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We present a calculation of magnetic moments for selected spin-1 mesons using the techniques of

lattice QCD. This is carried out by introducing a progressively small static magnetic field on the lattice

and measuring the linear response of a hadron’s mass shift. The calculations are done on 244 quenched

lattices using standard Wilson actions, with � ¼ 6:0 and pion mass down to 500 MeV. The results are

compared to those from the form factor method.
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I. INTRODUCTION

Magnetic moment is a fundamental property of hadrons
that arises from the linear response of a bound system to an
external stimulus (in this case, magnetic field). It is a good
testing ground for studying the internal structure of had-
rons as governed by the quark-gluon dynamics of QCD, the
fundamental theory of the strong interaction. Most efforts
to compute the magnetic moment on the lattice come in
two categories. One is the form factor method which
involves three-point functions [1–7]. Another is the back-
ground field method using only two-point functions (mass
shifts) [8–11]. The form factor method requires an extrapo-
lation to zero momentum transfer GMðQ2 ¼ 0Þ due to the
nonvanishing minimum discrete momentum on the lattice
[12]. The background field method, on the other hand, can
access the magnetic moment directly but is limited to static
properties due to the use of a static field. Here we report a
calculation of the vector meson magnetic moments in this
method, parallel to a recent calculation in the form factor
method [13]. We also report results on mesons in the axial
and tensor sectors. Some of the preliminary results have
been reported in a conference [14]. It is an extension of our
earlier work on baryon magnetic moments [15] and electric
[16] and magnetic polarizabilities [17] in the same method.

II. CORRELATION FUNCTIONS

The mass of a meson can be extracted from the time-
ordered, two-point correlation function in the QCD vac-
uum, projected to zero momentum

GðtÞ ¼ X

~x

h�ðxÞ�yð0Þi; (1)

where � is the interpolating field of the meson under
consideration. The general form of the interpolating field
with a simple �q1q2 quark content can be written as

� ¼ �q1�q2; (2)

where � is a general gamma matrix that depends on the
meson type. For the spin-1 mesons considered in this work,

� ¼ �� for vector mesons, � ¼ �5�� for axial mesons,

and � ¼ ���� for tensor mesons. Here we only consider

mesons with different q1 and q2 to avoid the complication
of disconnected loops.
On the quark level, Eq. (1) is evaluated by contracting

out the quark pairs, yielding a function of quark propaga-
tors,

Cðx; 0Þ ¼ �Tr½Sq1ðx; 0Þ�0�
y�0�5S

y
q2ðx; 0Þ�5��; (3)

where the quark propagator Sqðx; 0Þ is the inverse of the

quark matrix M ¼ ��D� þmq. The correlation function

is defined as the Euclidean-space path integral over the
gauge field G�,

GðtÞ ¼ X

~x

R
DG� detðMÞe�SGCðx; 0Þ
R
DG� detðMÞe�SG

; (4)

where SG is the gauge action of QCD. On the lattice, the
path integral is evaluated numerically by Monte Carlo
methods. We use the quenched approximation in this
work which corresponds to setting detðMÞ to a constant.
On the hadronic level, the correlation function is satu-

rated by the complete spectrum of intermediate states

GðtÞ ¼ X

i

wie
�mit; (5)

where mi are the masses and wi are spectral weights that
are a measure of the ability of the interpolating field to
excite or annhilate the states from the QCD vacuum. The
ground state can be extracted by fitting GðtÞ at large time.
To compute magnetic moments, we need to use polar-

ized interpolating fields. For a magnetic field applied in the
z direction, we use

�� ¼ 1ffiffiffi
2

p �q1ð��x � i�yÞq2 ¼ 1ffiffiffi
2

p ð��x � i�yÞ: (6)

The interaction energies E� are extracted from the corre-
lation functions

h���
y
�i¼

1

2
½h�x�

y
x i� iðh�x�

y
y i�h�y�

y
x iÞþh�y�

y
y i�: (7)
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Equation (7) implies that the polarization comes from the
imaginary parts of the off diagonal correlation between x
and y components in the presence of the magnetic field.
These imaginary parts are zero in the absence of the field,
so they are responsible for the magnetic moments we
observe. We use for vector mesons �x ¼ �1 and �y ¼
�2; for axial mesons �x ¼ �5�1 and �y ¼ �5�2; and for

tensor mesons �x ¼ �2�3 and �y ¼ �1�3.

For each meson type, different quark combinations q1
and q2 correspond to different states. In the case of vector
mesons, they are the well-known �þð �duÞ, ��ð �udÞ, �ð �ssÞ,
K�þð �suÞ, K��ð �usÞ, and K�0ð�sdÞ. In the case of axial me-
sons, they are aþ1 ð �duÞ, a�1 ð �udÞ, K�þ

1 ð �suÞ, K��
1 ð �usÞ, and

K�0
1 ð �sdÞ. In the case of tensor mesons, they are less well

known and we call them bþ1 ð �duÞ, b�1 ð �udÞ, K�þ
t ð�suÞ,

K��
t ð �usÞ, and K�0

t ð �sdÞ. Counting the states with �ss content
(like the � meson), we cover 18 states of spin-1 mesons.

III. BACKGROUND FIELD METHOD

For a particle of spin s in an uniform field with magni-
tude B,

E� ¼ m��B; (8)

where the upper sign means spin-up and the lower sign
means spin-down relative to the magnetic field, and � ¼
g e

2m s. We use the following method to extract the g

factors:

g ¼ m
ðEþ �mÞ � ðE� �mÞ

eBs
: (9)

In order to place a magnetic field on the lattice, we
construct an analogy to the continuum case. The covariant
derivative of QCD is modified by the minimal coupling
prescription

D� ¼ @� þ gG� þ qA�; (10)

where q is the charge of the fermion field and A� is the

four-vector potential describing the background field. On
the lattice, the gluon fields G� are introduced via link

variables U�ðxÞ ¼ expðigaG�Þ. So the prescription

amounts to multiplying a Uð1Þ phase factor expðiqaA�Þ
to the gauge links. Choosing Ay ¼ Bx (which assumes a

zero gauge potential at x ¼ 0 relative to the source posi-
tion), a constant magnetic field B can be introduced in the z
direction. Then the phase factor is applied to the y-links

Uy ! expðiqaBxÞUy: (11)

In our calculations, we use a linearized version for small
field strengths [18]

Uy ! ð1þ iqaBxÞUy: (12)

The computational demand of such background field cal-
culations can be divided into three categories. The first is a
fully dynamical calculation. For each value of the field, a
new dynamical ensemble is needed that couples to u quark

(q ¼ 1=3), d quark, and s quark (q ¼ �2=3). This requires
a Monte Carlo algorithm that can treat the three flavors
distinctively. Quark propagators are then computed on the
ensembles with matching field values. This has not been
attempted. The second can be termed as the reweighting
method in which a perturbative expansion of the action in
terms of the field is performed. There has been an attempt
[19] to compute the neutron electric polarizability in this
method. It involves the evaluation of disconnected dia-
grams. The third is what we call Uð1Þ quenched. No field
is applied in the Monte Carlo generation of the gauge
fields, only in the valence quark propagation in the given
gauge background. In this case, any gauge ensemble can be
used to compute valence quark propagators.
We use standardWilson actions on the 244 lattice at� ¼

6:0, both SUð3Þ and Uð1Þ quenched, and six kappa values
� ¼ 0:1515, 0.1525, 0.1535, 0.1540, 0.1545, 0.1555, cor-
responding to pion mass of about 1015, 908, 794, 732, 667,
522 MeV. The critical value of kappa is �c ¼ 0:1571. The
strange pion mass is set at � ¼ 0:1535. The source location
for the quark propagators is (x,y,z,t)=(12,1,1,2). We ana-
lyzed 100 configurations. The following five dimensionless
numbers � ¼ qBa2 ¼ þ0:00036, �0:00072, þ0:00144,
�0:00288, þ0:00576 give four small B fields (two posi-
tive, two negative) at eBa2 ¼ �0:00108, þ0:00216,
�0:00432, þ0:00864 for both u and d (or s) quarks.
These field values do not obey the quantization condition
for periodicity since the values given by the condition
cause too strong (too large a mass shift) for the small-
field-expansion method to work, and thus break gauge
invariance required in the Uð1Þ field. To minimize the
effects, we work with Dirichlet boundary conditions in
the x direction and large Nx. In addition, we place the
source in the middle of the lattice in the x direction so
that quarks have little chance of propagating to the edge.
We also use Dirichlet boundary conditions in the t direction
to maximize the number of time slices for mass extraction.
The same set of boundary conditions are applied in both
the zero-field and with-field calculations. Although the
results previously obtained under these conditions appear
reasonable [15], the effects of the approximations [linea-
rization in Eq. (12), nonquantized fields, zero of the gauge
potential, Dirichlet boundary condition] should be exam-
ined quantitatively in future studies. One way to reduce
finite-volume effects by patching the magnetic fields has
been proposed in a recent study [20] of delta magnetic
moments. To eliminate the contamination from the even-
power terms, we calculate mass shifts both in the field B
and its reverse �B for each value of B, then take the
difference and divide by 2. Another benefit of repeating
the calculation with the field reversed is that by taking the
average of 	mðBÞ and 	mð�BÞ in the same data set, one
can eliminate the odd-powered terms in the mass shift. The
coefficient of the leading quadratic term is directly related
to the magnetic polarizability [17].
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IV. RESULTS AND DISCUSSION

A. Vector mesons

Figure 1 displays a typical effective mass plot for �þ.
Both the mass and the mass shifts are shown. Good pla-
teaus exist for all six pion masses. The mass shifts are
extracted from the time window 10 to 13, as indicated in

the figure. Figure 2 shows the mass shifts, defined as
	mðBÞ ¼ gðeBsÞ from Eq. (9), as a function of the field
for the �þ meson. The slope is proportional to the g factor.
There is good linear behavior going through the origin at
all the field values, an indication that contamination from
the higher-power terms has been effectively eliminated by
the ð	mðBÞ � 	mð�BÞÞ=2 procedure. This is also con-

FIG. 1 (color online). Effective mass plot for the �þ vector meson mass at zero field (left panel), and effective mass shifts at the
weakest magnetic field (right panel) in lattice units. The solid and empty symbols correspond to the heaviest and lightest pion masses,
respectively.

FIG. 2 (color online). Mass shifts for the �þ meson as a function of the magnetic field in lattice units at the six pion masses (heavy to
light from top left panel to right panel, then to bottom left panel to right panel). The slope of the mass shift at each pion mass gives the
g factor corresponding to that pion mass. The line is a fit using only the two smallest B values.
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firmed numerically by the smallness of intercept as shown
in the fit results y ¼ axþ b. At the lightest pion mass,
there is a slight deviation from linear behavior at the
stronger fields. For this reason, we only use the two small-
est field values to do the linear fit at all the pion masses.

Figure 3 shows the g factors for the vector mesons as a
function of pion mass squared. The lines are simple chiral
fits using the ansatzs

g ¼ a0 þ a1m
; (13)

and

g ¼ a0 þ a1m
 þ a2m
2

: (14)

They serve to show that there is onset of nonanalytic
behavior as pion mass is lowered, so a linear extrapolation
is probably desirable. But overall the g factors have a fairly
weak pion-mass dependence. At large pion masses, the g
factor of �þ approaches 2, consistent with a previous

lattice calculation using the charge-overlap method [21].
Our results for �þ are slightly higher than those from the
form factor method (see Fig. 8 in Ref. [13]). The results
confirmed that g�� ¼ �g�þ and gK�� ¼ �gK�þ [22]. We

also confirmed g�0 ¼ 0 numerically (not shown). These

relations are expected from symmetries in the correlation
functions: �þ and �� are charge conjugate pairs, and �0 is
charge conjugate eigenstate. The results also show that as
far as g factors are concerned the � mesons are quite
similar to their strange counterparts, the K� mesons.
Note that the extracted g factors are in the particle’s

natural magnetons. To convert them into magnetic mo-
ments in terms of the commonly used nuclear magnetons
(�N), we need to scale the results by the factor 938=M
whereM is the mass (inMeV=c2) of the particle measured
in the same calculation at each pion mass. Figure 4 shows a
comparison of the results for �þ and K�þ. The different
pion-mass dependence between �þ and K�þ mostly comes
from that in the masses that are used to convert the g
factors to magnetic moments. The values at the chiral limit
extrapolated from Eq. (13) are ��þ ¼ 3:25ð3Þ�N and

�K�þ ¼ 2:81ð1Þ�N . There is no experimental information
on these quantities. Compared to the form factor method
(see Fig. 7 in [13]), our results are again a little higher. At
the strange pion-mass point (the 3rd data point from the
left), the two coincide to give a prediction for the magnetic
moment of the �ð1020Þ meson, �� ¼ 2:07ð7Þ�N .

Figure 5 shows the results for K�0. Our results confirm
the expectation that �K�0 is small but has an interesting
quark mass dependence. It is positive when the d quark is
heavier than the s quark, exactly zero when they are equal,
and turns negative when the d quark is lighter than the s
quark. The same behavior has been observed in the form
factor method (see Fig. 11 in [13]).
Figure 6 shows a direct comparison of the �þ g factors

from the background field method (this work) and the form

FIG. 3 (color online). g factors for the �� (top panel) and K�
(bottom panel) vector mesons as a function of pion mass
squared. The 2 lines are chiral fits according to Eq. (13) (dashed
line) and Eq. (14) (dotted line).

FIG. 4 (color online). Magnetic moments (in nuclear magne-
tons) for �þ and K�þ.
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factor method [13]. The pion-mass coverage in the form
factor results is deeper in the chiral regime (lowest about
300 MeV) than that in the background field results (lowest
500 MeV). The two results are consistent with each other
within errors, which is remarkable considering the fact that
they come from two completely different calculations. The
errors displayed are statistical only, with 397 configura-
tions in the form factor results and 100 configurations in
the background field results.

B. Axial mesons

Figure 7 shows the effective mass shifts for the aþ1 axial
meson at the 2nd value of the magnetic field (eBa2 ¼
0:00216). The signal is noisier compared to the vector
case, but a plateau is still visible between time slice 3 to
5 in the mass shifts. Figure 8 shows the g factors for a�1 and

K��
1 extracted from this window at the six pion masses.

The g factors are very similar to their counterparts in the
vector channel (see Fig. 3). Figure 9 shows the g factors for
K�0

1 . They are small as expected, but have a linear behavior

across the zero as a function of the pion mass squared.
Interestingly, they have the opposite sign to that in the
vector channel (see Fig. 5): negative when the d quark is
heavier than the s quark, exactly zero when they are equal,
and turns positive when the d quark is lighter than the s
quark.

C. Tensor mesons

Figure 10 shows the effective mass shifts for the bþ1
tensor meson at the 2nd value of the magnetic field. The
signal is much noisier than the axial case. It takes a long
time (after step 10) for the zero-field mass to plateau and
there is no convincing plateau in the mass shifts. The
results are a demonstration of the difficulty of extracting
a signal in this channel. Obtaining a reliable signal remains
a challenge for future work.

FIG. 6 (color online). Comparison of g factors for �þ from
this work (solid triangles) and the form factor method (empty
circles) in Ref. [13].

FIG. 7 (color online). Effective mass plot for the aþ1 axial
meson mass at zero field (top panel), and effective mass shifts
at the 2nd weakest magnetic field (bottom panel) in lattice units.
The solid and empty symbols correspond to the heaviest and 2nd
lightest pion masses, respectively.

FIG. 5 (color online). Magnetic moment (in nuclear magne-
tons) for K�0.

MAGNETIC MOMENTS OF VECTOR, AXIAL, AND TENSOR . . . PHYSICAL REVIEW D 78, 094502 (2008)

094502-5



V. CONCLUSION

In conclusion, we have computed the magnetic moment
of vector, axial, and tensor mesons on the lattice using the
background field method and standard lattice technology.
The numerical results are summarized in Table I. Our
results for the vector mesons are consistent with those
from the form factor method, where a comparison is pos-
sible. The results for the axial and mesons are new. There is
no convincing signal for the tensor mesons. Nonetheless,
our results demonstrate that the method is robust and
relatively inexpensive. Only mass shifts are required.
There is no experimental information on these quantities
so the lattice results can serve as a guide from first prin-
ciples. Since the feasibility of the method is extended to the
meson sector, the calculation can be improved in a number
of ways. First, some of the approximations used in this
calculation should be quantitatively examined, such as
linearization, zero of the gauge potential, nonquantized
fields, and Dirichlet boundary conditions, preferably on

FIG. 10 (color online). Effective mass plot for the bþ1 tensor
meson mass at zero field (top panel), and effective mass shifts at
the 2nd weakest magnetic field (bottom panel) in lattice units.
The solid and empty symbols correspond to the heaviest and 2nd
lightest pion masses, respectively.

FIG. 9 (color online). g-factor for the neutral axial meson K�0
1 .

FIG. 8 (color online). g factors for the a�1 (top panel) and K��
1

(bottom panel) axial mesons as a function of pion mass squared.
The 2 lines are chiral fits according to Eq. (13) (dashed line) and
Eq. (14) (dotted line).
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different volumes. One example is to patch the magnetic
fields as proposed in Ref. [20] to reduce finite-volume
effects. Second, more statistics are needed in the axial
and tensor cases to better isolate the signals. Third, there
is a need to push the calculations to smaller pion masses so
that reliable chiral extrapolations can be applied. Fourth,
the calculation should be extended to full QCD in order to
see the effects of the quenched approximation, both in the
SUð3Þ sector and in theUð1Þ sector. With the availability of
dynamical configurations, all of the improvements can be
made at the same time. In particular, the Uð1Þ effect in the

sea quarks can be evaluated by reweighting the determi-
nants in the correlation functions, without the need to
generate new dynamical ensembles.
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