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The gravitational form factor of the pion is evaluated in two chiral quark models and confronted with

the recent full-QCD lattice data. We find good agreement for the case of the spectral quark model, which

builds in the vector-meson dominance for the charge form factor. We derive a simple relation between the

gravitational and electromagnetic form factors, holding in the considered quark models in the chiral limit.

The relation implies that the gravitational mean squared radius is half the electromagnetic one. We also

analyze higher-order quark generalized form factors of the pion, related to higher moments in the

symmetric Bjorken X variable of the generalized parton distribution functions, and discuss their

perturbative QCD evolution, which is needed to relate the quark-model predictions to the lattice data.

The values of the higher-order quark form factors at t ¼ 0, computed on the lattice, also agree with our

quark-model results within the statistical and method uncertainties.

DOI: 10.1103/PhysRevD.78.094011 PACS numbers: 12.38.Lg

I. INTRODUCTION

Form factors carry basic information on the extended
structure of hadrons, as they correspond to matrix elements
of conserved currents between hadron states. There exist
abundant experimental data concerning the charge form
factor, which is related to the electromagnetic current and
provides the distribution of charge in a hadron. The gravi-
tational form factors, which are related to matrix elements
of the energy-momentum tensor [1] in a hadronic state and
thus provide the distribution of matter within a hadron, are
not experimentally known. This is because, whereas the
electromagnetic interactions are probed by structureless
electrons and mediated by one-photon exchange, the par-
allel one-graviton exchange is extremely weak and impos-
sible to measure. Recently, however, these objects were
determined ab initio and with sufficient accuracy in full-
QCD lattice simulations by the QCDSF/UKQCD
Collaboration [2,3]. In this paper we confront the predic-
tions of chiral quark models for the pion gravitational form
factors and higher-order generalized form factors with the
lattice determination of Refs. [2,3]. We find that in the
spectral quark model (SQM) [4], which is a variant of a
chiral quark model with built-in vector meson dominance,
the agreement with the lattice data is especially good. In
particular, a slower falloff with the large spacelike mo-
menta than for the case of the electromagnetic form factor
is found. We also perform the calculations in the
Nambu–Jona-Lasinio (NJL) model with the Pauli-Villars
(PV) regularization, where the agreement is not as good as
in the SQM. In addition, we find that the higher-order
generalized form factors (see below for a definition) at t ¼

0 provided by the full-QCD lattice simulations are properly
reproduced in chiral quark models.
The form factors are related via sum rules to more

general objects, the generalized parton distributions
(GPDs) of the pion (for extensive reviews see e.g. [5–13]

and references therein). Experimentally, the GPDs of the
pion are elusive quantities, as they appear in exclusive
processes which are difficult to measure, such as the deeply
virtual Compton scattering or the hard electroproduction of
mesons. Recently, it has been suggested to study instead
the deeply virtual Compton scattering on a virtual pion that
is emitted by a proton [14] under the operating conditions
which will first be met after the energy upgrade at TJLAB.
This will eventually set important constraints on the pion
GPDs.
Despite their fundamental and general character, GPDs

are genuinely defined in Minkowski space, thus hindering
direct determinations on Euclidean lattices. The moments
of GPDs in the X variable (see Sec. II) form polynomials in

the � variable, with coefficients depending on the t variable
only. The lowest moments yield the standard electromag-
netic and the gravitational form factors, while higher mo-
ments are known as generalized form factors. These are
useful quantities which may be computed directly on the
lattice. Presently, apart from the values at t ¼ 0, the gen-
eralized form factors are not known even from lattice
simulations due to insufficient statistics. In this work we
make predictions for the first few generalized form factors.
Since these objects do not correspond to conserved cur-
rents, they evolve with the QCD scale as they carry anoma-
lous dimensions. We undertake this perturbative analysis at
leading order and show how the generalized form factors
evolve with the scale. We use the techniques described in
detail in Ref. [15].
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Chiral quark models have proved to properly describe
the essential features of the pionic GPDs and related quan-
tities. The special case of the parton distribution function
(PDF) has been analyzed in the NJL model in Refs. [16–
18]. The diagonal GPD in the impact parameter space was
obtained in [19]. Other calculations of the pionic GPDs and
PDFs were performed in instanton-inspired chiral quark
models [20–27]. In the effective quark models the GPDs
have been analyzed in [15,21,28–30]. Studies paying par-
ticular attention to polynomiality were carried out in
[21,31,32], which proceeded via double distributions
[33]. The same technique was applied in Ref. [15], which
allowed for a simple proof of polynomiality in chiral quark
models. Also, other formal features, such as support, nor-
malization, crossing, and the positivity constraints [34,35],
were all satisfied in the chiral quark-model calculation of
Ref. [15]. Moreover, the obtained analytic expressions
have a rather nontrivial form which is not factorizable in
the t variable. The parton distribution amplitude (PDA),
related to the GPD via a low-energy theorem [36], was
evaluated in Refs. [37–41] (see Ref. [42] for a brief review
of the analyses of PDA). The authors of Ref. [14] provide
standard electromagnetic and gravitational form factors
based on a phenomenological model factorization assump-
tion which is generally not satisfied by our dynamical field-
theoretical calculation [15]. Finally, the related quantity,
the pion-photon transition distribution amplitude (TDA)
[43–46], has been obtained in Refs. [47–51].

In the present work we find that in the considered class
of models a simple relation between the gravitational and
charge form factors holds (see the Appendix). The essen-
tial element for the proof is the existence of the spectral
representation of the quark model, which is the case both
for SQM and NJL with the Pauli-Villars regularization.
The relation implies that in the considered models and in
the chiral limit the gravitational mean squared radius is half
the electromagnetic one.

In Ref. [15] we have stressed the relevance of the QCD
evolution for the phenomenological success of the chiral
quark models in the description of the experimental and
lattice data for the PDF and PDA of the pion. Indeed, the
evolved results for the valence PDF compare very well to
the Drell-Yan data from the E615 experiment [52] at the
scale of 4 GeV, and to the transverse lattice results [53] at
lower scales,�0:5 GeV. Similarly, for the case of the PDA
the QCD evolution leads to a fair description of the E791
dijet data [54] at the scale of 2 GeV, and of the transverse
lattice data [53] at the lattice scale. The comparison is
presented in Figs. 8–11 of Ref. [15].

The above-mentioned success of the chiral quark models
in describing properties related to the pionic GPD allows
us to hope that their other aspects, such as the form factors,
including the generalized ones, can also be reliably esti-
mated in these models. Certainly, the electromagnetic form
factor, as one of the most basic quantities, has been

promptly computed in all chiral quark models of the
pion. Note that these evaluations assume the large-Nc

limit; thus the effects of the pion loops, important at low
momenta, are absent. We note that the NJL model leads to
a somewhat too small electromagnetic radius [41], while in
SQM, which incorporates the vector meson dominance,
one may fit the data accurately. Some predictions of the
NJL model for the generalized form factors of the pion
have been presented by one of us in Ref. [55]; however, the
data away from the physical pion mass have been used in
that work.
The outline of the paper is as follows: In Sec. II we

review the necessary formalism, providing basic defini-
tions and notation. The essential information on the two
chiral quark models used in our work is provided in
Sec. III, while Sec. IV shows their predictions for the
electromagnetic and gravitational form factors. In Sec. V,
which contains our main results, we compare our predic-
tions to the full-QCD lattice data from Refs. [2,3]. Then, in
Sec. VI we give the results for the higher-order form
factors, where the QCD evolution effects are incorporated.

II. BASIC DEFINITIONS

In this section we review the basic concepts necessary
for our analysis and introduce the notation.
Throughout this paper we work, for simplicity, in the

strict chiral limit,

m� ¼ 0: (1)

Since the lattice data of Refs. [2,3] give the extrapolation to
the physical pion mass which is small, the assumption (1)
is appropriate. Nevertheless, the extension to the physical
pion mass in chiral quark models is straightforward. In any
case, it is worth mentioning that, although an attempt was
made [2,3] to incorporate chiral logarithms from chiral
perturbation theory (�PT) to the one-loop order [56–58]
(for a review see e.g. Ref. [59]), as described in Ref. [60],
the data did not exhibit their presence when all other
uncertainties were considered, suggesting instead a linear
extrapolation.
In this paper we will deal with standard gravitational and

vector form factors. The corresponding quark operators are

��� ¼ X
q¼u;d;...

�qðxÞ i
2
ð��@� þ ��@�ÞqðxÞ (2)

and

J
�
V ¼ X

q¼u;d;...

�qðxÞ �a
2
��qðxÞ; (3)

respectively. The gravitational quark form factors of the
pion [61], �1 and �2, are defined through the matrix
element of the energy-momentum tensor in the one-pion
state,
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h�bðp0Þ j ���ð0Þ j �aðpÞi
¼ 1

2�
ab½ðg��q2 � q�q�Þ�1ðq2Þ

þ 4P�P��2ðq2Þ�; (4)

where P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 � p, and a, b are the isospin

indices. The gravitational form factors satisfy the low-
energy theorem �1ð0Þ ��2ð0Þ ¼ Oðm2

�Þ [61]. In the
low-momentum and pion-mass limit one can establish
contact with �PT in the presence of gravity [61],

�1ðq2Þ ¼ 1þ 2q2

f2
ð4L11 þ L12Þ � 16m2

f2
ðL11 � L13Þ

þ . . . ;

�2ðq2Þ ¼ 1� 2q2

f2
L12 þ . . . ;

(5)

where f ¼ 86 MeV is the pion weak decay constant in the
chiral limit and L11;12;13 are the corresponding gravitational

low-energy constants. The calculation of the effective
energy-momentum tensor as well as the low-energy con-
stants for chiral quark models has been carried out in
Refs. [62,63]. The vector form factor is defined as

h�aðp0ÞjJ�;b
V ð0Þj�cðpÞi ¼ 	abcðp0� þ p�ÞFVðq2Þ: (6)

At low momentum one has

FVðq2Þ ¼ 1þ 2q2L9

f2
þ . . . (7)

where L9 is a low-energy constant of �PT [58].
The generalized quark form factors of the pion (here we

take �þ for definiteness) are defined as matrix elements of
quark bilinears accompanied by additional derivative op-
erators,

h�þðp0Þj �uð0Þ�f�iD$�1 iD
$�2 . . . iD

$�n�1guð0Þj�þðpÞi
¼ 2Pf�P�1 . . .P�n�1gAn0ðtÞ

þ 2
Xn

k¼2 even

qf�q�1 . . . q�k�1P�k . . .P�n�1g2�kAnkðtÞ;

(8)

where AnkðtÞ are the generalized form factors with n ¼
1; 2; . . . and k ¼ 0; 2; . . . ; n. The symbol ~D is the QCD

covariant derivative, D
$ ¼ 1

2 ð ~D�DQ Þ, and f. . .g denotes

the symmetrization of indices and the subtraction of traces
for each pair of indices. The factor of 2�k is conventional
and makes our definition different than in Refs. [2,3]. For
n ¼ 1 and 2 we have

A10ðtÞ ¼ FVðtÞ; A20ðtÞ ¼ 1
2�

q
1ðtÞ; A22ðtÞ ¼ �1

2�
q
2ðtÞ;
(9)

where FV is the pion electromagnetic form factor, while

�q
i denote the quark parts of the gravitational form factors

of Eq. (8).
Chiral quark models work at the scale where the only

explicit degrees of freedom are quarks, while the gluons
are integrated out. Thus, the gluon form factors of the pion
vanish,

AG
nkðtÞ ¼ 0 ðquark-model scaleÞ: (10)

When evolution to higher scales is carried out [15], non-
zero gluonic moments are generated. Note that the above-
mentioned soft-pion theorem�1ð0Þ ¼ �2ð0Þ þOðm2

�Þ ap-
plies to the full trace of the energy-momentum tensor and,
consequently, does not apply to its quark or gluonic con-
tributions separately. The condition (10) then translates
into A20ð0Þ ¼ �A22ð0Þ in the chiral limit at the quark-
model scale.
Now we pass to the definition of the GPDs, whose mo-

ments are related to the form factors listed above. The
conventions used are the same as in Ref. [15], where all
the details of the calculation of the GPDs can also be
found. The kinematics of the GPDs can be read off from
Fig. 1. The adopted notation is

p2 ¼ m2
� ¼ 0; q2 ¼ �Q2 ¼ �2p � q ¼ t;

n2 ¼ 0; p � n ¼ 1; q � n ¼ �
;
(11)

with the null vector n defining the light cone. The two
isospin projections of the quark GPDs of the pion, iso-
singlet (singlet) and isovector (nonsinglet), are defined
through the matrix elements of quark bilinears, with the
quark fields displaced along the light cone,

�abH I¼0ðx; 
; tÞ ¼
Z dz�

4�
eixp

þz�h�bðpþ qÞj �c ð0Þ�
� nc ðzÞj�aðpÞijzþ¼0;z?¼0; (12)

i	3abH I¼1ðx; 
; tÞ ¼
Z dz�

4�
eixp

þz�h�bðpþ qÞj �c ð0Þ�
� nc ðzÞ�3j�aðpÞijzþ¼0;z?¼0: (13)

The coordinate z lies on the light cone. At the quark-model
scale the gluon GPD of the pion vanishes,

H Gðx; 
; tÞ ¼ 0 ðquark-model scaleÞ: (14)

When the QCD evolution to higher scales is performed, a
nonvanishing gluonic contribution H Gðx; 
; tÞ is gener-
ated [15].
In the following analysis we use the symmetric notation

for the GPDs,

� ¼ 


2� 

; X ¼ x� 
=2

1� 
=2
; (15)

where 0 � � � 1 and the support is �1 � X � 1. One
introduces the corresponding GPDs,
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HI¼0;1ðX; �; tÞ ¼ H I¼0;1

�
�þ X

�þ 1
;

2�

�þ 1
; t

�
: (16)

The reflection about X ¼ 0 yields the symmetry relations

HI¼0ðX; �; tÞ ¼ �HI¼0ð�X; �; tÞ; HI¼1ðX; �; tÞ
¼ HI¼1ð�X; �; tÞ: (17)

At X � 0 the GPDs are related to the PDF, qðXÞ,
HI¼0ðX; 0; 0Þ ¼ HI¼1ðX; 0; 0Þ ¼ qðXÞ:

The polynomiality conditions [5,6] follow from very
basic field-theoretic assumptions, namely, the Lorentz in-
variance, time reversal, and Hermiticity, which yield the
form (8). For the moments one finds

Z 1

�1
dXX2jHI¼1ðX; �; tÞ ¼ 2

Xj
i¼0

A2jþ1;2iðtÞ�2i;

Z 1

�1
dXX2jþ1HI¼0ðX; �; tÞ ¼ 2

Xjþ1

i¼0

A2jþ2;2iðtÞ�2i;

(18)

with j ¼ 0; 1; . . . . For the lowest moments one has

Z 1

�1
dXHI¼1ðX; �; tÞ ¼ 2A10ðtÞ ¼ 2FVðtÞ; (19)

Z 1

�1
dXXHI¼0ðX; �; tÞ ¼ 2A20ðtÞ þ 2A22ðtÞ�2

¼ �2ðtÞ ��1ðtÞ�2: (20)

In the convention of Refs. [2,3] the equivalent expansion is
in powers of ð2�Þ2 rather than �2, as in Eq. (18). In our
approach, used in the following sections, polynomiality is
explicitly manifest from the use of the double distributions
[15]. The equivalence of Eqs. (8) and (18) is easily proven
by contracting (8) with the null vectors n�1 . . . n�j and
subsequently applying the definitions (11). We notice that
for the isovector GPD only the even moments are non-
vanishing, and for the isoscalar GPD only the odd moments
are nonvanishing. The gluon form factors are defined as the
integrals

Z 1

�1
dXX2jþ1HgðX; �; t; Q2Þ ¼ 2

Xjþ1

i¼0

AG
2jþ2;2iðtÞ�2i: (21)

Finally, we note that Eq. (18) for j ¼ 0 expresses the
electric charge conservation and the momentum sum rule
operating in deep inelastic scattering.

III. CHIRAL QUARK MODELS

In chiral quark models at the leading-Nc level the cal-
culation of the form factors and GPDs proceeds according
to the one-loop diagrams of Fig. 1. Extensive details of the
quark-model evaluation are given in [15]. In this paper we
carry out calculations in two chiral quark models: SQM [4]
and NJL with the Pauli-Villars regularization in the twice-
subtracted version of Refs. [41,64,65]. Variants of chiral
quark models differ in the way they perform the necessary
regularization of the quark loop diagrams.
The spectral quark model [4] introduces the generalized

spectral density �ð!Þ in the quark mass !, in the spirit of
Ref. [66], supplied with chiral symmetry, gauge invariance,
and vector meson dominance. The one-quark-loop action
of the SQM has the form

�SQM ¼ �iNc

Z
C
d!�ð!ÞTr logði6@�!U5Þ; (22)

where �ð!Þ is the quark generalized spectral function, and
U5 ¼ expði�5� ��=fÞ, with � denoting the pion field in
the nonlinear realization. The vector part of the spectral
function, needed in the present analysis, has the vector-
meson-dominance form [4]

�Vð!Þ ¼ 1

2�i

1

!

1

ð1� 4!2=m2
�Þ5=2

; (23)

exhibiting the pole at the origin and cuts starting at

FIG. 1. The direct (a), crossed (b), and contact (c) Feynman
diagrams for the quark-model evaluation of the GPD of the pion.
The contact contribution is responsible for the D-term.
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�m�=2, where m� � 770 MeV is the mass of the rho

meson. The complex contour C for the integration in (22)
is given in Ref. [4]. The SQM leads to conventional and
successful phenomenology for the pion [4,15,62,67], the
nucleon [68], and the photon parton distribution amplitude
[69].

We also study a more conventional chiral quark model,
the NJL model with the Pauli-Villars regularization in the
twice-subtracted version proposed in Refs. [41,64,65]. The
one-quark-loop action of the model is

�NJL ¼ �iNc Tr logði6@�MU5Þ; (24)

where M is the constituent quark mass. The Pauli-Villars
regularization is introduced at the effective action level
[41,64,65], with the practical advantage that gauge and
relativistic symmetries as well as sum rules are manifestly
fulfilled [70]. For the observables considered in this paper,
the Pauli-Villars regularization is implemented according
to the prescription where instances of M2 in an observable
O are replaced with M2 þ�2, and then the regularized
observable is evaluated according to the prescription

O reg ¼ Oð0Þ �Oð�2Þ þ�2 dOð�2Þ
d�2

: (25)

The Pauli-Villars regulator � is a free parameter of the
model. In what follows we use

M ¼ 280 MeV; � ¼ 871 MeV; (26)

which yields f ¼ 93:3 MeV for the pion decay constant
[41] according to the formula

f2 ¼ �NcM
2

4�2
½logð�2 þM2Þ�reg: (27)

IV. ELECTROMAGNETIC AND GRAVITATIONAL
FORM FACTORS

The form factors may be calculated in two different
ways. The first method uses the definition (8), which leads
to the evaluation of one-loop diagrams with an appropriate
vertex. For the electromagnetic form factor the vertex is
Q��, where Q is the electric charge of the quark. For the
gravitational form factor the vertex, corresponding to the
energy-momentum tensor, has the form

���ðkþ q; kÞ ¼ 1
4½ð2kþ qÞ��� þ ð2kþ qÞ����
� 1

2g
��ð2k6 þ q6 �!Þ; (28)

with ! denoting the quark mass. We illustrate the calcu-
lation in the Appendix. The other method uses the GPDs
obtained earlier [15] and evaluates their moments (18). The
results are the same, which serves as a consistency test of
the algebra. As mentioned in Sec. II, the equivalence is
proven by contracting with the null vector. For instance, in
the case of the gravitational form factor, we consider
n��

��n�. Then

h�bðpþ qÞ j n����ð0Þn� j �aðpÞi
¼ �ab1

2½
2�1ðq2Þ þ ð2� 
Þ2�2ðq2Þ� (29)

and the vertex becomes

n��
��ðkþ q; kÞn� ¼ ðx� 
=2Þ� � n: (30)

We recognize the same vertex as in the evaluation of the
GPDs multiplied by ðx� 
=2Þ. Upon passing to the sym-
metric notation, Eq. (20) follows.
Before showing the explicit results both for SQM and

NJL models in the specific realizations described in the
previous section, we note some general results. Actually, in
the considered quark models and in the chiral limit, we
have the following identity relating the gravitational and
electromagnetic form factors,

d

dt
½t�iðtÞ� ¼ FVðtÞ ði ¼ 1; 2Þ; (31)

from which the identity between the two gravitational form
factors �1ðtÞ ¼ �2ðtÞ � �ðtÞ follows. These remarkable
quark-model relations are proven explicitly in the
Appendix. The essential ingredient of the proof is the
existence of the spectral representation in both considered
models. One consequence of relation (31) is the expected
consistency of normalizations at t ¼ 0 for the charge and
mass �ið0Þ ¼ FVð0Þ, displaying the tight connection be-
tween the gauge and Poincare invariances. Furthermore,
expanding in small t and using the fact that FðtÞ ¼ Fð0Þ	
½1� hr2it=6þ . . .� with hr2i denoting the mean squared
radius, one gets

2hr2i� ¼ hr2iV; (32)

which means that in the considered models and in the
chiral limit the gravitational mean squared radius is half
the electromagnetic one.
Turning now to the specific realization, by construction,

the pion electromagnetic form factor in the SQM has the
monopole form

FSQM
V ðtÞ ¼ m2

�

m2
� � t

: (33)

A straightforward evaluation for the gravitational form
factor yields

�SQM
1 ðtÞ ¼ �SQM

2 ðtÞ ¼ m2
�

t
log

�
m2

�

m2
� � t

�
� �SQMðtÞ:

(34)

These specific form factors fulfill trivially the general
relations Eqs. (31) and (32).
In the NJLmodel the pion electromagnetic form factor is

equal to

FNJL
V ðtÞ ¼ 1þ Ncg

2
�

8�2

�2s logðs� ffiffiffiffiffi�t
p

sþ ffiffiffiffiffi�t
p Þffiffiffiffiffiffi�t

p
�
reg
;
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with g� ¼ M=f denoting the quark-pion coupling con-

stant. We have introduced the shorthand notation s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðM2 þ�2Þ � t

p
. The condition limt!�1FNJLðtÞ ¼ 0 is

satisfied due to Eq. (27). For the gravitational form factor
we obtain

�NJLðtÞ ¼ FNJL
V ðtÞ � Ncg

2
�

8�2

�
4ðM2 þ�2Þ

t

�
Li2

�
2

ffiffiffiffiffiffi�t
p

sþ ffiffiffiffiffiffi�t
p

�

þ Li2

�
2

ffiffiffiffiffiffi�t
p
ffiffiffiffiffiffi�t

p � s

���
reg
; (35)

where Li2ðzÞ is the polylogarithm function.
Of course, the explicit expressions (33)–(35) comply

with the general relation (31).
Similar expressions, of growing complication, may be

obtained for higher-order form factors in both SQM and
NJL models.

V. COMPARISON TO THE LATTICE DATA

We are now ready to compare the results of the previous
section to the recent lattice data [2,3]. These data corre-
spond to the scale ofQ ¼ 2 GeV and give the quark part of
the gravitational form factor and the electromagnetic form
factor. On the other hand, the quark-model calculation
corresponds to a very low scale, Q0 � 320 MeV, and, in
general, the QCD evolution is needed to compare the
model predictions to the data at a different scale Q.

A detailed discussion of the evolution issue is presented
in Ref. [15]. The low-energy chiral quark models contain
quarks as the basic and explicit degrees of freedom, and the
considered twist-2 observables correspond to modeling
QCD at a low renormalization point. Obviously, by the
energy-momentum conservation in these models, the
quarks as the only degrees of freedom carry 100% of the
total momentum in a hadron. On the other hand, the
momentum fraction carried by the valence quarks in the
pion at the scale Q2 ¼ 4 GeV2 is about 40%. The QCD
evolution [LO, next-to-leading order (NLO), next-to-next-
to leading order] tells us that this number grows as the scale
is evolved to lower values. The quark-model reference
scale Q0 is determined as the scale where the evolved
QCD value yields exactly the inescapable 100% of the
quark model. It would of course be highly desirable to
include, e.g., explicit gluonic degrees of freedom, as this
would allow one to stop the perturbative evolution at a
higher scale. Nonetheless, the LO and NLO evolutions for
the PDFs are sufficiently close to each other [18] as to
provide some confidence in the kind of calculations carried
out in our work.

The issue of the QCD evolution of GPDs and the gen-
eralized form factors is addressed in detail in Sec. VI.
However, the electromagnetic and gravitational form fac-
tors do not evolve with the scale. What changes is the ratio
R of the total momentum fraction carried by the quarks
(valence and sea),

R ¼ hxiqðQÞ
hxiqðQ0Þ ¼

�
�ðQÞ
�ðQ0Þ

�
�ð0Þ
1
=ð20Þ

; (36)

where the anomalous dimension is given by �ð0Þ
1 =ð20Þ ¼

32=81 for NF ¼ Nc ¼ 3 and

�ðQ2Þ ¼ 4�

0 logðQ2=�2
QCDÞ

; (37)

0 ¼ 11

3
Nc � 2

3
Nf; (38)

where we take �QCD ¼ 226 MeV and Nc ¼ Nf ¼ 3. At

the scale Q0 we have R ¼ 1, which then gradually de-
creases with the increasing scale. The quark part of the
gravitational form factor is �qðtÞ ¼ R�ðtÞ, and the gluon
part is�GðtÞ ¼ ð1� RÞ�ðtÞ, such that, of course,�qðtÞ þ
�GðtÞ ¼ �ðtÞ.
The value of R depends on the evolution ratio

�ðQ2Þ=�ðQ2
0Þ, which is not precisely known on the lattice.

For that reason we shall treat R as a free parameter when
fitting the model results to the data for the gravitational
form factor. In the SQM the other parameter is the value of
the rho meson mass, m�. For the SQM we fit jointly the

electromagnetic part and the quark part of the gravitational
form factor. The �2 method yields

R ¼ 0:28� 0:02; m� ¼ 0:75� 0:05 GeV; (39)

with �2=DOF ¼ 1:8. The result of the fit is displayed in
Fig. 2 with the solid line. The band corresponds to the
uncertainties in the values of the parameters in Eq. (39).
We note an overall very good agreement for both form
factors. Note that there is a significantly slower falloff for
the gravitational form factor compared to the electromag-
netic one. The optimum value ofm� agrees within the error

bars, which are substantial, with the physical mass of the
rho meson.
For the case of the NJL model (dashed line in Fig. 2) the

agreement is not as good as in the SQM model and it is not
possible to improve it by changing the parameters M and
�. For that reason we have not carried out the �2 fit in this
case. The problems of the NJL model in reproducing the
electromagnetic form factor, where the corresponding rms
radius turns out to be too small, are well known; see e.g. the
discussion in Ref. [41]. A similar discrepancy can be noted
for the case of the gravitational form factor shown in the
bottom panel of Fig. 2.
Now we come back, in greater detail, to the issue of the

quark to gluon momentum ratio R. It evolves with the scale
from the value R ¼ 1 at the quark-model scale to R ! 0 at
Q2 ! 1. We use the standard LO Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution for the single
channel. We know the final scale, Q ¼ 2 GeV, but the
quark-model scale is a priori unknown. We thus adjust
Q0 in order to reach the value of R from Eq. (39) at the
known scale Q. The result is
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Q0 ¼ 0:31� 0:03 GeV (40)

with �QCD ¼ 226 MeV. This value agrees with the earlier

independent determinations of the quark-model scale; see
Ref. [15] for a detailed discussion on these issues. We note
that at such low scales as in Eq. (40) the perturbative
expansion parameter in the DGLAP equations is large,
�ðQ2

0Þ=ð2�Þ ¼ 0:34, which makes the evolution very fast

for the scales in the vicinity of Q0.
One should note that the large value of �ðQ2

0Þ calls for
the use of improved QCD evolution at low scales. The
presented analysis could be extended in several ways, for
instance, incorporating the NLO effects, or by modifying
the dependence of � onQ2 at low scales, incorporating the
‘‘infrared protection’’ [71]. The NLO corrections to the
meson PDFs in chiral quark models were studied in
Ref. [18], where, somewhat surprisingly, it was found
that these effects are small. Modifications in the evolution
of �ðQ2Þ could be incorporated along the lines of
Refs. [72–74] where they were used for the pion form
factor, but this calculation is outside the scope of the
present paper.

We stress that the chiral quark-model explanation of the
lattice data used in this work as well as the physical and
lattice data explored in Ref. [15] requires ‘‘strong’’ evolu-

tion, with a large value of the evolution ratio�ðQ2
0Þ=�ðQ2Þ.

Our simpleminded analysis based on the LO evolution may
be viewed as an approximation to a more elaborate
scheme; nevertheless, it is quite remarkable that various
observables (PDFs, PDAs, their moments) lead to the same
evolution ratio, giving, in the LO approximation, compat-
ible quark-model scales [15]. Moreover, the electromag-
netic and the gravitational form factors are independent of
the evolution; hence the issue does not arise for these
observables.
In Fig. 3 we show the form factor multiplied by �t,

which is a popular way to present the results at large
Euclidean momenta. In the case of the vector (electromag-
netic) form factor we also display the experimental TJLAB
data [75–77] and the earlier Cornell data [78], and the
approximately constant value for �tFVðtÞ is clearly seen.
In the gravitational case, however, the lattice data [2,3]
show an increasing trend which is well mimicked by our
SQM form factor, �t�ðtÞ � logð�tÞ.
In the large-Nc limit in the single resonance approxima-

tion (SRA) [61,79], one would have a monopole form
factor

�SRAðtÞ ¼ AM2
f

M2
f � t

; (41)
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0.8
tA10 GeV2

0 1 2 3 4
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0.3

0.4

0.5

t A20 GeV2

( )

( )

FIG. 3 (color online). Same as Fig. 2 for the form factors
multiplied with �t. In addition, we include the TJLAB data
[75–77] (darker and larger circles and squares) and the Cornell
data [78] (diamonds).
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FIG. 2 (color online). The electromagnetic form factor (top
panel) and the quark part of the gravitational form factor (bottom
panel) in the SQM (solid line) and the NJL model (dashed line)
compared to the lattice data from Ref. [3]. The band around the
SQM results corresponds to the uncertainty in the quark mo-
mentum fraction R and the m� parameter.
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which agrees with our quark model at low t if Mf ¼ffiffiffi
2

p
MV � 1100 MeV, in agreement with the result of Eq.

(32). The difference between the SRA form factor and our
Eq. (34) is less than 10% for momentum values up to t ¼
�1 GeV2. The SRA monopole fits well the data extrapo-
lated to the physical pion mass, yielding A ¼ 0:261ð5Þ and
Mf ¼ 1320ð60Þ MeV [2,3].

To conclude this section, several general remarks are in
order. One has to bear in mind that the full-QCD lattice
calculations are linearly extrapolated to the physical pion
mass. Our quark-model analysis incorporates only the
leading-Nc contributions, while the full-QCD simulations
include all orders in that expansion. Nevertheless, despite
these caveats, we note a quite remarkable agreement, in
particular for the case of the SQM. This is noteworthy, as
our study is a genuine dynamical field-theoretical calcu-
lation, and the parameters providing the optimal fit are
highly compatible with calculations of other processes
within the same model and scheme.

Admittedly, at very large values of �t, perturbative
QCD results for the form factors should be reached. At
very low values of t, chiral corrections are important. Since
the data we use are at intermediate values of Euclidean
momenta, we may neglect both the above-mentioned ef-
fects and use the chiral quark models to explain the data.

We stress that our calculation conforms to the low-
energy theorem �1ð0Þ ��2ð0Þ ¼ Oðm2

�Þ [61], which is
dictated by chiral symmetry. The quark model predicts, in
addition, �1ðtÞ ¼ �2ðtÞ, and the purely multiplicative
character of the QCD evolution yields, in our conventions,

A22ðtÞ ¼ �A20ðtÞ: (42)

Probably due to insufficient statistics, this formula is not
quite seen in the data of Ref. [3] [note that with conven-
tions adopted in that reference one should have instead
A22ðtÞ ¼ � 1

4A20ðtÞ]. For that reason we have not used the

data for A22 in our numerical analysis.

VI. HIGHER-ORDER FORM FACTORS

Analogous calculations as in the previous section can be
performed for the higher-order generalized form factors.
Here we only give the results for the case of the SQM, as
the results in NJL are qualitatively similar, and also the
SQM works better for those quantities which can be con-
fronted with the data. In Fig. 4(a) we show A3;2i and A4;2i

obtained at the quark-model scale. In the chiral quark
models in the chiral limit, one has at t ¼ 0 very simple
expressions [15,21,28],

HI¼1ðX; �; 0Þ ¼ �ð1� X2Þ;
HI¼0ðX; �; 0Þ ¼ �ðð1� XÞðX � �ÞÞ � �ððX þ 1Þ

	 ð��� XÞÞ; (43)

where �ðxÞ is the Heaviside step function. It follows from

the definition (18) that at the quark-model scale the follow-
ing relations hold [55],

A2jþ1;2ið0Þ ¼
�

1
2jþ1 for i ¼ 0
0 otherwise;

A2jþ2;2ið0Þ ¼
� 1
2jþ2 for i ¼ 0

� 1
2jþ2 for i ¼ jþ 1

0 otherwise

ðquark-model scaleÞ:

(44)

These relations can be seen in Fig. 4(a). The form factors
tend to zero very slowly at large �t.
Another property follows from the fact that in the con-

sidered model HI¼0ðX; 1; tÞ ¼ 0 for any value of t. Then
Eq. (18) yields [55]
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FIG. 4 (color online). Generalized form factors A3;2i and A4;2i

of the pion in the SQM at the quark-model scaleQ0 (a) and at the
lattice scale Q ¼ 2 GeV (b), and the gluon form factors AG

4;2i at

Q ¼ 2 GeV (c).
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Xjþ1

i¼0

A2jþ2;2iðtÞ ¼ 0: (45)

This feature can be seen in Fig. 4(c).
While the lowest-order form factors, i.e. electromag-

netic and gravitational, do not evolve with the running
scale Q, the higher-order form factors change when we
pass from the reference quark-model scale Q0 to Q. Our
analysis proceeds as follows: We carry out the leading-
order DGLAP-Efremov-Radyuskin-Brodsky-Lepage
(ERBL) evolution for the quark-model GPDs from the
quark-model scale

Q0 ¼ 0:31 GeV (46)

to the scale of the lattice calculation, Q ¼ 2 GeV. Note
that the GPDs at the quark-model scale do not exhibit
factorization in the t variable. In fact, this is the reason
for the nontrivial change of the higher-order form factors
with the scale. After the evolution we take the moments
(18) at several values of � and then disentangle the gener-
alized form factors via solving a set of linear equations. For
the LO ERBL DGLAP evolution we use the method and
the numerical program of Ref. [80]. The result of our
calculations is presented in Fig. 4(b). We notice a dramatic
change, both in the value at t ¼ 0 and in the shape of the
form factors compared to the behavior of Fig. 4(a) at the
quark-model scale.

Formally, as Q2 ! 1 the GPDs approach their asymp-
totic forms contained entirely in the ERBL region jXj< �.
Explicitly, we have in this limit[15]

HI¼1 ¼ 3

2�

�
1� X2

�2

�
FVðtÞ;

HI¼0 ¼ ð1� �2Þ 15
4�2

Nf

4CF þ Nf

X

�

�
1� X2

�2

�
�ðtÞ;

XHG ¼ ð1� �2Þ 15
4�

CF

4CF þ Nf

�
1� X2

�2

�
2
�ðtÞ

ðQ2 ! 1Þ

(47)

where CF ¼ ðN2
c � 1Þ=ð2NcÞ and Nf ¼ 3. The proportion-

ality factors follow from the normalization at the initial
quark-model scale Q0, as the charge- and momentum-
conservation sum rules are invariants of the evolution,

Z 1

�1
dXHI¼1ðX; �; t; Q2Þ

¼ 2FVðtÞ;Z 1

�1
dX½XHI¼0ðX; �; t; Q2Þ þ XHgðX; �; t; Q2Þ�

¼ ð1� �2Þ�ðtÞ;

(48)

in accordance with Eqs. (19) and (20).

Evaluation of moments in Eq. (47) yields immediately

A2jþ1;2iðtÞ ¼
�

3
4jðjþ2Þþ3FVðtÞ for i ¼ j
0 otherwise;

A2jþ2;2iðtÞ ¼
� Nf

4CFþNf

15
2½4jðjþ4Þþ15��ðtÞ for i ¼ j

�A2jþ2;2jðtÞ for i ¼ jþ 1
0 otherwise;

AG
2jþ2;2iðtÞ ¼

4Cf

Nf

1

2jþ 1
A2jþ2;2iðtÞ ðQ2 ! 1Þ:

(49)

We note a qualitative difference of the asymptotic form
factors compared to the form factors at the quark-model
scale shown in Fig. 4. For the isovector case (n ¼ 2jþ 1)
only the highest form factor, with i ¼ j, does not vanish,
while for the isoscalar case (n ¼ 2jþ 2) only the two
highest moments, with i ¼ jþ 1 and i ¼ j, are nonzero.
The remaining moments tend to zero. This result is a
prompt conclusion from the asymptotic forms (47). Note
that in contrast to this behavior, at the quark-model scale
all generalized form factors are nonzero. As mentioned
previously, the form factors A10, A20, and A22 are invariants
of the evolution. The asymptotic gluon form factors in Eq.
(49) are related to the isoscalar quark form factors in a
simple manner. Asymptotically, all generalized form fac-
tors become proportional to FVðtÞ or �ðtÞ in the isovector
and isoscalar channels, respectively.
Finally, we compare our values of the higher-order form

factors at t ¼ 0 to the lattice data provided in Sec. 7 of
Ref. [3]. With the notation for the moments at t ¼ 0,

hxni ¼ Anþ1;0ð0Þ; (50)

one finds at the lattice scale of Q ¼ 2 GeV

hxi ¼ 0:271� 0:016; hx2i ¼ 0:128� 0:018;

hx3i ¼ 0:074� 0:027 ðlatticeÞ; (51)

while in both chiral quark models we obtain, after the LO
DGLAP evolution to the lattice scale,

hxi ¼ 0:28� 0:02; hx2i ¼ 0:10� 0:02;

hx3i ¼ 0:06� 0:01 ðchiral quark modelsÞ; (52)

where the error bars come from the uncertainty of the scale
Q0 in Eq. (40). The two sets of numbers overlap within the
error bars. This result is quite remarkable, as it shows that
the hierarchy of the form factors at t ¼ 0 found in full-
QCD lattice calculations is properly reproduced in chiral
quark models. The above form factors are simply the mo-
ments of the PDF of the pion. We recall that the PDF itself
in the chiral quark models reproduces very well the ex-
perimental [52] and transverse lattice data of Ref. [53]; see
Figs. 8 and 9 of Ref. [15].
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VII. CONCLUSIONS

Here are our main points:
(1) The gravitational form factor obtained from the

spectral quark model in the chiral limit agrees very
well with the lattice data of Refs. [2,3]. We have
performed a global fit to the electromagnetic and the
quark part of the gravitational form factors and
obtained very reasonable values for the evolution
ratio and the vector-meson mass. The longer range
of the gravitational form factor follows from a dif-
ferent analytic expression compared to the electro-
magnetic form factor.

(2) The NJL model does not provide such an excellent
agreement, although the qualitative features are very
similar to the SQM.

(3) We provide analytic expressions for the lowest-
order form factors in both considered models. For
the considered models in the chiral limit we find an
explicit relation between the gravitational and vec-
tor form factors. In particular, the relation shows
that in our case both gravitational form factors are
equal, and that the mean squared electromagnetic
radius is twice the gravitational one.

(4) The electromagnetic and gravitational form factors
do not evolve with the scale, but the higher-order
generalized form factors do. We have performed the
leading-order ERBL DGLAP QCD evolution of the
pion GPDs and obtained via moments the general-
ized form factors at the scale of the lattice
measurements.

(5) The generalized form factors at t ¼ 0 found in full-
QCD lattice simulations are reproduced in chiral
quark models within the error bars corresponding
to statistical and model uncertainties.

(6) Our predictions can be further tested with future
lattice simulations for higher-order form factors.
The behavior is nontrivial, with form factors having
different signs, magnitude, and asymptotic falloff.

(7) Lattice simulations for the gluon form factors would
provide very useful independent information, which
could be used to verify the model predictions.
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APPENDIX: RELATION BETWEEN
GRAVITATIONAL AND ELECTROMAGNETIC

FORM FACTORS

In this appendix we show an explicit calculation of form
factors in the SQM and prove as a by-product the result of
Eq. (31). The proof also applies to the NJL model with the
PV regularization, as that model can also be written in
terms of the spectral representation (see below).
The SQM is defined by the generalized Lehman repre-

sentation of the quark propagator

Sðp6 Þ
Z
C
d!

�ð!Þ
p6 �!

: (A1)

The method exploited in Ref. [4] was mainly based on
writing down Ward identities for the corresponding vertex
functions at the quark level, and then closing the quark line
to make one-loop calculations. As discussed in later works
(see e.g. [62,68]) this is fully equivalent to proceeding
directly through the effective action which we sketch
now. Using the action of Eq. (22) one can compute the
energy-momentum tensor as a functional derivative of the
action with respect to an external space-time-dependent
metric, g��ðxÞ, around the flat space-time metric ��� [we

take the signature ðþ ���Þ],
1

2
���ðxÞ ¼ ��

�g��ðxÞ
��������g��¼���

¼ �i
Nc

2

Z
C
d!�ð!Þ

	 hxjfO��; ði@6 �!U5Þ�1gjxi; (A2)

where

O�� ¼ i

2
ð��@� þ ��@�Þ � g��ði@6 �!Þ; (A3)

and U5 ¼ expði�5� ��=fÞ with � the pion field in the
nonlinear realization. For the calculation of the gravita-
tional form factor, we expand up to second order in the
pion field, corresponding to evaluating the diagrams of
Fig. 1. In the Cartesian isospin basis one has

h�bj���j�ai ¼�Nc

Z
d!�ð!Þ

Z d4k

ð2�Þ4 Tr
�
���ðkþq;kÞ

	
�

i

k6 �!

�
��a�5!

f

�
i

k6 �p6 �!

	
�
��b�5!

f

�
i

k6 þq6 �!
þ i

k6 �!

i�ab!

2f2

	 i

k6 þq6 �!

�
þ crossed

�
; (A4)

where the quark gravitational vertex is given by

���ðkþ q; kÞ ¼ 1
4½ð2k� þ q�Þ�� þ ð2k� þ q�Þ���
� 1

2g��ð2k6 þ q6 �!Þ: (A5)
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After computing the traces and using the Feynman trick in
the integrals, in the chiral limit the result is

�1ðq2Þ ¼ Nc

4�2f2

Z
d!�ð!Þ!2

Z 1

0

dx

xð1� xÞq2
	 ½�!2 log!2 þ xð1� xÞq2
þ ð!2 � xð1� xÞq2Þ logð!2 � xð1� xÞq2Þ�;

�2ðq2Þ ¼ �1ðq2Þ: (A6)

In the low-momentum limit we may use Eq. (5) as deduced
from �PT in the presence of gravity [61] to get

L11 ¼ Nc

192�2
; (A7)

L12 ¼ � Nc

96�2
; (A8)

L13 ¼ � Nc

ð4�Þ2
�1

0

12B0

¼ f2

24M2
S

; (A9)

in agreement with the derivative expansion of the SQM
[62].

Proceeding similarly with the vector form factor, we get

h�ajJ�;b
V j�ci ¼ �Nc

Z
d!�ð!Þ

Z d4k

ð2�Þ4 Tr

�
��

�b
2

	 i

k6 �!

�
� �c�5!

f

�
i

p6 þ k6 �!

	
�
� �a�5!

f

�
i

q6 � k6 �!

�
: (A10)

For on-shell massless pions the electromagnetic form fac-
tor reads

FVðq2Þ ¼ � Nc

4�2f2

Z
d!�ð!Þ!2

	
Z 1

0
dx log½!2 � xð1� xÞq2�: (A11)

Charge normalization, FVð0Þ ¼ 1, and energy-momentum
normalization, �2ð0Þ ¼ 1, imply

1 ¼ FVð0Þ ¼ �2ð0Þ ¼ � Nc

4�2f2

Z
d!�ð!Þ!2 log!2

¼ Ncm
2
�

24�2f2
; (A12)

where in the second line the vector-meson realization, Eq.
(23), has been used. The value agrees with the value of the
pion weak decay constant obtained from the corresponding
axial matrix element [4].
With the representations of Eqs. (A6) and (A11) the

result in Eq. (31) can be readily derived, without any
reference to the specific realization given by Eq. (23).
The above proof also holds for the NJL model in the PV

regularization. This class of models can be cast explicitly

in the spectral-representation form, using �ð!Þ ¼ �ð!�
MÞ þ �ici�ð!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ�2

i

q
Þ, where ci and �i are the PV

constants. Then all the above algebraic steps carry over,
and the result (31) holds for the NJL model with PV
regularization as well.
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