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Chiral symmetry and the axial nucleon to A (1232) transition form factors
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We study the momentum and the quark mass dependence of the axial nucleon to A(1232) transition
form factors in the framework of nonrelativistic chiral effective field theory to leading-one-loop order. The
outcome of our analysis provides a theoretical guidance for chiral extrapolations of lattice QCD results

with dynamical fermions.
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I. INTRODUCTION

In the past decade, lattice QCD has been developing as a
major theoretical tool to quantitatively investigate nucleon
structure. Isovector vector and axial form factors [1-3],
lowest moments of (generalized) parton distributions [4,5],
electromagnetic and axial nucleon to A(1232) transition
form factors [6—8] are now calculated using dynamical
fermions at pion masses as low as about 350 MeV (see
also [9]). Chiral effective field theory complements these
results by providing a systematic framework to extrapolate
to the small quark masses relevant for comparison with
phenomenology. As a confluence of recent developments,
successful chiral extrapolations in the two-flavor sector
have been performed for several nucleon properties, with
low-energy parameters in agreement with available infor-
mation from hadronic processes. Examples of those studies
concern the nucleon mass [10-15], the axial-vector cou-
pling g4 [16-19], the isovector anomalous magnetic mo-
ment [6,20], and the nucleon generalized form factors
[4,21].

Here, we focus on the axial nucleon (N) to A(1232)
transition, which is relevant for processes of weak pion
production off the nucleon. The literature of model calcu-
lations in this context is extensive (see e.g. [22,23]), start-
ing from the 1960’s: several approaches have been pursued
including, for example, the isobar model (e.g. [24,25]),
dispersion relations (e.g. [26]), nonrelativistic and relativ-
istic quark models (e.g. [27-30]). Empirical parameteriza-
tions of the squared momentum transfer (¢%) dependence
of the axial N to A(1232) form factors have been used to
describe the ANL [31,32] and BNL [33] bubble chamber
cross section data for neutrino-induced A-resonance pro-
duction (see also [34-39]). Theoretical input from QCD on
this axial transition is important and timely in relation to
both current and future neutrino experiments (see e.g. [40—
441) and to the study of parity-violating electroweak exci-
tation of the A(1232) with polarized electron scattering at
Jefferson Laboratory (see also [45,46]). The form factors
parameterizing the nucleon to A(1232) matrix element of
the isovector axial quark current have been recently eval-
uated in lattice QCD [7,8], and a revised analysis will be
available soon [47]. In this paper we present an analytic
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calculation that aims at providing a consistent theoretical
guidance for chiral extrapolations of the axial N to
A(1232) transition form factors. A detailed analysis of
the new lattice data will be presented in a companion
article [47] in collaboration with the authors of Ref. [8].

We study the dependence on small ¢? and small quark
masses of the axial N to A(1232) form factors in the
framework of the SU(2) nonrelativistic chiral effective
field theory with pion, nucleon, and A(1232) degrees of
freedom, which is referred to as the “‘small-scale expan-
sion” (SSE) [48]. In this scheme, a systematic power
counting is established in the small-scale €, which denotes,
collectively, soft momenta, pion mass, and delta-nucleon
mass splitting. A leading-one-loop analysis of the ¢* de-
pendence of the same form factors, performed in a different
framework, has recently appeared [49]. This work uses
covariant baryon chiral perturbation theory in combination
with the so-called -expansion power counting scheme
[50], which counts m, one order higher in & than the
delta-nucleon mass splitting. The vector N to A(1232)
form factors have already been calculated to leading-one-
loop accuracy both in nonrelativistic SSE [51,52] and in
the §-expansion [53].

We begin our discussion by considering, in the isospin-
symmetric limit, the relativistic proton to A* matrix ele-
ment of the isovector axial current

3
e R (1)

where ¢ is the isospin doublet of the u- and d-quark fields,
and the Pauli matrix 7° acts in flavor space. On the basis of
Lorentz covariance and parity, the relevant amplitude can
be expressed in terms of four transition form factors
[22,26]:

2
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Here, u2+ (pa) is a Rarita-Schwinger spinor [54], and both
the proton and the A* are on shell. My, is the nucleon mass
q* = pZ — pi.and ES) denotes the polarization vector of
the third component of an isotriplet external axial field.

We evaluate the four C;(¢%, m,,) to O(e*) in SSE. This is
the lowest order where pion-nucleon and pion-delta loop
graphs enter the calculation. Because of the presence of the
open 7N channel, the resulting amplitude develops a non-
vanishing imaginary part at the physical pion mass, at
variance with the above-mentioned quark model calcula-
tions and empirical parameterizations (see also [49]). From
our results for Cs(g?, m,) and Cg4(q?, m,)—the latter enc-
odes the pion-pole contribution—we derive the off-
diagonal Goldberger-Treiman discrepancy to order €3,
cf [55].

This paper is organized as follows: In Sec. II, we briefly
review the essentials of the SSE formalism and specify the
effective Lagrangian needed for our calculation. Section I1I
is devoted to the discussion of the pertinent Feynman
diagrams. We then proceed, in Sec. IV, to work out the
Pauli-reduced transition amplitude and obtain the expres-
sions for the form factors and the off-diagonal Goldberger-
Treiman discrepancy. The technical details are discussed in
the appendices.

II. EFFECTIVE LAGRANGIAN

We briefly review the aspects of the SSE formalism that
are relevant for our analysis at next-to-next-to-leading
order, i.e. leading-one-loop accuracy. For a more detailed
introduction we refer the reader to [48]. In order to specify
the effective Lagrangian underlying our calculation, the
construction of the third-order axial-N-A vertex in SSE is
required.

In Ref. [48], the starting point is the relativistic descrip-
tion of the pion-nucleon-A(1232) system—at low energies
and for small u- and d-quark masses—uvia chiral effective
Lagrangians for the isospin doublet Dirac nucleon field
i (x) and the spin-3/2 isospin-3/2 delta field 4, (x). The
A(1232) degrees of freedom are described in terms of a
Rarita-Schwinger spinor, which transforms according to
the representation D'/2 X D! of the isospin group. The
condition 7'¢, = 0 eliminates the isospin-1/2 compo-
nents. The field !, (x) as defined in Ref. [48] is guaranteed
to satisfy all point transformation requirements [56,57] by
construction.

Applying heavy baryon methods [58], both the nucleon
and the delta four momenta are decomposed as

Pha = Mov#* + 1y 3)

where M, is the nucleon mass in the SU(2) chiral limit, v#*
is a timelike unit vector with v -r < M, and r* is a
residual soft momentum, i.e. small as compared with M|,
for any u = 0, 1, 2, 3. Velocity-dependent fields [59] are
then defined through the velocity and spin heavy baryon
projectors [48]. By integrating out the ““small” nucleon
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and delta components, one derives chiral effective
Lagrangians for the “large” fields, N(x) and T’ (x), defined
as
N(x) = exp(iMyv - x) P} i (x) @
T (x) = exp(iMyv - x)P PO, (x),
with
1+ ¢
. | (5)
PR = g, — 3V = 3 vt vy ).

Py =

In these Lagrangians, a simultaneous expansion in the
number of derivatives, powers of light quark masses, and
powers of 1/(2M,) is performed. The mass of the A(1232)
in the SU(2) chiral limit M appears through the small
parameter A = Mg — My < M, which is incorporated in
the systematic SSE power counting in €: soft momenta and
A count as O(e), u-, and d-quark masses as O(€?).

In order to perform the nonrelativistic @O(e*) SSE cal-
culation of the axial nucleon to A(1232) transition form
factors, the required effective Lagrangian

L = ‘£7TN + ‘£7TA + ‘£7TNA + ‘£7T7T (6)

contains both pion-baryon terms up to third order and the
pion Lagrangian up to fourth order, due to the contributions
from pion-pole graphs. All relevant vertices, with the only
exception of the third-order axial-N-A one, have been
constructed already. For completeness and proper defini-
tion of the couplings we collect the pertinent Lagrangians.
We use

LY = N(iv-D+g,S-u)N

£(731)v =Nc,Tr(y+)N + ...

L8 = NBy[Tr(y+)iv-D +H.c.]N + NA2Byiv - DN
+ ...

LoV = —Tiv DY = E18+ 1S - us]g,, Ty

L2 = —T#a, Tr(x.)g,,8"T! + ...

L9\ = —TBol(iv - DY — ETA) Tr(y ) + Hee]g,, T
—T{'A?Byg(iv - DV — §M)g,, TV + ...

£$1)\,A =cyTHg,,w/N + H.c.

= ; » c .
Lgl)VA = Tﬁ[ib3WLuU” +ibyf L v" — ﬁf;iDfokv . wk:lN
+ ...
o _F

T TTI‘[MMM’U“ + /\/+]

£ £
£ = é[Tr()m)]z + 1—2{2 Tr(x+) Tr(u, u*)

+2Tr(x2) — [Tr(x_) P+ ..., 7
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cf [48,60-62]. The dots denote terms not needed for our

purpose. The nonrelativistic £531)\,A contains the 1/(2M,)
“recoil” correction from the first-order Lagrangian in the
relativistic formulation [48]. F, g4, ¢4, and g, are, respec-
tively, the pion decay constant, the nucleon axial-vector
coupling, the leading wNA, and wAA couplings, all de-
fined in the SU(2) chiral limit; £V = 87 — 7i7//3 is the
isospin-3/2 projection operator. The building blocks for
the Lagrangians above are given by

0 7 A

2 =
u®) 2 F
. = ok k
u, = Huf, d,u} + quaMu + uaﬂuJr + .= 1w,
i
Sy =§y50'w,v”
D,=d,+T,
FM——[u a,ul — —u a u+2ua#u*+ =TT
DY =D, 5 - 2zelﬂ<F’;
. 1 .
Wi =§Tr(T’[Da, ugl)
A T
wp = 3 Tr{T’[uT(GaaB — dga,)u
+ u(d,ag — algaa)u*]} +...
X = 23ﬁ112><2 + ...,
X+ =“TX“Ti”XT”» 3
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where a,(x) = a',(x)7'/2 is an isotriplet external axial
field. Explicit chiral symmetry breaking due to the light
quark masses is encoded in y. In our analysis we neglect
isospin breaking effects and work with m, = m,; = .

At order €3, ng)v A Teceives contributions from the rela-
tivistic third-order Lagrangian, from the second-order one
in the form of 1/(2M,)) corrections and from the first-order
one via 1/(2M,)?* terms. The O(e3) wNA vertex has been
given in Ref. [63]. Compared with this reference, in the
relativistic second- and third-order Lagrangian we have
reduced the number of terms by means of integrations by
parts and equations of motion (see e.g. [48,64]).
Furthermore, we have included the O(e®) counterterms
polynomial in A [61], which contribute to our leading-
one-loop calculation. Constructing the terms that give rise
to the O(€e®) axial-N-A vertex, we obtain

A A
3 -
Lo _Tﬂ{f1[D,u whglv®vP + fawl, Tr(x ) + 5D, ix-1+ f1lf5 5 DP1+ 1D3VOW gvP + lDzﬁ sV’

2 bs by
21—w ﬁSBS D—2i—

+ Eq—swi,
M} M
b o
- z—lekgkl gV VP — A2 [4;‘5 - D*ERIW) S - D —
M, 4My
32Z0 8Z
Dtk kl Dlm mng . y,n
guis - Dmgmns - — =0

where y' = 1/2Tr(r'y_), and z, denotes the so-called

off-shell parameter appearing in the leading relativistic
7NA Lagrangian [48].

III. FEYNMAN DIAGRAMS

The graphs that are relevant for our calculation are
shown in Figs. 1-3. The loops in Fig. 3 contribute to
nucleon and delta field renormalization, namely, to /Zy
and /Z,. We do not draw the diagrams that vanish due to
the light delta constraints v - u' n =0, S-ul,, =0,

T’M“i = (, where u A(rA) N (pa).

The loops have been evaluated usmg dimensional regu-
larization. The results in the rest frame of the A(1232) are
collected in Appendices A and B. Here, we point out that

-4
0 iD;],ffkliU . Dlmé':mnv w4

b,
iS - D* g, SB—Zz—f” SBiS-D— 2l—ls DikgH L sP

8+ 32 :
7Z01S . DtkéfkliDZné:mnS -l

82— 16,
%AiD;’jf"lv'wl]}Nﬁ-..., )

(i) to order €, the ¢*> dependence is only given by
counterterms and the pion pole, as in the case of
the axial and induced pseudoscalar nucleon form
factors [61].

(i) The loop functions in the diagrams (1), (3), (6), (9)
of Fig. 2 and in the one involving /Z, to order €3
develop nonvanishing imaginary parts for m,. <A,
as expected since the intermediate 77 and N are there
allowed to be simultaneously on shell.

(iii) The double pole at g> = m2 appearing in diagram
(12) of Fig. 2 has been absorbed (together with
higher-order corrections) in the full pion propaga-
tor with O(p*) renormalized pion mass m™", see
Appendix B for details. One has [65]
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- -0

(a) (b) (c) (d)

FIG. 1. Tree graphs contributing to the g> and quark mass
dependence of the axial N to A(1232) transition form factors to
order € in SSE. Dashed, solid, and double lines correspond to
the pion, the nucleon, and the delta, respectively. The wavy line
denotes an external axial field. The cross represents vertices
from £$NA, £5§1)M, and £(3 . Contributions from L% are
drawn as squares. The other vert1ce§ come from leading-order

Lagrangians.

ren m?T r Mmq
where m% = 2B, and €5(A) denotes the finite part

of the coupling €5, which depends on the scale A of
dimensional regularization.

IV. THE AXIAL N TO A TRANSITION FORM
FACTORS TO ORDER &*

We now expand the various terms of the amplitude in
Eq. (2) in powers of 1/My and derive the N to A(1232)

/’ /’
’ ’
’ Pl / Pl
! I~~~ 3 ) 2V I - — — o~ | - - — o~
\ N \ NP
\ - \
N AY
~d ~<4
o) 2) 3) )
/’ /’ /’ /’
’ ’ ’ ’
’ ’ ’ ’
! 2V ! 2% ! I~ ! - — — o
\ \ \ \
\ \ \ \
N N AY AY
~ -4 ~ ~ ~ -4
(5) (6) () (8)
//’ //’ (_\\ II—\‘
’ ’ \ ! !
l‘ - — — o~ l‘ - — — o~ b — — A~ - -~
\ \
\\~ \\~
) (10) (1) 12)

FIG. 2. Loop diagrams relevant for the g> and quark mass
dependence of the axial N to A(1232) transition form factors
to order €’ in SSE. All vertices are of leading order. Graphs that
vanish are not shown.
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() 2 3 “)

FIG. 3. Loop graphs for nucleon and delta field renormaliza-

tion to order €.

transition form factors, consistently with the SSE power
counting and the accuracy of our calculation, i.e. O(1/M3).
For the nonrelativistic Pauli reduction of the Dirac and
Rarita-Schwinger spinors, we follow the notation of
Ref. [51] (see also [66]). In the rest frame of the
A(1232), with ry = Av*, we find

2 (& C
i Mmon—rel — l‘/;u A*(rA)I: (3)( 3 A +M4 A
2

C 2
X ph+c5+@(_3))
MN

M3 2
e o S s o)
Iz %] 2M2 M3

C
+qu-e(3)< A

M2
G o 1))+ qls- s
m €7,90°q

My N

X ( Ai; + @<M3 )):Iuv’p(I”N). (11)

My and A, denote here the physical nucleon mass and the
physical delta-nucleon mass splitting, respectively.

By matching Eq. (11) with our tree-level and loop results
for the third isospin component of the external axial field
and using My(m,) = My — 4c;m2% + ... and My(m,) =
MQ —4a;m? + ..., we obtain, to the order at which we
are working,

N2M2 ph

C

—Mz = —b3 — b, (12)
Cy

[ + 4

M% 0+ O(e*), (13)

Cs = a, + aym% + asq* + loops(m,,), (14)

Cs 1 -
= — - (—a, + am2 + loopg(m,))

2

= — p2ren (_al +aymz — (13q2 + loopé(mﬂ-))y
T

(15)
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with
P AZ - A Cyp - S 2
al = CA + b3A - flA + D3VO + EA(A)W - 7(330(/\) - B3O(A))A
ay = 4f5(A) — 4ca(Bsy(A) — B5y(1)  as = —f;
ay = a+ ay =2f5 — 4f4(A) + 4ca(Byy(A) — Byy(A) — f5
c
loops(m,;) = WAﬂ'ze{ [5g2(407m3, + 101Am% + 24A%) + 1170g,g,m%A — 12Ac%(162m2 — 83A2)
72 A
—27g3(24mm3. + T5Am% — 40A%)] + —\[ — A% (m%c; — 28A%c3 + 18g3(m2 — A?)) arccos(— m—)
8 [ 2(05,2 2 2.2 202 2 A
R A*(9mzci + 963A%c; + 50g7(m35. — A*?)) arccos o
—Bma%mﬁ—4ﬁﬁ—4&g£A+8mg+M&+®A%4nn§+ﬂg$+m@@h%%ﬂ}
loop(m ;) = —loops(m). (16)
The couplings by, bs, f1, f5, and D3 possess only a finite Let us now define
part. B}, B%,, B%,, B}, are renormalized low-energy con-
stants appearing in the nucleon and delta Z factors. D(g®) _ = Cs(¢?) + 222 Co(q?) e (19)
Similarly, ultraviolet divergences in the loops of Fig. 2 my = q* M2

are absorbed by f4 and E,. The renormalized couplings
and loops(m ) depend on the scale of dimensional regu-
larization A in such a way that the right-hand sides of Egs.
(14) and (15) are both A independent. The expression for
loops is given for the case m, > A, relevant for compari-
son with present lattice QCD results. For its analytic
continuation when m,, < A, we refer to Appendix B.

The low-energy constant f; represents the ‘‘nonpole
contribution” to Cg(g?) and determines the slope of
Cs(g?). The form factors C5 and C, acquire ¢> and m.,,
dependence only at higher orders in nonrelativistic SSE.

We point out that the analytic properties of the relativ-
istic leading-one-loop expressions would not generate the
problems with the convergence of the heavy baryon ex-
pansion in the low-energy region, for ¢g> >0 and ¢> <
Mzzv, discussed e.g. in Refs. [67,68] for the nucleon scalar
and isovector electromagnetic form factors: this is due to
the absence of the axial-7-7 vertex, see Fig. 2.

An important test of our results is provided by a relation
between Cs5 and Cg required by chiral symmetry. Let us
consider the relativistic proton to A* matrix element of the

divergence of the axial current operator Aﬁ)(x). One has

(A" (pa)a# AL O)P(py)) = i\/%ﬁ2+(pA)[Cs(q2, my)

Cs(q* my)
+ 6M—]2Vf12i|qu(l?1v),
a7
which, for vanishing quark masses, implies
Co(g*, my = 0)
Cslqhmy = 0) = - =T 20 —Zg2 (18)
0

This constraint is manifestly satisfied by our results.

where m_ now indicates the physical value of the pion
mass. According to Ref. [8],

1
D(¢%) = o, " F2Gova (@), (20)
with F, = 92.4 MeV denoting the physical pion decay
constant. The so-called off-diagonal Goldberger-Treiman
discrepancy is then given by

Pa=0 _,» i InD()],-

Bopar = 1= 5 — 55 =

qF=m3
(21)

to leading order in m [55], see also Ref. [69]. From
Egs. (14) and (15) we find, consistently with our O(e?)
accuracy,

m2 2

2 m
——T(ay —az +ay) = —2fs——.  (22)
Ca CA

Aopgr =

In a forthcoming paper [47], we will compare our
Egs. (14)—(16) with the new lattice results for the Q% and
m.,, dependence of the form factors Cs and Cg, where Q% =
—g? > 0. While the leading-order parameters F, A, ¢4, g4,
and g, are well constrained by hadron phenomenology
and/or chiral extrapolations of nucleon observables, the
higher-order couplings are not. The determination of the
unknown ay, a,, az, a, by means of chiral extrapolations
will be the subject of the numerical analysis in Ref. [47].

1Following instead the notation of Ref. [63], we would obtain
Aopgr = —m%/cal2fs + bs/(2M,)], where, at variance with
[55], all ¢ dependent counterterms up to O(e?®) have been taken
into account.
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As already mentioned in the introduction, empirical
parameterizations for the C;(m, = = mPs, g%) have been
used to describe cross section data for neutrino-induced
single-pion production off the nucleon. In most of those
studies this process is modeled, at intermediate energies,
by the A-pole mechanism (weak excitation of the delta and
its subsequent decay into N). Here, we stress that, once
the relevant effective couplings have been constrained, a
stringent comparison between chiral effective field theory
and experimental data in the A(1232)-resonance region is
given only by evaluating the fu/l amplitude of interest, cf
for example [37]. In particular, the SSE calculation of e.g.
the inelastic neutrino scattering process v, p — u~ prt
would include, in a systematic fashion, order by order, all
background terms required by chiral symmetry in addition
to the A-pole mechanism. This study is left for a future
publication.

V. CONCLUSIONS

In this paper the ¢ and the quark mass expansions of the
axial N to A(1232) transition form factors have been
calculated to leading-one-loop order in the nonrelativistic,
two-flavor chiral effective field theory known as the SSE.
All loop diagrams and counterterm contributions have
been systematically analyzed to order €. C5 and Cy turn
out to acquire momentum and quark mass dependence only
at higher orders in nonrelativistic SSE. For the remaining
form factors, the g> dependence to O(e®) is given by
counterterms and the pion pole. For m, smaller than the
delta-nucleon mass splitting, both Cs(¢% m,) and
Ce(g% m,) have nonvanishing imaginary parts, which are
generated by the loop graphs where the intermediate 7 and

N are allowed to be simultaneously on shell. In [47] the
|
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unknown low-energy constants in our expressions for
Cs(g? m,) and C4(g?, m,) will be constrained by perform-
ing chiral extrapolations of new lattice data.

We stress that, in order to improve state-of-the-art com-
parisons between lattice QCD and chiral effective field
theory, it is an important task for the future to perform a
simultaneous fit to selected nucleon observables and their
uncertainties, with high-statistics lattice results at small
momentum transfer and small pion masses. The calcula-
tion presented here provides a missing piece of information
in view of this global analysis of nucleon observables.
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APPENDIX A: AXIAL-N-A AND 7-N-A VERTICES

We collect the Feynman rules for the axial-nucleon-delta
and pion-nucleon-delta vertices up to O(€?) in the non-
relativistic small-scale expansion scheme. Here, rj de-
notes the residual, soft four momentum of the incoming
nucleon, r is the residual four momentum of the outgoing
delta with isospin index i, and g* = ri — rj is the four
momentum of the incoming pion (or the external axial
field) with isospin index b.

Axial-N-A vertex:

4 b
iﬁlb{cAe,L + byquv- € + by(g,v- €?) — v gel)) — M L rhv- el — Z—q (S-€PS ry+8-ryS-e?)
0

bg A C

— b _ A B¢, . —
r,v-quv-e€ €, S rp\S-r
M, " M(Q) [ " A N

by

2
grﬁS rpS - €®) + — 7

1— 2Z0 A 2z — Arﬁv . E(h):l

Sv-ryv-e? +

—ZV(q S-ebg. rN—e( s - qS rn t quS-raS- e(b)—e( s - raS - q) — fiquv - ey - q-i-4f4m2 (5)

0

A A
+ 19,9 - €” — f1q%€ ()+D3ﬁq v E(b)JrDz—(CIMU e — v gel ))+EAM (b)}.
0

m-N-A vertex:

5[1)
F

2 1—2z
+MO|:q’LS raS - ry — grﬁS~rAS-q+70
A2

+2m2(fs — 2f1)q, — D3M

#v-rAv~q+

A
—quV g~ Es—qur
0 M M% M

(A

c b b
—{—ch# — byq,v - q +ﬁ/‘0rﬁv g+ 2ﬁ30q#(S-qS~rN +S-raS-q) +ﬁ30rﬁ(v - q)?

70 — 4
03 Arﬁv'q]Jrflq,L(v'q)z

(A2)
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In the rest frame of the A(1232), with v* = (1,0, 0, 0),

2 2
g — A 1
ry = Av,, vig=A+— : +(9( ) (A3)

and the diagrams (a) and (b) in Fig. 1 read

; I A2 A2
A, = ﬁZ’A(rA)l{GL)[CAVZNVZA — byA +dmfs — f14° — Dy + E4 —]

My AM
i b3 b2 A i b3 b2
+ qMU N 6()[b3 + b2 + (3+7+D3 +D2)A40_flA:| + q‘u[S' 6(),S' q:l([‘do—'—]\lo)
l. by b
+q,€e?- 4< 7= M, - Z—MO)}MU(VN), (A4)
T ‘ (i) 2 2 A’ A’
Ap = MU:A(FA)WE : qqy,l:_CA‘\/ZN\/ZA — b3A + 2m5(fs — 2f4) + f1A% - D3ﬁ —E4 W:qu(rzv), (AS)
T 0 0

where we have made use of the light delta constraint v - ui} A =0.

APPENDIX B: LOOP GRAPHS

We collect here the loop integrals relevant for our analysis. They have been evaluated using dimensional regularization.
Following the notation of Ref. [60],

1 dl 1 1 m
A, == =22(L+—1—”)+(f)d—4,
i) emimi -1 —ie a 167> t A ( )
1 dl 1 w m 1
Jo(w) == = —dLo+ -2 (1-2m"7) -~
o(@) i) Cm)?(v-l—w—ie)(m%—1*>—ie) @ 877'2< o) ) 4772
Vm3 — w? arccos(—-2) + O(d — 4), 0’ =m2
X { —Jw? — m%ln(—ﬁ + ‘/Z—zz — 1)+ O — 4), w<-m,
N mZ[In(2 + ;;—j — 1) —im]+Od—-4), o>m, B1)
1 [ d L1,

Jr(w) + J3(w) =~ ;
g,u.V 2((1)) v,uvv 3((1)) i (27T)d (U l—w— 16)(m3,. _ 12 _ lE)

Do) = [ = w?)y(w) — wA ]

where d is the space-time dimension. Any ultraviolet divergence appearing in the limit d — 4 is subsumed in

L

Ul T ,
- [m ~ 3 n(4m) + /() + 1)]. (B2)

According to the notation of Appendix A for momenta and isospin indices, we give the expressions for the loop graphs in
Fig. 2 evaluated in the A(1232) rest frame, with v# = (1,0, 0,0) and r}y = Av#:
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Ay = @y (ry)i AgA (’)I:AJZ( =0) — %Jz(w = A)]Mu(rN) Ay = uvA(rA)<_lF_)6([)A y (ry)

RNACE 2 Jiutrw)

(m(—z A £ [ Jn0 = 0= 1o = )]ty

(B3)

2d — 3][A Do = —A) - %Jz(w = 0):|uv(r1v)

2_‘1;) 3]<—J;(w>|w=o>uv<m>

Jz(w—m] J(ry)

5720 = =8 = 520 = 0]

Ay = =
i ca\ €?g

A= 00~ ) S g8 ()

g = kg (i S1ea8a) [ €220 3]<—Jg<w>|w:o>uv(m>

Ag = vA(rA)l3F2 EL)Z 3[ Jhlw=—A) -

Ay = @\ (ry)i lOgch ﬁ)[d;d_ e

Ag = ﬁ“’i(m)isg;;égA qj(li,zgr CIMI:d24(_1

Ay = ﬁﬁ‘i(m)(_i?,c—ég s(i) 1 M;l_ 3[ Jr(w=—A) —

App = _’”(rA)(—z 109?12%) qst.’;]% qﬂ[dz(; 2d1;23

Ay = ﬁﬁ,’i(m)i% mrq#A”u"(rN)

A= At g, P )

The diagrams where the intermediate 77 and N are allowed
to be simultaneously on shell give rise to an absorptive
piece in the amplitude for m, < A.

The factor 1/(¢g*> — m%)? in A,, is absorbed by using the
full pion propagator. The sum of diagram (12) in Fig. 2,
diagram (c) and the leading term of diagram (b) in Fig. 1
equals indeed, up to higher-order corrections,

i) g

Aty (ra)(—ic)) 55—, Zu,(ry),  (B4)
q* —m3
where
A, m
m2ren = m2 + P m2 + 203 —= o (B5)
A ¢
Zﬂ=1—F——2—4 (B6)

In Eq. (10), €5(A) = €5 + L(A)/2. Note that the low-
energy constant €, enters at tree level also in the O(e?)

pion-pole graph with axial-pion coupling from L% dia-
gram (d) in Fig. 1.

The loops in Fig. 3 determine nucleon and delta Z
factors to order €

1

VZy =1+ EEA,(w)Iw:o, (B7)
1

VZy =1+ EE/A(Q’)lw:A’ (B8)

where the relevant contributions to the nucleon and delta
self-energies are given by

lOOP( ) = 3¢i [(m3 — @*)Jo(w) — wA ],

4F? (BS)
loop Zci
2 Y (w) = F(d —2)Jo(w — A), (B10)
loop C/z.x
3 () = _ﬁjz(w), (BI1)
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The pertinent counterterms are shown in Eq. (7). As ex-
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