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We calculate results for K ! � and K ! 0 matrix elements to next-to-leading order in 2þ 1 flavor

partially quenched chiral perturbation theory. Results are presented for both the �I ¼ 1=2 and 3=2

channels, for chiral operators corresponding to current-current, gluonic penguin, and electroweak penguin

4-quark operators. These formulas are useful for studying the chiral behavior of currently available 2þ 1

flavor lattice QCD results, from which the low-energy constants of the chiral effective theory can be

determined. The low-energy constants of these matrix elements are necessary for an understanding of the

�I ¼ 1=2 rule, and for calculations of �0=� using current lattice QCD simulations.
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I. INTRODUCTION

Lattice QCD is a first-principles approach to calculating
low-energy hadronic quantities using numerical
Monte Carlo methods. State-of-the-art calculations are
now including 2þ 1 flavors of quarks in the weighting of
the gauge configurations, thus eliminating the quenched
approximation. However, partially quenched simulations,
where the valence quarks have different masses than those
of the sea quarks, are still of use when combined with
partially quenched chiral perturbation theory (PQ�PT) [1].
Since chiral perturbation theory (�PT) comes with a num-
ber of unknown low-energy constants (LEC’s), these
LEC’s must be obtained from nonperturbative methods,
e.g., lattice calculations, or from experiment, in order to
have predictive power. When the number of light sea
quarks is equal to three, then the LEC’s of PQ�PT corre-
spond to those of the unitary theory [2,3], and the LEC’s
obtained from fits to partially quenched lattice data can be
used to predict hadronic quantities. Partial quenching can
therefore be used in order to gain a better handle on chiral
fits to numerical data, because varying the sea and valence
quark masses separately leads to the determination of more
linearly independent combinations of LEC’s. It also allows
one to make use of more of the available lattice data, since
simulating additional valence quark masses is relatively
cheap compared to generating more ensembles with differ-
ent sea quark masses.

In this work we calculate PQ�PT expressions relevant
for obtaining K ! �� matrix elements from lattice simu-
lations. Although matrix elements of K ! �� are of im-
portance to phenomenology, there are difficulties with
extracting multihadron decay amplitudes directly from
the lattice, as expressed by theMaiani-Testa no-go theorem
[4]. The implication of this no-go theorem is that physical
amplitudes can only be computed if the final state pions are
at rest, or some other unphysical set of kinematics. It was
shown by Lellouch and Lüscher [5] (see also Ref. [6]) that
this no-go theorem can be evaded, and that the matrix
elements can be computed at physical kinematics using
finite volume correlation functions. Although this method
does not require �PT, the physical volume necessary to
implement the method at physical quark masses is large,
and therefore prohibitively expensive given the present
computational resources.
An alternative method for calculating K ! �� from

lattice QCD simulations is to obtain the leading order
LEC’s necessary to construct K ! �� from lattice simu-
lations of the simpler quantities K ! � and K ! 0. This
method was introduced quite some time ago in Ref. [7].
Given that there are large corrections to kaon matrix ele-
ments coming from chiral logarithms at higher orders in
SUð3Þ �PT, it is necessary to include next-to-leading order
(NLO) corrections in the fits to lattice data. This is true
both because the light quark masses are still relatively
heavy in present simulations, and also the physical strange
quark mass is itself rather heavy. It is an important, and as
yet unanswered question whether the kaon mass is light
enough so that K ! �� amplitudes can be described by
one-loop chiral perturbation theory to a useful precision.
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The issue of convergence is quantity dependent, and so
must be studied for each quantity of interest. We thus
calculate the NLO PQ�PT expressions for K ! � and
K ! 0 matrix elements, including finite-size effects,
which are needed both to extract LEC’s from the lattice,
and to assess the convergence of �PT by studying fits to
lattice data as a function of quark masses.

In this work we calculate PQ�PT K ! � and K ! 0
matrix elements in the isospin (2þ 1-flavor) limit. We do
not consider the completely nondegenerate quark mass
case since isospin breaking leads to additional complica-
tions [such as (8,1)’s contributing to �I ¼ 3=2 ampli-
tudes], and these would also not be relevant to current
lattice simulations. Thus, we restrict ourselves to the 2þ
1 case in both the sea and valence sectors, but with no
degeneracies between sea and valence quark masses. We
do not present here a complete set of formulas necessary to
extract all of the NLO LEC’s from 2þ 1 flavor lattice
calculations, since some of the needed LEC’s must be
obtained from K ! �� amplitudes at unphysical kinemat-
ics. Even so, the formulas should be useful in extracting
leading order LEC’s from lattice data, and in studying the
convergence of the chiral expansion. Note that there are
many works which discuss the determination of the LEC’s
needed to construct K ! �� through NLO in �PT at
physical kinematics [8–18], though we make no attempt
to review the various approaches here.

For the (8,1) (�I ¼ 1=2) amplitudes there is an addi-
tional complication in the partially quenched theory com-
ing from the treatment of the gluonic penguin 4-quark
operator. For the 3-flavor theory the situation in PQ�PT
is simplified significantly if the corresponding chiral op-
erators are chosen to transform as (8,1)’s under the par-
tially quenched graded symmetry group [12,19]. That is
the prescription we adopt in the current work. If another
choice is made, such as, for example, if the chiral operators
are chosen to transform under the (8,1) chiral symmetry
group of the full theory, then additional LEC’s enter the
calculation, making the determination of the desired LEC’s
more complicated. Although this complication requires
some care in the three-flavor partially quenched theory,
the method is still viable, unlike the quenched theory, in
which quenched gluonic penguin amplitudes lead to large
systematic uncertainties [12,19–22].

This paper is organized as follows: in Sec. II we give a
review of PQ�PT, including the effects of the weak
Lagrangian, and in Sec. III we give a quick overview of
the calculation involved. In Sec. IV we review the operator
subtraction that is necessary for �I ¼ 1=2 matrix ele-

ments, and introduce the �ð3;�3Þ operator for this purpose.
NLO formulas of matrix elements of this operator are
calculated for use in later sections. We present results for
the (8,8) electroweak penguin operators for the K ! 0 and
K ! � processes in Sec. V, where we also give the physi-
cal K ! �� amplitudes for completeness. In Sec. VI we

present results for the (27,1), �I ¼ 3=2, K ! � matrix
element, and in Sec. VII we present the results for (8,1) and
ð8; 1Þ þ ð27; 1Þ operators for K ! 0 and K ! �, including
the operator subtraction. In Sec. VIII we discuss the finite
volume corrections for the results presented in this work.
We conclude in Sec. IX and include relevant function
definitions and the chiral logarithm contributions in a set
of appendixes. Appendix H provides an erratum for
Refs. [10,11].

II. PARTIALLY QUENCHED CHIRAL
PERTURBATION THEORY

We use the standard formulation of partially quenched
chiral perturbation theory (PQ�PT) introduced in [23,24].
In this formulation, the valence quark loops are removed
by introducing ‘‘ghost’’ quarks with the same masses and
quantum numbers as their valence counterparts, but which
obey opposite statistics. The chiral symmetry group for a
partially quenched theory is graded; in general one takes it
to be SUðNval þ NseajNvalÞL � SUðNval þ NseajNvalÞR. For
the purposes of this work, we set Nval ¼ Nsea ¼ 3.
Specifically, we have three valence quarks denoted as x,
y, and z; three sea quarks denoted as u, d, and s; and finally
three ghosts: ~x, ~y, and ~z.

A. Strong Lagrangian in PQ�PT

As explained in Ref. [11], in the partially quenched
theory, operators are written in terms of the chiral field

� ¼ exp

�
2i�

f

�
; (1)

where f is the meson decay constant in the SUð3Þ chiral
limit (normalized such that the physical f� �
130:7 MeV), � is a 9� 9 matrix containing the meson
fields,

� � � �y
� ~�

� �
; (2)

where � is a 6� 6 matrix of pseudoscalar mesons con-

structed out of valence and sea quarks, ~� is a 3� 3 matrix
containing mesons constructed with two ghost quarks, �
(�y) is a 3� 6 (6� 3) matrix containing fermionic me-
sons made out of one quark and one ghost quark. � trans-
forms under the graded chiral symmetry group as

� ! L�Ry; (3)

with L 2 SUð6j3ÞL, R 2 SUð6j3ÞR. Operators in the chiral
effective theory are constructed from the quark-level op-
erators out of� and other objects (such as the quark charge
matrix and mass matrix, for example) such that they trans-
form the same way under the chiral symmetry group.
The leading-order (LO) strong Lagrangian is given by

[25]
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L ð2Þ
st ¼ f2

8
str½@��@��y� þ f2B0

4
str½M�þ �yMy�;

(4)

where the superscript 2 indicates that this Lagrangian is
valid to Oðp2Þ in the chiral power counting scheme, and
M is the quark mass matrix

M ¼ diagðmx;my;mz; mu;md;ms; mx;my;mzÞ: (5)

Note that this corresponds to the quark vector composed of
valence quarks, sea quarks, and ghost quarks

q ¼ ðx; y; z; u; d; s; ~x; ~y; ~zÞT: (6)

The supertrace is defined as follows: for a 9� 9 matrix

U9�9 ¼ A6�6 B6�3

C3�6 D3�3

� �
(7)

in which submatrix A is the top-left 6� 6 diagonal block
and D is the bottom-right 3� 3 diagonal block, then

str ðUÞ ¼ trðAÞ � trðDÞ: (8)

We set the valence x and y quark masses equal, and we
set the sea u and d quark masses equal,

mx ¼ my; mu ¼ md: (9)

Thus we work in the isospin limit in both the valence and
sea sector, and we present results for both this (2þ
1-flavor) case and the 3-flavor case (degenerate valence
quarks).

At NLO in the full theory [Oðp4Þ], the strong
Lagrangian involves 12 additional operators with undeter-
mined coefficients [25,26]. There is an additional Oðp4Þ
operator which appears in the partially quenched theory
[27], though this operator does not contribute to the quan-
tities considered in this work. The NLO operators of the
strong Lagrangian relevant for the current work are

O ðstÞ
4 ¼ str½L2�str½S�; OðstÞ

5 ¼ str½L2S�;

OðstÞ
6 ¼ str½S�2; OðstÞ

8 ¼ 1

2
str½S2 � P2�;

(10)

where

S ¼ 2B0ðMy�y þ �MÞ;
P ¼ 2B0ðMy�y ��MÞ; L� ¼ i�@��

y:
(11)

As follows from the strong Lagrangian above, the
leading-order mass of a bare pseudoscalar meson is

m2
ij ¼ B0ðmi þmjÞ; (12)

where mij is the mass of meson �ij, mi and mj are the

masses of the quarks qi and qj (i, j can refer to the sea,

valence, or ghost quarks in this case). In our partially
quenched amplitudes we assume that the light quark
masses are all light enough compared to the �0 mass so

that the �0 can be integrated out. As demonstrated in
Ref. [3], this is the case where the LEC’s of the partially
quenched theory with three sea quarks correspond to the
LEC’s of the unitary theory.
In the following we adopt the notation that the masses of

mesons which are constructed out of two different flavors
of quarks are labeled in terms of their quark constituents,
regardless of whether they are sea or valence, for example
mxy or mzs. For any flavor-neutral meson, we use mD �
mdd or mX � mxx for mesons in the ‘‘flavor basis.’’
Because of the disconnected propagators which arise in
the flavor-neutral sector, this is distinct from the ‘‘physical
basis,’’ where the relevant mesons are the �0 and �. These
only arise in the sea sector, and we will use the fact that

m2
�0 ¼ m2

D; m2
� ¼ 1

3
ð2m2

S þm2
DÞ;

in the isospin limit (mu ¼ md).
The propagators for flavor neutral mesons are obtained

by following the prescription in Ref. [3] in Minkowski
space:

The propagators for flavor off-diagonal mesons are

,

where

"j ¼
�
1 j 2 fx; y; z; u; d; sg
�1 j 2 f~x; ~y; ~zg : (15)

B. Leading-order weak lagrangian

In full �PT, we group the weak operators appearing in
the K ! �� transition by their chiral transformation prop-
erties in the SUð3ÞL � SUð3ÞR symmetry group. We can
carry this same idea over to PQ�PT, where we extend their
definition into the graded group using the expanded chiral
field � and replacing traces with supertraces. Except for
those cases discussed explicitly (such as the quark charge
and mass matrices, for example), when going from un-
quenched to partially quenched �PT, operators are re-
placed as follows:

� ! �3�3 03�6

06�3 06�6

� �
; (16)

where the upper left block of this matrix is the 3� 3 block
corresponding to the valence sector.
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The leading order weak operators are [7–9,11,28]

Oð8;8Þ
LO ¼ str½�6�Q�y�

Oð8;1Þ
LO;1 ¼ str½�6@��@

��y�
Oð8;1Þ

LO;2 ¼ 2B0str½�6ð�MþMy�yÞ�
Oð27;1Þ

LO ¼ Tij
klð�@��yÞki ð�@��yÞlj

(17)

where Q is the quark charge matrix; ð�6Þij ¼ �i3�j2; and

the tensor tijkl is symmetric on any indices and traceless on

pairs of upper and lower indices, and its elements are
chosen to pick out the �S ¼ 1 transitions; it thus plays a
similar role to that of �6 for the other operators. However,
we will defer the actual determination of its nonzero ele-
ments until Sec. VI, where we will use this tensor to further
divide the operator into the isospin 3=2 part and the isospin
1=2 part and directly evaluate their respective amplitudes.
The isospin decomposition of K ! � matrix elements is
given in Appendix A.

There is a choice to be made for the quark charge matrix
Q above, which enters in the electroweak penguin opera-
tors [11]. We could either assign charges to ghosts such that
they cancel out the electroweak valence quark loops, or we
could make them uncharged. In this paper we derive the
amplitudes with the electroweak penguin operators for
both choices, which we denote as Q1 and Q2. We always
assign zero charge to the sea quarks, since that is what is
typically done when generating lattice gauge fields. The
two choices of charge matrix are

Q1 ¼ diagð2;�1;�1; 0; 0; 0; 2;�1;�1Þ;
Q2 ¼ diagð2;�1;�1; 0; 0; 0; 0; 0; 0Þ: (18)

We discuss the weak operators which contribute to K !
� and K ! �� at next-to-leading order in subsequent
sections.

III. DETAILS OF THE CALCULATION

To make complete use of lattice data in extracting LEC’s
relevant for K ! ��, it is important to work in the non-
degenerate mx ¼ my � mz case. Since the K ! � ampli-

tudes do not conserve 4-momentum formz � mx, the weak

operator must transfer a 4-momentum q � pxz � pX. In
our calculations we restrict ourselves to the case where
both initial and final mesons are at rest, so q ¼ ðmxz �
mX; 0; 0; 0Þ.
The NLO diagrams contributing to K ! 0 and K ! �

are given in Figs. 1 and 2, respectively. The external legs
are always mesons made of two valence quarks, while the
internal loops in the partially quenched theory consist of
valence-ghost, valence-sea, and valence-valence mesons.
In addition to these diagrams, the renormalization of the
external legs (wave-function renormalization) via the
strong interactions must be taken into account.
The logarithmic expressions presented in the appendixes

of this work are quite lengthy. Thus, checks are necessary.
The first check was that the scale dependence of the one-
loop insertions cancel those of the divergent counterterms,
and this check was performed for all expressions in this
paper. Another check is that an expression reduces to some
other in the appropriate limit. All of the logarithmic ex-
pressions in this paper reduce to those in Refs. [8–11,18] in
the appropriate degenerate sea quark and full QCD limits.1

Finally, all one-loop expressions in this work were com-
puted separately by at least two of the authors, using
independently written code. The codes used were the
FEYNCALC package [29] written for the MATHEMATICA

[30] system, and the FORMCALC package [31], which in-
terfaces FORM [32] with MATHEMATICA.

IV. SUBTRACTION OF �I ¼ 1=2AMPLITUDES

In general the �I ¼ 1=2 matrix elements of 4-quark
operators have a power divergent part due to the 4-quark
operators mixing under renormalization with lower dimen-
sional operators when using a lattice regularization. This
power divergence reduces to a quark bilinear times a
momentum independent coefficient [28]. Following
Refs. [7,11,28], in order to remove the power-divergence
of �I ¼ 1=2 operators, we perform a subtraction using the
dimension three quark-level operator

�ð3;�3Þ � �sð1� 	5Þd: (19)

This subtraction must also be performed in PQ�PT for
comparison with the subtracted lattice results. Again fol-
lowing Refs. [7,11,28], the lowest order [Oðp0Þ] chiral
operator corresponding to the (3; �3) operator in Eq. (19) is

�ð3;�3Þ
LO ¼ 
ð3;�3Þstr½�6��; (20)(a) (b)

FIG. 1. Diagrams contributing to K ! 0 at NLO. The gray
square is the insertion of a NLO weak vertex, and the small dot is
an insertion of the LO weak vertex.

1Note that Ref. [8] contains errors that are corrected in
Ref. [9], and we agree with the latter.
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where the low-energy constant 
ð3;�3Þ can be related to the
coefficient of the mass term in the leading-order strong
Lagrangian [11],


ð3;�3Þ ¼ � f2B0

2
:

As explained in Ref. [28], the�ð3;�3Þ operator can be used
to remove the power divergences to all orders in the lattice
calculation. This subtraction is performed to NLO in
PQ�PT explicitly in the sections that follow. To this end,

we require the higher order chiral operators of �ð3;�3Þ. The
terms up to Oðp2Þ needed for this work are

�ð3;�3Þ ¼ �ð3;�3Þ
LO þX

i

c33;iO0
i; (21)

where i takes the values 4, 5, 6, 8, H2, and where

O 0
4 ¼

1

2
str½�6��str½@��y@���;

O0
5 ¼

1

2
str½�6�@��

y@���;
O0

6 ¼ 2B0str½�6��str½My�þ�yM�;
O0

8 ¼ 2B0str½�6�My��; O0
H2

¼ B0str½�6M�:
(22)

The coefficients c33;i of the operators O0
i are related to the

Gasser-Leutwyler coefficients by c33;i ¼ �8B0Li, a rela-

tion similar to that for the leading-order coefficient 
ð3;�3Þ
given above.
To NLO, the K ! 0 matrix element for 2þ 1 valence

flavors is

h0j�ð3;�3ÞjK0i ¼ 2i

f

ð3;�3Þ

�
1þ 1

2
�Zxz

�
þ 4i

9


ð3;�3Þ

f3
f½1þ RXðm�;mZÞ � R�ðmX;mXÞ�‘ðm2

XÞ þ ½1þ RZðm�;mXÞ

� R�ðmZ;mZÞ�‘ðm2
ZÞ � 6‘ðm2

xdÞ � 3‘ðm2
xsÞ � 6‘ðm2

zdÞ � 3‘ðm2
zsÞ þ ½R�ðmX;mXÞ þ R�ðmX;mZÞ

þ R�ðmZ;mZÞ�‘ðm2
�Þ � RXðm�Þ~‘ðm2

XÞ � RZðm�Þ~‘ðm2
ZÞg �

32iB0

f
fL8m

2
xz þ L6ð2m2

D þm2
SÞg; (23)

where the chiral logarithms ‘ðm2Þ and ~‘ðm2Þ are defined in Appendix B, along with the residues RxðmaÞ, Rxðma;mbÞ. The
wave-function renormalization �Zxz is given in Appendix C.

To NLO, the K ! � matrix element (also for 2þ 1 valence flavors) is

h�þj�ð3;�3ÞjKþi ¼ � 2

f2

ð3;�3Þ � 16B0

f2
fL5mXmxz � 2L8ðm2

X þm2
xzÞ � 2L6ð2m2

D þm2
SÞg þ h�þj�ð3;�3ÞjKþilogs: (24)

For clarity, the rather lengthy logarithmic contribution is given in Appendix D. For degenerate valence masses (mx ¼
my ¼ mz), the K ! � amplitude simplifies to

h�þj�ð3;�3ÞjKþideg :val: ¼� 2

f2

ð3;�3Þ½1þ�ZX� þ 4

3


ð3;�3Þ

f4
fm2

X½RXðm�Þ~~‘ðm2
XÞ � 2R�ðmX;mXÞ�ð0;m2

�;m
2
XÞ�

þ ½�1þR�ðmX;mXÞ�‘ðm2
XÞ þ 2‘ðm2

xdÞ þ ‘ðm2
xsÞ �R�ðmX;mXÞ‘ðm2

�Þ þ ½2m2
Xð1�R�ðmX;mXÞÞ

þRXðm�Þ�~‘ðm2
XÞg �

16B0

f2
fðL5 � 4L8Þm2

X � 2L6ð2m2
D þm2

SÞg; (25)

where
~~‘ðm2Þ and �ðq2; m2

1; m
2
2Þ are defined in Appendix B, and �ZX is given in Appendix C. These expressions are used

below when performing the power divergent operator subtractions that are necessary in order to obtain the physical
amplitudes in which we are interested.

(b) (c)(a)

FIG. 2. Diagrams contributing to K ! � at NLO. As in Fig. 1, the gray square is an insertion of a NLO weak vertex, and the small
dot is an insertion of the LO weak vertex. The large dot is the insertion of an Oðp2Þ strong vertex.
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V. WEAK MATRIX ELEMENTS WITH (8,8), �I ¼
3=2, AND 1=2 OPERATORS

In this section we present the results for the chiral
operators which transform as (8,8)’s under the chiral sym-
metry. These correspond to the electroweak penguin 4-
quark operators. Formulas are presented for K ! 0 and
K ! � for nondegenerate (mx ¼ my � mz) valence quark

masses, as well as for K ! � with degenerate valence
quark masses. The power divergent subtraction is dis-
cussed for the �I ¼ 1=2, K ! � amplitude. Since K !
0 and K ! � are sufficient to construct K ! �� to NLO
at physical kinematics for the (8,8)’s, we present the physi-
cal K ! �� amplitudes as well.

Following Ref. [11], the form of the operator Oð8;8Þ
through NLO in PQ�PT is

Oð8;8Þ ¼
88str½�6�Q�y�þc88;1str½�6L��Q�yL��
þc88;2str½�6L��str½�Q�yL��
þc88;3str½�6f�Q�y;L2g�þc88;4str½�6f�Q�y;Sg�
þc88;5str½�6½�Q�y;P��þc88;6str½�6�Q�y�str½S�;

(26)

with S, P, and L� as defined in Eq. (11).

A. K ! 0 amplitudes for 2þ 1 valence flavors

As explained in Sec. II B, there are two choices for the
quark charge matrix for the operators in the (8,8) repre-
sentation. If we set Q ¼ Q1, we obtain for the K ! 0
amplitude

h0jOð8;8ÞjK0iQ1
¼ 4i

f3

88½�2‘ðm2

xdÞ � ‘ðm2
xsÞ þ 2‘ðm2

zdÞ

þ ‘ðm2
zsÞ� � 8i

f
c88;4ðm2

xz �m2
XÞ: (27)

If we set Q ¼ Q2, we obtain

h0jOð8;8ÞjK0iQ2
¼ 4i

f3

88f�‘ðm2

XÞþ2‘ðm2
xzÞ�‘ðm2

ZÞ

�2‘ðm2
xdÞ�‘ðm2

xsÞþ2‘ðm2
zdÞþ‘ðm2

zsÞg
�8i

f
c88;4ðm2

xz�m2
XÞ: (28)

B. K ! � amplitudes for 2þ 1 valence flavors

The processK ! �must be separated into its�I ¼ 3=2
and �I ¼ 1=2 pieces, and we give the explicit isospin
decomposition in Appendix A. For the �I ¼ 3=2 ampli-
tudes we have

h�þjOð8;8Þð3=2ÞjKþiQ2
¼ h�þjOð8;8Þð3=2ÞjKþiQ1

¼ 4
88

f2
þ 4

f2
f�ðc88;1 þ c88;2ÞmxzmX

þ 2ðc88;4 þ c88;5Þðm2
xz þm2

XÞ
þ 2c88;6ð2m2

D þm2
SÞg

þ h�þjOð8;8Þð3=2ÞjKþiQ1;logs: (29)

For brevity, we give only the analytic part of these matrix
elements here; the logarithmic contributions are given in
Appendix E.
For the �I ¼ 1=2 amplitudes, we are ultimately inter-

ested in the subtracted versions, as discussed in Sec. IV. We

expand the amplitude h0j�ð3;�3ÞjK0i to leading nontrivial
order, and take the ratio

h0jOð8;8ÞjK0i
h0j�ð3;�3ÞjK0i ¼ � 4c88;4


ð3;�3Þ B0ðmz �mxÞ þ 2

f2

88


ð3;�3Þ ðlogsÞ

þ � � � ; (30)

where higher order terms in chiral perturbation theory are
omitted. The power divergent contribution is proportional
to mz �mx, and this is true to all orders in the chiral
expansion by CPS symmetry [33] (where CPS is the com-
bined operation of charge conjugation, parity, and a
‘‘switching’’ operation of d $ s [or valence y $ z]
quarks). Thus, the ratio of LEC’s containing the power

divergence �4c88;4B0=ð
ð3;�3ÞÞ can be extracted from the

corresponding lattice matrix elements, since the mass de-
pendence of the divergent piece is known to all orders of
the chiral expansion. We perform the operator subtraction

using this ratio and the amplitude h�þj�ð3;�3ÞjKþi,
h�þjOð8;8Þð1=2Þ

sub jKþiQ ¼ h�þjOð8;8Þð1=2ÞjKþiQ
þ 4c88;4B0ðmz þmxÞ


ð3;�3Þ

� h�þj�ð3;�3ÞjKþi; (31)

where by CPS symmetry the power divergence is removed
to all orders in �PT. Through NLO in �PT we have

h�þjOð8;8Þð1=2Þ
sub jKþiQ ¼ h�þjOð8;8Þð1=2ÞjKþiQ

� 8

f2
c88;4m

2
xz: (32)

These relations hold for either Q ¼ Q1, Q2, and lead to

h�þjOð8;8Þð1=2Þ
sub jKþiQ1

¼ 8
88

f2
þ 4

f2
fð�c88;1 þ c88;2 þ 2c88;3ÞmxzmX

þ 4c88;4ðm2
xz þm2

XÞ þ 4c88;5ðm2
xz þm2

XÞ
þ 4c88;6ð2m2

D þm2
SÞg þ h�þjOð8;8Þð1=2ÞjKþiQ1;logs

(33)
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h�þjOð8;8Þð1=2Þ
sub jKþiQ2

¼ h�þjOð8;8Þð1=2Þ
sub jKþiQ1

þ 4

3


88

f4

�
�
3

mxz

mxz �mX

½‘ðm2
XÞ þ ‘ðm2

ZÞ

� 2‘ðm2
xzÞ�

þ 6mxzmXð�ðq2; m2
xz; m

2
XÞ

� �ðq2; m2
xz; m

2
ZÞÞ

�
:

(34)

The logarithms appearing in Eq. (33) are given in
Appendix E.

When we have degenerate valence quark masses (mx ¼
my ¼ mz), the above formula can be simplified. However,

for some terms, especially those which involve residue
functions RXðma;mbÞ, taking this limit is nontrivial.
Thus, we give the degenerate valence K ! � amplitudes
explicitly. (The degenerate valenceK ! 0matrix elements
vanish due to CPS symmetry [34].) The subtracted ampli-
tude for the degenerate case is given by

h�þjOð8;8Þð1=2Þ
sub jKþideg:val:Q ¼h�þjOð8;8Þð1=2ÞjKþideg:val:Q

þ4c88;4ð2B0mxÞ

ð3;�3Þ h�þj�ð3;�3ÞjKþi

¼h�þjOð8;8Þð1=2ÞjKþideg:val:Q

� 8

f2
c88;4m

2
X; (35)

where again the second equality is correct through NLO in
�PT. In the degenerate case the amplitudes are the same
for Q1 and Q2,

h�þjOð8;8Þð3=2ÞjKþideg :val:Q1;2

¼ 4
88

f2
ð1þ �ZXÞ þ 4
88

f4

�
� 8

3
½2‘ðm2

xdÞ þ ‘ðm2
xsÞ�

þ 2m2
X
~‘ðm2

XÞ
�
þ 4

f2
½ð�c88;1 � c88;2 þ 4c88;4

þ 4c88;5Þm2
X þ 2c88;6ð2m2

D þm2
SÞ�; (36)

h�þjOð8;8Þð1=2Þ
sub jKþideg :val:Q1;2

¼ 8
88

f2
ð1þ �ZXÞ þ 8
88

f4

�
� 8

3
½2‘ðm2

xdÞ þ ‘ðm2
xsÞ�

�m2
X
~‘ðm2

XÞ
�
þ 4

f2
½ð�c88;1 þ c88;2 þ 2c88;3

þ 8c88;4 þ 8c88;5Þm2
X þ 4c88;6ð2m2

D þm2
SÞ�: (37)

C. K ! �� amplitudes in full QCD

The LEC’s needed to construct the (8,8), K ! �� am-
plitudes at physical kinematics through NLO can be ob-

tained from the K ! � and K ! 0 amplitudes given
above. The extraction of LEC’s is essentially unchanged
from the case of three degenerate sea quarks treated in
Ref. [11]. For completeness, we present the physical K !
�� amplitudes, which were calculated originally in
Refs. [8,9], and subsequently checked in Refs. [11,35].

h�þ��jOð8;8Þ;ð3=2ÞjK0i ¼ � 4i
88

fKf
2
�

þ 12i

fKf
2
�

½ð�c88;2

� c88;3 � 2c88;4 � 2c88;5

� 4c88;6Þm2
K � ð�c88;1 � c88;2

þ 4c88;4 þ 4c88;5 þ 2c88;6Þm2
��

þ h�þ��jOð8;8Þ;ð3=2ÞjK0ilogs;
(38)

h�þ��jOð8;8Þ;ð1=2ÞjK0i ¼ � 8i
88

fKf
2
�

� 12i

fKf
2
�

½ð�c88;1

� c88;2 þ 4c88;4 þ 4c88;5

þ 8c88;6Þm2
K þ ð�c88;1 þ c88;2

þ 2c88;3 þ 8c88;4 þ 8c88;5

þ 4c88;6Þm2
��

þ h�þ��jOð8;8Þ;ð1=2ÞjK0ilogs:
(39)

The logarithmic terms are given in Appendix E. Note that
in Eqs. (38) and (39), the decay constants appearing in the
tree-level terms are the physical decay constants (correct to
one loop). When constructing K ! �� amplitudes using
Eqs. (38) and (39), one should use the physical decay
constants in the tree-level expression, as determined from
lattice calculations or experiment, in order to avoid double
counting a subset of the one-loop corrections.

VI. K ! � FOR THE (27,1), �I ¼ 3=2 CASE

The operators which transform as (27,1)’s under the
irreducible representation of the chiral symmetry group
give the dominant contribution to ReðA2Þ, i.e., the real
part of the �I ¼ 3=2, K ! �� amplitude. In this section
we review the (27,1) chiral operators that are needed
through NLO, and we give results for the NLO �I ¼
3=2, K ! � amplitude.

A. Definition of the Oð27;1Þ operators
Following [7,11], the operator in the (27,1) representa-

tion can be written as
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Oð27;1Þ ¼ Tij
klð�@��yÞki ð�@��yÞlj þ c27;1T

ij
klðSÞki ðSÞlj

þ c27;2T
ij
klðPÞki ðPÞlj þ c27;4T

ij
klðL�Þki ðfL�; SgÞlj

þ c27;5T
ij
klðL�Þki ð½L�; P�Þlj þ c27;6T

ij
klðSÞki ðL2Þlj

þ c27;7T
ij
klðL�Þki ðL�Þljstr½S� þ c27;20T

ij
klðL�Þki

� ð@�W��Þlj þ c27;24T
ij
klðW��Þki ðW��Þlj; (40)

where S, P, L� are defined in Eq. (11) and

W�� ¼ 2ð@�L� þ @�L�Þ: (41)

The tensor Tij
kl has different elements depending on which

isospin we are projecting. To project the �I ¼ 3=2 opera-
tor, we set

T13
12 ¼ T31

12 ¼ T13
21 ¼ T31

21 ¼ 1

2
T23
22 ¼ T32

22 ¼ � 1

2
;

(42)

whereas for the �I ¼ 1=2 operator, we set

T13
12 ¼ T31

12 ¼ T13
21 ¼ T31

21 ¼ 1

2
T23
22 ¼ T32

22 ¼ 1

T33
32 ¼ T33

23 ¼ � 3

2
:

(43)

In order to adapt Eq. (40) to the partially quenched
theory, we must promote T to a 94 element tensor, although
many components will remain zero (only the 34 block
corresponding to the valence quark sector will have non-
zero elements). To take into account the graded nature of
the group, we multiply by factors of "i defined in Eq. (15),
such that

O ð27;1Þ ¼ X
ijkl

"i"jT
ij
klð�@��yÞki ð�@��yÞlj; (44)

where we display the summation over i, j, k, l explicitly for
clarity.

There is another equivalent approach to obtaining the
partially quenched operators for the (27,1) case. It is pos-
sible, as illustrated in Appendix D of [28], to rewrite
Eq. (40) in terms of traces over the various operators.
The partially quenched theory is then obtained in the usual
way by changing traces to supertraces, and we obtain

Oð27;1Þ;ð3=2Þ ¼ str½�6�@��
y�str½A�@��y�

þ str½�3�@��
y�str½�4�@

��y�; (45)

Oð27;1Þ;ð1=2Þ ¼ str½�6�@��
y�str½B�@��y�

þ str½�3�@��
y�str½�4�@

��y�; (46)

where we have defined the matrices

ð�3Þij ¼ �i3�j1; ð�4Þij ¼ �i1�j2; (47)

Aij ¼ �i1�j1 � �i2�j2; B ¼ diagð1; 2;�3Þ: (48)

Since the kaon has isospin I ¼ 1=2, the �I ¼ 3=2, K !
0 process vanishes. The amplitude for the (27,1), �I ¼
3=2, K ! � matrix element is

h�þjOð27;1Þð3=2ÞjKþi ¼ � 4
27

f2
mXmxz þ 1

f2
½16ð�c27;2

þ 4c27;24Þm2
Xm

2
xz þ 8ðc27;4

� c27;20ÞmXmxzðm2
X þm2

xzÞ
þ 8c27;7mXmxzð2m2

D þm2
SÞ�

þ h�þjOð27;1Þð3=2ÞjKþilogs; (49)

where the logarithmic terms are given in Appendix F.
For degenerate valence quarks, this amplitude simplifies

to

h�þjOð27;1Þð3=2ÞjKþideg :val:

¼ � 4
27

f2
m2

X

�
1þ �ZX þ �m2

X

m2
X

�

þ 8

3


27

f4
m2

Xf6‘ðm2
XÞ þ 8‘ðm2

xdÞ þ 4‘ðm2
xsÞ

� 3m2
X
~‘ðm2

XÞg þ
1

f2
½16ð�c27;2 þ c27;4 � c27;20

þ 4c27;24Þm4
X þ 8c27;7m

2
Xð2m2

D þm2
SÞ�: (50)

VII. �I ¼ 1=2 WEAK MATRIX ELEMENTS FOR
(8,1) AND ð8; 1Þ þ ð27; 1Þ OPERATORS

In this section we present results for �I ¼ 1=2 ampli-
tudes, which include K ! 0 and K ! � matrix elements,
for operators that transform under the ð8; 1Þ þ ð27; 1Þ rep-
resentation, and for those that transform under the pure
(8,1) representation. We perform the power subtraction
explicitly through NLO in the chiral expansion and present
the subtracted amplitudes.

A. Definition of the Oð8;1Þ operator
As shown in Ref. [7], there are two leading order

[Oðp2Þ] operators in the chiral symmetry group (8,1),
with coefficients 
1 and 
2. There are 13 NLO [Oðp4Þ]
operators relevant for this work. Note that there is an extra
operator which only appears in the partially quenched case.
In the full theory, by convention [36], operator 14 is
absorbed into operators 10, 11, 12, and 13 via the
Cayley-Hamilton theorem. This is not possible in the par-
tially quenched theory [11,27]. The (8,1) operators are
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Oð8;1Þ ¼ 
1str½�6@��@
��y� þ 
22B0str½�6ðMy�y þ�MÞ� þ c81;1str½�6S

2� þ c81;2str½�6S�str½S� þ c81;3str½�6P
2�

þ c81;4str½�6P�str½P� þ c81;5str½�6½P; S�� þ c81;10str½�6fS; L2g� þ c81;11str½�6L�SL
��

þ c81;12str½�6L��str½fL�; Sg� þ c81;13str½�6S�str½L2� þ c81;14str½�6L
2�str½S� þ c81;15str½�6½L2; P��

þ c81;35str½�6fL�; @�W
��g� þ c81;39str½�6W��W

���: (51)

The (27,1) operators relevant for this section are given in
Eq. (40).

B. K ! 0 amplitudes

The NLO expression for the unsubtracted K ! 0 ampli-
tude in the pure (8,1) case is

h0jOð8;1ÞjK0i ¼ 4i

f

2ðm2

xz �m2
XÞ þ

8i

f
ðm2

xz �m2
XÞ

� ½2ðc81;1 � c81;5Þm2
xz þ c81;2ð2m2

D þm2
SÞ�

þ h0jOð8;1ÞjK0ilogs; (52)

where the logarithmic terms are given in Appendix G. For
the ð8; 1Þ þ ð27; 1Þ case, we have

h0jOð8;1Þþð27;1Þð1=2ÞjK0i ¼ h0jOð27;1ÞjK0ilogs þ 48i

f
c27;1

� ðm2
xz �m2

XÞ2 þ h0jOð8;1ÞjK0i;
(53)

where

h0jOð27;1ÞjK0ilogs ¼ 4i

f3

27f½2m2

X � RXðm�Þ þm2
XR�ðmX;mXÞ þ 2m2

XRXðm�;mZÞ�‘ðm2
XÞ þ ½2m2

Z � RZðm�Þ

þm2
ZR�ðmZ;mZÞ þ 2m2

ZRZðm�;mXÞ�‘ðm2
ZÞ � 6m2

xz‘ðm2
xzÞ þ ½�m2

�R�ðmZ;mZÞ þ 2m2
�R�ðmX;mZÞ

�m2
�R�ðmX;mXÞ�‘ðm2

�Þ þm2
XRXðm�Þ~‘ðm2

XÞ þm2
ZRZðm�Þ~‘ðm2

ZÞg: (54)

Following the procedure given in Ref. [28], we perform
the subtraction of the power divergence in (8,1) and
ð8; 1Þ þ ð27; 1Þ amplitudes. In order to do this we require

the amplitudes for �ð3;�3Þ through NLO, given in Sec. IV.
The ratio of (8,1) and ð3; �3Þ, K ! 0 matrix elements to
NLO is

h0jOð8;1ÞjK0i
h0j�ð3;�3ÞjK0i ¼ 2


2


ð3;�3Þ B0ðmz �mxÞ þ f

2i
ð3;�3Þ

� h0jOð8;1ÞjK0ið1Þlogs þ
4


ð3;�3Þ ðm2
xz �m2

XÞ
� ½2ðc081;1 � c081;5Þm2

xz þ c081;2ð2m2
D þm2

SÞ�;
(55)

where the transformed coefficients c081;1, c081;2, c081;5 (de-

fined in Table I) are linear combinations of the original
LEC’s, c81;1, etc., and the Gasser-Leutwyler coefficients

originating from Oðp2Þ terms in the amplitude

h0j�ð3;�3ÞjK0i. The first term on the right-hand side of
Eq. (55) contains the power divergence, which is propor-
tional to mz �mx to all orders in the chiral expansion. The
remaining terms are finite, including the rotated LEC’s
c081;i. Since the rotated LEC’s contain a term proportional

to 
2, it follows that the unrotated c81;i’s must also contain

power divergences [37]. This was implicitly assumed in the
work of Ref. [11].
A similar expression exists for the ratio involving the

ð8; 1Þ þ ð27; 1Þ amplitude,

h0jOð8;1Þþð27;1Þð1=2ÞjK0i
h0j�ð3;�3ÞjK0i ¼ 2


2


ð3;�3Þ B0ðmz �mxÞ þ f

2i
ð3;�3Þ h0jOð8;1ÞjK0ið1Þlogs þ
f

2i
ð3;�3Þ h0jOð27;1ÞjK0ilogs

þ 4


ð3;�3Þ ðm2
xz �m2

XÞ½2ðc081;1 � c081;5Þm2
xz þ c081;2ð2m2

D þm2
SÞ þ 6c27;1ðm2

xz �m2
XÞ�: (56)

C. K ! � amplitudes with 2þ 1 valence flavors

For the K ! � amplitudes, we first present the matrix elements of the unsubtracted operators,
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h�þjOð8;1ÞjKþi ¼ 4
1

f2
mxzmX � 4
2

f2
m2

xz þ 8

f2
½�2c81;1m

4
xz � c81;2m

2
xzð2m2

D þm2
SÞ � 2c81;3m

2
Xm

2
xz

þ 2c81;5m
2
xzðm2

xz �m2
XÞ þ 2c81;10mXm

3
xz þ c81;11m

3
Xmxz þ c81;14mXmxzð2m2

D þm2
SÞ

� 2c81;35mXmxzðm2
X þm2

xzÞ þ 8c81;39m
2
Xm

2
xz� þ h�þjOð8;1ÞjKþilogs; (57)

h�þjOð8;1Þþð27;1Þð1=2ÞjKþi ¼ � 4
27

f2
mxzmX þ 1

f2
½48c27;1m2

xzðm2
xz �m2

XÞ þ 16ð�c27;2 þ 4c27;24Þm2
Xm

2
xz þ 8ðc27;4

� c27;20ÞmXmxzðm2
X þm2

xzÞ þ 24c27;6mXmxzðm2
X �m2

xzÞ þ 8c27;7mXmxzð2m2
D þm2

SÞ�
þ h�þjOð27;1Þð1=2ÞjKþilogs þ h�þjOð8;1ÞjKþi; (58)

where the logarithmic contributions to the (8,1) amplitude
are given in Appendix G, and the logarithmic contributions
to the (27,1) amplitude are given in Appendix F.

Given the coefficient of the power divergent term from
K ! 0, it is possible to carry out the operator subtraction in
K ! � numerically. By CPS symmetry, the following
subtraction removes the divergence to all orders in the
chiral expansion:

h�þjOð8;1Þ
sub jKþi ¼ h�þjOð8;1ÞjKþi � 2


2


ð3;�3Þ B0ðmz þmxÞ

� h�þj�ð3;�3ÞjKþi: (59)

To NLO this expression becomes

h�þjOð8;1Þ
sub jKþi ¼ 4
1

f2
mxzmX þ 8

f2
½�2c081;1m4

xz

� c081;2m2
xzð2m2

D þm2
SÞ � 2c081;3m2

Xm
2
xz

þ 2c081;5m
2
xzðm2

xz �m2
XÞ

þ 2c081;10mXm
3
xz þ c81;11m

3
Xmxz

þ c81;14mXmxzð2m2
D þm2

SÞ
� 2c81;35mXmxzðm2

X þm2
xzÞ

þ 8c81;39m
2
Xm

2
xz� þ h�þjOð8;1ÞjKþið1Þlogs;

(60)

where again, the c081;i are the linear combinations of LEC’s

given in Table I. Note that the subtraction eliminates the
term in Eq. (57) proportional to 
2. The NLO chiral

logarithms proportional to 
2 are also eliminated. The
remaining logarithms are contained in the term

h�þjOð8;1ÞjKþið1Þlogs given in Appendix G; this term is pro-

portional to 
1.
A similar subtraction can be performed for the ð8; 1Þ þ

ð27; 1Þ case,

h�þjOð8;1Þþð27;1Þð1=2Þ
sub jKþi ¼ h�þjOð8;1Þþð27;1Þð1=2ÞjKþi

� 2

2


ð3;�3Þ B0ðmz þmxÞ
� h�þj�ð3;�3ÞjKþi: (61)

Again, this subtraction removes the power divergences to
all orders in the chiral expansion. To NLO the subtracted
operator gives the matrix element,

h�þjOð8;1Þþð27;1Þð1=2Þ
sub jKþi

¼ � 4
27

f2
mxzmX þ 1

f2
½48c27;1m2

xzðm2
xz �m2

XÞ

þ 16ð�c27;2 þ 4c27;24Þm2
Xm

2
xz þ 8ðc27;4 � c27;20Þ

�mXmxzðm2
X þm2

xzÞ þ 24c27;6mXmxzðm2
X �m2

xzÞ
þ 8c27;7mXmxzð2m2

D þm2
SÞ�

þ h�þjOð27;1Þð1=2ÞjKþilogs þ h�þjOð8;1Þ
sub jKþi: (62)

For degenerate valence quarks, Eq. (60) reduces to

h�þjOð8;1Þ
sub jKþideg :val: ¼ 4

f2
m2

Xf
1 þ 2½ð�2c081;1 � 2c081;3

þ 2c081;10 þ c81;11

� 4c81;35 þ 8c81;39Þm2
X

þ ð�c081;2 þ c81;14Þð2m2
D þm2

SÞ�g
þ h�þjOð8;1ÞjKþideg :val:;ð1Þlogs ; (63)

where the logarithmic terms are given in Appendix G. For
the ð8; 1Þ þ ð27; 1Þ,K ! �matrix element, we have for the
degenerate valence case,

TABLE I. The transformation of the (8,1) LEC’s (denoted in
the text with a prime) under the vacuum subtraction process.

LEC Transformed LEC

c81;1 c81;1 � ð4
2=f
2Þð2L8 þH2Þ

c81;2 c81;2 � ð16
2=f
2ÞL6

c81;3 c81;3 þ ð4
2=f
2Þð�2L8 þH2Þ

c81;5 c81;5 � ð4
2=f
2ÞH2

c81;10 c81;10 � ð4
2=f
2ÞL5

c81;13 c81;13 � ð8
2=f
2ÞL4

c81;15 c81;15 þ ð4
2=f
2ÞL5
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h�þjOð8;1Þþð27;1Þð1=2Þ
sub jKþideg :val:

¼ � 4
27

f2
m2

X

�
1þ �ZX þ �m2

X

m2
X

�
þ 8

3


27

f4
m2

Xf6‘ðm2
XÞ

þ 8‘ðm2
xdÞ þ 4‘ðm2

xsÞ � 3m2
X
~‘ðm2

XÞg
þ 1

f2
½16ð�c27;2 þ c27;4 � c27;20 þ 4c27;24Þm4

X

þ 8c27;7m
2
Xð2m2

D þm2
SÞ� þ h�þjOð8;1Þ

sub jKþideg :val::
(64)

Note that for degenerate valence quarks the (27,1), �I ¼
1=2 amplitude is the same as the (27,1), �I ¼ 3=2 ampli-
tude, Eq. (50).

VIII. FINITE VOLUME CORRECTIONS

Incorporating the leading corrections coming from the
finite volume used in lattice simulations for the above
expressions is straightforward. Here we assume that the
time extent used to extract the above matrix elements is
infinite, and that the only corrections come from the finite
spatial volume. There are two classes of one-loop integrals
that must be replaced by their finite volume counterparts.
The first is defined in Eq. (B1), and its associated double-
pole counterparts are defined in Eqs. (B2) and (B3) [these
are related to Eq. (B1) by derivatives with respect to m2].
As discussed in Refs. [38,39], finite volume effects can be
accounted for by making the replacements

‘ðm2Þ ! ‘ðm2Þ þ 1

16�2
m2�1ðmLÞ; (65)

~‘ðm2Þ ! ~‘ðm2Þ þ 1

16�2
�3ðmLÞ; (66)

~~‘ðm2Þ ! ~~‘ðm2Þ þ 1

16�2

�5ðmLÞ
m2

; (67)

with

�1ðmLÞ ¼ 4
X
n�0

K1ðjnjmLÞ
jnjmL

; (68)

�3ðmLÞ ¼ � @

@m2
½m2�1ðmLÞ� ¼ 2

X
n�0

K0ðjnjmLÞ; (69)

�5ðmLÞ ¼ m2 @

@m2
½�3ðmLÞ� ¼ �X

n�0

ðjnjmLÞK1ðjnjmLÞ;

(70)

with K0, K1 the modified Bessel functions of imaginary
argument.

The second class of loop integrals are more complicated
and are defined in Eqs. (B4) and (B5). For these, we recall
the technique used to calculate the above finite volume

corrections. We begin with the finite volume Euclidean
space version of Eq. (B4), and apply the Poisson resum-
mation formula (as discussed in Refs. [38,40]). This leads
to the following replacements:

�ðq2; m2
1; m

2
2Þ ! �ðq2; m2

1; m
2
2Þ þ

1

4�2
��ðqL;m1L;m2LÞ;

(71)

~�ðq2; m2
1; m

2
2Þ ! ~�ðq2; m2

1; m
2
2Þ

� 1

4�2m2
1

� ~�ðqL;m1L;m2LÞ; (72)

and the corrections

��ðqL;m1L;m2LÞ �
X
n�0

Z 1

0
dk

k sinðkjnjÞ
jnj

� !1 þ!2

!1!2½ðqLÞ2 þ ð!1 þ!2Þ2�
;

(73)

� ~�ðqL;m1L;m2LÞ� ðm1LÞ2
X
n�0

Z 1

0
dk

ksinðkjnjÞ
jnj

� ðqLÞ2!2þð2!1þ!2Þð!1þ!2Þ2
2!3

1!2½ðqLÞ2þð!1þ!2Þ2�2
;

(74)

where we have defined

!i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðmiLÞ2

q
;

and where the function in Eq. (74) is obtained by taking the
partial derivative of Eq. (73) with respect to m2

1.
These formulas can be simplified as in Ref. [40], but

only in special cases (such as degenerate masses). For the
general case, it is more difficult to find an approximate
expression for these finite volume corrections.2 However, it
is relatively simple to evaluate these expressions numeri-
cally at a finite number of points. Given a set of lattice data
at a number of quark masses and lattice volumes, it would
be straightforward to tabulate the appropriate finite volume
corrections from the above formulas.

IX. CONCLUSIONS

This paper presents the calculation of K ! 0 and K !
� amplitudes to NLO in PQ�PT with 2þ 1 flavors of
nondegenerate sea quarks. Results are presented for both
the �I ¼ 1=2 and 3=2 channels, for chiral operators cor-
responding to current-current, gluonic penguin, and elec-
troweak penguin 4-quark operators. The chiral operators

2One cannot apply the expansion in Ref. [40], for example,
because these integrals have three different relevant scales, as
given by q2, m2

1, and m2
2.
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are conveniently grouped by their chiral transformation
properties; this work computes matrix elements of (8,8),
(27,1), (8,1), and ð8; 1Þ þ ð27; 1Þ chiral operators. The
power divergent operator subtraction is performed explic-
itly through NLO in the chiral expansion for �I ¼ 1=2
matrix elements. We have also shown how to include finite
volume effects through one loop for the quantities consid-
ered in this work. These results are useful for studying the
chiral behavior of currently available 2þ 1 flavor lattice
QCD results [41], from which the low-energy constants of
the chiral effective theory can be determined. The low-
energy constants of these matrix elements are necessary for
an understanding of the�I ¼ 1=2 rule and for calculations
of �0=� using current lattice QCD simulations.
Electroweak penguin K ! �� matrix elements can be
constructed to NLO in �PT using the formulas presented
in this work, allowing the convergence of the chiral expan-
sion to be studied. This will serve as a useful cross-check
for other non-�PT methods such as those proposed in
Refs. [5,42].
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APPENDIX A: ISOSPIN DECOMPOSITION

The operator that governs the transitionK ! � can have
either isospin 1=2 or isospin 3=2. In typical lattice calcu-
lations, these two processes are calculated independently
[28,43], since the operator with isospin 1=2 mixes with a
divergent lower dimensional operator, which must be sub-
tracted. The isospin 3=2 amplitude does not have this
complication. Therefore, we calculate the amplitudes for
these two processes separately, making use of the ampli-
tudes for Kþ ! �þ and K0 ! �0.

We define Mþ ¼ h�þjOijKþi, where Oi represents
some �S ¼ 1 operator with both isospin 1=2 and 3=2
components, and M0 ¼ h�0jOijK0i. If we decompose

the operator Oi by isospin, Oi ¼ Oð3=2Þ
i þOð1=2Þ

i , then we
have for the matrix elements

Mþ ¼ h�þjOð3=2Þ
i jKþi þ h�þjOð1=2Þ

i jKþi;
M0 ¼ h�0jOð3=2Þ

i jK0i þ h�0jOð1=2Þ
i jK0i:

Given the relevant Clebsch-Gordon coefficients,

h�þjOð3=2Þ
i jKþi

h�0jOð3=2Þ
i jK0i ¼

ffiffiffi
2

p
2

; (A1)

h�þjOð1=2Þ
i jKþi

h�0jOð1=2Þ
i jK0i ¼ � ffiffiffi

2
p

; (A2)

we obtain the result

h�þjOð3=2Þ
i jKþi ¼ 1

3
ðMþ þ ffiffiffi

2
p

M0Þ

h�þjOð1=2Þ
i jKþi ¼ 1

3
ð2Mþ � ffiffiffi

2
p

M0Þ:
(A3)

APPENDIX B: LOOP FUNCTIONS AND RESIDUES

The following loop functions are used throughout this
work, and they are regulated using dimensional regulari-

zation in the modified MS scheme. For single-pole mes-
onic loops, we need

‘ðm2Þ ¼
�
lim
d!4

Z ddp

ð2�Þd
i

p2 �m2 þ i�

�
reg

¼ 1

16�2
m2 ln

�
m2

�2

�
; (B1)

(cf. f2Aðm2Þ in Ref. [10,11]). We also need the double-pole
expression

~‘ðm2Þ ¼ � @

@m2
‘ðm2Þ ¼ �

Z ddp

ð2�Þd
i

ðp2 �m2Þ2 ; (B2)

where the minus sign is chosen to be consistent with the

form of Euclidean ~‘ðm2Þ in Refs. [39,44].3 Further, we will
sometimes need

~~‘ðm2Þ ¼ @

@m2
~‘ðm2Þ: (B3)

The two-point loop function encountered in loops with
strong-weak vertices and only a single pole is defined as

�ðq2; m2
1; m

2
2Þ ¼

�
i
Z ddp

ð2�Þd

� 1

ðp2 �m2
1Þððpþ qÞ2 �m2

2Þ
�
reg

¼ 1

ð4�Þ2
Z 1

0
dxf1þ ln½�xð1� xÞq2

þ ð1� xÞm2
1 þ xm2

2� � lnð�2Þg: (B4)

Note that we always have q2 ¼ ðmxz �mXÞ2 for K ! �
amplitudes. This function is proportional to the B0 function
defined in Eq. (A2) of [10]. Similar loops with double poles
require

~�ðq2; m2
1; m

2
2Þ ¼

@

@ðm2
1Þ
�ðq2; m2

1; m
2
2Þ: (B5)

3Note, however, that our definitions of ‘ and ~‘ differ from
Refs. [39,44] by a factor of 1=16�2.
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To simplify the expressions, we use the notation for the
residues arising from disconnected meson propagators,

RxðmaÞ ¼ ðm2
x �m2

DÞðm2
x �m2

SÞ
m2

x �m2
a

; (B6)

Rxðma;mbÞ ¼ ðm2
x �m2

DÞðm2
x �m2

SÞ
ðm2

x �m2
aÞðm2

x �m2
bÞ

: (B7)

APPENDIX C: ONE-LOOP WAVE-FUNCTION AND
MASS RENORMALIZATIONS

The necessary wave-function renormalizations needed
for the one-loop amplitudes are given in the 2þ 1 flavor
case by

�Zxz ¼ �2
�fxz
f

þ 4

3

�
�fxz
f

�
logs

; (C1)

�ZX ¼ �2
�fX
f

þ 4

3

�
�fX
f

�
logs

; (C2)

where we have separated the terms in this way because the
first term on the right-hand side of each of these equations
is the one-loop correction to the bare decay constant f
appearing in the tree-level expression for a given weak
matrix element. This first term contains both NLO loga-
rithmic corrections and Gasser-Leutwyler constants. It
may be useful in chiral fits to lattice data to absorb this
correction to the decay constant into the tree-level expres-
sion, and the above formulas make this convenient. The
second term is proportional to the logarithmic corrections
to the decay constant alone, without the Gasser-Leutwyler
constants,

�
�fxz
f

�
logs

¼ 1

2f2

�
�½2‘ðm2

xdÞ þ 2‘ðm2
zdÞ þ ‘ðm2

xsÞ þ ‘ðm2
zsÞ� þ 1

3

�
@RXðm�Þ
@m2

X

‘ðm2
XÞ � RXðm�Þ~‘ðm2

XÞ þ
@R�ðmXÞ
@m2

X

‘ðm2
�Þ

þ @RZðm�Þ
@m2

Z

‘ðm2
ZÞ � RZðm�Þ~‘ðm2

ZÞ þ
@R�ðmZÞ
@m2

Z

‘ðm2
�Þ � 2RXðmZ;m�Þ‘ðm2

XÞ � 2RZðmX;m�Þ‘ðm2
ZÞ

� 2R�ðmX;mZÞ‘ðm2
�Þ
��

; (C3)

so that [3],

�fxz
f

¼
�
�fxz
f

�
logs

þ 8

f2
L4ð2m2

D þm2
SÞ þ

8

f2
L5m

2
xz: (C4)

For the degenerate mass case, these reduce to

�
�fX
f

�
logs

¼ 1

f2
½�2‘ðm2

xdÞ � ‘ðm2
xsÞ�; (C5)

�fX
f

¼
�
�fX
f

�
logs

þ 8

f2
L4ð2m2

D þm2
SÞ þ

8

f2
L5m

2
X: (C6)

Additionally, we need the one-loop corrections to the meson masses squared [3],

ð�mxzÞ2
m2

xz

¼ 2

3f2
ðRXðmZ;m�Þ‘ðm2

XÞ þ RZðmX;m�Þ‘ðm2
ZÞ þ R�ðmX;mZÞ‘ðm2

�ÞÞ þ 16

f2
ð2L8 � L5Þm2

xz

þ 16

f2
ð2L6 � L4Þð2m2

D þm2
SÞ; (C7)

ð�mXÞ2
m2

X

¼ 2

3f2

�
�RXðm�Þ~‘ðm2

XÞ þ
@RXðm�Þ
@m2

X

‘ðm2
XÞ þ R�ðmX;mXÞ‘ðm2

�Þ
�
þ 16

f2
ð2L8 � L5Þm2

X

þ 16

f2
ð2L6 � L4Þð2m2

D þm2
SÞ: (C8)

APPENDIX D: LOGARITHMIC CONTRIBUTION TO ð3; �3Þ, K ! � MATRIX ELEMENTS

The logarithmic contribution to the ð3; �3Þ, K ! � matrix element for the 2þ 1 nondegenerate case is
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h�þj�ð3;�3ÞjKþilogs ¼ � 2

f2

ð3;�3Þ

�
1

2
�Zxz þ 1

2
�ZX

�
þ 2

9


ð3;�3Þ

f4

�
� 9mXð2‘ðm2

xdÞ þ ‘ðm2
xsÞÞ

mxz �mX

þ
�
�2þ 3mX

mxz �mX

þ
�
2� 3mX

mxz �mX

�
R�ðmX;mXÞ � 2RXðmZ;m�Þ

�
‘ðm2

XÞ þ
�
�2� 3mX

mxz �mX

þ
�
2þ 3mX

mxz �mX

�
R�ðmZ;mZÞ � 2RZðmX;m�Þ

�
‘ðm2

ZÞ þ 6

�
2þ 3mX

mxz �mX

�
‘ðm2

zdÞ

þ 3

�
2þ 3mX

mxz �mX

�
‘ðm2

zsÞ þ
��

�2þ 3mX

mxz �mX

�
R�ðmX;mXÞ � 2R�ðmX;mZÞ

�
�
2þ 3mX

mxz �mX

�
R�ðmZ;mZÞ

�
‘ðm2

�Þ �
��

2þ 3mX

mxz �mX

�
RXðm�Þ

þ 2ð2m2
xz þm2

XÞRXðmZ;m�Þ
�
�ðq2; m2

xz; m
2
XÞ þ

�
2m2

Z � 4m2
xz þ 3mXðm2

Z �m2
XÞ

mxz �mX

� 4m2
X

þ
�
2þ 3mX

mxz �mX

�
RZðm�Þ þ

�
�2m2

Z þ 4m2
xz þ 3mXð�m2

Z þm2
XÞ

mxz �mX

þ 4m2
X

�
R�ðmZ;mZÞ

� 2ð2m2
xz þm2

XÞRZðmX;m�Þ
�
�ðq2; m2

Z; m
2
xzÞ

þ 6

�
�2m2

zd þ 2m2
xd þ 2m2

xz þ 3mX

��m2
zd þm2

xd

mxz �mX

�mxz

�
þm2

X

�
�ðq2; m2

zd; m
2
xdÞ

þ 3

�
�2m2

zs þ 2m2
xs þ 2m2

xz þ 3mX

��m2
zs þm2

xs

mxz �mX

�mxz

�
þm2

X

�
�ðq2; m2

zs; m
2
xsÞ

þ
��

�2m2
� þ 3mXð�m2

� þm2
XÞ

mxz �mX

þ 2m2
X

�
R�ðmX;mXÞ � 2ð2m2

xz þm2
XÞR�ðmX;mZÞ

þ
�
2m2

� � 4m2
xz þ

3mXðm2
� �m2

XÞ
mxz �mX

� 4m2
X

�
R�ðmZ;mZÞ

�
�ðq2; m2

�;m
2
xzÞ

þ
�
2� 3mX

mxz �mX

�
RXðm�Þ~‘ðm2

XÞ þ
�
2þ 3mX

mxz �mX

�
RZðm�Þ~‘ðm2

ZÞ

þ
�
2m2

Z � 4m2
xz þ 3mXðm2

Z �m2
XÞ

mxz �mX

� 4m2
X

�
RZðm�Þ ~�ðq2; m2

Z; m
2
xzÞ

�
: (D1)

APPENDIX E: LOGARITHMIC CONTRIBUTION TO (8,8) K ! � MATRIX ELEMENTS

The logarithmic contribution to the (8,8), �I ¼ 3=2, K ! � matrix element in the 2þ 1 nondegenerate case is

h�þjOð8;8Þð3=2ÞjKþiQ1;logs ¼
4
88

f2

�
1

2
�ZX þ 1

2
�Zxz

�
þ 8

9


88

f4
f½1� 2RXðmZ;m�Þ � R�ðmX;mXÞ�‘ðm2

XÞ

þ ½1� 2RZðmX;m�Þ � R�ðmZ;mZÞ�‘ðm2
ZÞ � 18‘ðm2

xdÞ � 9‘ðm2
xsÞ � 6‘ðm2

zdÞ
� 3‘ðm2

zsÞ þ ½R�ðmZ;mZÞ � 2R�ðmX;mZÞ þ R�ðmX;mXÞ�‘ðm2
�Þ � RXðm�Þ~‘ðm2

XÞ
� RZðm�Þ~‘ðm2

ZÞ � 9mxzmX�ðq2; m2
xz; m

2
XÞg: (E1)

The logarithmic contribution to the (8,8), �I ¼ 1=2, K ! � matrix element in the 2þ 1 nondegenerate case is
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h�þjOð8;8Þð1=2ÞjKþiQ1;logs ¼
8
88

f2

�
1

2
�ZX þ 1

2
�Zxz

�
þ 2

9


88

f4

�
8½1� 2RXðmZ;m�Þ � R�ðmX;mXÞ�‘ðm2

XÞ

þ 8½1� 2RZðmX;m�Þ � R�ðmZ;mZÞ�‘ðm2
ZÞ þ 18

4mX � 3mxz

mxz �mX

½2‘ðm2
xdÞ þ ‘ðm2

xsÞ�

þ 6
4mX � 7mxz

mxz �mX

½2‘ðm2
zdÞ þ ‘ðm2

zsÞ� þ 8½R�ðmZ;mZÞ � 2R�ðmX;mZÞ þ R�ðmX;mXÞ�‘ðm2
�Þ

� 8RXðm�Þ~‘ðm2
XÞ � 8RZðm�Þ~‘ðm2

ZÞ þ 36mxzmX�ðq2; m2
xz; m

2
XÞ þ 36mXmxzð2�ðq2; m2

zd; m
2
xdÞ

þ �ðq2; m2
zs; m

2
xsÞÞ

�
: (E2)

For completeness we include the chiral corrections to K ! �� at physical kinematics for the electroweak penguin
operators. In the full theory at physical kinematics, the logarithmic contribution to the (8,8), �I ¼ 3=2, K ! ��
amplitude is

h�þ��jOð8;8Þ;ð3=2ÞjK0ilogs ¼ �4i

88

fKf
2
�f

2

��
5m4

K

4m2
�

� 2m2
K

�
�ðm2

�;m
2
K;m

2
�Þ þ ðm2

K � 2m2
�Þ�ðm2

K;m
2
�;m

2
�Þ

þ m4
K

4m2
�

�ðm2
�;m

2
K;m

2
�Þ �

�
4þ m2

K

2m2
�

�
‘ðm2

KÞ þ
�
5m2

K

4m2
�

� 8

�
‘ðm2

�Þ � 3m2
K

4m2
�

‘ðm2
�Þ
�
; (E3)

and the logarithmic contribution to the (8,8), �I ¼ 1=2, K ! �� amplitude is

h�þ��jOð8;8Þ;ð1=2ÞjK0ilogs ¼ �8i

88

fKf
2
�f

2

��
m4

K

2m2
�

� 2m2
K

�
�ðm2

�;m
2
K;m

2
�Þ þ 3

4
m2

K�ðm2
K;m

2
K;m

2
KÞ

þ ðm2
� � 2m2

KÞ�ðm2
K;m

2
�;m

2
�Þ þ m4

K

4m2
�

�ðm2
�;m

2
K;m

2
�Þ þ 1

4

�
m2

K

m2
�

� 22

�
‘ðm2

KÞ

þ 1

4

�
2m2

K

m2
�

� 26

�
‘ðm2

�Þ � 3m2
K

4m2
�

‘ðm2
�Þ
�
: (E4)

APPENDIX F: LOGARITHMIC CONTRIBUTION TO (27,1) K ! � MATRIX ELEMENTS

The logarithmic contribution to the (27,1), �I ¼ 3=2, K ! � matrix elements in the 2þ 1 nondegenerate case is

h�þjOð27;1Þð3=2ÞjKþilogs ¼ � 4
27

f2
mXmxz

�
1

2
�ZX þ 1

2
�Zxz þ 1

2

�
�m2

X

m2
X

þ �m2
xz

m2
xz

��
þ 8

9


27

f4
mXmxzf½8þ R�ðmX;mXÞ

þ 2RXðmZ;m�Þ�‘ðm2
XÞ þ ½�1þ R�ðmZ;mZÞ þ 2RZðmX;m�Þ�‘ðm2

ZÞ þ 9‘ðm2
xzÞ

þ 18‘ðm2
xdÞ þ 9‘ðm2

xsÞ þ 6‘ðm2
zdÞ þ 3‘ðm2

zsÞ þ ½�R�ðmX;mXÞ þ 2R�ðmX;mZÞ
� R�ðmZ;mZÞ�‘ðm2

�Þ þ RXðm�Þ~‘ðm2
XÞ þ RZðm�Þ~‘ðm2

ZÞ þ 9mXmxz�ðq2; m2
xz; m

2
XÞg: (F1)

The logarithmic contribution to the (27,1), �I ¼ 1=2, K ! � matrix elements in the 2þ 1 nondegenerate case is
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h�þOð27;1Þð1=2ÞjKþilogs ¼�4
27

f2
mxzmX

�
1

2
�ZX þ 1

2
�Zxz þ 1

2

�
�m2

X

m2
X

þ�m2
xz

m2
xz

��
þ 2

9


27

f4

�
12mxzmXð6‘ðm2

xdÞ þ 3‘ðm2
xsÞ

þ 2‘ðm2
zdÞ þ ‘ðm2

zsÞÞ þ
��

12m2
� � 4mxzmX þ 6m2

X þ
9mXðm2

� þm2
XÞ

mxz �mX

�
R�ðmX;mXÞ

� 2

�
12m2

� þ 6m2
xz � 4mxzmX þ 9m2

X þ
9mXðm2

� þm2
XÞ

mxz �mX

�
R�ðmX;mZÞ þ

�
12m2

� þ 12m2
xz

� 4mxzmX þ 12m2
X þ

9mXðm2
� þm2

XÞ
mxz �mX

�
R�ðmZ;mZÞ

�
‘ðm2

�Þ
�
þ 4
27mxz

f4

�
5mX þ 6m2

xz

mxz �mX

�

� ‘ðm2
xzÞ þ 2

9


27

f4

��
4mXmxzð10mX � 19mxzÞ

mxz �mX

þ 3
4mxz �mX

mxz �mX

RXðm�Þ

þ 2
mXmxzð2mxz � 11mXÞ

mxz �mX

R�ðmX;mXÞ þ 2

�
�6m2

xz þ 4mxzmX � 21m2
X �

18m3
X
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�

�RXðmZ;m�Þ
�
‘ðm2

XÞ þ
�
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2
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þ 3
4mxz �mX
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RZðm�Þ

þ
�
�36m2

xz þ 4mxzmX � 18mXm
2
xz

mxz �mX

�
R�ðmZ;mZÞ þ 2

�
�15m2

Z þ 4mxzmX � 12m2
X �

18mXm
2
xz

mxz �mX

�

�RZðmX;m�Þ
�
‘ðm2

ZÞ þ
2mXmxzð2mxz � 11mXÞ

mxz �mX

RXðm�Þ~‘ðm2
XÞ þ

�
4mxzmX � 36m2

xz

� 18mXm
2
xz

mxz �mX

�
RZðm�Þ~‘ðm2

ZÞ
�
þ 2

3


27

f4

��
�2m4

� � 4m2
�mxzmX � 2m2

�m
2
X þ 4mxzm

3
X þ 4m4

X

þ 3mXðm4
X �m4

�Þ
mxz �mX

�
R�ðmX;mXÞ þ 2

�
2m4

� � 2m2
�m

2
xz þ 4m2

�mxzmX � 4m3
xzmX þm2

�m
2
X

þ 2m2
xzm

2
X � 6mxzm

3
X � 3m4

X þ
3mXðm4

� �m4
XÞ

mxz �mX

�
R�ðmX;mZÞ þ

�
�2m4

� þ 4m2
�m

2
xz

� 4m2
�mxzmX þ 8m3

xzmX � 4m2
xzm

2
X þ 8mxzm

3
X þ 2m4

X þ
3mXðm4

X �m4
�Þ

mxz �mX

�
R�ðmZ;mZÞ

�

��ðq2;m2
�;m

2
xzÞ þ 2

3


27

f4

�
�2mXmxz

�
12mxzmX �mX þ 2mxz

mX �mxz

RXðm�Þ

þ 2ð2m2
xz þm2

XÞRXðmZ;m�Þ
�
�ðq2;m2

xz;m
2
XÞ þ

�
6mX

�
�4m2

Xmxz þ m4
Z �m4

X

mxz �mX

�

þ 2

�
2m2

xz � 2m2
Z � 2mxzmX � 3m2

ZmX

mxz �mX

�
RZðm�Þ þ 3mX

�
�4m2

Xmxz þ m4
Z �m4

X

mxz �mX

�
R�ðmZ;mZÞ

þ 2

�
m4

Z � 2m3
XðmX þ 4mxzÞ þmXm

2
ZðmX þ 2mxzÞ þ 3mXðm4

Z �m4
XÞ

mxz �mX

�
RZðmX;m�Þ

�

��ðq2;m2
xz;m

2
ZÞ þ 3mX

�
4m2

Xmxz þ m4
X �m4

Z

mxz �mX

�
RZðm�Þ ~�ðq2;m2

Z;m
2
xzÞ

�
: (F2)

APPENDIX G: LOGARITHMIC CONTRIBUTION TO (8,1) K ! 0 AND K ! � MATRIX ELEMENTS

For the (8,1) case, we separate the logarithm terms which are proportional to 
1 from those proportional to 
2.
For K ! 0, we have
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h0jOð8;1ÞjK0ilogs ¼ h0jOð8;1ÞjK0ið1Þlogs þ h0jOð8;1ÞjK0ið2Þlogs; (G1)

where the superscripts refer to the terms proportional to 
1;2, and

h0jOð8;1ÞjK0ið1Þlogs ¼
4i

3f3

1f½m2

X þ RXðm�Þ �m2
XR�ðmX;mXÞ�‘ðm2

XÞ þ ½�m2
Z � RZðm�Þ þm2

ZR�ðmZ;mZÞ�‘ðm2
ZÞ

þm2
�½R�ðmX;mXÞ � R�ðmZ;mZÞ�‘ðm2

�Þ � 6m2
xd‘ðm2

xdÞ � 3m2
xs‘ðm2

xsÞ þ 6m2
zd‘ðm2

zdÞ þ 3m2
zs‘ðm2

zsÞ
�m2

XRXðm�Þ~‘ðm2
XÞ þm2

ZRZðm�Þ~‘ðm2
ZÞg; (G2)

h0jOð8;1ÞjK0ið2Þlogs ¼
4i

f

2ðm2

xz �m2
XÞ
�
1

2
�Zxz

�
þ 8i

9


2

f3
ðm2

xz �m2
XÞf½1þ RXðm�;mZÞ � R�ðmX;mXÞ�‘ðm2

XÞ

þ ½1þ RZðm�;mXÞ � R�ðmZ;mZÞ�‘ðm2
ZÞ þ ½R�ðmX;mXÞ þ R�ðmX;mZÞ þ R�ðmZ;mZÞ�‘ðm2

�Þ
� 6‘ðm2

xdÞ � 3‘ðm2
xsÞ � 6‘ðm2

zdÞ � 3‘ðm2
zsÞ � RXðm�Þ~‘ðm2

XÞ � RZðm�Þ~‘ðm2
ZÞg: (G3)

For K ! �, we again separate the logarithmic terms proportional to 
1 and 
2,

h�þjOð8;1ÞjKþilogs ¼ h�þjOð8;1ÞjKþið1Þlogs þ h�þjOð8;1ÞjKþið2Þlogs; (G4)

with

h�þjOð8;1ÞjKþið1Þlogs ¼
4
1

f2
mxzmX

�
1

2
�ZX þ 1

2
�Zxz þ 1

2

�
�m2

X

m2
X

þ �m2
xz

m2
xz

��
þ 1

9


1

f4

�
36

�
2m2

xd �m2
X �mxzmX

þmXðm2
zd þm2

xdÞ
mxz �mX

�
‘ðm2

xdÞ þ 18

�
2m2

xs �m2
X �mxzmX þmXðm2

zs þm2
xsÞ

mxz �mX

�
‘ðm2

xsÞ

� 12

�
6m2

zd þ 3m2
X þmxzmX þ 3mXðm2

zd þm2
xdÞ

mxz �mX

�
‘ðm2

zdÞ � 6

�
6m2

zs þ 3m2
X þmxzmX

þ 3mXðm2
zs þm2

xsÞ
mxz �mX

�
‘ðm2

zsÞ þ 2

��
�4m2

� þ 4mxzmX � 2m2
X � 3mXðm2

� þm2
XÞ

mxz �mX

�
R�ðmX;mXÞ

þ 2ð2m2
xz � 4mxzmX þm2

XÞR�ðmX;mZÞ þ
�
4m2

� þ 4m2
xz þ 4mxzmX þ 4m2

X þ 3mXðm2
� þm2

XÞ
mxz �mX

�

� R�ðmZ;mZÞ
�
‘ðm2

�Þ
�
þ 2

9


1

f4

��
2mXmxz

5mX � 2mxz

mxz �mX

ðR�ðmX;mXÞ � 1Þ � 4mxz �mX

mxz �mX

RXðm�Þ

þ 2ð2m2
xz � 4mxzmX þm2

XÞRXðmZ;m�Þ
�
‘ðm2

XÞ þ
�
4mxz �mX

mxz �mX

RZðm�Þ �
�
4mxzð3mxz þmXÞ

þ 6mXm
2
xz

mxz �mX

�
ðR�ðmZ;mZÞ � 1Þ þ 2ð2m2

xz � 4mxzmX þm2
XÞRZðmX;m�Þ

�
‘ðm2

ZÞ
�

þ 2

9


1

f4

�
�12mxzmX‘ðm2

xzÞ þ 2mX

�
3mX � 2mxz þ 3m2

X

mxz �mX

�
RXðm�Þ~‘ðm2

XÞ

� 2mxz

�
2ð3mxz þmXÞ þ 3mXmxz

mxz �mX

�
RZðm�Þ~‘ðm2

ZÞ
�
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þ1

9


1

f4

�
36

�
m2

Xð4m2
xz�m2

xd�m2
zdÞþðm2

xdþm2
zd�2m2

X�2m2
xzÞmxzmXþ

mXðm4
zd�m4

xdÞ
mxz�mX

�

��ðq2;m2
zd;m

2
xdÞþ18

�
m2

Xð4m2
xz�m2

xs�m2
zsÞþðm2

xsþm2
zs�2m2

xz�2m2
XÞmxzmXþmXðm4

zs�m4
xsÞ

mxz�mX

�

��ðq2;m2
zs;m

2
xsÞþ2

��
2m4

�þ4m2
�mxzmXþ2m2

�m
2
X�4mxzm

3
X�4m4

Xþ
3mXðm4

��m4
XÞ

mxz�mX

�
R�ðmX;mXÞ

þ2ð2m2
�m

2
xzþ4m3

xzmXþm2
�m

2
X�2m2

xzm
2
Xþ2mxzm

3
X�m4

XÞR�ðmX;mZÞþ
�
�2m4

�þ4m2
�m

2
xz

�4m2
�mxzmXþ8m3

xzmX�4m2
xzm

2
Xþ8mxzm

3
Xþ2m4

Xþ
3mXðm4

X�m4
�Þ

mxz�mX

�
R�ðmZ;mZÞ

�
�ðq2;m2

�;m
2
xzÞ

�

þ2

9


1

f4

�
2mXmxz

�
2mxzþmX

mxz�mX

RXðm�Þþ2ð2m2
xzþm2

XÞRXðmZ;m�Þ
�
�ðq2;m2

xz;m
2
XÞþ

�
12m3

Xmxz

þ3mXðm4
X�m4

ZÞ
mxz�mX

þ2

�
�2m2

xz�2mxzmXþ2m2
X�

3m2
ZmX

mxz�mX

�
RZðm�Þþ2ðm4

Z�2m4
Xþm2

Xm
2
Zþ2ð2m2

xz

þm2
XÞmXmxzÞRZðmX;m�Þþ

�
�12mxzm

3
Xþ

3mXðm4
Z�m4

XÞ
mxz�mX

�
R�ðmZ;mZÞ

�
�ðq2;m2

Z;m
2
xzÞ

þ
�
4ð2m2

Xþ2m2
xz�m2

ZÞmxzmXþ3mXðm4
X�m4

ZÞ
mxz�mX

�
RZðm�Þ ~�ðq2;m2

Z;m
2
xzÞ

�
; (G5)

and

h�þjOð8;1ÞjKþið2Þlogs¼�4
2

f2
m2

xz

�
1

2
�ZXþ1

2
�Zxz

�
þ4

9


2

f4
m2

xz

�
�9mXð2‘ðm2

xdÞþ‘ðm2
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mxz�mX

þ
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þ
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�
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�
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�
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�
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�
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�
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�
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�
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xdÞþ3

�
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�
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3mXð�m2

�þm2
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mxz�mX

þ2m2
X

�
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�2ð2m2
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�
2m2

��4m2
xzþ

3mXðm2
��m2
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�4m2
X
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�
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2
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þ
�
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mxz�mX
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RXðm�Þ~‘ðm2

XÞþ
�
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mxz�mX
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RZðm�Þ~‘ðm2

ZÞ

þ
�
2m2

Z�4m2
xzþ3mXðm2

Z�m2
XÞ

mxz�mX

�4m2
X

�
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Z;m
2
xzÞ

�
: (G6)

These formulas are simplified enormously in the degenerate valence case,
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h�þjOð8;1ÞjKþideg :val:;ð1Þlogs ¼ 4
1

f2
m2

X

�
�ZX þ �m2

X

m2
X

�
þ 4

3


1

f4
m2

Xf2½‘ðm2
�Þ þ ðm2

� þm2
XÞ�ð0; m2

�;m
2
XÞ�R�ðmX;mXÞ

þ 2½2� R�ðmX;mXÞ�‘ðm2
XÞ � 10‘ðm2

xdÞ � 5‘ðm2
xsÞ � 2m2

XRXðm�Þ~~‘ðm2
XÞ

þ 4½�m2
X � RXðm�Þ þm2

XR�ðmX;mXÞ�~‘ðm2
XÞg; (G7)

h�þjOð8;1ÞjKþideg :val:;ð2Þlogs ¼ � 4
2

f2
m2

X�ZX þ 8

3


2

f4
m2

Xfm2
X½RXðm�Þ~~‘ðm2

XÞ � 2R�ðmX;mXÞ�ð0; m2
�;m

2
XÞ�

þ ½�1þ R�ðmX;mXÞ�‘ðm2
XÞ þ 2‘ðm2

xdÞ þ ‘ðm2
xsÞ � R�ðmX;mXÞ‘ðm2

�Þ
þ ½2m2

Xð1� R�ðmX;mXÞÞ þ RXðm�Þ�~‘ðm2
XÞg: (G8)

APPENDIX H: ERRATUM

We note here some corrections to the works of
Refs. [10,11]. All of the NLO low-energy constants for
the (27,1) operators have the wrong sign in both
Ref. [10,11]. The values for 	i appearing in Table I of
Ref. [10] (and again in Table I of Ref. [11]) should have the
opposite sign. In Eq. (16) of Ref. [10] (and again in

Eq. (16) of Ref. [11]), the operatorsOð8;1Þ
5 andOð8;1Þ

15 should

have the opposite sign to be consistent with the signs of the
LEC’s er5 and er15 appearing in the amplitudes presented in

those works. We make these corrections in the current
work. Since the LEC’s are not known, an incorrect, but
consistent normalization of them (including an incorrect
sign) does not alter the procedure of using the formulas of

Ref. [11] to construct K ! �� from K ! � and K ! 0
matrix elements. Therefore, these corrections make no
difference to the conclusions of these works that it is
possible to obtain all of the LEC’s needed to constructK !
�� matrix elements through NLO in �PT from lattice
calculations.
Additionally in Ref. [11], there is a typographic error in

the (8,8) K ! �� matrix element formulas. The coeffi-
cient of the second term in Eq. (42) should be 12i

fKf
2
�
, and the

coefficient of the second term in Eq. (43) should be� 12i
fKf

2
�
.

The corrected versions of these equations are given in the
current work as Eqs. (38) and (39). These corrections also
do not alter the conclusions of Ref. [11], but are necessary
to construct the correct K ! �� matrix elements.
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