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K — 7w and K — 0in 2 + 1 flavor partially quenched chiral perturbation theory
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We calculate results for K — 77 and K — 0 matrix elements to next-to-leading order in 2 + 1 flavor
partially quenched chiral perturbation theory. Results are presented for both the A/ = 1/2 and 3/2
channels, for chiral operators corresponding to current-current, gluonic penguin, and electroweak penguin
4-quark operators. These formulas are useful for studying the chiral behavior of currently available 2 + 1
flavor lattice QCD results, from which the low-energy constants of the chiral effective theory can be
determined. The low-energy constants of these matrix elements are necessary for an understanding of the
AT = 1/2 rule, and for calculations of €'/e using current lattice QCD simulations.
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I. INTRODUCTION

Lattice QCD is a first-principles approach to calculating
low-energy  hadronic  quantities using numerical
Monte Carlo methods. State-of-the-art calculations are
now including 2 + 1 flavors of quarks in the weighting of
the gauge configurations, thus eliminating the quenched
approximation. However, partially quenched simulations,
where the valence quarks have different masses than those
of the sea quarks, are still of use when combined with
partially quenched chiral perturbation theory (PQxPT) [1].
Since chiral perturbation theory (yPT) comes with a num-
ber of unknown low-energy constants (LEC’s), these
LEC’s must be obtained from nonperturbative methods,
e.g., lattice calculations, or from experiment, in order to
have predictive power. When the number of light sea
quarks is equal to three, then the LEC’s of PQ yPT corre-
spond to those of the unitary theory [2,3], and the LEC’s
obtained from fits to partially quenched lattice data can be
used to predict hadronic quantities. Partial quenching can
therefore be used in order to gain a better handle on chiral
fits to numerical data, because varying the sea and valence
quark masses separately leads to the determination of more
linearly independent combinations of LEC’s. It also allows
one to make use of more of the available lattice data, since
simulating additional valence quark masses is relatively
cheap compared to generating more ensembles with differ-
ent sea quark masses.
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In this work we calculate PQ yPT expressions relevant
for obtaining K — 777 matrix elements from lattice simu-
lations. Although matrix elements of K — 777 are of im-
portance to phenomenology, there are difficulties with
extracting multihadron decay amplitudes directly from
the lattice, as expressed by the Maiani-Testa no-go theorem
[4]. The implication of this no-go theorem is that physical
amplitudes can only be computed if the final state pions are
at rest, or some other unphysical set of kinematics. It was
shown by Lellouch and Liischer [5] (see also Ref. [6]) that
this no-go theorem can be evaded, and that the matrix
elements can be computed at physical kinematics using
finite volume correlation functions. Although this method
does not require yPT, the physical volume necessary to
implement the method at physical quark masses is large,
and therefore prohibitively expensive given the present
computational resources.

An alternative method for calculating K — 77 from
lattice QCD simulations is to obtain the leading order
LEC’s necessary to construct K — 77 from lattice simu-
lations of the simpler quantities K — 77 and K — 0. This
method was introduced quite some time ago in Ref. [7].
Given that there are large corrections to kaon matrix ele-
ments coming from chiral logarithms at higher orders in
SU(3) xPT, it is necessary to include next-to-leading order
(NLO) corrections in the fits to lattice data. This is true
both because the light quark masses are still relatively
heavy in present simulations, and also the physical strange
quark mass is itself rather heavy. It is an important, and as
yet unanswered question whether the kaon mass is light
enough so that K — 7rr amplitudes can be described by
one-loop chiral perturbation theory to a useful precision.
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The issue of convergence is quantity dependent, and so
must be studied for each quantity of interest. We thus
calculate the NLO PQxPT expressions for K — 7 and
K — 0 matrix elements, including finite-size effects,
which are needed both to extract LEC’s from the lattice,
and to assess the convergence of yPT by studying fits to
lattice data as a function of quark masses.

In this work we calculate PQyPT K — 7 and K — 0
matrix elements in the isospin (2 + 1-flavor) limit. We do
not consider the completely nondegenerate quark mass
case since isospin breaking leads to additional complica-
tions [such as (8,1)’s contributing to Al = 3/2 ampli-
tudes], and these would also not be relevant to current
lattice simulations. Thus, we restrict ourselves to the 2 +
1 case in both the sea and valence sectors, but with no
degeneracies between sea and valence quark masses. We
do not present here a complete set of formulas necessary to
extract all of the NLO LEC’s from 2 + 1 flavor lattice
calculations, since some of the needed LEC’s must be
obtained from K — 7r7r amplitudes at unphysical kinemat-
ics. Even so, the formulas should be useful in extracting
leading order LEC’s from lattice data, and in studying the
convergence of the chiral expansion. Note that there are
many works which discuss the determination of the LEC’s
needed to construct K — arr through NLO in yPT at
physical kinematics [8—18], though we make no attempt
to review the various approaches here.

For the (8,1) (Al = 1/2) amplitudes there is an addi-
tional complication in the partially quenched theory com-
ing from the treatment of the gluonic penguin 4-quark
operator. For the 3-flavor theory the situation in PQyPT
is simplified significantly if the corresponding chiral op-
erators are chosen to transform as (8,1)’s under the par-
tially quenched graded symmetry group [12,19]. That is
the prescription we adopt in the current work. If another
choice is made, such as, for example, if the chiral operators
are chosen to transform under the (8,1) chiral symmetry
group of the full theory, then additional LEC’s enter the
calculation, making the determination of the desired LEC’s
more complicated. Although this complication requires
some care in the three-flavor partially quenched theory,
the method is still viable, unlike the quenched theory, in
which quenched gluonic penguin amplitudes lead to large
systematic uncertainties [12,19-22].

This paper is organized as follows: in Sec. II we give a
review of PQyPT, including the effects of the weak
Lagrangian, and in Sec. III we give a quick overview of
the calculation involved. In Sec. IV we review the operator
subtraction that is necessary for Al = 1/2 matrix ele-
ments, and introduce the ®©33) operator for this purpose.
NLO formulas of matrix elements of this operator are
calculated for use in later sections. We present results for
the (8,8) electroweak penguin operators for the K — 0 and
K — 7 processes in Sec. V, where we also give the physi-
cal K — 7r7r amplitudes for completeness. In Sec. VI we
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present results for the (27,1), Al = 3/2, K — 7 matrix
element, and in Sec. VII we present the results for (8,1) and
(8, 1) + (27, 1) operators for K — 0 and K — 7, including
the operator subtraction. In Sec. VIII we discuss the finite
volume corrections for the results presented in this work.
We conclude in Sec. IX and include relevant function
definitions and the chiral logarithm contributions in a set
of appendixes. Appendix H provides an erratum for
Refs. [10,11].

II. PARTIALLY QUENCHED CHIRAL
PERTURBATION THEORY

We use the standard formulation of partially quenched
chiral perturbation theory (PQxPT) introduced in [23,24].
In this formulation, the valence quark loops are removed
by introducing ““ghost™ quarks with the same masses and
quantum numbers as their valence counterparts, but which
obey opposite statistics. The chiral symmetry group for a
partially quenched theory is graded; in general one takes it
to be SU(Nval + Nsealeal)L ® SU(NVal + Nsealeal)R~ For
the purposes of this work, we set N,y = Ny, = 3.
Specifically, we have three valence quarks denoted as x,
v, and z; three sea quarks denoted as u, d, and s; and finally
three ghosts: X, ¥, and Z.

A. Strong Lagrangian in PQyPT

As explained in Ref. [11], in the partially quenched
theory, operators are written in terms of the chiral field

21'(1)]’ )

3= expl:T

where f is the meson decay constant in the SU(3) chiral

limit (normalized such that the physical f, =
130.7 MeV), @ is a 9 X 9 matrix containing the meson
fields,
1.
X ¢

where ¢ is a 6 X 6 matrix of pseudoscalar mesons con-
structed out of valence and sea quarks, ¢ is a 3 X 3 matrix
containing mesons constructed with two ghost quarks, y
( ,\/T) is a 3 X 6 (6 X 3) matrix containing fermionic me-
sons made out of one quark and one ghost quark. 2, trans-
forms under the graded chiral symmetry group as

S, — L3RT, 3)

with L € SU(613);, R € SU(6|3)g. Operators in the chiral
effective theory are constructed from the quark-level op-
erators out of % and other objects (such as the quark charge
matrix and mass matrix, for example) such that they trans-
form the same way under the chiral symmetry group.

The leading-order (LO) strong Lagrangian is given by
[25]
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where the superscript 2 indicates that this Lagrangian is
valid to O(p?) in the chiral power counting scheme, and
M is the quark mass matrix

M = diag(m,, my, M, m,, Mg, Mg, My, M, m,). (5)

Note that this corresponds to the quark vector composed of
valence quarks, sea quarks, and ghost quarks

g=xyzudsx73 7" (6)

The supertrace is defined as follows: for a 9 X 9 matrix

A B
Useo = (e o) @

Cixe
in which submatrix A is the top-left 6 X 6 diagonal block
and D is the bottom-right 3 X 3 diagonal block, then

str(U) = tr(A) — te(D). 8)

We set the valence x and y quark masses equal, and we
set the sea u# and d quark masses equal,

m, = my, m, = my. )

Thus we work in the isospin limit in both the valence and
sea sector, and we present results for both this (2 +
I-flavor) case and the 3-flavor case (degenerate valence
quarks).

At NLO in the full theory [O(p*)], the strong
Lagrangian involves 12 additional operators with undeter-
mined coefficients [25,26]. There is an additional O(p*)
operator which appears in the partially quenched theory
[27], though this operator does not contribute to the quan-
tities considered in this work. The NLO operators of the
strong Lagrangian relevant for the current work are

O = sulL?Jsuls]. O =sufL2s]
(10)

1
@gt) = st[ST%, @gt) = Estr[S2 - P?],

where
S = 2By(MtSt + S M),
P =2By(M'3St —3M), L,=i39,3%

As follows from the strong Lagrangian above, the
leading-order mass of a bare pseudoscalar meson is

Y

where m;; is the mass of meson ®;;, m; and m; are the
masses of the quarks g; and g; (i, j can refer to the sea,
valence, or ghost quarks in this case). In our partially
quenched amplitudes we assume that the light quark
masses are all light enough compared to the 1’ mass so
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that the n’ can be integrated out. As demonstrated in
Ref. [3], this is the case where the LEC’s of the partially
quenched theory with three sea quarks correspond to the
LEC'’s of the unitary theory.

In the following we adopt the notation that the masses of
mesons which are constructed out of two different flavors
of quarks are labeled in terms of their quark constituents,
regardless of whether they are sea or valence, for example
my, or m. For any flavor-neutral meson, we use mp =
myg Or my = m,, for mesons in the “flavor basis.”
Because of the disconnected propagators which arise in
the flavor-neutral sector, this is distinct from the ‘““physical
basis,” where the relevant mesons are the 77° and 7. These
only arise in the sea sector, and we will use the fact that

in the isospin limit (m, = my).

The propagators for flavor neutral mesons are obtained
by following the prescription in Ref. [3] in Minkowski
space:

b idijei i (p* —mp) (p* — m3)

3 (p? —m2) (p2 — m?-j) (p2 - m%) ’

p? —m? +ie

The propagators for flavor off-diagonal mesons are

i€
Dij®ji = zié ’
p*—my; + 1€

where

JEX Y. zud s}

1
wa—IJEQiﬁ

B. Leading-order weak lagrangian

(15)

In full PT, we group the weak operators appearing in
the K — 777 transition by their chiral transformation prop-
erties in the SU(3);, ® SU(3)z symmetry group. We can
carry this same idea over to PQ yPT, where we extend their
definition into the graded group using the expanded chiral
field X and replacing traces with supertraces. Except for
those cases discussed explicitly (such as the quark charge
and mass matrices, for example), when going from un-
quenched to partially quenched yPT, operators are re-
placed as follows:

Aascs
A= (03
(0

056 ) (16)

O6><6

where the upper left block of this matrix is the 3 X 3 block
corresponding to the valence sector.
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The leading order weak operators are [7-9,11,28]

O%Y = su{ A2 03 1]

O%)) = st A9, S+ 3 1]

0% = 2Bystil Ao(SM + M3 1)]
oY = TS, SHkarsh)

(7)

where Q is the quark charge matrix; (A¢);; = 836 ,; and
the tensor 7}, is symmetric on any indices and traceless on
pairs of upper and lower indices, and its elements are
chosen to pick out the AS = 1 transitions; it thus plays a
similar role to that of A4 for the other operators. However,
we will defer the actual determination of its nonzero ele-
ments until Sec. VI, where we will use this tensor to further
divide the operator into the isospin 3/2 part and the isospin
1/2 part and directly evaluate their respective amplitudes.
The isospin decomposition of K — 77 matrix elements is
given in Appendix A.

There is a choice to be made for the quark charge matrix
Q above, which enters in the electroweak penguin opera-
tors [11]. We could either assign charges to ghosts such that
they cancel out the electroweak valence quark loops, or we
could make them uncharged. In this paper we derive the
amplitudes with the electroweak penguin operators for
both choices, which we denote as O, and Q,. We always
assign zero charge to the sea quarks, since that is what is
typically done when generating lattice gauge fields. The
two choices of charge matrix are

0, = diag(2, =1, -1,0,0,0,2, —1, — 1),

(18)
0, = diag(2, =1, —1,0,0,0, 0,0, 0).

We discuss the weak operators which contribute to K —
7 and K — 77 at next-to-leading order in subsequent
sections.

II1. DETAILS OF THE CALCULATION

To make complete use of lattice data in extracting LEC’s
relevant for K — 7777, it is important to work in the non-
degenerate m, = m, # m, case. Since the K — 7 ampli-
tudes do not conserve 4-momentum for m, # m,, the weak

(@) (b)

FIG. 1. Diagrams contributing to K — 0 at NLO. The gray
square is the insertion of a NLO weak vertex, and the small dot is
an insertion of the LO weak vertex.
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operator must transfer a 4-momentum g = p,, — px. In
our calculations we restrict ourselves to the case where
both initial and final mesons are at rest, so g = (m,, —
my, 0,0, 0).

The NLO diagrams contributing to K — 0 and K — 7
are given in Figs. 1 and 2, respectively. The external legs
are always mesons made of two valence quarks, while the
internal loops in the partially quenched theory consist of
valence-ghost, valence-sea, and valence-valence mesons.
In addition to these diagrams, the renormalization of the
external legs (wave-function renormalization) via the
strong interactions must be taken into account.

The logarithmic expressions presented in the appendixes
of this work are quite lengthy. Thus, checks are necessary.
The first check was that the scale dependence of the one-
loop insertions cancel those of the divergent counterterms,
and this check was performed for all expressions in this
paper. Another check is that an expression reduces to some
other in the appropriate limit. All of the logarithmic ex-
pressions in this paper reduce to those in Refs. [§-11,18] in
the appropriate degenerate sea quark and full QCD limits."
Finally, all one-loop expressions in this work were com-
puted separately by at least two of the authors, using
independently written code. The codes used were the
FEYNCALC package [29] written for the MATHEMATICA
[30] system, and the FORMCALC package [31], which in-
terfaces FORM [32] with MATHEMATICA.

IV. SUBTRACTION OF AT = 1/2 AMPLITUDES

In general the Al = 1/2 matrix elements of 4-quark
operators have a power divergent part due to the 4-quark
operators mixing under renormalization with lower dimen-
sional operators when using a lattice regularization. This
power divergence reduces to a quark bilinear times a
momentum independent coefficient [28]. Following
Refs. [7,11,28], in order to remove the power-divergence
of Al = 1/2 operators, we perform a subtraction using the
dimension three quark-level operator

0633 =51 — ys)d. (19)

This subtraction must also be performed in PQyPT for
comparison with the subtracted lattice results. Again fol-
lowing Refs. [7,11,28], the lowest order [O(p®)] chiral
operator corresponding to the (3, 3) operator in Eq. (19) is

03 = aBIsuA,3] (20)

"Note that Ref. [8] contains errors that are corrected in
Ref. [9], and we agree with the latter.

094505-4



K—7ANDK—0IN2+1...

PHYSICAL REVIEW D 78, 094505 (2008)

1
LT

(@)

()

FIG. 2. Diagrams contributing to K — 77 at NLO. As in Fig. 1, the gray square is an insertion of a NLO weak vertex, and the small
dot is an insertion of the LO weak vertex. The large dot is the insertion of an O(p?) strong vertex.

where the low-energy constant a®3) can be related to the
coefficient of the mass term in the leading-order strong
Lagrangian [11],

f03) — _"Bo.

2

As explained in Ref. [28], the ®3) operator can be used
to remove the power divergences to all orders in the lattice
calculation. This subtraction is performed to NLO in
PQYPT explicitly in the sections that follow. To this end,
we require the higher order chiral operators of ®©33). The
terms up to O(p?) needed for this work are

009 = O + ¥ ¢330, @1)

4i o

] 2i 33 !
(01O6I|K%) = fa“’”[l L

— R, (mz, my)e(m3) — 6€(m?,) — 3€(m3,) —

+ R"q(mZ’ mZ)]g(m%]) -

Ry(m,)E(m%) — Ry(m,)(m3)} —

where i takes the values 4, 5, 6, 8, H,, and where

0, = lstr[)\62]str[8ﬂET 93],

[\

O, = %str[)%EaMETa“E],

O} = 2Bystr{ A2 Jstt[ M T3 + ST M],
@é = 2Bostr[/\6§,fMTE], @;_12 = Bostr[)\6.’M].
(22)
The coefficients c33; of the operators O/ are related to the
Gasser-Leutwyler coefficients by c33; = —8B(L;, a rela-
tion similar to that for the leading-order coefficient a3
given above.

To NLO, the K — 0 matrix element for 2 + 1 valence
flavors is

f3 {[1 + RX(mn’ mZ) R (er mX)]€(mX) + [1 + RZ(mn: mX)

6€(mzd) — 30(m?%) + [R, (my, my) + R, (my, my)
32130

{Lgm?. + Ls(2m? + m3)}, (23)

where the chiral logarithms €(m?) and €(m?) are defined in Appendix B, along with the residues R, (m,), R, (m,, my). The

wave-function renormalization 6Z,, is given in Appendix C.

To NLO, the K — 7 matrix element (also for 2 + 1 valence flavors) is

3 2 2 16B
<7T+|®(3,3)|K+> — _ 7a(3,3) _ 0

5 {LSmexz - 2L8(m§( + m)zcz)

—2Le(2m} + mP)} + (T |OCI|K ). (24)

For clarity, the rather lengthy logarithmic contribution is given in Appendix D. For degenerate valence masses (m, =

m. =

y = m,), the K — 7 amplitude simplifies to

5 2
<7T+|®(3,3)|K+>deg.val. — _f Cl(3 3)[1 + 5ZX:| +

f

+[—1+R,(my, my)]€(m%) + 2€(m)26d) + £(m?2,

T Ry(my)0m3)} — 1ch°

7 {mX[RX(

Dm3) = 2R, (my, my) B(O, m3, m3)]

— R, (my, my)€(m3) + [2m5%(1 — R, (my, my))

where ¢(m?) and B(q?, m3, m3) are defined in Appendix B, and 8Zy is given in Appendix C. These expressions are used
below when performing the power divergent operator subtractions that are necessary in order to obtain the physical

amplitudes in which we are interested.
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V. WEAK MATRIX ELEMENTS WITH (8,8), Al =
3/2, AND 1/2 OPERATORS

In this section we present the results for the chiral
operators which transform as (8,8)’s under the chiral sym-
metry. These correspond to the electroweak penguin 4-
quark operators. Formulas are presented for K — 0 and
K — ar for nondegenerate (m, = m, # m;) valence quark
masses, as well as for K — 7 with degenerate valence
quark masses. The power divergent subtraction is dis-
cussed for the Al = 1/2, K — 7 amplitude. Since K —
0 and K — 7 are sufficient to construct K — 77 to NLO
at physical kinematics for the (8,8)’s, we present the physi-
cal K — mr amplitudes as well.

Following Ref. [11], the form of the operator O®3%)
through NLO in PQyPT is

OB = qgesti[ A 2031+ cgg st AL, S O3 TLA]
+ cgg oSt Ag L, Jstr[ SO T LA ]
+ gy 3t A{Z 0T, L2}] + g5 4sti{ A6 {2 031, S]]
+ cg5 5 A[Z O, PI] + cg565t{ A6 Q3 T str[ 5],
(26)

with S, P, and L, as defined in Eq. (11).

A. K — 0 amplitudes for 2 + 1 valence flavors

As explained in Sec. II B, there are two choices for the
quark charge matrix for the operators in the (8,8) repre-
sentation. If we set Q0 = O, we obtain for the K — 0
amplitude

4i
(003K, = F“ss[_zamid) — €(m3,) + 2€(m2,)

+ £(m%)] — 2?088,4(’“)2@ -m}). (27

If we set Q = Q,, we obtain

01069k, = %agg{—e(m@ T 20(m2) — €(m2)

—20(m?%,) — €(m2;) +2€(m?2,) + €(m2,)}

8i
- _C88,4(m)2cz - m%()-

28
7 (28)

B. K — 7= amplitudes for 2 + 1 valence flavors

The process K — 7r must be separated into its Al = 3/2
and Al = 1/2 pieces, and we give the explicit isospin
decomposition in Appendix A. For the Al = 3/2 ampli-
tudes we have

PHYSICAL REVIEW D 78, 094505 (2008)
<7T+|(9(8,8)(3/2)|K+ >Q2 — <7T+|@(8,8)(3/2)|K+ >Q1

o 4a88
-7
+ 2cggq t csy5)my, + my)
+ 2C88]6(2m2D + mg)}
+ <7T+I@(s’s)(3/2)|K+>Q1,logs~ (29)

4
+ F{_(Css,l + cgg0)my my

For brevity, we give only the analytic part of these matrix
elements here; the logarithmic contributions are given in
Appendix E.

For the Al = 1/2 amplitudes, we are ultimately inter-
ested in the subtracted versions, as discussed in Sec. IV. We
expand the amplitude (0|®@G|K) to leading nontrivial
order, and take the ratio

(0|0®|K%) _ Aeggy
0[0CIKY 4B
+ o (30)

Bo(m -

z

where higher order terms in chiral perturbation theory are
omitted. The power divergent contribution is proportional
to m, — m,, and this is true to all orders in the chiral
expansion by CPS symmetry [33] (where CPS is the com-
bined operation of charge conjugation, parity, and a
“switching” operation of d < s [or valence y < z]
quarks). Thus, the ratio of LEC’s containing the power
divergence —4cgg4Bo/(@'>Y) can be extracted from the
corresponding lattice matrix elements, since the mass de-
pendence of the divergent piece is known to all orders of
the chiral expansion. We perform the operator subtraction
using this ratio and the amplitude {7+ |@G)|K*),
<7T+|(9§§'138)(1/2)|K+>Q — (7" |@(8,8)(1/2)|K+>Q
4egg4Bo(m, + m,)
JYEE)

X (m|OCI|KT),

(3D

where by CPS symmetry the power divergence is removed
to all orders in yPT. Through NLO in yPT we have

<7T+|(9(8,8)(1/2)|K+>Q — <7T+|(Q(8,8)(1/2)|K+>Q

sub

— Cgg 4l (32)

8

_ =

These relations hold for either Q = Q,, Q,, and lead to
<,}T+|(9(8,8)(1/2)|K+>Q

sub

_ 8a88
N
+ degg 4 (M2, + m3) + 4egg s(m2 + m%)
88,4\Mlxz X 88,5\Ttxz X
+ 4C88,6(2m2D + m%)} + <7T+|(9(8’8)(l/2)|K+>Q1,logs
(33)

4
+ F{(_CSS,I + g5 + 2c553)m My
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4 ag

3

x {3L[€(m§() + 0(m)
my, — my

— 26(m%.)]

+ 6mxsz(ﬁ(q2’ mgz; m%{)

— B m2, m§>>}.

(T OGP IK g, = (m 1OG UK g, +

(34)

The logarithms appearing in Eq. (33) are given in
Appendix E.

When we have degenerate valence quark masses (m, =
my, = m,), the above formula can be simplified. However,
for some terms, especially those which involve residue
functions Ry(m,, m;,), taking this limit is nontrivial.
Thus, we give the degenerate valence K — 7 amplitudes
explicitly. (The degenerate valence K — 0 matrix elements
vanish due to CPS symmetry [34].) The subtracted ampli-
tude for the degenerate case is given by

8,8)(1/2 deg.val. doovall
(| OEIVI| g y§e v = (| OB/ gy

4688,4(230171)() i 3.3) N
T(W |0 KT)
={(7t 8,8)(1/2)| g+ \deg.val.
(T |OBI KT
8 2
_172088,4me (35)

where again the second equality is correct through NLO in
XPT. In the degenerate case the amplitudes are the same
for Q; and Q,,

deg.val.
<77_+|(9(8,8)(3/2)|K+>Qef2 val

. 4a88
= f2

-3ty + o)

(1+6Zy) +

~ 4
+ 2’"%(5(”1%()} + F[(—Cs&l — cggo T 4eggy

+ degg s)my + 2cg56(2mp, + m3)], (36)

+1((8,8)(1/2)| gr+\deg.val.
(70 K)ot

sub
_ 8a88 8a88
P /?

~ 4
- m}ﬂ(mi)} + F[(_CSS,I + cgg2 T 233

(1+062Zy) + {— §[2€(m§d) + )]

+ 8C83’4 + 8C83y5)m§ + 4c88,6(2m% + mg)] (37)
C. K — 7r7r amplitudes in full QCD

The LEC’s needed to construct the (8,8), K — 77 am-
plitudes at physical kinematics through NLO can be ob-
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tained from the K — 77 and K — 0 amplitudes given
above. The extraction of LEC’s is essentially unchanged
from the case of three degenerate sea quarks treated in
Ref. [11]. For completeness, we present the physical K —
mr amplitudes, which were calculated originally in
Refs. [8,9], and subsequently checked in Refs. [11,35].

4ia88 12l
— +—[(—c
fxf% fxfis 7

— Cgg3 — 2Cgg4 — 2Cgy5

<7T+ m |@(8,8),(3/2) |K0) —

- 4688,6)’"%( — (—cgg1 — Cgs2

+dcggy + dcggs + 2cg56)my]

+ <7T+ | OB.8).(3/2) |K0>10gsr
(38)

. 8ia88 . 12

i
Fof2  FefE s

— Cggn T 4eggy T degys

<7T+ m |(9(8,8),(1/2)|K0> —

+ 8cgge)my + (—csg 1 T Cs30

+ 2cgg3 + 8cggq T 8csgs

+ dcgg 6)mz]

+{(mta |OBDW| KO,
(39)

The logarithmic terms are given in Appendix E. Note that
in Egs. (38) and (39), the decay constants appearing in the
tree-level terms are the physical decay constants (correct to
one loop). When constructing K — 777 amplitudes using
Egs. (38) and (39), one should use the physical decay
constants in the tree-level expression, as determined from
lattice calculations or experiment, in order to avoid double
counting a subset of the one-loop corrections.

VI. K — @ FOR THE (27,1), AI = 3/2 CASE

The operators which transform as (27,1)’s under the
irreducible representation of the chiral symmetry group
give the dominant contribution to Re(4,), i.e., the real
part of the Al = 3/2, K — 7r amplitude. In this section
we review the (27,1) chiral operators that are needed
through NLO, and we give results for the NLO Al =
3/2, K — 7 amplitude.

A. Definition of the O?’)) gperators

Following [7,11], the operator in the (27,1) representa-
tion can be written as
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0D = T}(39, SHESo# ST + 7 THSKS)!,

+ 027,2TZ(P){-((P)5~ + 027,4T£§(Lﬂ)f({L”, S})ﬁ-

+ 027,5TZ(LM)§‘([L”, P))i + 027,6TZ(S)§(L2)§-

+ 027,7T/Z(L,L)?(L”)§Stf[s] + Cz7,2oT/Z(L,L)§C

X (0, WHE)E + 7 00 THW,, )E(WE)L - (40)
where S, P, L, are defined in Eq. (11) and

W, =2(0,L, + 9,L,). (41)

The tensor T,’(’I has different elements depending on which
isospin we are projecting. To project the Al = 3/2 opera-
tor, we set

1
13 — 731 — 713 — 731 —
T12 - T12 - T21 - T21 )

1
5 TR=T8=-

E ’
(42)

whereas for the AI = 1/2 operator, we set
1
TR=T=Th=1=5 TH=13=1

2
3 (43)
T33 — T33 = -

32 23 2
In order to adapt Eq. (40) to the partially quenched
theory, we must promote 7 to a 9* element tensor, although
many components will remain zero (only the 3* block
corresponding to the valence quark sector will have non-
zero elements). To take into account the graded nature of
the group, we multiply by factors of ¢; defined in Eq. (15),
such that

O = ZsiajT]ifl'(gaﬂg’r)f(Ea#ET)} (44)
ikl

where we display the summation over i, j, k, [ explicitly for
clarity.

There is another equivalent approach to obtaining the
partially quenched operators for the (27,1) case. It is pos-
sible, as illustrated in Appendix D of [28], to rewrite
Eq. (40) in terms of traces over the various operators.
The partially quenched theory is then obtained in the usual
way by changing traces to supertraces, and we obtain

0262 = st Ag2a, St su[AZ 9+ S 1]
+su[A320, St su[A, S04 3], (45)

0.0/ = su[As3a, Stsu[BSar31]
+ st 4330, 31 ]sul A, Z0# 2] (46)
where we have defined the matrices

(/\3)1'/' = 5[35,'1, (/\4)ij =06, 5,’2’ 47)
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Aij = 61'15]'1 - 5i26j2’ B = dlag(l, 2, _3) (48)

Since the kaon has isospin / = 1/2, the Al = 3/2, K —
0 process vanishes. The amplitude for the (27,1), Al =
3/2, K — o matrix element is

. 4(127
f2

2.2
+ 4eygpa)mymy; + 8(cara

1
(mH|OPTNER| KT = mym,, + JTZ[16(—C27,2

— cag00)mym(my + m%)
+ 8627,7mxmxz(2m2D + mé)]
(IO (49

where the logarithmic terms are given in Appendix F.
For degenerate valence quarks, this amplitude simplifies
to

<77-+ | (9(27, 1)(3/2) |K+ >deg val.

N g %m§{6€(m§) + 8€(m2,) + 40(m?,)

~ 1
= 3m%(m%)} + JTZ[16(_C27,2 t 74 — €720

+ 4027’24)1’}131( + 8c27,7m§(2m% + mg)] (50)

VIL. AI = 1/2 WEAK MATRIX ELEMENTS FOR
(8,1) AND (8,1) + (27, 1) OPERATORS

In this section we present results for Al = 1/2 ampli-
tudes, which include K — 0 and K — 77 matrix elements,
for operators that transform under the (8, 1) + (27, 1) rep-
resentation, and for those that transform under the pure
(8,1) representation. We perform the power subtraction
explicitly through NLO in the chiral expansion and present
the subtracted amplitudes.

A. Definition of the O®V operator

As shown in Ref. [7], there are two leading order
[O(p?)] operators in the chiral symmetry group (8,1),
with coefficients @, and a,. There are 13 NLO [O(p*)]
operators relevant for this work. Note that there is an extra
operator which only appears in the partially quenched case.
In the full theory, by convention [36], operator 14 is
absorbed into operators 10, 11, 12, and 13 via the
Cayley-Hamilton theorem. This is not possible in the par-
tially quenched theory [11,27]. The (8,1) operators are
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OBV = a st 460, 2043 1] + a2Bost{ Ag(MTZT + ZM)] + cg) 1t A6S?] + cgp o5t A STstr[ ST+ cgy 35t A6 P2]

+ cg1,4st{ AgPIst[P] + cgy sstr{ Ag[ P, ST] + cgp 1ostr{ AetS, L2} + cgy 115t AL, SL#]

+ cgp 18t AL, str[{LH, S}] + cgy 138t AgSTstr[L2] + cgy 1asti[ A L2 Iste[ ST + gy 158t{ Ag[ L2, P]]

+ C81,355tr[)l6{LM, OVW"“’}] + Cgly3gstr[)\6WM,,W“”].

The (27,1) operators relevant for this section are given in
Eq. (40).

B. K — 0 amplitudes

The NLO expression for the unsubtracted K — 0 ampli-
tude in the pure (8 1) case is

8i
aZ(mxz - m%() _(mjzcz - m%()

f

X [2(cgy 1 — cgi5)mi, + g 2(2m3, + m3)]

+ (0lOBV[KO) g, (52)
J

<0|(9(8 1)|K0> —

<0| 0(27’ D |K0>logs = a27{[2mx

f3

+ m%Rn(mZ, my) + Zm%RZ(mn, myx)€(m%) — 6m2.€(m2,) + [— m
— m%,Rn(mX, mx)]f(m%) + mg(RX(mn)E(mg() + mZRZ(mﬂ)(f(mZ)}.

Following the procedure given in Ref. [28], we perform
the subtraction of the power divergence in (8,1) and
(8, 1) + (27, 1) amplitudes. In order to do this we require
the amplitudes for @33 through NLO, given in Sec. IV.
The ratio of (8,1) and (3,3), K — 0 matrix elements to
NLO is

OIO®VIK) _
<0|®(33)|K0> - (3 3)

_f
2ia3d

By(m, —m,) +

X (0|OBDIKO) )+

(m; = m3)

a33)
X [2(cgy — cgsImi: + ey, 2mp, + m3)],
(55)
|
OlOB+EIN K0y g,
<0|@(3,3)|K0> - a(33) Bo(mz - mx) +

4

+ a(3’3) (m)zcz - m%{)[z(cél,l

Ry(m,) + mxR,(myx, my) + 2m3Rx(m., mz)(m%) + [2m3 —

(3 3)

- cgl,s)miz + cgl,2(2m123 + m3) + 6¢a7,,(m2,

(D

where the logarithmic terms are given in Appendix G. For
the (8, 1) + (27, 1) case, we have

48i
<0|(9(8,1)+(27,1)(1/2)|K0> — <O|@(27’1)|K0>1ogs + 7027,1
X (m)%Z - mg()2 + (0|OB V| K9,
(53)

where

RZ(m‘r])

n(er mZ) + 2m%]Rn(er mZ)

(54)

I
3 / / /
where the transformed coefficients cg, 1, cg),, cg;5 (de-

fined in Table I) are linear combinations of the original
LEC’s, cg; 1, etc., and the Gasser-Leutwyler coefficients
originating from O(p?) terms in the amplitude
(0|®@B|K0. The first term on the right-hand side of
Eq. (55) contains the power divergence, which is propor-
tional to m, — m, to all orders in the chiral expansion. The
remaining terms are finite, including the rotated LEC’s
cg ;- Since the rotated LEC’s contain a term proportional
to a,, it follows that the unrotated cg; ;’s must also contain
power divergences [37]. This was implicitly assumed in the
work of Ref. [11].

A similar expression exists for the ratio involving the
(8,1) + (27, 1) amplitude,

<0|@(8 1)|K0>(l) +_J

lgs © 2ia <33) (OO VK s

(56)

- m%)]

C. K — 7 amplitudes with 2 + 1 valence flavors

For the K — 7 amplitudes, we first present the matrix elements of the unsubtracted operators,
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40{2 2 8

da
(mt|OBDIKT) = 7 —tmmy — e

PHYSICAL REVIEW D 78, 094505 (2008)

_ 4 2 2 2\ 2 2
my; +JT2[ 2cg1,1my; — cg1pmiy (2mp, + mg) — 2cg) smymy,

20,2 _ 9 3 3 2 2
+ 2cgy,s5my(my, — my) + 2cgy jomymy, + cgyyimymy; + cgp 1amyxm,(2my, + ms)

— 2cg) 35mym, (my + m%) + 8cgy sgmim% ] + (| OCV| K)o, (57)

4(127

<7T+|@(8,1)+(27,1)(1/2)|K+> f2

my; mX

f2

[48027 ymi(m2, — m%) + 16(—cy7, + 4cagp)mim?, + 8(cazy

— cogp0)myxmy (my + m3,) + 24cyy gmym, (my — m3,) + 8cyg ymym,,(2m3, + m3)]

+ <7T+|(9(27 l)(1/2)|K+>l

where the logarithmic contributions to the (8,1) amplitude
are given in Appendix G, and the logarithmic contributions
to the (27,1) amplitude are given in Appendix F.

Given the coefficient of the power divergent term from
K — 0, it is possible to carry out the operator subtraction in
K — 7 numerically. By CPS symmetry, the following
subtraction removes the divergence to all orders in the
chiral expansion:

(m OGS 1K) = (r OB VIK™) = 25 Bo(m, + m,)
X (7@K, (59)
To NLO this expression becomes
da
<7T+|(9$’b])|K+> le my My fz[ 2cgy My

— iy o3, (2mG, + m3) — 2cgy smymy,

+ 26%1,5m)26z(m,%z - m%)

+ 2¢h jgmxmy, + cgy jimymy,

+ gy umym,, (2mg, + m3)

= 2cg 35y (my + mg,

+ Begy somimi.] + (m |OCDIK )L
(60)

where again, the cg, ; are the linear combinations of LEC’s
given in Table 1. Note that the subtraction eliminates the
term in Eq. (57) proportional to «,. The NLO chiral

TABLE 1. The transformation of the (8,1) LEC’s (denoted in
the text with a prime) under the vacuum subtraction process.
LEC Transformed LEC

81,1 cgin — (dan/f?)(2Lg + Hy)
31,2 csip — (16a2/f?)Lg
31,3 cgi3 + (4an/fA)(—2Lg + Hy)
31,5 cgis — (4ay/fP)H,
81,10 g0 — (4ay/f)Ls
81,13 csiz — (Ban/f?)Ly

81,15 csips T (4ay/f?)Ls

+ {7t |OBD|KT), (58)

logarithms proportional to «, are also eliminated. The
remaining logarithms are contained in the term

(mT OBV KT }fé)s given in Appendix G; this term is pro-
portional to «;.
A similar subtraction can be performed for the (8, 1) +

(27, 1) case,
<7T+|(9£§,bl)+(27,1)(1/2)|[(+> _ <7T+|(9(8,1)+(27,1)(1/2)|K+>

-2 (3%)80("’1 +m)

X (7t |@CI| K, (61)
Again, this subtraction removes the power divergences to

all orders in the chiral expansion. To NLO the subtracted
operator gives the matrix element,

<7T+|(9(8,1)+(27,1)(1/2)|K+>
4(127 1
= 7 mymy + F[48027,1m§z(m,%z — m3)
+ 16(—ca75 + 47 )mimi, + 8(ca74 — €27.20)

2
X mexz(mX + mxz) + 2'4'6.27 6mexz(mX ny,

+ 8¢y ymym,, (2my, + m3)]

+ (T |OTVII|K )+ (7 OG5 IK ). (62)

sub

For degenerate valence quarks, Eq. (60) reduces to

4
(T OGIKyeh = Zomidan + 2(=2¢4,, — 26

+ 2¢410 T Cs111

— 4cgy 35 + 8cgy0)my

+ (= chyy + cg1,14)2mp + m3) ]}
+ <7r+ |@(8,1)|K+>;1:ggs-val.,(1)’ (63)

where the logarithmic terms are given in Appendix G. For
the (8, 1) + (27, 1), K — 7 matrix element, we have for the
degenerate valence case,
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<7T+ | @gﬁ,t)l)+(27, 1)(1/2) |K+ >deg.val.

4 om%7 8
= 1% mg([l + 6Zy + —’le] + - %m§{6€(m§()

2 3f4

X
+ 8€(mxd) + 4€(mx?) - SmXe(mX)}

+ JTQ[16(_027,2 + Ca74 = Cy700 T Ay 04)my

+ 8¢y77m%(2md + m3)] + (| OBV | K+ ydeeval.
(64)

Note that for degenerate valence quarks the (27,1), Al =
1/2 amplitude is the same as the (27,1), Al = 3/2 ampli-
tude, Eq. (50).

VIII. FINITE VOLUME CORRECTIONS

Incorporating the leading corrections coming from the
finite volume used in lattice simulations for the above
expressions is straightforward. Here we assume that the
time extent used to extract the above matrix elements is
infinite, and that the only corrections come from the finite
spatial volume. There are two classes of one-loop integrals
that must be replaced by their finite volume counterparts.
The first is defined in Eq. (B1), and its associated double-
pole counterparts are defined in Egs. (B2) and (B3) [these
are related to Eq. (B1) by derivatives with respect to m?].
As discussed in Refs. [38,39], finite volume effects can be
accounted for by making the replacements

€(m?) — €(m?) + (65)

_ _ 1
€(m?) — €(m?) + = 85(mL), (66)
[ e R LLO

with
Ky (In|mL)

81(m L)—4l§) il (68)
83(mL) = 2[m25 (mL)] =2 Ky(InlmL), (69)

n#0

55(mL) = m? 5 [55(mL)] = = 3 (InlmL)K, ([nlm ),

n#0
(70)

with Ky, K; the modified Bessel functions of imaginary
argument.

The second class of loop integrals are more complicated
and are defined in Eqs. (B4) and (B5). For these, we recall
the technique used to calculate the above finite volume

PHYSICAL REVIEW D 78, 094505 (2008)

corrections. We begin with the finite volume Euclidean
space version of Eq. (B4), and apply the Poisson resum-
mation formula (as discussed in Refs. [38,40]). This leads
to the following replacements:

IB(C] ml, )_’ B(q ml’ )+ 6 (qL mL, m2L)
(71)
ﬂ(q ml, )_’B(C] ml, )
1
R B(qL mL, myL), (72)

and the corrections

k sin(k
dg(qL, m\L, myL) = f i Eny sin(k[nl)
n#0 In|
X w) + wy
w1 0,[(gL)* + () + wy)*]

(73)

0 k 3 k
st =S [0
02070 [n|

(qL)wy + Q| + wy)(w; + w,)?
2wiwy[(gL)* + () + w,)* ]
(74)

where we have defined

w; = vk2 + (miL)Z;

and where the function in Eq. (74) is obtained by taking the
partial derivative of Eq. (73) with respect to m3.

These formulas can be simplified as in Ref. [40], but
only in special cases (such as degenerate masses). For the
general case, it is more difficult to find an approximate
expression for these finite volume corrections.” However, it
is relatively simple to evaluate these expressions numeri-
cally at a finite number of points. Given a set of lattice data
at a number of quark masses and lattice volumes, it would
be straightforward to tabulate the appropriate finite volume
corrections from the above formulas.

IX. CONCLUSIONS

This paper presents the calculation of K — 0 and K —
7r amplitudes to NLO in PQyPT with 2 + 1 flavors of
nondegenerate sea quarks. Results are presented for both
the AI = 1/2 and 3/2 channels, for chiral operators cor-
responding to current-current, gluonic penguin, and elec-
troweak penguin 4-quark operators. The chiral operators

One cannot apply the expansion in Ref. [40], for example,
because these integrals have three different relevant scales, as
given by ¢2, m?, and m3.
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are conveniently grouped by their chiral transformation
properties; this work computes matrix elements of (8,8),
(27,1), (8,1), and (8,1) + (27,1) chiral operators. The
power divergent operator subtraction is performed explic-
itly through NLO in the chiral expansion for Al = 1/2
matrix elements. We have also shown how to include finite
volume effects through one loop for the quantities consid-
ered in this work. These results are useful for studying the
chiral behavior of currently available 2 + 1 flavor lattice
QCD results [41], from which the low-energy constants of
the chiral effective theory can be determined. The low-
energy constants of these matrix elements are necessary for
an understanding of the Al = 1/2 rule and for calculations
of €'/e wusing current lattice QCD simulations.
Electroweak penguin K — 77 matrix elements can be
constructed to NLO in yPT using the formulas presented
in this work, allowing the convergence of the chiral expan-
sion to be studied. This will serve as a useful cross-check
for other non-yPT methods such as those proposed in
Refs. [5,42].
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APPENDIX A: ISOSPIN DECOMPOSITION

The operator that governs the transition K — 7 can have
either isospin 1/2 or isospin 3/2. In typical lattice calcu-
lations, these two processes are calculated independently
[28,43], since the operator with isospin 1/2 mixes with a
divergent lower dimensional operator, which must be sub-
tracted. The isospin 3/2 amplitude does not have this
complication. Therefore, we calculate the amplitudes for
these two processes separately, making use of the ampli-
tudes for K* — 7% and K* — #°.

We define M, = (7"|O;|K"), where O; represents
some AS =1 operator with both isospin 1/2 and 3/2
components, and M, = (7°|0,|K®). If we decompose
the operator O; by isospin, O; = (953 2 4 (951/ 2 then we
have for the matrix elements

M, = (7|0 KF) + (7|0} K,
My = (7] OP?|K%) + (70| O)/?|KO).

Given the relevant Clebsch-Gordon coefficients,
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(710K _ 2

ECRETONER "
(w0 Pkt
Oy V2, (A2)
we obtain the result
1
(m O |K*) = T (M + V2M,)
(A3)

1
(@ 10/ 1K) = 2 @M, = V2 My).

APPENDIX B: LOOP FUNCTIONS AND RESIDUES

The following loop functions are used throughout this
work, and they are regulated using dimensional regulari-
zation in the modified MS scheme. For single-pole mes-
onic loops, we need

, d? i
oty = [1tim [ S0 ]
d—=4 ) 2m)* p* — m* + i€ g

1 2
= 5 m? ln(m—2>,
167 7

(cf. f2A(m?) in Ref. [10,11]). We also need the double-pole
expression

(BI)

dip i
@2m)? (p* —m*)*’
where the minus sign is chosen to be consistent with the

form of Euclidean €(m?) in Refs. [39,44].% Further, we will
sometimes need

~ Jd
g(mz) = —Wamz) = - (B2)

U(m?) = #E(nﬁ). (B3)

The two-point loop function encountered in loops with
strong-weak vertices and only a single pole is defined as
d‘p

Blq*, m%, m%) = [i W

1
X TG T T b
= (4717_)2 j;)l dx{l + In[—x(1 — x)¢*
+ (1 = x)m? + xm3] — In(u?)}.

(B4)

Note that we always have ¢*> = (m,, — my)* for K — 7
amplitudes. This function is proportional to the B, function
defined in Eq. (A2) of [10]. Similar loops with double poles
require

d

iy P )

Bl(q2 m?, m3) =

(BS)

3Note, however, that our definitions of ¢ and € differ from
Refs. [39,44] by a factor of 1/1672.
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To simplify the expressions, we use the notation for the
residues arising from disconnected meson propagators,

(m3 — mp)(m; — mg)

R.(m,) = e (B6)
2 2 2 2
Ro(mg my) = e~ mp)imy = ms) - g

(m3 = mg)(mz — mj)”
APPENDIX C: ONE-LOOP WAVE-FUNCTION AND
MASS RENORMALIZATIONS

The necessary wave-function renormalizations needed
for the one-loop amplitudes are given in the 2 + 1 flavor

PHYSICAL REVIEW D 78, 094505 (2008)

8ZX - _2% + (AfX) >
3 logs

C2
¥ 7 (C2)

where we have separated the terms in this way because the
first term on the right-hand side of each of these equations
is the one-loop correction to the bare decay constant f
appearing in the tree-level expression for a given weak
matrix element. This first term contains both NLO loga-
rithmic corrections and Gasser-Leutwyler constants. It
may be useful in chiral fits to lattice data to absorb this
correction to the decay constant into the tree-level expres-

case by sion, and the above formulas make this convenient. The
A A second term is proportional to the logarithmic corrections
8Z,, = =2 j: oy - 3 ( j: xz ) , (CD to the decay constant alone, without the Gasser-Leutwyler
logs constants,
|
Af, 1 1 (dRx(m,) ~ dR, (my)
(39),.. = 7] et + 2602 + et + ) + 5 (T ) — Ralmy) ) + Z 2 o)
ogs X X
dRz(m,) ~ 2 (1mz)
+ S mg) = Ry(m,)Em) + R ) — 2Ry (g m, ) — 2R oy, m, )
z 7
= 2R, (g, ) () | (©3)
so that [3],
Af, Af, 8 8
; . _ ( ! Z)logs = L,@m3 + m2) + — 7 Lsm?.. (C4)
For the degenerate mass case, these reduce to
A
(5),. = pl2eoy — o (©3)
A A 8 8
]J:X _ ( ]J:X>10gg + FL4(2m%) +m3) + FLsmg(. (C6)
Additionally, we need the one-loop corrections to the meson masses squared [3],
(Amxz) _ R (m2) + R £(m3) + R £(m?)) + 2Lg — Ls)m?
2 3f2( x(mz, m n) (my) 2(my, m,,) (m3) n(mx, myz) (mn)) fz( 8 s)my;
XZ
(Amy)* 2 IRy (m,)
e ch( R, Bn3) + X B C0) + Ry n, ) (0) + 25 QL — Loy
X X

APPENDIX D: LOGARITHMIC CONTRIBUTION TO (3, 3), K — 7 MATRIX ELEMENTS

The logarithmic contribution to the (3, 3), K — 7 matrix element for the 2 + 1 nondegenerate case is
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3 2 syl 1 2 a3 20(m?2,) + €(m?,
<77.+|@(3,3)|K+>logS - _ _a(3,3)[_ 87, + _5ZX] e {_ Imy (2€(m3,) + €(mz)) 4 [ o 3my
f2 2 2 9 f4 my, — mx My, — Mx
3 3
+ (z - &>Rn(mx, my) — 2Ry(my, mn):l€(m§() + [—2 _ O™
my, — mx my, — mx
3 3
+ <2 + X >R»,,(mz, mz) = 2Rz (my, m,,):lf(m%) + 6[2 + X ](3( )
My, — My xz — My
3 3
+ 3[2 + L]{’(m;) + [(—2 + ﬁ)Rn(mx, my) — 2R, (my, myz)
My, — My My, — My
3my 3m

- (2 + H)Rn(mz, mz):l(f(m%]) - [(2 + ﬁ)zex(m,,)

3 2 _ 2
+ 2(2m?2, + m%)Ry(my, mn)]ﬁ(qz, m?,, m%) + I:Zm% —4m?, + M — 4m?
my, — my

2 + 2
+ (2 +3L)Rz(m7,) +( 2m + 4m?, + 3my(—m3 + my)
m,, — my

Xz

+ 4 )R (mz, mz)
my, — mx

—202m2, + m3)Ry(my, m,,>]/a<q2, m2, m,

2 2 2 —m, +m, 2 2 .2 2
+ 6[—2mzd +2m%, + 2my, + 3mx(ﬁ - mxz) + mx]ﬁ(q L M2y, Mm3,)
Xz X
_m2 + mZ
+ 3|: —2m?, + 2m2, + 2m3, + 3mx(M - mxz) + m%]ﬁ(qz, m?,, m2,
my, — my

3 +
+ [( PR L L A +2m§)Rn(mX, my) — 22m2, + m)R, (my, my)
my, — my
3 2 _ 2
+ (Zm gz, 42 T 3 Rofonz. ) |y )
my, — my
3mX ~ 2
+(2 - Rx(m )e(m3) + | 2 + ———— [Rz(m,)(m3)
my, my
2 _ 2 y
+ I:Zm —4m?, + M - 4m§(:|RZ(m,,),8(q2, m%, m?, } (D1)
mxz - myx

APPENDIX E: LOGARITHMIC CONTRIBUTION TO (8,8) K — 7= MATRIX ELEMENTS

The logarithmic contribution to the (8,8), Al = 3/2, K — 77 matrix element in the 2 + 1 nondegenerate case is

4;2"’5( 5Zy + 5Z )
+[1 - 2RZ(mX, m,) — R (mz, mz)|(m%) — 18€(m?,) — 9¢(m3,) — 6€(m?))
= 34(mZ) + [R,(mz, my) — 2R, (my, mz) + R, (my, my)[€(m?) — RX(mn)E(mg()

- RZ(mn)e(mZ) - 9mxszB(q » mjzcz: mX)} (El)

8 agg

<7T+|(9(8’8)(3/2)|K+>Q1,10gs = {[1 — 2Rx(mz, m ) Rn(mx, mx)]€(m§()

The logarithmic contribution to the (8,8), Al = 1/2, K — 7 matrix element in the 2 + 1 nondegenerate case is
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S8a 2 «a
(T OBI|K Yy e = f,fg( 52 + Lsz, ) 5 f88 {8[1 2Ry (g, my) — Ry, my)e(m2)
3m

4 —_
+ 8[1 — 2R (my, mp) — Ry(mz, mp)10(m3) + 18 =X —""2[20(m2,) + £(m2,)]
- m

XZ

+ 6_m _Z;"xz [2¢(m2,)) + £(m%)] + 8[R,(mz, mz) — 2R, (mx, mz) + R, (mx, my)}€(m?)
— 8Ry(my}(m3) — 8R () E(m3) + 36m,,my B(q?, m2, ) + 36mym, (2B(q, 2y m2)
T Bl md, m;%s))}. (E2)

For completeness we include the chiral corrections to K — 77 at physical kinematics for the electroweak penguin

operators. In the full theory at physical kinematics, the logarithmic contribution to the (8,8), Al = 3/2, K — 7w
amplitude is

_ L@ Sm?
(| OV, = i f88f2[( K 2m%()/a<m%7,m%<,m%7>+<m%<—2m%,>/a<m%<,m%,,m%r>
K

4
mg

Tz zB(mmmK, 2)—<4+2mz)( )+<iZ% )( 2) — (5( 2)] (E3)

T

and the logarithmic contribution to the (8,8), Al = 1/2, K — 7o amplitude is

4
3
(mt 7 |OBIND| Ry = g T8 2[( K 2m%<),8(m37, my, my) + —my B(mg, mg, my)
fo f 4
mi I (my
2, = 20RO, i, ) + A B, m, m) + 4(m2 —22)€(m§<)
172 3
+7< mK—26)€( 7 - mK€( 2| (E4)
4\ m2

APPENDIX F: LOGARITHMIC CONTRIBUTION TO (27,1) K — 7= MATRIX ELEMENTS

The logarithmic contribution to the (27,1), AI = 3/2, K — 7 matrix elements in the 2 + 1 nondegenerate case is

4(127

6 Sm? 8
<7T+|(9(27‘1)(3/2)|I(+>10g5 = meXZI:2 0Zy + = 3 5Z + 2( W;X + mzxz)] 2% mym, {[8 + R, (my, my)

X My, 9 f4
+ 2Ry (mz, m,) W (m%) + [—1 + R, (mz, mz) + 2Rz (myx, m,)|€(m%) + 9€(m2,)
+ 18¢(m2,) + 9¢(m2,) + 6€(mzd) + 30(m%) +[-R o(my, my) + 2R, (my, my)
= R, (mz, mz)}(m3) + Rx(mn)e(mx) + Rz(mn)€(mz) + 9mym,. B(q?, m3,, m3)}. (F1)

The logarithmic contribution to the (27,1), AI = 1/2, K — 7 matrix elements in the 2 + 1 nondegenerate case is
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da dm%:  &m? 2
FOPVOR| KTy == [ 82y + 252, + 1 ( Xt “)] +—£{12 6¢(m?,) + 3€(m?
<7T | >logs f2 My, my 2 X 2 2 mg{ m}zcz 9 f4 mxsz( (mxd) (mxs)
Omy(m% + m?3
+26(m2,) + €(m2,)) + [(12m%, —4m,.my + 6m?% + :;(+mXX)RU(mX, my)
XZ

Omy(m2 + m?
- 2(12m%7 + 6m2, — d4m, my + 9m% + M)Rn(mx, my) + (12m%] + 12m2,

My, — My

9 2 + 2 4 6 2
—dmmy + 12m% + —mx(m,] mx))Rn(mZ, mz)]€(m%,)} + 70’;74’”” [Smx T ]

My, — My My, — My

X Cn2) + 2 2 a? {[4mxmxz(10mx - 19m,.) N 34mxZ — Rx(m )
9 f mxz — my mxz — my
2m,, — 11 18m3
+ ZmeXz( Mz my) R, (myx, my) + 2(—6m§z + dmmy — 21m% — Mx )
my, — My My, — My
36 2 4 —
X Ry(my, mn):l€(m§() + |:—72m,26Z —4m,.my — MxMe | 32 — WX Ry(m,)
mxz — my mxz — my
18 18 2
+ <—36m)26Z +4m,,my — M)R (my, my) + 2( 15m2 + 4m,.my — 12m% — M)
My, — My My, — My
2 (2 —11 ~
X R, (my, m,,)jl€(m%) + me“";( ”ECZmX my) Ry(m,)t(m%) + |:4mxzmx —36m2,
XZ
18meXZ 2 ay 4 2 2.2 3 4
m Ry (m, )€(mz) + 5? —2my — 4mym,my — 2mymy + 4m, my + dmy
XZ

3my(mt — m?)
+ #]Rn(mx, my) + 2[2m‘,‘, —2mym3, + 4mym, my — 4m3i,my + mymy
XZ
3 3my(my, — my)

+2m2.m% — 6m,.my — 3m$ + :IR,,(mX, my) + I:—Zmi] + 4mym3,

mxz — My

3my(my —

4)]Rn(mz, mz)}

—4mim my + 8m3 my — 4m2m% + 8m, my + 2m} +
mxz - my

2 ay

3

+2(2m2, + m%)Ry(mz, m )]B(q m2., m%) + |:6mx< dmim,, +

+2
qu(’“n)

my My,
4 _ 4
mz — my )

m,, — my

X B(q?, mn, m2) + = { 2mexz[12mxsz -

XZ
4 4
m, —m
Z X
— )R'/] (mZ’ mZ)
XZ my

3mimy

+ 2<2m)2(Z —2m% —2m, my — p—
XZ

)Rz(mn) + 3mx(—4m§,mxZ +

3 4 _ 4
2~ Dmomy + )+ momy + 2+ )

)Rz(mx, mn)]

my, —my
2 .2 2 2 my — m% m2,
X B(q*, my, m3) + 3my| dmym,, + ——= " R,(m n),B(q m%, m (F2)
Xz X

APPENDIX G: LOGARITHMIC CONTRIBUTION TO (8,1) K — 0 AND K — 77 MATRIX ELEMENTS

For the (8,1) case, we separate the logarithm terms which are proportional to a; from those proportional to a;.
For K — 0, we have
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(OIOBV K)o = (OIOEVIKO)) + OIOBDIKO)D, G1)
g log: logs

where the superscripts refer to the terms proportional to a ,, and

<0|(9(8,l)|K0>f(1);gs = 34—fi3a1{[m§ + RX(mn) mXR (my, my)}€(m%) +[—m% — Rz(m ) + mZR (my, my)}€(m%)

+ m3[R, (mx, my) — R, (mz, mz)€(m3) — 6m? £(m?,) — 3m3€(m3,) + 6m2,£(m2,) + 3mZL(m)
— m%RX(mn)g(mg() + m%RZ(mn)amz)}, (G2)

4i 1
<0|(9(3,1)|K0>§(2);§:7 ay(m?, — mg()[iazxz]

8l @,
f3

+ [1 + RZ(m”rp mX) - R"r/(mZ) mZ)]g(mZ) + [R’r/(mX) mX) + Rr/(mX’ mZ) + R‘r](mZ’ mz)]€(m%)

= 6€(m3,) = 3¢(m3,) — 6€(m2,) — 3€(mZ) = Ry(my)U(m3) — Ry(m,)E(m3)}: (G3)

2 - m%{){[l + RX(mn’ mZ) - R‘r](mX: mX)]e(mgf)

For K — 7, we again separate the logarithmic terms proportional to @ and a5,

(TH OBV gy = (m T JOCVKHD + (at |0V (G4)
with
dar 1 Sm2  Sm? la
1 _ 1 X 4 1 N
<7T+|(9(8'1)|K+>10gS = f2 mxzmx[i 0Zy + = > 5Z + 2( o~} + m?:)jl + 9 F{36|:2m — m% — my.my
2 + 2 2 + 2
+ —mX(mZd m"d)](/’(mid) + 18[2m§s —m% — mymy + mxlmz, + mi) mXS):I(?(m§S
my, — My my, — My

3my(m?, + m?

— 12[6m§d + 3m% + mmy + —X( Zi Xd)ilK( 2d) - [ 20+ 3m% + mymy
My, my

N 3my(m?2, + m?ﬂ)] 3my(m% + m3)

My, — My

€(m?,) + 2[(—4m%’ + dm,my — 2m% — )Rn(mx, my)

3mx(m%7 + mg())
my, — my

my, — my

+22m3, — dm,my + my)R, (my, mz) + <4m%] + dm?2, + dm.my + 4dm% +

Ryt mg) e} + 5 e[ e 22 R g, ) = 1) = T Ry o)

xz My ny., my

4 —_
+2(2m?, — 4m,.my + m%)Rx(my, mn)](,’(m}() + [%Rz(mn) - (4mxz(3mxZ + my)
xz X
+ %)m (g mz) = 1)+ 220, = dmemy + m)R o, my) )

My, — My
2 aq 2
+ 6 F lzmxszg(mxz) + 2my| 3my — Q’mxz

— 2mxz|:2(3mxz + my) +

2 ~
e L
my

mXZ
3mym,,

]Rz(m )€(mz)}

xz — Mx

094505-17



C. AUBIN, J. LAIHO, S. LI, AND M. F. LIN PHYSICAL REVIEW D 78, 094505 (2008)

1 aq
+ ——{3>6|:m§((4m)%Z — m?cd — m?d) + (mid + mgd —2m% —2m2,)m,,my +

9 4

X B(g?* m2, m%,) + 18|:m§((4m,%Z —m2, —m2) + (m2, + m2;, — 2m2, — 2m%)m,.my +

mx (m?d - mid)]

my, — mx

4 _ 4
mX(mzs My ]
mxz —my

2.2 2 4 2 2.2 3 4 3mX(m‘,‘,—m§()
X B(g* mz;, m%,) + 2[<2mn +dmym,.my + 2mymy —dm, . my —4my + —)Rn(mx, my)

my, —mx

+202mim2, +4md my + mim} — 2m2m% +2m, my — my)R, (my, my) + (—Zm‘,‘7 +4m2m?,

2 3 2,2 3 4 4 Smx(my —m3) 2,0 0
—4mym my +8my my — 4my my + 8my my +2my + ———————=|R, (mz,my) | B(q°, my, my,

my, — my

2 2 +
+ ﬂ{memle:’:l“in’fxRx(m,,) +2(2m2, + m%)Ry(my, mn)]ﬁ(qz, m?,, m%) + |:12m§’(mxZ
Xz X

9 4
N 3mX(m§( — m%

3 2
) + 2(—2m§Z —2m, my +2m% — 7mz_mx

)Rz(m,,) +2(m$, = 2m% + mim2 +2(2m2,

my, —myx my, —my

3my(mb — m$)
M)Rn(mz: mz)]ﬁ(qz, m%, m?cz

+m¥)mym, )R, (my, m,) + (— 12m,,m3 +

my, —mx
3 4 _ 4 5
+ |:4(2m§ +2m?, — m%)m,.my + M]Rz(mn)ﬁ(qz, m%, m?, }, (G5)
my, — my
and
4a 1 1 4a Omy (2€(m? ) + €(m2,)) 3m
A D +\2) — T2 o 1 - T2 2 ) X xd xs _ X

(T |OBV|K >logs 7 mxz[26ZX+25sz]+9f4 mXZ{ pr— +[ 2+7mxz_mx

3 3 3
+(2_—mX )Rn(mx,mx)—2Rx(mz,m,]):|€(m§()+[—2— x +<2+ x )
my, —my my, —my my, —my

X Ry (mzmz) — 2R (my, mn):lé’(m%) + 6[2 L 3mx ]e(mgd) + 3[2 4 ]e(mgs)
xz My xz My
3
" [(—2 + 3ﬂ)m(m;{, mx) — 2R (g, m) — (z T )Rn<mz, mz)]am%p
my, — my my, —myx

3m
- [(2 + ﬁ)Rx(mn) + 2(2m)zcz + m%{)RX(mZ; mn)],B(qz, ms, mg) + I:zm% —4mz,
Xz X

3 3my(—m% + m3
x| )Rz(mn)+(—2m%+4mﬁz+ mx(Zmy + my)

my, —my

N 3mX(m% — mi)

My, — My My, — My

X R‘r](mZ, mZ) - 2(2”’&1 + m%)Rz(mx, mn)]ﬁ(qZ’ m%’ m,%z) + 6[ _zmgd n 2m§d n 2m%z
2 2 i 2
M ¥ —mZ;,+m
+ 3mx<M mxz) + mﬁ]ﬁ(q% m2,,m%,) + 3[ —2m2, + 2m2, +2m2, + 3mx<M
my, —mx . — my

3my(—m? +m%)

- mxz) + m%]ﬁ(qz, m2, m%) + |:<—2m?7 + + 2m§()Rn(mX, my)

my, — My

3my(m2 — m%)
—2(2m2, + m})R, (my, mz) + (2m%7 —dm?2, + # — 4m§(>Rn(mzy mz)]ﬂ(qz, m,m?,
Xz X

3mX

3 5
my W]Rz(mn)ﬁ(m%)

+ [2 R ]Rx(mﬂ)g(mg() + [2 +

XZ

3my(m% —m%) ~
Xz X

These formulas are simplified enormously in the degenerate valence case,
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oo va 4a om?
<77'+|(9(8'1)|K+>;l g-val.(h) _ —lm§[BZX + X] + = —mi{2[€(m?2) + (m3, + m%) B0, m2, my) R, (my, my)

3 f4

+2[2 — R, (my, myx)0(m%) — 10€(m?,) — 5€(m%,) — 2m§RX(m,7)27(m§()

+4[—m} — Ry(m,) + m¥R, (my, my)}l(m3%)}, (G7)
+H OB +)deeval.2) _ﬂ 2 §2 20,2 o2y _ 2 2
<7T | |K >]0g5 f2 mX(SZX + 3 f4 mX{mX[RX(m‘r])g(mX) 2R7](mX: mX)B(O’ m"r]: mX)]
+[=1+ R, (my, my)€(m%) + 2€(m?2,) + €(m3,) — R, (my, my)€(m?)
+ [2m3(1 — R, (my, my)) + Ry(m,)}(m3)}. (G8)

APPENDIX H: ERRATUM

We note here some corrections to the works of
Refs. [10,11]. All of the NLO low-energy constants for
the (27,1) operators have the wrong sign in both
Ref. [10,11]. The values for y; appearing in Table I of
Ref. [10] (and again in Table I of Ref. [11]) should have the
opposite sign. In Eq. (16) of Ref. [10] (and again in
Eq. (16) of Ref. [11]), the operators (9?‘1) and (9(185’1) should
have the opposite sign to be consistent with the signs of the
LEC’s e and ef5 appearing in the amplitudes presented in
those works. We make these corrections in the current
work. Since the LEC’s are not known, an incorrect, but
consistent normalization of them (including an incorrect
sign) does not alter the procedure of using the formulas of

Ref. [11] to construct K — 7r7r from K — 77 and K — 0
matrix elements. Therefore, these corrections make no
difference to the conclusions of these works that it is
possible to obtain all of the LEC’s needed to construct K —
7 matrix elements through NLO in yPT from lattice
calculations.

Additionally in Ref. [11], there is a typographic error in
the (8,8) K — 7r matrix element formulas. The coeffi-
cient of the second term in Eq. (42) should be f:ffi% , and the
coefficient of the second term in Eq. (43) should be — f?f’% .
The corrected versions of these equations are given in the
current work as Eqgs. (38) and (39). These corrections also
do not alter the conclusions of Ref. [11], but are necessary
to construct the correct K — 777 matrix elements.
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