivative expansion techniques, the
validity of perturbative and derivative expansions ex-
change, and the implementation of the external bosonic
field periodicity. Other studies are concerned with the
correct analytic continuation to arbitrary complex values
of the external frequency, the soundness of some redefini-
tion of variables inside potentially divergent integrals, the

physical interpretation of the imaginary part of the thermal
bubble, and the use of the Feynman parametrization.
In this work, our main purpose is to show that the use of

Feynman parametrization, within the MST, is a well-
defined procedure. Nevertheless, it is worth pausing to
summarize, from a wider perspective, what has been found
in the context of the nonanalyticity of thermal self-energies
at the origin in calculations that do not resort to the use of
the MST.
In general, this problem has been dealt with in terms of

perturbative and nonperturbative approaches and both in
the ITF and the real time formulation (RTF) of thermal
field theory. The coincidence between perturbative and
nonperturbative calculations is sometimes taken as a guide
to decide on the correctness of the approach.
The discrepancy between the results in the infrared and

the static limits caused a great deal of confusion, prompt-
ing a number of possible explanations. These ranged from
assigning validity only to the infrared limit as a genuine
result in thermal equilibrium [6], passing by suggesting
that it is not necessary to assume that the external field is in
thermal equilibrium [1,7,8], to dismissing the nonanalytic-
ity by claiming that this is not present in an exact solution
to the slow motion approximation of the Green’s function
[1,6]. In Ref. [1], the calculation in the ITF is done by
extending the external frequency to the whole imaginary
axis and then analytically continuing it to the entire com-
plex plane. With this procedure, the periodicity of the
functions in the external frequency—that was present be-
fore analytical continuation—is lost. This is how the erro-
neous result, that the infrared and static limits coincide, is
obtained. This result seemingly confirmed the one in
Ref. [2] which was performed in the RTF. Reference [9]
points out that truncating the derivative expansion at the
beginning of the calculation, either by keeping only the
constant term [10] or at higher order [1,6], gives mislead-
ing results, in the first case, because the operator nature of
the background field is lost; in the latter, because the
periodicity is not considered.
However, Weldon [3] showed that the results in

Refs. [1,2] go wrong, performing the calculation both in
the ITF and the RTF. In addition to providing physical
arguments for the inequivalence of the infrared and static
limits he demonstrated that in the RTF calculation, the use
of the Feynman parametrization, as is commonly imple-
mented in T ¼ 0 calculations, needs to be corrected. The
correction accounts for the fact that the real time Feynman
amplitude is not the boundary value of a single analytic
function and thus it is necessary to perform one calculation
for the real and another one for the imaginary part.
However, for the discussion concerning the ITF, Weldon
argued that starting from an expression that uses the
Feynman parametrization, the analytical continuation is
not unique and leads to a function containing branch points
and an end point singularity that need to be removed by the
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addition of an extra term. The argument is based on an
expression where the integration interval for the
Feynman parameter x has been changed from x 2 ½0; 1�
to x 2 ½0; 1=2� which uses the symmetry of the integrand
about x ¼ 1=2, before the analytical continuation is
implemented.

In what follows, we will show that the Feynman parame-
trization can be implemented in the ITF (within the MST)
without introducing spurious branch points and end point
singularities. The key ingredients are the implementation
of the periodicity in the expressions before the analytical
continuation, the use of the original integration interval for
the Feynman parameter x, and the accounting of the extra
term that corrects the original Feynman formula when the
sum of denominators vanishes and which happens natu-
rally in the MST. Before proceeding with this analysis, it is
convenient to set the stage and perform an explicit calcu-
lation using the standard technique in the ITF to have a
reference to compare with the result obtained after intro-
ducing the MST.

III. STANDARD CALCULATION

We start the discussion with the explicit expression for
the one-loop self-energy of a scalar field � with a self-
interaction of the form ��3. This is given by

�ðp0l; pÞ ¼ �2

2
T

X1
n¼�1

Z d3k

ð2�Þ3 �ðk0n; EkÞ

��ðk0n � p0l; Ek�pÞ; (1)

where E2
x ¼ x2 þm2, p0l ¼ 2i�lT, k0n ¼ 2i�nT, with l,

n being integers and

�ðp0l; EpÞ ¼ � 1

p2
0l � E2

p

¼ � X
s¼�1

s

2Ep

1

p0l � sEp

: (2)

The standard calculation [3] is done by first summing over
the Matsubara frequencies. This is most easily accom-
plished by using Eq. (2) to write Eq. (1) as

�ðp0l; pÞ ¼ ��2

2
T

X1
n¼�1

Z d3k

ð2�Þ3
X

r;s¼�1

rs

4EkEk�p

� 1

½2�nT þ isEk�½2�nT þ ip0l þ irEk�p� :
(3)

The sum over the Matsubara frequencies can be computed
by means of the identity

X1
n¼�1

1

ðnþ ixÞðnþ iyÞ ¼
�

�

x� y

�
� ½cothð�xÞ � cothð�yÞ�; (4)

which yields the expression for the self-energy

�ðp0l; pÞ ¼ ��2

2

Z d3k

ð2�Þ3 �
X

r;s¼�1

�
1

8EkEk�p

�

� 1

sEk � ðrEk�p þ p0lÞ
�

�
r coth

�
Ek

2T

�
� s coth

�
Ek�p

2T

��
; (5)

where we used that cothðxþ il�Þ ¼ cothðxÞ, in account of
the fact that p0l ¼ 2i�lT, and furthermore that
s cothðsxÞ ¼ cothðxÞ. We emphasize that this is an impor-
tant step necessary to implement the periodicity in the
expression and that eventually allows the analytic continu-
ation of the result to arbitrary complex values of p0l. As
discussed in Ref. [9] when this condition is not taken, the
result cannot be interpreted on physical grounds. To stress
the importance of this point, we show in Appendix A that,
had this condition not been taken, the eventual analytical
continuation would have led to an erroneous result that
needs to be corrected precisely by the addition of the
function �� found in Ref. [3]. Simplifying Eq. (5) we get

�ðp0l; pÞ ¼ ��2

2

X
s¼�1

Z d3k

ð2�Þ3

�
�

cothðEk

2TÞ
4Ek½ðEk � sp0lÞ2 � E2

k�p�
þ ðEk $ Ek�pÞ

�
: (6)

Note that upon the change of variable k� p ! k, the
second term in Eq. (6) reduces to the first one and thus
the complete expression for the self-energy is twice the
first term in the above equation. Carrying out the angular
integration we get

�ðp0l; pÞ ¼ � �2

2ð2�Þ2
X

s¼�1

Z 1

0
kdk

cothðEk

2TÞ
4pEk

� ln

�
p2
0l � p2 � 2sEkp0l þ 2kp

p2
0l � p2 � 2sEkp0l � 2kp

�
: (7)

At this point we take the analytical continuation in p0l from
discrete imaginary values to arbitrary complex ones, p0l !
p0 and explore the limiting behavior of Eq. (7) as the
momentum components of the vector P� ¼ ðp0l;pÞ ap-
proach zero. We specialize to the case where p0 is real.
Since the result depends on the way the limit is taken, we
first set p0 ¼ �p,

�ð�p;pÞ ¼ � �2

2ð2�Þ2
X
s¼�1

Z 1

0
kdk

cothðEk

2TÞ
4Ekp

� ln

�
�2p2 � p2 � 2s�Ekpþ 2kp

�2p2 � p2 � 2s�Ekp� 2kp

�
; (8)

and take the limit p ! 0 by expanding the logarithm
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around p ¼ 0,

�ð�p; pÞ ¼p!0� �2

2ð2�Þ2
X

s¼�1

Z 1

0
kdk

cothðEk

2TÞ
4Ekp

�
�
kpð�2 � 1Þ
k2 � �2E2

k

þ log

�
s�Ek þ k

s�Ek � k

��
: (9)

After carrying out the sum in Eq. (9) we get in the limit
p ! 0,

�ð�p;pÞ ¼p!0� �2

2ð2�Þ2
Z 1

0
dk

cothðEk

2TÞ
2Ek

k2ð�2 � 1Þ
k2 � �2E2

k

:

(10)

By using the identity

coth

�
Ek

2T

�
¼ ½1þ 2nðEkÞ�; (11)

where nðEkÞ is the Bose-Einstein distribution, we can
separate the vacuum and thermal contributions of the
above equation. Keeping only the thermal part we obtain

�Tð�p; p ! 0Þ ¼ � �2

2ð2�Þ2
Z 1

0
dk

nðEkÞ
Ek

k2ð�2 � 1Þ
k2 � �2E2

k

:

(12)

We now follow Ref. [10] to find the explicit expression for
� in the infrared limit at high temperature. The result for
arbitrary � is given in Appendix B. Setting � ¼ 0 in
Eq. (12) we get

�Tð0; p ! 0Þ ¼ �2

4ð2�Þ2 �
1�d

Z
ddk

nðEkÞ
Ek

; (13)

where in order to write the integral in d dimensions, we
have first extended the integration domain from ½0;1� to
½�1;1� and thus multiplied by 1=2. The extension of the
integral in Eq. (12) to d dimensions represents a way of
handling the infinities involved in the explicit computation
and we should keep in mind that in order to make contact
with Eq. (12), the limit d ! 1will be eventually taken. The
extension to d dimensions also calls for the introduction of
the mass scale �. The angular integration in Eq. (13) can
be done straightforward and the result is

�Tð0; p ! 0Þ ¼ �2

4ð2�Þ2 �
1�d 2�d=2

�ðd=2Þ
Z 1

0
kd�1dk

nðEkÞ
Ek

:

(14)

Using the identity

nðEkÞ
Ek

¼ � 1

2Ek

þ �
X1

n¼�1

1

ð�EkÞ2 þ ð2�nÞ2 ; (15)

where � ¼ 1=T, Eq. (14) can be written as

�Tð0; p ! 0Þ ¼ �2

4ð2�Þ2 �
1�d �

d=2

�ðd2Þ
Z 1

0
kd�2dk2

�
�
� 1

2Ek

þ T
X1

n¼�1

1

E2
k þ ð2�nTÞ2

�
:

(16)

Upon the change of variable

z ¼ m2

k2 þm2
; (17)

we get

�Tð0; p ! 0Þ ¼ �2

4ð2�Þ2 �
1�d �

d=2

�ðd2Þ
�
� 1

2
md�1

�
Z 1

0
dzð1� zÞðd=2Þ�1z�ðdþ1Þ=2

þ T
X1

n¼�1
ðm2 þ ð2�nTÞ2Þd�2=2

�
Z 1

0
dzð1� zÞðd=2Þ�1z�ðd=2Þ

�
: (18)

The integrals in the last expression are well known and can
be expressed in terms of ratios of gamma functions �,
namely Z 1

0
dzð1� zÞ�z	 ¼ �ð�þ 1Þ�ð	þ 1Þ

�ð�þ 	þ 2Þ : (19)

Therefore, Eq. (18) becomes

�Tð0; p ! 0Þ ¼ �2

4ð2�Þ2 �
1�d �

d=2

�ðd2Þ

�
�
�md�1

2

�ðd2Þ�ð1�d
2 Þ

�ð12Þ

þ T
X1

n¼�1
ðm2 þ ð2�nTÞ2Þd�2=2

� �ðd2Þ�ð1� d
2Þ

�ð1Þ
�
: (20)

Separating the term with n ¼ 0 in the sum and keeping in
mind that the terms in the sum are even powers of n we get

�Tð0; p ! 0Þ ¼ �2

4ð2�Þ2 2T�
1�d�d=2

�
� 1

4T
md�1

�ð1�d
2 Þ

�ð12Þ

þ �

�
2� d

2

�
md�2

2
þ �

�
2� d

2

�

� X1
n¼1

½m2 þ ð2�nTÞ2�d�2=2

�
: (21)

The first and third terms within the curly brackets in the
right-hand side of the above equation have a singularity
when d ¼ 1 that should be isolated. The singularity in the
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first term arises as the argument of one of the gamma
functions vanishes. The singularity in the third term is
less obvious and we concentrate on it. Defining

S�X1
n¼1

½ðm2þð2�nTÞ2Þðd�2Þ=2�ð2�nTÞd�2þð2�nTÞd�2�

¼ð2�TÞd�2
ð2�dÞþX1
n¼1

½ðm2þð2�nTÞ2Þðd�2Þ=2

�ð2�nTÞd�2�

¼ð2�TÞd�2
ð2�dÞþX1
n¼1

ð2�nTÞd�2

�
��

m2

ð2�nTÞ2þ1

�ðd�2Þ=2�1

�
; (22)

where 
 is the Riemann zeta function, which has a simple
pole at d ¼ 1. In the high temperature limit T � m, we
can approximate the above expression as

S � ð2�TÞd�2
ð2� dÞ þ X1
n¼1

ð2�nTÞd�2

�
d� 2

2

m2

ð2�nTÞ2
�

¼ ð2�TÞd�2
ð2� dÞ þ d� 2

2
ð2�TÞd�4m2
ð4� dÞ:

(23)

Substituting Eq. (23) into Eq. (21) we get

�Tð0; p ! 0Þ ¼ �2

4ð2�Þ2 �
1�d�d=2

�
� 1

2
md�1

�ð1�d
2 Þ

�ð12Þ
þ �

�
1� d

2

�
Tmd�2 þ 2T�

�
1� d

2

�

�
�
ð2�TÞd�2
ð2� dÞ þ d� 2

2
ð2�TÞd�4

�m2
ð4� dÞ
��
: (24)

We now set d ¼ 1� 2� and make a series for � ! 0. The
�-poles cancel and the expression for �T at high tempera-
ture and in the infrared limit is

�Tð0; p ! 0Þ ¼ �2

4ð2�Þ2
�
�T

m
þ ln

�
m

2T

�
þ 	E �m2
ð3Þ

8�2T2

�
;

(25)

where 	E is Euler’s gamma.

IV. MELLIN SUMMATION TECHNIQUE AND
FEYNMAN PARAMETRIZATION

The MST is a useful tool to compute infinite sums [11]
of the form encountered in finite temperature calculations
in the ITF. The technique resorts to applying a Mellin
transform over the discrete frequency to the expression
involving the sum and afterwards applying the inverse
transform to obtain an identity. In this fashion, the calcu-

lation of the sum becomes the easiest part and the problem
reduces to computing the Mellin transform and its inverse
of the remaining expression.
We now show how the combined use of the MSTand the

Feynman parametrization leads to the same result as the
standard calculation obtained in Eq. (25). For this purpose,
we start from the expression for the self-energy in Eq. (1)
separating the sum over Matsubara frequencies as

X1
n¼�1

¼ X�jlj�1

n¼�1
þ X1

n¼jljþ1

þ Xþjlj

n¼�jlj
: (26)

This expression has the advantage of separating the sum
into pieces where the frequencies involved have a definite
sign from the one where the frequencies have a mixed sign.
The former is suited for the application of the MST since
this is an integral transform over a continuous variable
restricted to the positive real axis [see Eqs. (32)]. Since
the combination of frequencies appears as a square, all that
matters is that this has a definite sign, either positive or
negative. For the last term in Eq. (26) this is not possible.
Nevertheless the calculation can be performed making use
of the Feynman parametrization. In addition, notice that by
transforming the original discrete frequencies into a con-
tinuous variable, there are no problems associated to the
implementation of periodicity conditions. However, care
has to be taken when the sum of denominators of the
original Feynman amplitude vanishes, leading to a correc-
tion term, as discussed by Weldon in Ref. [3]. In what
follows we analyze these contributions separately.

A. Definite sign frequencies

To begin, let us concentrate on the first two terms arising
from the separation of the sum over Matsubara frequencies
in Eq. (26) and define

�1ðp0l; pÞ ¼ �2

2
T

� X�jlj�1

n¼�1
þ X1

n¼jljþ1

�

�
Z d3k

ð2�Þ3 �ðk0n; EkÞ�ðk0n � p0l; Ek�pÞ

¼ �2

2
T

� X�jlj�1

n¼�1
þ X1

n¼jljþ1

�Z d3k

ð2�Þ3

�
Z 1

0

dx

½ð1� xÞD2 þ xD1�2
; (27)

where we have introduced the Feynman parametrization
and thus the integral over the Feynman parameter x. In
Eq. (27) D1 ¼ !2

n þ E2
k, D2 ¼ ð!n �!lÞ2 þ E2

k�p. !n;l

are related to k0n and p0l by k0n ¼ i!n, p0l ¼ i!l with
!n ¼ 2�nT and !l ¼ 2�lT. We shift the three momen-
tum integration variable k ! k� ð1� xÞp and, after
making the appropriate renaming of the summation index,
the expression for �1 can be written as
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�1ðp0l; pÞ ¼ �2

2
T
Z 1

0
dx½Sþ þ S��; (28)

where S� are defined as

S� ¼ X1
n¼0

fð!n�Þ; (29)

with

fðyÞ ¼ �3�d �
Z ddk

ð2�Þd

� 1

½y2 þ k2 þ xð1� xÞð!2
l þ p2Þ þm2�2 (30)

and

!2
n� ¼ ð2�TÞ2ðnþ jlj þ 1� ð1� xÞlÞ2: (31)

The quantities !� will become the variables over which
the Mellin transform is computed, that is to say!� ! y in
Eq. (32). Notice that the expression for f involves an
integral that for later purposes has been extended to d
dimensions, and thus the need to introduce the mass scale
�. In order to make contact with Eq. (27), this time, as
opposed to the discussion after Eq. (12), we will be inter-
ested in taking the limit d ! 3.

We perform the sums S� by means of the Mellin sum-
mation technique. In general, the Mellin transform pair
fðyÞ, M½f; s� is given by

M ½f; s� ¼
Z 1

0
ys�1fðyÞdy; � < ReðsÞ<�;

fðyÞ ¼ 1

2�i

Z cþi1

c�i1
y�sM½f; s�ds; � < c < �;

(32)

where � and � are determined by the condition that the
first of the integrals in the above equations converges at
y ¼ 0 and y ¼ 1, respectively. The variable y contains all
the dependence on the summation variable n and is treated
as a continuous variable. By expressing fðyÞ as an inverse
Mellin transform, we can then perform the summation over
n. The problem reduces then to finding the Mellin trans-
form and its inverse of the remaining expression.

From Eq. (30), it is easy to see that � ¼ 0 and � ¼
4� d. In terms of their Mellin transforms, S� can be
expressed as

S� ¼ 1

2�i

X1
n¼0

Z cþi1

c�i1
1

!s
n�

M½f; s�ds: (33)

The sum over n can be explicitly evaluated, yielding

X1
n¼0

1

½nþ jlj þ 1� ð1� xÞl�s ¼ 
½s; jlj þ 1� ð1� xÞl�;

(34)

where 
ða; bÞ is the modified Riemann zeta function. To
find out the Mellin transform of f, we observe that the

integrand of the first of Eqs. (32), with f given by Eq. (30),
can be thought of overall as an integral in ðsþ dÞ dimen-
sions of a function of the square of an ðsþ dÞ-dimensional
vector

K2 ¼ !2
n�|{z}

s�dim

þ k2|{z}
d�dim

: (35)

Such integrals are well known [12] and the result, after
compensating for the volume of the solid angle when
extending the integral from d to ðsþ dÞ dimensions, is

M ½f; s� ¼ �3�d

ð2�TÞs
�ðs=2Þ
2ð4�Þd=2

�ð2� d=2� s=2Þ
�ð2Þ

� 1

½m2 þ xð1� xÞð!2
l þ p2Þ�2�d=2�s=2

;

(36)

where � is the gamma function. Combining the results in
Eqs. (34) and (36) the explicit expression for S� is

S� ¼ �3�d

�
1

2�i

��
1

2ð4�Þd=2
�

1

�ð2Þ � ½m2 þ xð1� xÞ

� ð!2
l þ p2Þ�d=2�2 �

Z cþi1

c�i1
ds
ðs; jlj þ 1

� ð1� xÞlÞ�ðs=2Þ � �

�
2� dþ s

2

�

�
�
m2 þ xð1� xÞð!2

l þ p2Þ
ð2�TÞ2

�
s=2

: (37)

In order to perform the integral over s in Eq. (37), we
notice that it is necessary to know whether the term ½m2 þ
xð1� xÞð!2

l þ p2Þ�=ð2�TÞ2 is larger or smaller than 1. For

the present purposes where we work in the high tempera-
ture limit and want to explore the analytic properties of �
near the origin, we see that ½m2 þ xð1� xÞ�
ð!2

l þ p2Þ�=ð2�TÞ2 < 1. Notice that this assumption limits

the range of values of the external index l to be l ¼ 0;�1.
Taking d ¼ 3� 2�, � ! 0þ, we can choose c such that
1< c < 1þ 2�, in order to both comply with the upper
bound requirement for the existence of the Mellin trans-
form, Eq. (32), and to avoid the pole of 
 at s ¼ 1.
Therefore, the integration contour can be closed to the
right by a half-circle at infinity. The only singularities
within the integration contour are those of �½2� ð3�
2�þ sÞ=2�, namely, when s ¼ 1þ 2�þ 2k, k ¼
0; 1; 2; . . . and the integral over s in Eq. (37) can be com-
puted by means of the Cauchy’s residue theorem, yielding

S� ¼ lim
�!0þ

�2� ð4�Þ�3=2þ�

�ð2Þ ð2�TÞ�ð1þ2�Þ � X1
k¼0

ð�1Þk
k!

� 
ð1þ 2kþ 2�; jlj þ 1� ð1� xÞlÞ

��ð1=2þ kþ �Þ
�
m2 þ xð1� xÞð!2

l þp2Þ
ð2�TÞ2

�
k
: (38)
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Notice that for k > 0, 
ð1þ 2kþ 2�; jlj þ 1� ð1� xÞlÞ
has no singularities since jlj þ 1� ð1� xÞl �
0;�1;�2 . . . For k ¼ 0, the singularity is regulated by �.
Also, the factor ½m2 þ xð1� xÞð!2

l þ p2Þ�k is nonsingular.
Therefore we can analytically continue the functions S�
from discrete to arbitrary complex values i!l ¼ 2�iTl !
p0. Upon this analytic continuation

ð!2
l þ p2Þ ! �ðp2

0 � p2Þ;

l ! �i
p0

2�T
; jlj ! jp0j

2�T
:

(39)

We now explore the limiting behavior of Eq. (38) as the
momentum components of the vector P� ¼ ðp0;pÞ ap-
proach zero. Since the result depends on the way the limit
is taken, again we restrict ourselves to real p0 values, set
p0 ¼ �p, and take the limit p ! 0 for the argument of the

 function,


½1þ 2ðkþ �Þ; 1þ ðj�j � ið1� xÞ�Þp=2�T�
!p!0


½1þ 2ðkþ �Þ� � ðj�j � ið1� xÞ�Þ
� ð1þ 2ðkþ �ÞÞ
½2þ 2ðkþ �Þ�

�
p

2�T

�
: (40)

The integration over the Feynman parameter involves the
computation of the integral

Z� ¼
Z 1

0
dx

�



�
1þ 2ðkþ �Þ;1þ ðj�j � ið1� xÞ�Þ p

2�T

�

�
�
m2 � xð1� xÞð�2 � 1Þp2

ð2�TÞ2
�
k
�
: (41)

As we are interested in evaluating the result near the origin
and in the high temperature limit, we make use of the
expansion of 
 in Eq. (40) into Eq. (41) and evaluate for
the first two terms in the series expansion of Eq. (38),
namely k ¼ 0, 1. Defining

Z� � X1
k¼0

Zk�; (42)

we get

Z0� ¼ 
½1þ 2�� � ðj�j � i�=2Þð1þ 2�Þ
½2þ 2��
�

�
p

2�T

�
þOðp2Þ;

Z1� ¼ 
½3þ 2��
�

m

2�T

�
2 � ðj�j � i�=2Þð3þ 2�Þ

� 
½4þ 2��
�

m

2�T

�
2
�

p

2�T

�
þOðp2Þ: (43)

Notice that in the limit p ! 0, the result coming from the
sums S� is independent of �. Combining Eqs. (38), (42),
and (43) into Eq. (28), we obtain

�1ð0; p ! 0Þ ¼ �2

4ð2�Þ2 �
�
1

2�
þ ln

�
�

2
ffiffiffiffi
�

p
T

�

þ 	E

2
�m2
ð3Þ

8�2T2

�
: (44)

B. Mixed sign frequencies

We now turn to the computation of the third term arising
from the separation of the sum over Matsubara frequencies
in Eq. (26). We define

�2ðp0l; pÞ ¼ �2

2
T

Xþjlj

n¼�jlj

Z d3k

ð2�Þ3
Z 1

0

dx

½ð!n � x!lÞ2 þ y�2 ;

(45)

where y ¼ ðk� xpÞ2 � xð1� xÞðp2
0l � p2Þ þm2. In or-

der to perform the sum over Matsubara frequencies, it is
convenient to note that the degree in the denominator of
Eq. (45) can be reduced since

1

½ð!n � x!lÞ2 þ y�2 ¼ � @

@m2

1

½ð!n � x!lÞ2 þ y�
¼ � @

@m2

X
s¼�1

is

2y1=2

� 1

½ð!n � x!lÞ þ isy1=2� ; (46)

where in the last line we have resorted to partial fraction-
ing. With this reduction, the sum over Matsubara frequen-
cies can be easily performed and we get

�2ðp0l; pÞ ¼ ��2

2

Z d3k

ð2�Þ3
Z 1

0
dx� @

@m2

X
s¼�1

1

4y1=2

�
�
coth

�
sxp0l

2T
þ y1=2

2T

�

þ is

�
c

�
1þ jlj þ is

�

�
sxp0l

2T
þ y1=2

2T

��

� is

�
c

�
1þ jlj � is

�

�
sxp0l

2T
þ y1=2

2T

���
; (47)

where c is the digamma function. Before proceeding
further, it is convenient to note that given a function F

with argument ½sp0lxþ yðx;mÞ1=2�=2T, the identity
@

@m2

�
Fðsp0lx

2T þ yðx;mÞ1=2
2T Þ

yðx;mÞ1=2
�

¼ @

@x

�
Fðsp0lx

2T þ yðx;mÞ1=2
2T Þ

2yðx;mÞðsp0l þ 1
2yðx;mÞ1=2

@yðx;mÞ
@x Þ

�
(48)

is satisfied. Using Eq. (48) into Eq. (47), the integration
over the Feynman parameter becomes trivial and we get,
after performing the angular integration
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�2ðp0l; pÞ ¼ ��2

2

Z 1

0

k2dk

ð2�Þ2
X

s¼��1

� 1

8Ekpk
ln

�
p2
0l � p2 � 2sp0lEk þ 2kp

p2
0l � p2 � 2sp0lEk � 2kp

�
�

�
coth

�
Ek

2T

�
þ coth

�
Ek

2T
� sp0l

2T

�

þ is

�
c

�
1þ jlj þ is

�

�
Ek

2T
� sp0l

2T

��
� is

�
c

�
1þ jlj � is

�

�
Ek

2T
� sp0l

2T

��
þ is

�
c

�
1þ jlj þ is

�

Ek

2T

�

� is

�
c

�
1þ jlj � is

�

Ek

2T

��
: (49)

Notice that all along this part of the calculation, we have
distinguished between l and p0l which are in principle
related through p0l ¼ 2i�lT. The reason is that the first
term arises as a consequence of our treating this partial sum
over Matsubara frequencies as having jlj in the limits of the
summation index, whereas the second is the discrete value
taken by the external energy. If we now use that p0l ¼
2i�lT we notice, in particular, that the periodicity in
Eq. (49), coming from the argument of the second coth,
gets accounted for. However, there is an extra term that
exhibits periodicity in p0l and that is not that evident from
the expression in Eq. (49). This comes from the difference
of the functions c that have p0l in their argument. This
periodicity can be evidenced by resorting to the identity

c ðxþ iyÞ � c ðx� iyÞ ¼ X1
k¼0

2iy

y2 þ ðxþ kÞ2

¼ i

�
� coth½�y� � 1

y

�

� Xjlj
k¼1

2iy

y2 þ k2
: (50)

After this simplification which allows to account for the
periodicity in p0l, the equation can be analytically contin-
ued from discrete to arbitrary complex values of p0l ! p0,
since Eq. (49) is free from singularities. As before, we
explore the limiting behavior of Eq. (49) as the momentum
components of the vector P� ¼ ðp0;pÞ approach zero.
Again, we restrict ourselves to real values of p0, set p0 ¼
�p, and take the limit p ! 0 and we get

�2ð�p; pÞ ¼p!0 �2

2ð2�Þ2 T
Z 1

0
dk

1

E2
k

¼ �2

2ð2�Þ2 T
�
�

2m

�
;

(51)

which is independent of �. Upon combining the results of
Eqs. (44) and (51), we obtain

�ð0; p ! 0Þ ¼ �2

4ð2�Þ2
�
�T

m
þ 1

2�
þ ln

�
�

2
ffiffiffiffi
�

p
T

�

þ 	E

2
�m2
ð3Þ

8�2T2

�
: (52)

C. � dependence

We now proceed to discuss the � dependence of the
result since, as we have seen in Secs. IVA and IVB, this
dependence is absent in the terms calculated so far.
As is shown in Ref. [3], the usual Feynman parametri-

zation formula at finite temperature has to be corrected
when the sum of denominators can vanish. The correct
expression is in this case

1

D1D2

¼
Z 1

0

dx

½ð1� xÞD2 þ xD1�2
þ 4�i

�ðD1 þD2Þ
D1 �D2

;

(53)

where the first term is taken as the principal value. Since
within the MST, the Matsubara frequencies in the sum are
first treated as continuous upon the Mellin transform, and
when an analytic continuation is required, there is the
possibility that the second term contributes. We proceed
to show that this is indeed the case and that this last term
carries the full � dependence of the result. In Appendix B
we show that the term here computed coincides with the
one obtained by using the standard procedure.
We first look at the contribution from the positive sign

frequencies which can be written as

�n>0
� ¼

�
�2

2

�
4�iT

X1
n¼1

Z d3k

ð2�Þ3

� �½ð!n �!lÞ2 þ E2
k�p þ!2

n þ E2
p�

ð!n �!lÞ2 þ E2
k�p �!2

n � E2
p

: (54)

Upon the change of variable

k ! kþ p=2; (55)

and the introduction of the Mellin transform and its in-
verse, Eq. (54) can be written as

�n>0
� ¼

�
�2

2

�
4�iT

X1
n¼1

Z cþi1

c�i1
ds

!s
n

ð�iÞs
Z 1

0
duus�1

�
Z d3k

ð2�Þ3

� �½ð�iu�!lÞ2 � u2 þ 2E2
k þ p2=2�

ð�iu�!lÞ2 þ u2 � 2p 	 k ; (56)

where the Mellin transform has been taken from the dis-
crete Matsubara frequency !n ! �iu, in anticipation for
the taking of the analytical continuation i!l ! p0. Also,
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for convergence of the integral, 0< c< 3. Taking the
analytic continuation i!l ! p0, setting p0 ¼ �p, the in-
tegral over k can be performed straightforward. In the limit
p ! 0 we getZ d3k

ð2�Þ3
�½�ðu� �pÞ2 � u2 þ 2E2

k þ p2=2�
�ðu� �pÞ2 þ u2 � 2p 	 k

¼ 1

ð2�Þ28p
�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 �m2

p
þ �u

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 �m2

p
þ �u

�

� �2m2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 �m2

p
ðm2 � u2ð1� �2ÞÞ

�
: (57)

It is easy to show that the potentially dangerous first term in
the above equation for p ! 0 is canceled from a similar
contribution arising from the sum over negative Matsubara
frequencies. We thus just concentrate on the second term of
Eq. (57). We give explicit results for the case �> 1; the
case �< 1 can be worked out by resorting to the trans-
formation formulas for the hypergeometric function. Here
we just point out that when 0<�< 1, the high tempera-
ture expansion contains an imaginary part. Integration over
the variable u gives

�
Z 1

0
ð�iÞsduus�1 �2m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 �m2
p

½m2 � u2ð1� �2Þ� ¼ ð�iÞs m
s�1

ffiffiffiffi
�

p
2

�2

ð1� �2Þ �
�
�ð3�s

2 Þ
�ð4�s

2 Þ 2F1

�
1;
3� s

2
;
4� s

2
;

1

1� �2

�

� i
�ðs�2

2 Þ
�ðs�1

2 Þ 2F1

�
1;
3� s

2
;
4� s

2
;

1

1� �2

�

þ i
�ðs2Þ�ð2�s

2 Þ
�ð12Þ

ð�1Þs=2
ð1� �2Þs=2�1

� 2F1

�
s

2
;
1

2
;
s

2
;

1

1� �2

��
; (58)

where 2F1 is a hypergeometric function. The remaining s-dependent factor comes from the summation over the Matsubara
frequencies in Eq. (56) which yields

X1
n¼1

1

!s
n

¼ 1

ð2�TÞs 
ðsÞ: (59)

Therefore, the integral over s involves the terms

L1 ¼ T

m

�2
ffiffiffiffi
�

p
2ð2�iÞ

Z cþi1

c�i1
ds

��im

2�T

�
s 
ðsÞ
ð1� �2Þ

�ð3�s
2 Þ

�ð4�s
2 Þ � 2F1

�
1;
3� s

2
;
4� s

2
;

1

1� �2

�
;

L2 ¼ i
T

m

�2
ffiffiffiffi
�

p
2ð2�iÞ

Z cþi1

c�i1
ds

��im

2�T

�
s ð�1Þs=2
ðsÞ
ð1� �2Þs=2 �

�ðs2Þ�ð2�s
2 Þ

�ð12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

�2

s
;

L3 ¼ i
T

m

�2
ffiffiffiffi
�

p
2ð2�iÞ

Z cþi1

c�i1
ds

��im

2�T

�
s 
ðsÞ
ð1� �2Þ

�ðs�2
2 Þ

�ðs�1
2 Þ � 2F1

�
1;
3� s

2
;
4� s

2
;

1

1� �2

�
;

(60)

where we used that

2F1

�
s

2
;
1

2
;
s

2
;

1

1� �2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

�2

s
: (61)

In order to compute L1;2 we can close the contour of

integration by a half-circle at ReðsÞ ! 1 since the con-
vergence of the integrals is controlled by the ratio m=T
which is taken to be less than one. The integral over this
half-circle vanishes. L1;2 are given by the residue of the

poles of �½ð3� sÞ=2� and �½ð2� sÞ=2�, which are located
at s ¼ 2kþ 3, and at s ¼ 2ðkþ 1Þ, k ¼ 0; 1; 2 . . . , respec-
tively. Choosing c > 1we can avoid the pole of 
ðsÞ at s ¼
1. Working with this choice we get

L1 ¼ � i

2
ffiffiffiffi
�

p
�

�2

�2 � 1

�X1
k¼0

1

k!

�
m

2�T

�
2kþ2 � 
ð2kþ 3Þ

� 2F1ð1;�k; 1=2� k; 1
1��2Þ

�ð1=2� kÞ ;

L2 ¼ i

2�

�
�2

�2 � 1

�
1=2 X1

k¼0

1

ð�2 � 1Þk
�

m

2�T

�
2kþ1

� 
½2ðkþ 1Þ�: (62)

For L3 we notice that the contour of integration can be
closed by a half-circle at ReðsÞ ! �1 since, as we will
show, the contribution will be proportional to T=m which
we take to be larger than 1. The integral over this half-
circle vanishes. The integral is given by the residue of the
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poles of �½ðs� 2Þ=2� which are located at s ¼ �2k, k ¼
0; 1; 2 . . . . However, since 
ð�2kÞ vanishes for k ¼
1; 2 . . . , the only pole that contributes is the one at s ¼ 0.
We thus get

L3 ¼ i

�
T

m

��
�

2

�
½��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
�: (63)

By changing !n ! �!n in Eq. (54), or equivalently,
u ! �u in Eqs. (56) and (57), it is straightforward to show
that for the modes with n < 0 the contribution from the
logarithmic term in Eq. (57) cancels. Therefore, the con-
tribution from the modes with n � 0 is just twice the above
discussed contribution from the modes with n > 0. The
remaining term to compute is the one coming from the
mode with n ¼ 0. It is easy to show that the delta function
in this case does not have support and thus this contribution
vanishes.

Writing all together, the final result expressed as an
explicit power series in the ratio m=2�T can be written as

�� ¼
�
�2

8�2

���
�T

m

�
�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� 1

p
��Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�2� 1

s �
�
�

m

2�T

�

ð2Þ� 1

ð�2� 1Þ
�

m

2�T

�
3

ð4Þ

� 1

ð�2� 1Þ2
�

m

2�T

�
5

ð6Þ� . . .

�

þ
�

�2

�2� 1

��
1

2

�
m

2�T

�
2

ð3Þþ ð3��2Þ

4ð�2� 1Þ
�

m

2�T

�
4

ð5Þ

þ ð3�4� 10�2þ 15Þ
16ð�2� 1Þ2

�
m

2�T

�
6

ð7Þþ . . .

��
: (64)

As we show in Appendix B, this result coincides with the
one computed with the standard method.

D. Infrared limit

As can be seen from Eq. (57) [which is written before
computing the integral over u for which we have assumed
�> 1] in the infrared limit (� ¼ 0), the self-energy does
not depend on �. In order to compare the result in Eq. (52)
with Eq. (25), which is computed in the infrared limit, we
need to subtract from Eq. (52) the vacuum contribution,
since the MST does not explicitly separate this from the
thermal contribution. From Eqs. (10) and (11) the vacuum
contribution to � in the infrared limit is

�vacð0; p ! 0Þ ¼ �2

8ð2�Þ2 �
1�d

Z ddk

Ek

; (65)

where we have extended the integral to d dimensions.
Notice that in this case, in order to make contact with
Eq. (10), the limit d ! 1 will be eventually taken.
Explicit evaluation of Eq. (65) yields

�vacð0; p ! 0Þ ¼ �2

8ð2�Þ2
�
1

�
þ ln

�
�2

�m2

�
� 	E

�
: (66)

Therefore, the thermal contribution is obtained by subtract-
ing Eq. (66) from Eq. (52) and this is given by

�Tð0; p ! 0Þ ¼ �ð0; p ! 0Þ ��vacð0; p ! 0Þ

¼ �2

4ð2�Þ2
�
�T

m
þ ln

�
m

2T

�
þ 	E �m2
ð3Þ

8�2T2

�
;

(67)

which coincides with Eq. (25).
At this point it is important to underline that the ingre-

dient making possible that the standard procedure repro-
duced in Sec. III and the MST described in Sec. IV lead to
the same result is the implementation of the periodicity of
the expressions—by appealing to the fact that the external
frequency is discrete—before the analytical continuation to
arbitrary complex values of the external frequency is taken.
Also, when the Feynman parametrization is used and after-
wards the periodicity implemented, the procedure leads to
the well-known result, provided the integration domain for
the Feynman parameter x is x 2 ½0; 1�. Nevertheless, as is
discussed in Refs. [1,3], before the analytic continuation,
the integrand is symmetric about x ¼ 1=2 and thus it is
seemingly possible to get the Feynman integral as twice the
result when x 2 ½0; 1=2�. We show in Appendix C that this
introduces the extra complication of a spurious end point
singularity and thus leads to the well-known mishaps with
the use of the Feynman parametrization in the ITF.
We also point out that, as mentioned in Ref. [1], for

practical purposes, the result in Eq. (67), that is to say, in
the infrared limit, can be directly obtained from Eq. (1) by
setting p0l; p ¼ 0 right from the start. In this case, in the
context of the MST, the mixed frequency sum in Eq. (45)
collapses to the computation of the contribution of the n ¼
0 Matsubara frequency and the definite sign frequency
sums in Eq. (27) can be condensed into a single sum
over positive definite frequencies. For calculations involv-
ing propagators raised to higher powers, where one seeks
an answer in the infrared limit, this simplification makes
the MST a rather convenient technique, particularly in the
high temperature limit T � m since it gives the final
answer in terms of a series in m=T. We proceed to show
that this is the case when computing the self-energy of a
scalar particle interacting with charged scalar particles in
the presence of an external magnetic field.

V. APPLICATION: SCALAR SELF-ENERGY IN A
MAGNETIC FIELD

In the standard model, after symmetry breaking, there is
an interaction term of the physical Higgs � with the
charged ones ’� of the form �’y’�. In the presence of
an external magnetic field, the propagators for the charged
modes are affected, becoming, in the weak field limit and at

AYALA, PICCINELLI, SÁNCHEZ, AND TEJEDA-YEOMANS PHYSICAL REVIEW D 78, 096001 (2008)

096001-10



finite temperature [4]

DBð!n; kÞ ¼ 1

ð!2
n þ E2

kÞ
�

�
1� ðeBÞ2

ð!2
n þ E2

kÞ2

þ 2ðeBÞ2k2?
ð!2

n þ E2
kÞ3

�
; (68)

where eB is the coupling of the charged scalars to the
external magnetic field. One of the diagrams contributing
to the physical Higgs self-energy at one loop, depicted in
Fig. 1, is given explicitly by

�Bð!l; pÞ ¼ �2T
X
n

Z d3k

ð2�Þ3 �DBð!n; kÞ

�DBð!n �!l; k� pÞ: (69)

To lowest order in eB, this self-energy becomes

�Bð!l; pÞ ¼ �2T
X
n

Z d3k

ð2�Þ3 fI11 � ðeBÞ2½I31 þ I13

� 2k2?I41 � 2ðk� pÞ2?I14�g; (70)

where we define

Inm ¼ 1

½!2
n þ E2

k�n½ð!n �!lÞ2 þ E2
k�p�m

: (71)

When interested in describing the infrared properties of
this self-energy, we look at the infrared limit which, as
previously discussed can be obtained in a straightforward
manner by setting p0l; p ¼ 0. In doing so, we get

�Bð0; p ! 0Þ ¼ �2T
X
n

Z d3k

ð2�Þ3 fI20 � 2ðeBÞ2

� ½I40 � 2k2?I50�g: (72)

Notice that the functions In0 are all related through

In0 ¼ ð�1Þn�1

ðn� 1Þ!
@n�1

@ðm2Þn�1
I10: (73)

The MST technique discussed in Sec. IV can be general-
ized to the computation of I10 and from Eq. (73) to all the

expressions involved in Eq. (72). The interested reader is
referred to Refs. [4] for details and the result at high
temperature and to lowest order in the magnetic field
strength is

�Bð0; p ! 0Þ ¼ �2

�
2

ð4�Þ2Þ
�
1

2�
þ 	E þ ln

�
�

4�T

��

þ T

8�m
� ðeBÞ2

64

�
T

�m5
þ 1

T4


ð5Þ
16�6

��
;

(74)

where we have not subtracted the vacuum contribution.
We emphasize that the MST is suited to obtain an

expression such as Eq. (74), namely, an expansion at
high temperature starting from the original expression for
the self-energy in the ITF. This is so since the sum over
Matsubara frequencies and the integration over the spatial
components of the momentum can be carried out together
in a single step, in a straightforward manner, right from the
very beginning.

VI. SUMMARYAND CONCLUSIONS

In this work we have shown that the MST is a well-
defined method to compute Feynman integrals in the ITF
of finite temperature field theory. The MST is particularly
useful to find the explicit result as a series in a small
parameter, for instance, the ratio m=T at high temperature
and in the infrared limit. The method calls for the use of the
Feynman parametrization which in the past has been linked
to problems in the ITF when the analytical continuation
from discrete Matsubara frequencies to arbitrary complex
values is performed. We have also shown that these prob-
lems are not endemic to the Feynman parametrization and
have traced back their origin to (a) not implementing the
periodicity of the expressions before analytical continu-
ation and to (b) changing the domain of integration in the
Feynman parameter from x 2 ½0; 1� to x 2 ½0; 1=2� which
introduces a spurious end point singularity. We have ex-
plicitly shown that when using the MSTand the calculation
is properly carried out, it leads to the same result obtained
by means of the standard technique in the ITF in the
infrared limit. In particular, we have shown the need to
take into account the correction term to the usual Feynman
formula, in order to consider the case when the sum of
denominators vanishes, and that this term is the source of
the full � dependence of the result, in agreement with
Ref. [3]. The usefulness of the method is illustrated by
the computation of the one-loop self-energy in the standard
model of the physical Higgs field interacting with the
charged components in the presence of a weak external
magnetic field, in the infrared limit.

FIG. 1. One-loop Feynman diagram contributing to the self-
energy of the physical Higgs, represented by the single line,
interacting with the charged Higgs components, represented by
the double lines, in the presence of an external weak magnetic
field.
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APPENDIX A: EVALUATION OF �ðp0l; pÞ
WITHOUT IMPLEMENTING THE PERIODICITY

In this appendix, we aim at furthering the argument on
the importance of having implemented the periodicity in
the function coth in Eq. (5), to achieve the proper analytic
continuation to arbitrary complex values of p0l in the
evaluation of �ðp0l;pÞ. We show here that when p0l is
not taken initially as i times a discrete Matsubara fre-
quency, then, when p0l ! p0, where p0 is a continuous
arbitrary complex number, one is bound to obtain a spu-
rious term which needs to be canceled precisely by the
addition of the quantity �� of Ref. [3].

Without using that p0l takes on discrete integer values,
instead of arriving at that equation we would have

�ðp0l; pÞ ¼ ��2

2

Z d3k

ð2�Þ3 �
X

r;s¼�1

�
rs

8EkEk�p

�

� 1

sEk � ðrEk�p þ p0lÞ
�

�
coth

�
sEk

2T

�
� coth

�
rEk�p þ p0l

2T

��
; (A1)

which can be rewritten as

�ðp0l; pÞ ¼ ��2

2

Z d3k

ð2�Þ3 �
X

r;s¼�1

�
rs

8EkEk�p

�

� 1

sEk � ðrEk�p þ p0lÞ �
�
coth

�
sEk

2T

�

� coth

�
rEk�p

2T

�
þ csch2ðrEk�p

2T Þ
cothðrEk�p

2T Þ þ cothðp0l

2TÞ
�
;

(A2)

where we used cothðaþ bÞ ¼ cothðaÞ � csch2ðaÞ�
ðcothðaÞ þ cothðbÞÞ�1 to separate the dependence on
Ek�p and p0l in the second hyperbolic function. Note

that, compared to what we had in Eq. (5), we now have a
third term as a result of not fully exploiting the periodic
properties of the functions involved.

We now concentrate in the last term in Eq. (A2) and
show that, according to Ref. [3] and in the limit when p !
0, this corresponds to minus the function one needs to add
to correct the result. Let us then call �Xðp0l; pÞ the con-
tribution from the aforementioned term

�Xðp0l; pÞ ¼ ��2

2

Z d3k

ð2�Þ3
X

r;s¼�1

�
rs

8EkEk�p

�

� 1

sEk � ðrEk�p þ p0lÞ

�
�

csch2ðrEk�p

2T Þ
cothðrEk�p

2T Þ þ cothðp0l

2TÞ
�
; (A3)

where, upon summing over s we have

�Xðp0l; pÞ ¼ ��2

2

Z d3k

ð2�Þ3
X
r¼�1

� �r

4Ek�p

�

� 1

ðrEk�p þ p0lÞ2 � E2
k

�
�

csch2ðrEk�p

2T Þ
cothðrEk�p

2T Þ þ cothðp0l

2TÞ
�
: (A4)

In order to integrate out the angular contribution, we can
perform the momentum shift k� p ! k so that all the
angular dependence will be in the coefficient rather than in
the hyperbolic functions. This allows for a straightforward
integration and we arrive at

�Xðp0l; pÞ ¼ ��2

2

Z 1

0

dk

ð2�Þ2
X

r¼�1

��rk2

4Ek

�

�
�

csch2ðrEk

2T Þ
cothðrEk

2T Þ þ cothðp0l

2TÞ
�
� 1

2kp

� ln

�
p2
0l � p2 þ 2rEkp0l � 2kp

p2
0l � p2 þ 2rEkp0l þ 2kp

�
: (A5)

We now proceed as in the main body of the paper after
Eq. (7). We take the analytical continuation in p0l from
discrete imaginary values to arbitrary complex ones p0l !
p0. Since the result depends on how the limit is explored,
we first set p0 ¼ �p. To analyze the behavior near the
origin, we expand the function coth and the logarithm
around p ¼ 0 and, up to linear terms, we obtain

�Xð�p; pÞ ¼p!0��2

2

Z 1

0

dk

ð2�Þ2
X
r¼�1

��rk

8Ekp

�

�
�
�p

2T
csch2

�
rEk

2T

��
� ln

�
1� 2k

kþ r�Ek

�
;

(A6)

which, after summing over r gives

�Xð�p; pÞ ¼p!0��2

2

Z 1

0

dk

ð2�Þ2
�

�k

16EkT
csch2

�
Ek

2T

��

� ln

�
k� �Ek

kþ �Ek

�
2
: (A7)

Now, just as we did in Sec. III, we are interested in having
an explicit functional dependence on� of�X. We can then
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easily extract the thermal contributions thereby knowing
how�X modifies�, as was discussed in Eq. (12). For this
purpose, it is convenient to note that the term in the square
brackets of Eq. (A7) can be written in terms of a partial
derivative (@k cothEk ¼ kE�1

k csch2Ek), so that we can

complete a total derivative through integration by parts,
to have

�Xð�p; pÞ ¼p!0��2

2

Z 1

0

dk

ð2�Þ2
�
��

8
� @

@k

�
coth

�
Ek

2T

�

� ln

�
k� �Ek

kþ �Ek

�
2
�
þ �2ðE2

k � k2Þ
2Ekðk2 � �2E2

kÞ
� coth

�
Ek

2T

��
: (A8)

Finally we can separate the vacuum and the thermal con-
tributions using the identity in Eq. (11), so that the thermal
part is

�T
Xð�p;pÞ ¼p!0� �2

2ð2�Þ2
Z 1

0
dk

nðEkÞ
Ek

�2m2

ðk2 � �2E2
kÞ
:

(A9)

The function�T
X in Eq. (A9) is precisely limp!0��ð�p; pÞ

found in Eq. (30) of Ref. [3], but with the opposite sign. We
can see that in the event of not implementing the period-
icity, as we have analyzed in this appendix, inevitably we
will end up with a contribution stemming from the extra
term�X. The situation is corrected, as noted in Ref. [3], if
one adds a function that behaves just as �� in the limit
considered. This turns out to be an important observation,
since we are presenting evidence that neglecting the im-
plementation of the periodicity in the external frequency is
linked to the need of such correcting function. Further
developments on this argument are presented in the rest
of this work.

APPENDIX B: EVALUATION OF �Tð�p;pÞ FOR
p ! 0 AND ARBITRARY �

We start from Eq. (12) rewriting it as

�Tð�p; pÞ ¼ �2

2ð2�Þ2
Z 1

0
k2dk

nðEkÞ
Ek

1

E2
k � �02m2

; (B1)

where �02 ¼ 1
1��2 . We follow again Ref. [10] and use the

identity in Eq. (15) into Eq. (B1), that is

�Tð�p;pÞ ¼ �2

2ð2�Þ2
�3�d

4�

Z
ddk

1

E2
k ��02m2

�
�
� 1

2Ek

þ T
X1

n¼�1

1

ðEkÞ2 þ ð2�nTÞ2
�
; (B2)

where we have written the integral in d dimensions. The
first structure in Eq. (B2) is

J1 ¼ ��3�d �2

2ð2�Þ2
1

4�

Z
ddk

1

2Ek

1

E2
k � �02m2

: (B3)

Carrying out the angular integration and upon the change

of variable z ¼ m2

k2þm2 , we get

J1 ¼ ��3�dmd�3 �2

2ð2�Þ2
1

8�

�d=2

�ðd2Þ
Z 1

0
dzð1� zÞðd=2Þ�1

� zð1�dÞ=2ð1� �02zÞ�1: (B4)

Using the identity

2F1ða; b; c; zÞ ¼
�ðcÞ

�ðbÞ�ðc� bÞ
Z 1

0
dtð1� tÞc�b�1

� tb�1ð1� ztÞ�a; (B5)

where 2F1 is the hypergeometric function, we get

J1 ¼ ��3�dmd�3 �2

2ð2�Þ2
�d=2

8�

�ð3�d
2 Þ

�ð32Þ

� 2F1

�
1;
3� d

2
;
3

2
;�02

�
: (B6)

For the second structure in Eq. (B2), a similar procedure
leads to

J2¼�3�d �2

2ð2�Þ2
�d=2

4�
�

�
2�d

2

�
�T

X1
n¼�1

ðm2þ!2
nÞðd=2Þ�2

� 2F1

�
1;2�d

2
;2;

!2
nþ�02m2

!2
nþm2

�
: (B7)

Note that for the term n ¼ 0 in Eq. (B7), the argument of
the hypergeometric function becomes independent of m
and T. The result for �ð�p; pÞ is thus

�Tð�p; pÞ ¼ J1 þ J2: (B8)

In order to verify this result in the limit � ¼ 0 (�0 ¼ 1) we
recall the identity

2F1ða; b; c; 1Þ ¼
�ðcÞ�ðc� b� aÞ
�ðc� bÞ�ðc� aÞ ; (B9)

that can be used to write

J1 !�¼0 � �2

2ð2�Þ2
1

8�

�
�

m

�
3�d �ðd�1Þ=2�ð3�d

2 Þ�ðd2 � 1Þ
�ðd2Þ

;

J2 !�¼0
�3�d �2

2ð2�Þ2
1

4�

�d=2�ð2� d
2Þ�ðd2 � 1Þ

�ðd2Þ

� T
X1

n¼�1
ðm2 þ!2

nÞðd=2Þ�2: (B10)

Using the procedure as in Eqs. (20)–(23) to obtain the high
temperature limit, we get for J2
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J2 ¼ �2

2ð2�Þ2
1

4�
�3�d

�d=2�ð2� d
2Þ�ðd2 � 1Þ

�ðd2Þ
�

�
Tmd�4 þ 2Tð2�TÞd�4
ð4� dÞ

þ 2T

�
d

2
� 2

�
ð2�TÞd�6m2
ð6� dÞ:

�
(B11)

Taking d ! 3� 2� and � ¼ 0, the result in the infrared
limit is

�Tð0; p ! 0Þ ¼ �2

4ð2�Þ2
�
�T

m
þ ln

�
m

2T

�
þ 	E �m2
ð3Þ

8�2T2

�
;

(B12)

which coincides with Eq. (25).
We can also use the former analysis to give an explicit

expression for the � dependence of the self-energy in the
high temperature limit. We first separate from Eq. (B1) all
� dependence. In terms of the parameter �0, we get

�ð�p; pÞ ¼ �2

2ð2�Þ2
Z 1

0
dk

nð!kÞ
!k

�
1þ ð�02 � 1Þm2

!2
k � �02m2

�
� �0 þ��; (B13)

where

�� � �2ð�02 � 1Þm2

2ð2�Þ2
Z 1

0
dk

nð!kÞ
!k

1

!2
k � �02m2

: (B14)

Notice that the above integral can be obtained from
Eq. (B1) taking d ¼ 1� 2� and with the changes

�3�d ! �1�d;
1

4�
! 1

2
(B15)

from where we get

J1 ! ��2ð�02 � 1Þ
2ð2�Þ2

1

4

�ð12Þ
�ð32Þ 2

F1

�
1; 1;

3

2
;�02

�

¼ ��2ð�02 � 1Þ
2ð2�Þ2

1

2

sin�1ð�0Þ
�0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �02p ;

J2 ! þ�2ð�02 � 1Þ
2ð2�Þ2

�Tm�1

2

�
2F1

�
1;
3

2
; 2;�02

�

þ 2
X1
n¼1

x3nðx2n þ 1Þ�ð3=2Þ
2F1

�
1;
3

2
; 2;

1þ �02x2n
1þ x2n

��
;

�� � J1 þ J2; (B16)

where xn ¼ m=2�nT. Notice that J1 in Eq. (B16) yields a
T-independent term and therefore contributes only to the
vacuum part. This can be shown to correspond to consid-
ering the pole of 
ðsÞ at s ¼ 1 in L2 given in Eq. (60). We
can thus ignore this term.

In the high temperature limit the parameter xn 
 1, thus
we can perform a series expansion in J2, yielding

J2 ¼
�
�2

8�2

���
�T

m

�
�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
��Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�2 � 1

s �
�
�

m

2�T

�

ð2Þ � 1

ð�2 � 1Þ
�

m

2�T

�
3

ð4Þ

� 1

ð�2 � 1Þ2
�

m

2�T

�
5

ð6Þ � . . .

�

þ
�

�2

�2 � 1

��
1

2

�
m

2�T

�
2

ð3Þ þ ð3��2Þ

4ð�2 � 1Þ
�

m

2�T

�
4

ð5Þ

þ ð3�4 � 10�2 þ 15Þ
16ð�2 � 1Þ2

�
m

2�T

�
6

ð7Þ þ . . .

��
; (B17)

which coincides with Eq. (64).

APPENDIX C: �� IN THE ITF

In this appendix we show that the function �� found in
Ref. [3] emerges in the ITF making use of the Feynman
parametrization only when the limits of integration are
replaced from x 2 ½0; 1� to x 2 ½0; 1=2�.
We start from Eq. (3.33) in Ref. [1]

�xðp0l; pÞ ¼ ��2

8

Z d3k

ð2�Þ3
Z 1

0
dx

� @

@m2

X
r¼�1

coth�2 ðrxp0l þ y1=2Þ
y1=2

; (C1)

where y is defined as

y ¼ E2
k þ xðE2

k�p � E2
kÞ � xð1� xÞp2

0l: (C2)

It is worth noticing that in Ref. [3] the change of variable
k� xp ! k is performed in Eq. (C1), but this change is
not allowed in this case since the integral is divergent,
unless the divergence is regulated by using for instance,
dimensional regularization.
Using the identity in Eq. (48) into Eq. (C1), we get

�xðp0l; pÞ ¼ ��2

8

X
r¼�1

Z d3k

ð2�Þ3
Z 1

0
dx� @

@x

�
�
coth�2 ðrxp0l þ y1=2Þ
2yðrp0l þ @y1=2

@x Þ
�
: (C3)

The integral over x becomes trivial and when evaluating in
the integration limits x ¼ 1, x ¼ 0 we obtain Eq. (5). This
is what is done in Ref. [1] which leads to the correct result,
provided the periodicity in coth is imposed, as discussed in
Sec. III. However, if we instead follow Ref. [3] and use that
the integrand is symmetric about x ¼ 1=2 and thus that the
integral over x in the interval x 2 ½0; 1� is twice the integral
in the interval x 2 ½0; 1=2�, we get

�xðp0l; pÞ ¼ ��2

4

X
r¼�1

Z d3k

ð2�Þ3
Z 1=2

0
dx� @

@x

�
�
coth�2 ðrxp0l þ y1=2Þ
2yðrp0l þ @y1=2

@x Þ
�
: (C4)

AYALA, PICCINELLI, SÁNCHEZ, AND TEJEDA-YEOMANS PHYSICAL REVIEW D 78, 096001 (2008)

096001-14



Notice that Eq. (C4) is valid when p0l is imaginary and
discrete, since only in this case, coth is periodic.
Evaluating the integral over x in Eq. (C4) we get

�xðp0l; pÞ ¼ ��2

4

X
r¼�1

Z d3k

ð2�Þ3

�
�
� coth�2 Ek

Ekð2rp0lEk þ E2
k�p � E2

k � p2
0lÞ

þ coth�2 ðrxp0l þ y1=2Þ
2yðrp0l þ @y1=2

@x Þ

��������x¼1=2

�
; (C5)

where the first term results from evaluating in the lower
limit of the x integral and in the second one we have left
indicated that x is evaluated in 1=2. Notice that when
completing the square in the denominator of the first
term in Eq. (C5), this becomes identical to the result in
Eq. (6), which is the correct result, thus leaving Eq. (C5)
with an extra term, which in fact, as we proceed to show,
corresponds to the function ��� in Ref. [3]. To show this
we must carry out the angular integration in Eq. (C5).
Defining

��ðp0l;pÞ���2

4

X
r¼�1

Z d3k

ð2�Þ3

� coth�2 ðrxp0lþy1=2Þ
y1=2½2ry1=2p0lþE2

k�p�E2
k�ð1�2xÞp2

0l�
;

(C6)

where x should be evaluated in 1=2. Upon the change of
variable k� xp ! k, the angular dependence inside the
function coth is removed and we get

��ðp0l; pÞ ¼ ��2

4

X
r¼�1

Z d3k

ð2�Þ3

�
�

coth�2 ðrxp0l þ�1=2Þ
�1=2½2r�1=2p0l � 2k 	 p�

�
; (C7)

where � ¼ k2 þm2 � xð1� xÞðp2
0l � p2Þ. The remaining

angular integration is readily performed and the result is

��ðp0l;pÞ ¼� �2

4ð2�Þ2
Z 1

0

kdk

�1=2p
ln

�
p0l�

1=2þ kp

p0l�
1=2� kp

�
�½nðxp0lþ�1=2Þ�nð�xp0lþ�1=2Þ�jx¼1=2;

(C8)

where n is the Bose-Einstein distribution. Notice that if in
Eq. (C8) we use that p0l is purely imaginary and discrete,
the function �� vanishes. However, if p0l is analytically
continued to arbitrary complex values, the correct result is
obtained only by the addition of the function �� found in
Ref. [3], which exactly cancels ��.
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