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We present rigorous upper and lower bounds for the momentum-space ghost propagator GðpÞ of Yang-
Mills theories in terms of the smallest nonzero eigenvalue (and of the corresponding eigenvector) of the

Faddeev-Popov matrix. We apply our analysis to data from simulations of SU(2) lattice gauge theory in

Landau gauge, using the largest lattice sizes to date. Our results suggest that, in three and in four space-

time dimensions, the Landau gauge ghost propagator is not enhanced as compared to its tree-level

behavior. This is also seen in plots and fits of the ghost dressing function. In the two-dimensional case, on

the other hand, we find that GðpÞ diverges as p�2�2� with � � 0:15, in agreement with A. Maas, Phys.

Rev. D 75, 116004 (2007). We note that our discussion is general, although we make an application only to

pure gauge theory in Landau gauge. Our simulations have been performed on the IBM supercomputer at

the University of São Paulo.
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I. INTRODUCTION

In the Gribov-Zwanziger scenario [1], confinement of
quarks (in Landau and in Coulomb gauge) is related to a
ghost propagator GðpÞ enhanced in the infrared (IR) limit
when compared to the tree-level propagator 1=p2. An
enhanced ghost propagator is also required by the Kugo-
Ojima criterion [2] in order to explain confinement of color
charge (in Landau gauge).

In order to investigate the origin of this IR enhancement
we consider, following Ref. [3], a generic gauge condition
F ½A� ¼ 0, where A is the gauge field. The condition is
imposed on the lattice by minimizing a functional E½U�,
where U is the (gauge) link variable. From the second
variation of E½U� one can define the Faddeev-Popov (FP)
matrix Mða; x;b; yÞ. (Here we use a and b to indicate
color indices, whereas x and y represent points of the
lattice.) In the SUðNcÞ case, M is an ðN2

c � 1ÞV � ðN2
c �

1ÞV matrix, where V ¼ Nd is the lattice volume, given by
the number of pointsN along each side of the lattice and by
the space-time dimension d. This matrix is real and sym-
metric with respect to the exchange ða; xÞ $ ðb; yÞ (see
Ref. [4] for a thorough discussion of the properties of the
FP matrix in Landau gauge). At any (local) minimum of
E½U�, all the eigenvalues ofM are positive (modulo trivial
null eigenvalues). The set of all minima of E½U� is the so-
called Gribov region�. On the boundary of�—known as
the first Gribov horizon @�—the smallest nontrivial ei-
genvalue �min of the FP matrix is null. Since the configu-
ration space has very large dimensionality we expect that,

in the limit of large lattice volumes V, entropy favors
configurations near @� [5–7], i.e. �min should go to zero
in this limit. This is indeed the case in 2d [8], 3d [9], and 4d
Landau gauge [10], in 4d Coulomb gauge [7], and in 4d
maximally Abelian gauge [11].
The ghost propagator is written in terms of the inverse of

the FP matrix as

GðpÞ ¼ 1

N2
c � 1

X
x;y;a

e�2�ik�ðx�yÞ

V
M�1ða; x; a; yÞ; (1)

where the lattice momentum pðkÞ has components
p�ðkÞ ¼ 2 sinð�k�=NÞ with k� ¼ 0; 1; . . . ; N � 1. Also,

here and in the formulas below, a path-integral average is
understood. SinceMða; x; b; yÞ develops a null eigenvalue
at the Gribov horizon @�, one might expect that the
corresponding ghost propagator diverges at small momenta
in the infinite-volume limit. This could in turn introduce a
long-range effect in the theory, related to the color-
confinement mechanism [5,7]. Indeed, in several numeri-
cal studies (using relatively small lattice volumes), the
ghost propagator GðpÞ seems to be IR-enhanced in 3d [9]
and 4d Landau gauge [12,13] and in 4d Coulomb gauge
[14]. On the other hand, in maximally Abelian gauge [11]
one finds an IR-finiteGðpÞ. At the same time, recent results
in Landau gauge using very large lattice volumes [15–17]
suggest an essentially tree-level-like IR ghost propagator
GðpÞ in 3d and in 4d. (A similar result has been obtained in
Refs. [18,19] using different analytic approaches.) Finally,
in the 2d case, one finds [8] GðpÞ � p�2:3 after extrapolat-
ing data for the IR exponent � to infinite volume.
Therefore, we have cases for which GðpÞ is not IR-
enhanced in the infinite-volume limit and thus the argu-
ment reported above cannot be valid in general [3]. The
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aim of this work is to understand under what conditions
one should expect an IR-enhanced ghost propagator GðpÞ.
This is done by investigating constraints on the behavior of
GðpÞ and thus obtaining better control over its infinite-
volume extrapolation. Clearly, since the only diverging
quantity (besides the lattice volume) is 1=�min, the IR
enhancement of GðpÞ may be closely related to this eigen-
value and to the projection of its corresponding eigenvector

c minða; xÞ on the plane waves e�2�ik�x=
ffiffiffiffi
V

p
for small mo-

menta pðkÞ.

II. LOWER AND UPPER BOUNDS FOR GðpÞ
In this section we obtain upper and lower bounds for the

momentum-space ghost propagator GðpÞ in terms of the
smallest nonzero eigenvalue �min [and of the correspond-
ing eigenvector c minða; xÞ] of the FP matrixMða; x; b; yÞ.
To this end, let us first introduce our notation. As usual, we
define the generic eigenvalue �i of Mða; x;b; yÞ and the
corresponding eigenvector c iða; xÞ by using the relation
Mða; x; b; yÞc iðb; yÞ ¼ �ic iða; xÞ, where the index i
takes values 1; 2; . . . ; ðN2

c � 1ÞV and the sum over repeated
indices is understood. As stressed in the Introduction, this
matrix is positive (or semipositive) definite, whenever we
use a minimizing condition in order to fix a gauge (minimal
gauge). Also, since it is obtained from a second-order
expansion, this matrix can always be written in a symmet-
ric form. Then, the eigenvectors c iða; xÞ can be assumed
orthogonal to each other and normalized asP

a;xc iða; xÞc jða; xÞ� ¼ �ij, where � indicates complex

conjugation. Using this notation we can write

M ða; x;b; yÞ ¼ X
i;�i�0

�ic iða; xÞc iðb; yÞ�: (2)

Note that we are working in the space orthogonal to the
kernel of the FP matrix. Then we can write the inverse of
this matrix as [20]

M�1ða; x; b; yÞ ¼ X
i;�i�0

��1
i c iða; xÞc iðb; yÞ�: (3)

By using Eq. (1) we obtain

GðpÞ ¼ 1

N2
c � 1

X
i;�i�0

X
a

��1
i j ~c iða; pÞj2; (4)

where ~c iða; pÞ ¼ P
xc iða; xÞe�2�ik�x=

ffiffiffiffi
V

p
is the Fourier

transform of the eigenvector c iða; xÞ. Since all the nonzero
eigenvalues are positive and 0< �min � �i, we can write
the inequalities

1

N2
c � 1

1

�min

X
a

j ~c minða; pÞj2 � GðpÞ; (5)

GðpÞ � 1

N2
c � 1

1

�min

X
i;�i�0

X
a

j ~c iða; pÞj2: (6)

(Note that we assume nondegenerate eigenvalues.

However, the second inequality applies also when �min is
degenerate and the first one can be easily modified to take a
degeneracy into account.) By summing and subtracting in
Eq. (6) the contributions from the eigenvectors correspond-
ing to a null eigenvalue and using the completeness rela-
tion

P
ic iða; xÞc iðb; yÞ� ¼ �ab�xy, we find

GðpÞ � 1

�min

�
1� 1

N2
c � 1

X
j;�j¼0

X
a

j ~c jða; pÞj2
�
: (7)

Let us stress that the above results are simply a conse-
quence of the positivity of the FP matrix, i.e. they apply to
gauge-fixed configurations that belong to the interior of the
first Gribov region.

III. BOUNDS IN LANDAU GAUGE

In the Landau case the eigenvectors corresponding to the
zero eigenvalue are constant modes, i.e. they contribute
only to the case p ¼ 0. Thus, for any nonzero momentum
we have

1

N2
c � 1

1

�min

X
a

j ~c minða; pÞj2 � GðpÞ � 1

�min

: (8)

As said in the Introduction, in the infinite-volume limit the
measure gets concentrated on the boundary of the (first)
Gribov region, i.e. �min goes to zero in this limit. In
particular, as for the Laplacian operator, one can expect
to find �min � N�� for large N. Now, if we make the
hypothesis of a power-law behavior p�2�2� for GðpÞ in
the IR limit and consider the smallest nonzero momentum
on the lattice [i.e. ps ¼ 2 sinð�=NÞ], we have GðpsÞ �
N2þ2� in the limit of large N. Then from Eq. (8) we get
2þ 2� � �. Thus, assuming a power-law behavior for
GðpÞ, �> 2 is a necessary condition to obtain a ghost
propagator GðpÞ enhanced in the IR limit compared to the
tree-level behavior 1=p2.
The lower bound in Eq. (8) clearly depends on the

behavior of the quantity j ~c minða; psÞj2. Note that this
quantity cannot diverge in the infinite-volume limit.
(Actually, since the eigenvectors are normalized, this quan-
tity is always between 0 and 1.) Thus, if we furthermore
make the assumption of a behavior at large N given by
N��, with � 	 0, we find the condition �� � � 2þ 2�.
As a check of the proposed bounds, we collect here

results for the ghost propagator GðpsÞ at the smallest non-
zero momentum ps ¼ 2 sinð�=NÞ and for the smallest
nonzero eigenvalue �min from Refs. [6,9,12,15] for the 3d
and 4d cases. These data are shown for the smaller lattices
in Tables I and II and for the larger lattices in Fig. 1. We
also present new data in the two-dimensional case. (These
data were obtained together with the data for the gluon
propagator reported in [21].) All data refer to the SU(2)
case. Let us recall that recent studies [17,22] have verified
the analytic prediction that Landau gauge gluon and ghost
propagators in SU(2) and in SU(3) are rather similar. Thus,
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we expect that the analysis presented here should apply
also to the SU(3) case. In all cases the quantity 1=�min has
been evaluated using the average value for �min and propa-
gation of errors.

As one can see, the upper bound in Eq. (8) is always
satisfied. (Of course, this is the case also when p � ps.)
The bound has also been verified using the data at � ¼ 0
from Refs. [6,12]. We have fitted the data forGðpsÞ and for
�min as a function of L for the data shown in Fig. 1 using a
power-law Ansatz. It is interesting to note that (in 2d and in
4d) we actually find � smaller than 2þ 2�. The bound is
still satisfied, since the multiplicative constant in the fit of
�min is larger. It would be interesting to see how the upper
bound is realized when even larger lattice volumes are
considered. Also, note that the upper bound in the 4d
case seems to saturate as the volume increases. This would
indicate that the contribution to GðpÞ from all the eigen-
values �i > �min stays finite at large volume and that the
exponent �, defined above, is zero. Let us note that this is
not the case at smaller lattice volumes, since then one
needs to consider the contribution to GðpÞ from the first
150–200 smaller eigenvalues in order to reproduce the
behavior of the propagator at small momenta [10].
Finally, let us recall that finite-size effects for GðpÞ (at
fixed p) are generally very small. This can be explained
considering the spectral density of the FP matrix, as done
in Ref. [3]. Thus, our results indicate that in 3d and in 4d
the ghost propagator is likely not IR-enhanced, while in 2d
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FIG. 1. The ghost propagator GðpsÞ for the smallest nonzero
momentum ps ¼ 2 sinð�=NÞ (in GeV�2) as a function of the
inverse lattice side 1=L (GeV) for the 2d case (top, at � ¼ 10
with volumes up to 3202), 3d case (center, at � ¼ 3, with
volumes up to 3203), and the 4d case (bottom, at � ¼ 2:2 with
volumes up to 1284). Data are taken from Ref. [15] for the 3d
and the 4d cases. We also show (in 2d and in 4d) the inverse of
the smallest nonzero eigenvalue �min of the FP matrix (in
GeV�2). In these two cases one can verify the inequality
1=�min 	 GðpsÞ. The fitting parameters are reported in
Table III. Note that we did not evaluate �min for all our configu-
rations.

TABLE II. As in Table I for the 4d case. Data (in lattice units)
are taken from Refs. [6,12] using the average called first copy.
We find similar results when considering data obtained using the
average called absolute minimum.

N � GðpsÞ 1=�min

8 0.8 8.94(8) 91(3)

12 0.8 22.1(6) 210(20)

16 0.8 40.6(7) 360(60)

8 1.6 7.2(1) 61(3)

16 1.6 32.1(3) 220(20)

8 2.7 3.4(1) 11.0(4)

12 2.7 7.1(3) 25(1)

16 2.7 12.9(6) 45(4)

TABLE I. The ghost propagator GðpsÞ for the smallest non-
zero momentum ps ¼ 2 sinð�=NÞ and the inverse of the smallest
nonzero eigenvalue �min of the FP matrix for various lattice
volumes and � values in the 3d case. Data (in physical units) are
taken from Ref. [9].

N � a�1 [GeV] GðpsÞ [GeV�2] 1=�min [GeV�2]

20 6.0 1.733 7.3(1) 32.5(7)

30 6.0 1.733 19.4(3) 94(2)

20 4.2 1.136 21.0(4) 107(3)

30 4.2 1.136 54.5(8) 282(6)
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we obtain � � 0:1. We note that our result in the 2d case is
essentially in agreement with Ref. [8], where however the
value of � is obtained by first fittingGðpÞ in an appropriate
momentum range for each lattice volume and then per-
forming the extrapolation to infinite volume by a four-
parameter fit. The fits for �min and GðpsÞ as a function of
L are usually simpler, as shown above.
These results are confirmed if one considers the dressing

function p2Gðp2Þ at the largest lattice volumes for the three
cases (see Fig. 2). Indeed, the data in the 2d case can be
fitted using a power-law Ansatz ap�2� (see Table IV), with
� ¼ 0:177ð2Þ, essentially in agreement with [8]. The fitted
value for � decreases if one considers fewer points, drop-
ping points with larger p, and becomes 0.152(7) when
considering data with p2 2 ½0; 0:1�. The same Ansatz
does not work in 3d and in 4d. In these cases the data for
the dressing function can be described by the Ansatz a�
b logð1þ cp2Þ, inspired by the logarithmic corrections
suggested in Ref. [19]. In both cases one finds (approxi-
mately) p2Gðp2Þ ! 4:5 in the limit p ! 0. This result
supports the value � � 0 obtained above, when consider-
ing the bound using �min. It is interesting that one can also
obtain a relatively good fit for the dressing function in the
whole range of momenta by considering the fitting func-
tion aðp�2k þ bp2eÞ=ð1þ p2eÞ in the 2d case and a�
b½logð1þ cp2Þ þ dp2�=ð1þ p2Þ in 3d and in 4d. These
fits and the corresponding parameters are reported in Fig. 2
and in Table V.

IV. CONCLUSIONS

Our data suggest that the Landau gauge ghost propagator
does not diverge faster than 1=p2 at small momenta in 3d
and in 4d, while in 2d GðpÞ does not diverge faster than
p�2�2� with � between 0.1 and 0.2, in agreement with
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FIG. 2. The ghost dressing function p2Gðp2Þ as a function of
p2 (in GeV) for the 2d case (top, at � ¼ 10 with volume 3202),
3d case (center, at � ¼ 3, with volume 2403), and the 4d case
(bottom, at � ¼ 2:2 with volume 804). The fitting functions and
the corresponding fitting parameters are reported in Table V.

TABLE IV. Fits of p2Gðp2Þ using the Ansätze ap�2� in the 2d
case and a� b logð1þ cp2Þ in the 3d and 4d cases. In the first
case we used the data in the range p2 2 ½0; 0:5� for the fit. In the
other two cases the data in the range p2 2 ½0; 1� have been
considered.

d a � b c

2 1.134(7) 0.177(2)

3 4.7(1) 0.579(5) 320(20)

4 4.28(1) 0.69(2) 33(3)

TABLE III. Fits ofGðpsÞ and of 1=�min, respectively, using the
Ansätze bL2þ2� and cL�. In the 4d case the fit for 1=�min has
been done by considering only the three largest physical vol-
umes. When considering the three smallest physical volumes we
find � ¼ 0:9ð3Þ. In the other cases all data have been considered
for the fit.

d b 2þ 2� c �

2 0.026(1) 2.251(9) 0.12(3) 2.20(4)

3 0.11(3) 2.02(4)

4 0.086(3) 2.043(8) 1.2(1) 1.53(2)

TABLE V. Fits of p2Gðp2Þ using the Ansätze aðp�2k þ
bp2eÞ=ð1þ p2eÞ in the 2d case and a� b½logð1þ cp2Þ þ
dp2�=ð1þ p2Þ in the 3d and 4d cases. In the three cases we
used the whole range of momenta for the fit.

d a � b e c d

2 1.24(3) 0.16(2) 0.86(3) 0.75(15)

3 4.75(1) 0.491(5) 450(30) 7.1(1)

4 4.32(2) 0.38(1) 80(10) 8.2(3)
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Ref. [8]. These results have been obtained by considering
the inequality in Eq. (7) and by fitting the data for GðpsÞ
and �min as a function of L. In particular, we note that the
use of the upper bound to constrain GðpÞ is quite conve-
nient, since �min does not depend on p. It might thus be of
interest to optimize the evaluation of �min and of
c minða; xÞ.
The results obtained here in the 3d and 4d cases, together

with those reported in Ref. [21] for the gluon propagator,
seem to contradict the Gribov-Zwanziger confinement
scenario for Landau gauge. On the other hand, one should
establish if the behavior of gluon and ghost propagators at
very small momenta is really so essential for the explana-
tion of confinement. After all, when dynamical quarks are
considered [23], string breaking should manifest itself at a
scale of about a fermi, i.e. for an energy scale of about
200 MeV. Thus, for the physics of hadrons the behavior of
the propagators at intermediate momenta is probably more
important. Let us recall that for a space-time separation of
about 1 F the transverse gluon propagator violates reflec-
tion positivity [24], i.e. becomes negative in real-space

coordinates, and the exponent � for the ghost propagator
is about 0.2–0.3 considering p� 0:5 GeV [9,12,13,15–
17]. Thus, in the range 200–500 MeV, nonperturbative
effects are clearly present in the behavior of the gluon
and of the ghost propagator. For this range of momenta
the use of our lower bound for the ghost propagator could
probably also be valuable. Of course, the open problem is if
these effects suffice to explain color confinement.
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