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The pion-baryon sigma terms and the strange-quark condensates of the octet and the decuplet baryons

are calculated by employing the method of QCD sum rules. We evaluate the vacuum-to-vacuum transition

matrix elements of two baryon interpolating fields in an external isoscalar-scalar field and use a

Monte Carlo-based approach to systematically analyze the sum rules and the uncertainties in the results.

We extract the ratios of the sigma terms, which have rather high accuracy and minimal dependence on

QCD parameters. We discuss the sources of uncertainties and comment on possible strangeness content of

the nucleon and the Delta.
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I. INTRODUCTION

The meson-baryon sigma terms are important for hadron
physics as they provide a measure of chiral-symmetry
breaking and the scalar quark condensate inside the
baryon. In particular, the pion-nucleon and the pion-
Delta sigma terms have received much attention and have
been extensively analyzed in many problems (see Ref. [1]
and references therein). The sigma terms are related to the
chiral-symmetry breaking part of the QCD Lagrangian

L m ¼ �m̂ð �uuþ �ddÞ �ms �ss ¼ c1u1 þ c8u8; (1)

which is expressed in terms of SU(3)-flavor [SUð3ÞF]
singlet and octet pieces

u1 ¼ �uuþ �ddþ �ss; u8 ¼ �uuþ �dd� 2�ss; (2)

with c1 ¼ �ð2m̂þmsÞ=3 and c8 ¼ ðms � m̂Þ=3 [m̂ ¼
ðmu þmdÞ=2 is the average light-quark mass]. The
strength of the SUð3ÞF breaking is controlled by the matrix
elements of the octet piece and can be related to the
resulting baryon-mass splittings through the Gell-Mann–
Okubo mass formula. The sigma terms, which are defined
in terms of these matrix elements, can in turn be deduced
from the SUð3ÞF pattern and the observed baryon-mass
differences [2–4].

The sigma terms are equivalent to the values of the
scalar form factors

m̂hBðp0Þj �uuþ �ddjBðpÞi ¼ �BðkÞ �vBðp0Þ�BðpÞ;
(3a)

m̂hB�ðp0; t0Þj �uuþ �ddjB�ðp; tÞi ¼ � �v�
B� ðp0; t0Þ½g���B� ðkÞ

þp0�p�FTðkÞ���
B� ðp; tÞ;

(3b)

mshBðp0Þj�ssjBðpÞi ¼ �s
BðkÞ �vBðp0Þ�BðpÞ;

(3c)

mshB�ðp0; t0Þj�ssjB�ðp; tÞi ¼ � �v�
B� ðp0; t0Þ½g���s

B� ðkÞ
þp0�p�Fs

TðkÞ���
B� ðp; tÞ;

(3d)

at zero momentum transfer, with B ¼ N, �, �, � and
B� ¼ �, ��, ��, �. Here, �ðp; tÞ is the Dirac spinor for
the spin-1=2 baryon, ��ðp; tÞ is the Rarita-Schwinger spin
vector of the spin-3=2 baryon, with the spin projection t,
k ¼ ðp0 � pÞ2 is the momentum transfer, and �Bð�Þ ðkÞ,
�s

Bð�Þ ðkÞ, and FðsÞ
T ðkÞ are the scalar and tensor form factors,

respectively. The minus signs on the right-hand sides
(RHS) of (3b) and (3d) are conventional like in the case
of the free Delta Lagrangian. The sigma terms are also
defined via the Feynman-Hellmann theorem as

�B � X
q¼u;d

m̂
dmB

dmq

¼ m̂hBj �uuþ �ddjBi; (4a)

�B� � X
q¼u;d

m̂
dmB�

dmq

¼ �m̂hB�ðtÞj �uuþ �ddjB�ðt0Þi; (4b)

�s
B � ms

dmB

dms

¼ mshBj�ssjBi; (4c)

�s
B� � ms

dmB�

dms

¼ �mshB�ðtÞj�ssjB�ðt0Þi; (4d)

where mB and mB� denote the octet- and the decuplet-
baryon masses, respectively.
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The matrix elements hBð�Þj�ssjBð�Þi represent the
strangeness content of the baryons, which can be combined
with the pion-nucleon and the pion-Delta sigma terms in
order to obtain, e.g., the eta-baryon sigma terms,

��Bð�Þ ¼ 1
3hBð�Þjm̂ð �uuþ �ddÞ þ 2ms �ssjBð�Þi

� 1
3ð�Bð�Þ þ 2�s

Bð�Þ Þ: (5)

The strange-quark condensate of the nucleon is of special
interest, which is expressed by the ratio

y ¼ 2hNj�ssjNi
hNj �uuþ �ddjNi ; (6)

and related to the pion-nucleon sigma term through

�N ¼ �ð0Þ
N =ð1� yÞ; (7)

where �ð0Þ
N ¼ 32 MeV is the pion-nucleon sigma term

obtained from the matrix elements of the octet piece in
Eq. (1) using baryon-mass splittings [3]. Hence, a discrep-

ancy between �ð0Þ
N and the directly observed �N gives a

measure of the strangeness content of the nucleon. The
assumption from the Okubo-Zweig-Iizuka (OZI) rule as
y ¼ 0 implies a �N which is significantly smaller than
expectations based on�-N scattering. The resulting puzzle
can be solved by considering the possibility of a nonvan-
ishing �ss content in the nucleon. This interesting issue has
been tackled using various theoretical approaches; e.g., the
chiral perturbation theory gives y ’ 0:21 [5], and lattice
QCD gives y ’ 0:36 [6].

To our knowledge, there are only a few calculations in
the literature for the meson-hyperon sigma terms. The
quark condensates of the baryons have been calculated in
Ref. [7] by means of a Nambu–Jona-Lasinio (NJL) ap-
proach to QCD. A chiral model has been used in Ref. [8] to
evaluate the long-range part of the hyperon scalar form
factors and the pion–octet-baryon sigma terms. A calcu-
lation of the strange-quark condensate of the nucleon using
QCD sum rules has been attempted in Ref. [9]. When
considered in the framework of the octet and the decuplet
baryons, a determination of the sigma terms is important
for understanding the role played by the chiral-symmetry

breaking in the octet-decuplet mass splittings. Moreover,
since there is no direct coupling of the pion to the Lambda
baryon, the �-� sigma term cannot be directly determined
from experiment. Therefore a theoretical determination of
the �-� sigma term together with the �-� sigma term is
crucial as these terms are related to �-� mass splitting.
Two of us have recently calculated [1] the pion-nucleon
and the pion-Delta sigma terms by utilizing the external-
field QCD sum rules (QCDSR), which are a powerful tool
to extract qualitative and quantitative information about
hadron properties [10–13]. In this framework, one starts
with a correlation function that is constructed in terms of
hadron interpolating fields. On the theoretical side, the
correlation function is calculated using the operator prod-
uct expansion (OPE) in the Euclidian region. This corre-
lation function is matched with an Ansatz that is introduced
in terms of hadronic degrees of freedom on the phenome-
nological side. The matching provides a determination of
hadronic parameters like baryon masses, magnetic mo-
ments, coupling constants of hadrons, and so on. Our aim
in this work is to calculate the scalar quark condensates of
the octet and the decuplet baryons and the related sigma
terms defined in Eq. (3), by using the external-field QCD
sum rules. To determine the value of the sigma terms, we
evaluate the vacuum-to-vacuum transition matrix elements
of two baryon interpolating fields in an external isoscalar-
scalar field. For our numerical procedure, we use the
Monte Carlo–based analysis introduced in Ref. [14]. This
method provides a more systematic treatment of uncertain-
ties in QCDSR.
Our paper is organized as follows: In Sec. II, we present

the formulation of QCDSR and construct the relevant sum
rules. We give the numerical analysis of the sum rules in
Sec. III. Finally, we discuss the results and arrive at our
conclusions in Sec. IV.

II. THE DERIVATION OF THE SUM RULES

In the external-field QCDSR method, one starts with the
correlation function of the baryon interpolating fields in the
presence of an external constant isoscalar-scalar field Sq,

defined by

i
Z

d4xeip�xh0jT ½�BðxÞ ��Bð0Þ�j0iSq ¼ �
�
BðpÞ þ Sq�̂

q
BðpÞ þOðS2qÞ; (8a)

i
Z

d4xeip�xh0jT ½��
B� ðxÞ ���

B� ð0Þ�j0iSq ¼ ½�
�
B� ���ðpÞ þ Sq½�̂q

B� ���ðpÞ þOðS2qÞ; (8b)

where �B and �
�
B� are the octet- and the decuplet-baryon interpolating fields, which are, respectively, given as

�N ¼ �abc½uTaC��ub��5�
�dc; �� ¼ �Nðd ! sÞ; �� ¼ �Nðu ! sÞ; (9a)

�� ¼
ffiffi
2
3

q
�abcf½uTaC��sb��5�

�dc � ½dTaC��sb��5�
�ucg; ��

� ¼ �abc½uTaC��ub�uc;
�
�
�� ¼

ffiffi
1
3

q
�abcf2½uTaC��sb�uc þ ½uTaC��ub�scg; �

�
� ¼ �

�
�ðu ! sÞ; �

�
�� ¼ �

�
�� ðs ! d; u ! sÞ: (9b)
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Here a, b, c are the color indices, T denotes transposition,
and C ¼ i�2�0. For the interpolating fields of the octet
baryons, there are two independent local operators, but the
ones in Eq. (9a) are the optimum choices for the lowest-
lying positive-parity baryons (see, e.g., Ref. [15] for a
discussion on negative-parity baryons in QCDSR).
�
�
BðpÞ and �

�
B� ðpÞ are the correlation functions when

the external field is absent and correspond to the functions
that are used to determine the baryon masses. The second
terms in Eqs. (8) represent the linear responses of the
correlators to a small external scalar field Sq, which are
computed with an additional term to the QCD Lagrangian:

�L ¼ �SgS½ �uðxÞuðxÞ þ �dðxÞdðxÞ� � Ssg
S
s ½ �sðxÞsðxÞ�:

(10)

Here, Su ¼ Sd � S (Ss) represent the external scalar field
and gS (gSs ) is associated with the coupling of the external
scalar field to the u and d (s) quarks. �̂u

Bð�Þ ¼ �̂d
Bð�Þ �

�̂Bð�Þ (�̂s
Bð�Þ ) denote the correlation functions in the exis-

tence of the external S (Ss) field. The external scalar field
contributes to the correlation functions in Eq. (8) in two
ways: First, it directly couples to the quark field in the
baryon currents, and second, it modifies the condensates by
polarizing the QCD vacuum. In the presence of an external
scalar field there are no correlators that break the Lorentz
invariance, like h �q���qi which appears in the case of an
external electromagnetic field F��. However, the correla-
tors already existing in the vacuum are modified by the
external field, viz.

h �qqiS � h �qqi � 	Sh �qqi; h�ssiS � h�ssi � ~	Sh �ssi; h �qqiSs � h �qqi � ~	sSsh �qqi;
h �ssiSs � h�ssi � 	sSsh�ssi; (11a)

hgc �q� �GqiS � hgc �q� �Gqi � 	GShgc �q� �Gqi; hgc �s� � GsiS � hgc �s� � Gsi � ~	GShgc �s� �Gsi;
hgc �q� � GqiSs � hgc �q� �Gqi � ~	s

GSshgc �q� �Gqi; hgc �s� �GsiSs � hgc �s� �Gsi � 	s
GSshgc �s� � Gsi; (11b)

where 	 ( � 	u � 	d), ~	 ( � ~	u � ~	d), 	s, and ~	s are the susceptibilities corresponding to the quark condensates.
Similarly, 	G ( � 	u

G � 	d
G), ~	G ( � ~	u

G � ~	d
G), 	

s
G, and ~	s

G denote the susceptibilities corresponding to the quark-gluon
mixed condensates. Here we explicitly assume that the u- and d- (s-) quark fields couple solely to the external field S (Ss).
The quark condensates get modified in the presence of the external fields S and Ss as follows:

@h �qiqii
@mj

¼ 	ih �qiqii; @hgc �qi� � Gqii
@mj

¼ 	i
Ghgc �qi� �Gqii; for i ¼ j; (12a)

@h �qiqii
@mj

¼ ~	jh �qiqii; @hgc �qi� � Gqii
@mj

¼ ~	j
Ghgc �qi� �Gqii; for i � j; (12b)

where we retain the nondiagonal responses of h �qqi (h�ssi) to the external Ss (Sq) field via the susceptibilities ~	 and ~	s, and
similarly for the quark-gluon mixed condensates via ~	G and ~	s

G. The coupling of the external scalar field to the quark is
simply taken as gS � gSs ¼ 1.

At the quark level, we have

h0jT ½�NðxÞ ��Nð0Þ�j0iSq ¼ 2i�abc�a
0b0c0 TrfSbb0

u ðxÞ��C½Saa0
u ðxÞ�TC��g�5�

�Scc0
d ðxÞ���5; (13a)

h0jT ½��ðxÞ ���ð0Þ�j0iSq ¼ h0jT ½�NðxÞ ��Nð0Þ�j0iSqðSd ! SsÞ; (13b)

h0jT ½��ðxÞ ���ð0Þ�j0iSq ¼ h0jT ½�NðxÞ ��Nð0Þ�j0iSqðSu ! SsÞ; (13c)

h0jT ½��ðxÞ ���ð0Þ�j0iSq ¼ 2
3i�

abc�a
0b0c0 ðTrfSbb0

u ðxÞ��C½Saa0
s ðxÞ�TC��g�5�

�Scc0
d ðxÞ���5

þ TrfScc0
d ðxÞ��C½Saa0

s ðxÞ�TC��g�5�
�Sbb0

u ðxÞ���5 � �5��Scc0
d ðxÞ��C½Sbb0

s ðxÞ�T
� C��Saa0

u ðxÞ���5 � �5��Saa0
u ðxÞ��C½Sbb0

s ðxÞ�TC��Scc0
d ðxÞ���5Þ; (13d)

respectively, for N, �, �, and �, and
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h0jT ½��
�ðxÞ ���

�ð0Þ�j0iSq ¼ �2i�abc�a
0b0c0 ðTrfSbb0u ðxÞ��C½Saa0u ðxÞ�TC��gScc0u ðxÞ þ 2Sbb

0
u ðxÞ��C½Saa0u ðxÞ�TC��Scc

0
u ðxÞÞ;

(14a)

h0jT ½��
�� ðxÞ ���

�� ð0Þ�j0iSq ¼ �2
3i�

abc�a
0b0c0 ðTrfSbb0

s ðxÞ��C½Saa0
u ðxÞ�TC��gScc0

u ðxÞ þ TrfSaa0
u ðxÞ��C½Sbb0

s ðxÞ�TC��gScc0
u ðxÞ

þ TrfSaa0
u ðxÞ��C½Scc0

u ðxÞ�TC��gSbb0
s ðxÞ þ 2Scc0

u ðxÞ��C½Saa0
u ðxÞ�TC��Sbb0

s ðxÞ
þ 2Saa0

u ðxÞ��C½Sbb0
s ðxÞ�TC��Scc0

u ðxÞ þ 2Sbb0
s ðxÞ��C½Saa0

u ðxÞ�TC��Scc0
u ðxÞÞ; (14b)

h0jT ½��
�� ðxÞ ���

�� ð0Þ�j0iSq ¼ h0jT ½��
�� ðxÞ ���

�� ð0Þ�j0iSðSs ! Sd;Su ! SsÞ; (14c)

h0jT ½��ðxÞ ���ð0Þ�j0iSq ¼ h0jT ½��ðxÞ ���ð0Þ�j0iSqðSu ! SsÞ; (14d)

respectively, for �, ��, ��, and �.
To calculate theWilson coefficients, we need the quark propagators in the presence of the external scalar field, which are

written as

S qðxÞ ¼ S0
qðxÞ þ S0

qðxÞ: (15)

The first term on the RHS is the part of the propagator in the absence of the external field, which is given as

i½S0
q�ab � h0jT½qaðxÞ �qbð0Þ�j0i0

¼ i
ab

2�2x4
x̂� i�n

ab

32�2

gc
2
Gn

��

1

x2
ð���x̂þ x̂���Þ � 
ab

12
h �qqi � 
abx2

192
hgc �q� �Gqi �mq


ab

4�2x2

� mq

32�2
�n
abgcG

n
���

�� lnð�x2Þ � 
abhg2cG2i
29 � 3�2

mqx
2 lnð�x2Þ þ i
abmq

48
h �qqix̂þ imq


abx2

27 � 32
hgc �q� �Gqix̂

þOðm2
qÞ: (16)

The second term appears in the existence of the external field and is given as

i½S0
q�ab � h0jT½qaðxÞ �qbð0Þ�j0iSq

¼ Sq

�
� 
ab

4�2x2
� 1

32�2
�n
abgcG

n
���

�� lnð�x2Þ � 
abhg2cG2i
29 � 3�2

x2 lnð�x2Þ þ i
ab

48
h �qqix̂þ 
ab	q

12
h �qqi

þ i
abx2

27 � 32
hgc �q� �Gqix̂þ 
abx2

192
	q
Ghgc �q� � Gqi þ i

mq

4�2x2
x̂þmq

96
x2h �qqi � i

mq

48
	qh �qqix̂

� imq

abx2

27 � 32
	q
Ghgc �q� �Gqix̂

�
þOðm2

q; S
2
qÞ; (17)

when the quark and external field have the same flavor. Otherwise, we have

i½S0
q�ab � h0jT½qaðxÞ �qbð0Þ�j0iSq0

¼ Sq0

�

ab ~	q0

12
h �qqi þ 
abx2

192
~	q0
G hgc �q� � Gqi � i

mq

48
~	q0 h �qqix̂� imq


abx2

27 � 32
~	q0
G hgc �q� �Gqix̂

�
þOðm2

q0 ; S
2
q0 Þ:
(18)

The analyticity of the correlation function allows us to write the phenomenological side of the sum rules in terms of a
double-dispersion relation of the form

Re�̂q
BðpÞ ¼

1

�2

Z 1

0

Z 1

0

Im�̂BðpÞ
ðs1 � p2Þðs2 � p2Þds1ds2; (19a)

Re½�̂q
B� ���ðpÞ ¼ 1

�2

Z 1

0

Z 1

0

Im½�̂q
B� ���ðpÞ

ðs1 � p2Þðs2 � p2Þds1ds2: (19b)
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The ground-state hadron contribution is singled out by utilizing the zero-width approximation, where the hadronic
contributions from the Breit-Wigner form to the imaginary part of the correlation function are proportional to the 

function:

Im�̂BðpÞ ¼ �2
ðs1 �m2
BÞ
ðs2 �m2

BÞh0j�BjBðpÞihBðpÞjSð �uuþ �ddÞjBðpÞihBðpÞj ��Bj0i
þ �2
ðs1 �m2

BÞ
ðs2 �m2
EÞh0j�BjBðpÞihBðpÞjSð �uuþ �ddÞjEðpÞihEðpÞj ��Bj0i; (20a)

Im�̂s
BðpÞ ¼ �2
ðs1 �m2

BÞ
ðs2 �m2
BÞh0j�BjBðpÞihBðpÞjSs �ssjBðpÞihBðpÞj ��Bj0i

þ �2
ðs1 �m2
BÞ
ðs2 �m2

EÞh0j�BjBðpÞihBðpÞjSs �ssjEðpÞihEðpÞj ��Bj0i (20b)

for spin-1=2 baryons. The correlation functions for the
spin-3=2 baryons are similarly expressed. In the presence
of an external field we have transitions to excited baryon
states which are denoted by E.

The matrix elements of the currents �B and ��
B� be-

tween the vacuum and the hadron states are defined as

h0j�BjBðp; tÞi ¼ �B�ðp; tÞ; (21a)

h0j��
B� jB�ðp; tÞi ¼ �B���ðp; tÞ; (21b)

respectively, for the octet and the decuplet baryons, where
�B and �B� are the residues. For the spin-3=2 baryons, we
make use of the Rarita-Schwinger spin sum, which is

X
t

��ðp; tÞ ���ðp; tÞ ¼ �
�
g�� � 1

3
���� � p��� � p���

3mB�

� 2p�p�

3m2
B�

�
ðp6 þmB� Þ

� T��ðp6 þmB� Þ; (22)

where the slash denotes p6 ¼ p��
�. Inserting Eq. (21) into

Eq. (20) and using the definitions in Eq. (3), the pole
structures of the correlation functions in Eq. (19) are
obtained as

�2
B

p6 þmB

p2 �m2
B

�q
B

mq

p6 þmB

p2 �m2
B

þ �B�E
p6 þmB

p2 �m2
B

�BE
p6 þmE

p2 �m2
E

(23)

for spin-1=2 baryons and

� �2
B�

T�
ðp6 þmB� Þ
p2 �m2

B�

�q
B�

mq

g
�
T��ðp6 þmB� Þ
p2 �m2

B�

þ �B��E�
T�
ðp6 þmB� Þ
p2 �m2

B�
�BE�g
�

T��ðp6 þmE� Þ
p2 �m2

E�
(24)

for spin-3=2 baryons. Here, the second terms are associated
with the transitions to higher baryon states and �BEð�Þ

denote the transition matrix elements.

We can bring the correlation functions �̂q
B and �̂q

B� into

the form

�̂q
BðpÞ ¼ �q

Bðp2Þp6 þ�q0
Bðp2Þ; (25a)

½�̂q
B� ���ðpÞ ¼ �q

B� ðp2Þg��p6 þ�q0
B� ðp2Þg�� þ � � � ;

(25b)

where the ellipsis represents the Lorentz-Dirac structures
other than g�� and g��p6 . Note that one can obtain the sum
rules at different Lorentz structures. Here, we choose to
work with the sum rules at the structures p6 and g��p6 for
the octet and the decuplet baryons, respectively, where the
latter are completely contributed by the decuplet baryons
with J ¼ 3

2 (see, e.g., Ref. [13] for details).

One then expresses the correlation function for the octet
baryons as a sharp resonance plus a continuum after Borel
transformation:

�BðM2Þ ¼
�
2�2

BmB
�B

m̂
þ CBM

2

�
e�m2

B=M
2

M4

þ 1

�

Z 1

w2
B

Im�B

M4
e�s0=M

2
ds0; (26a)

�s
BðM2Þ ¼

�
2�2

BmB
�s

B

ms

þ Cs
BM

2

�
e�m2

B=M
2

M4

þ 1

�

Z 1

ðws
BÞ2

Im�s
B

M4
e�s0=M

2
ds0: (26b)

Similarly for decuplet baryons, we write

�B� ðM2Þ ¼ �
�
2�2

B�mB�
�B�

mq

þ CB�M2

�
e�m2

B�=M2

M4

þ 1

�

Z 1

w2
B�

Im�B�

M4
e�s0=M

2
ds0; (27a)

�s
B� ðM2Þ ¼ �

�
2�2

B�mB�
�s

B�

ms

þ Cs
B�M2

�
e�m2

B�=M2

M4

þ 1

�

Z 1

ðws
B� Þ2

Im�s
B�

M4
e�s0=M

2
ds0: (27b)

Here wBð�Þ and ws
Bð�Þ denote the continuum thresholds in the

existence of the Sq and Ss fields, respectively. Above, we

have defined�u
Bð�Þ ¼ �d

Bð�Þ � �Bð�Þ . We have included the

single-pole contributions with the factors CBð�Þ and Cs
Bð�Þ ,

which correspond to transition strengths to higher baryon
states [second terms on the RHS of (23) and (24) upon
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Borel transformation]. These transition terms are not prop-
erly suppressed after the Borel transformation and should
be included on the phenomenological side.

The QCD sum rules are obtained by matching the OPE
sides with the hadronic sides and applying the Borel trans-
formation. We give the resulting sum rules in Appendix A,
where we have defined the quark condensate aq ¼
�ð2�Þ2h �qqi, and the quark-gluon–mixed condensate
h �qgc� �Gqi ¼ m2

0h �qqi with the QCD coupling-constant

squared g2c ¼ 4��s. The flavor-symmetry breaking is ac-
counted for by the factor f ¼ h �ssi=h �qqi, and the four-quark
condensate is parametrized as hð �qqÞ2i � �h �qqi2. The con-
tinuum contributions are included via the factors

EBð�Þ
n � 1�

�
1þ xþ . . .þ xn

n!

�
e�x; (28a)

~EBð�Þ
n � 1�

�
1þ ~xþ . . .þ ~xn

n!

�
e�~x; (28b)

with x ¼ w2
Bð�Þ=M

2 and ~x ¼ ðws
Bð�Þ Þ2=M2. In the sum rules,

the third terms on the RHS give the contributions that come
from the responses of the continuum thresholds to the
external field. Here, 
ðwBð�Þ Þ2 and 
ðws

Bð�Þ Þ2 represent the

variations of the continuum threshold, and the coefficients
are calculated by differentiating the continuum parts of the
chiral-even octet and decuplet mass sum rules with respect
to the quark mass. These terms are suppressed as compared
to the single-pole terms; nevertheless, they should be in-
cluded on the phenomenological side if they are large (see
Ref. [16] for a detailed explanation of this term). The
corrections that come from the anomalous dimensions of
various operators are included with the factors L ¼
logðM2=�2

QCDÞ= logð�2=�2
QCDÞ, where � ¼ 500 MeV is

the renormalization scale and �QCD is the QCD scale

parameter. A variation of the renormalization scale as
well as that of the QCD scale parameter has little effect
on the results.

III. ANALYSIS OF THE SUM RULES

We determine the uncertainties in the extracted parame-
ters via the Monte Carlo–based analysis introduced in
Ref. [14]. In this analysis, randomly selected, Gaussianly
distributed sets are generated from the uncertainties in the
QCD input parameters. Here we use aq ¼ 0:52�
0:05 GeV3, b � hg2cG2i ¼ 1:2� 0:6 GeV4, m2

0 ¼ 0:72�
0:08 GeV2, and �QCD ¼ 0:15� 0:04 GeV. The factoriza-
tion violation in the four-quark operator is searched via the
parameter �, where we take � ¼ 2� 1 and 1 	 � 	 4;
here hð �qqÞ2i 
 h �qqi2 is assumed via the cutoff at 1. The
flavor-symmetry breaking parameter and the mass of the
strange quark are taken as f � h�ssi=h �uui ¼ 0:83� 0:05
and ms ¼ 0:11� 0:02 GeV, respectively (for a discussion
on QCD parameters see, e.g., Ref. [14]).

The value of the susceptibility 	 can be calculated by
using the two-point function [17–19]

Tðp2Þ ¼ i
Z

d4xeip�xh0jT ½ �uðxÞuðxÞ þ �dðxÞdðxÞ; �uð0Þuð0Þ
þ �dð0Þdð0Þ�j0i; (29)

via the relation

	h �qqi ¼ 1
2Tð0Þ: (30)

The two-point function in Eq. (29) at p2 ¼ 0 has been
studied in chiral perturbation theory [20] with the result

	 ¼ h �qqi
16�2f4�

�
2

3
�‘1 þ 7

3
�‘2 � 11

6

�
; (31)

where f� ¼ 93 MeV is the pion decay constant and �‘1 and
�‘2 are the low-energy constants appearing in the effective
chiral Lagrangian. A recent analysis of �-� scattering

gives �‘1 ¼ �1:9� 0:2 and �‘2 ¼ 5:25� 0:04 [21]. Using

these values of �‘1 and �‘2 and taking the quark condensate
aq ¼ 0:52� 0:05 GeV3, we find 	 ¼ �10� 1 GeV�1.

The susceptibility 	G is less certain. It is reasonable to
assume 	G � 	; however, we adopt a larger uncertainty
for 	G and take 	G ¼ �10� 3 GeV�1. As we shall see
below, the final results are insensitive to a variation in 	G.
The susceptibilities 	s and 	s

G can be related to 	 and

	G, respectively, in a straightforward way by using the
three-flavor NJL model [7,22]: In the NJL model, the
constituent-quark mass is composed of the current-quark
mass and a dynamical part (MD) that has a purely non-
perturbative origin:

Mi ¼ mi þMD
i ; i ¼ u; d; s;

MD
i ¼ �2gsh �qiqii þM0

i;
(32)

where mi is the current-quark mass, gs is the four-quark
coupling, and M0

i represents a potentially small contribu-
tion that originates from the six-quark coupling. The scalar
charge of the constituent quark can be defined by using the
Feynman-Hellmann theorem as

Qij ¼ hMij �qjqjjMii ¼ @Mi

@mj

¼ 
ij þ Rij; (33)

where we have defined Rij ¼ @MD
i =@mj with the aid of

Eq. (11). In the NJL model, @M0
i=@mi vanishes in the

diagonal case and we obtain Rii ¼ �2gs@h �qiqii=@mi.
Using the values of Rij as given in Eq. (4.13) of Ref. [7],

we find

Ruu

Rdd
¼ 1;

Ruu

Rss

� 	

	sf
¼ 1:14

0:42
’ 2:7; (34)

which implies that 	s < 	. Inserting the central values as
	 ¼ �10 GeV�1 and f ¼ 0:83 yields 	s ’ �4:5 GeV�1.
In our numerical analysis we consider the susceptibility
values 	s ¼ �4� 1 GeV�1 by allowing a generous un-
certainty, and we adopt 	s

G � 	s.
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The nonvanishing values of the nondiagonal susceptibil-
ities ~	, ~	G, ~	

s, and ~	s
G, which the sum rules for �s

N , �
s
�,

and �� solely depend on, lead to some �ss content for the
nucleon and the Delta, and to �uu ( �dd) content for the
Omega. Such anomalous quark content is OZI-rule sup-
pressed; therefore, we expect that these nondiagonal sus-
ceptibilities should be very small, if nonzero. ~	 and ~	s can
be expressed in terms of a correlation function as in
Eq. (29) and estimated in chiral perturbation theory. In
our analysis, we shall treat these susceptibilities as free
parameters and adopt the ranges �2 	 ~	 	 �1 GeV�1

and �2 	 ~	s 	 �1 GeV�1. We also assume ~	 � ~	G

and ~	s � ~	s
G. We would like to note that these ranges

are consistent with those in Ref. [23], which were taken
to reproduce the baryon isospin mass splittings. Moreover,
since the sum rules for �s

N depend solely on the nondiag-
onal susceptibilities, ~	 and ~	G are actually constrained by
the strangeness content of the nucleon, which can be
determined independently by using other approaches. As
we shall see below, these values of the susceptibilities
produce a strangeness content for the nucleon in agreement
with the expectations based on lattice QCD and chiral
perturbation theory.

We use 103 such configurations from which the uncer-
tainty estimates in the extracted parameters are obtained
using a fit of the left-hand side of the sum rules to the RHS.
For m̂, we make use of the Gell-Mann–Oakes–Renner
relation, which is

2m̂h �qqi ¼ �m2
�f

2
�; (35)

wherem� ¼ 138 MeV is the pion mass. We use the chiral-
odd mass sum rules given in Appendix B for normalization
of the sigma-term sum rules, which have been found to be
more reliable than the chiral-even sum rules [14,24]. The
Monte Carlo analyses of the sum rules are performed by
first fitting the mass sum rules (B1)–(B8) to obtain the pole

residues ~�B and ~�B� , and these residue values are used in
the sigma-term sum rules (A1)–(A14) for each correspond-
ing parameter set.

The valid Borel regions are determined so that the
highest-dimensional operator contributes no more than

about 10% to the OPE side, which gives the lower limit
on the valid Borel region and ensures OPE convergence.
The upper limit is determined using a criterion such that
the continuum-plus-continuum-change and plus-excited-
state contributions are less than about 50% of the phe-
nomenological side, which is imposed so as to warrant the
pole dominance (this constraint is slightly released for the
�� sum rule [1]). Note that, while the first criterion is
rather straightforward, one does not initially have complete
control of the second, since the phenomenological parame-
ters are determined from the fit and they are correlated. We
use the following strategy: We first make the fits in a
reasonably selected Borel region, which is then adjusted
by trial and error according to the fit results until the above
criteria are satisfied.
The parameter values that we use for the numerical

analysis of the mass sum rules (B1)–(B8), together with
the fitted values of the overlap amplitudes, are given in
Table I. We also give the continuum contributions for each
sum rule at the lower ends of the valid Borel regions
(continuum contributions amount to 50% of the total phe-
nomenological side at the higher ends of the Borel re-
gions). In order to reduce the uncertainties in the final
results as much as possible, we fix the baryon masses at
their experimental values and the continuum thresholds at
around the first-excited resonance masses as suggested by
the Particle Data Group [25]. It is well known that the
chiral-odd sum rules are less prone to higher-order correc-
tions in �s [26] and they perform better as compared to the
chiral-even sum rules due to cancellations in the contin-
uum; however, the chiral-odd sum rule somewhat over-
estimates the mass of the Delta resonance (see
Refs. [1,24,27] for details). Therefore, we take as input
the value of the Delta mass as suggested by the chiral-odd
sum rule.
It is relevant to point out that the dominant contributions

to the OPE sides of the sum rules (A1)–(A14) come from
the terms that involve the susceptibilities, whereas the
terms that the continuum effects enter with either do not
involve the susceptibility or are proportional to quark
masses, which are suppressed as compared to the leading

TABLE I. The parameter values that we use for the numerical analysis of the mass sum rules
(B1)–(B8), the obtained values of the overlap amplitudes, and the continuum contributions for
each sum rule at the lower ends of the valid Borel regions.

Resonance Region Continuum m (GeV) wBð�Þ (GeV) ~�2
B (GeV6)

N [0.9–1.2] 24% 0.939 1.5 1:64� 0:18
� [0.9–1.4] 13% 1.116 1.7 2:96� 0:30
� [0.8–1.3] 30% 1.189 1.7 2:90� 0:32
� [0.9–1.4] 44% 1.321 1.7 3:76� 0:44
� [1.0–1.2] 30% 1.47 1.7 5:04� 1:04
�� [0.9–1.3] 13% 1.385 1.8 5:36� 0:88
�� [0.9–1.4] 7% 1.533 2.0 8:38� 1:24
� [1.0–1.6] 6% 1.672 2.3 12:70� 1:80
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OPE terms. This also leads to a suppression of the contin-
uum contributions. Since the continuum contributions in
the sum rules (A1)–(A14) are suppressed as compared to
the total phenomenological side, it becomes difficult to
extract information about the continuum thresholds from
the fit. Therefore, we have assumed that the continuum
thresholds are equivalent to those for the mass sum rules.
We also take wBð�Þ � ws

Bð�Þ . The variation of the continuum

thresholds, 
ðwBð�Þ Þ2 and 
ðws
Bð�Þ Þ2, can also be determined

from the fit. However, instead of taking these as free
parameters, we proceed with a generous assumption that
the continuum thresholds change by 25% with the external
field viz. 
ðwBð�Þ Þ2 ¼ wBð�Þ=4 and 
ðws

Bð�Þ Þ2 ¼ ws
Bð�Þ=4. We

observe that such changes minimally contribute to the final
results and therefore can safely be neglected.

To demonstrate how well the sum rules and the fitting
work, we first arrange the sum rules in the subtracted form,

~�Bð�Þ � ~�2
Bð�ÞmBð�Þ

�Bð�Þ

m̂
e
�m2

Bð�Þ=M
2

; (36a)

~�s
Bð�Þ � ~�2

Bð�ÞmBð�Þ
�s

Bð�Þ

ms

e
�m2

Bð�Þ=M
2

; (36b)

where ~�Bð�Þ and ~�s
Bð�Þ represent the OPE-minus-excited

state and minus-continuum-change contributions, and then
we plot the logarithms of both sides. Since the RHS
appears as a straight line with this form, the linearity of
the left-hand side gives an indication of the OPE conver-
gence and the quality of the continuum model. This pro-
cedure is equivalent to searching for a plateau region as a
function of the Borel mass, as in the ‘‘traditional’’ analysis
of the QCDSR. Figures 1–6 show the logarithms of the
subtracted forms in (36) as a function of inverse Borel-

mass squared. The almost linear behavior of the subtracted
forms in these figures implies that the valid Borel regions
selected according to the criterion above match the plateau
regions.
In Table II we present the values of the sigma terms,

�Bð�Þ and �s
Bð�Þ , and the transition strengths, ~CBð�Þ and ~Cs

Bð�Þ ,

for each resonance as obtained from the fits of (A1)–(A14)
with 103 parameter sets. The second column shows the
valid Borel regions that are determined according to the
criterion explained above, and the third column shows the
continuum-plus-continuum-change and plus-excited-state
contributions at the lower ends of the valid Borel regions.
For comparison purposes, we also give the values of the
sigma terms as obtained from a chiral model in Ref. [8] and
from the NJL model [7,22] (the latter are obtained by
multiplying the quark condensates of the baryons given
in Ref. [7] with the central values of the quark masses, m̂ ¼
6 MeV and ms ¼ 110 MeV). We quote two errors for the

FIG. 1. The subtracted form of the sum rules (A1)–(A3). The
solid line is the double-pole contribution and the dashed line is
the OPE-minus-excited states and minus-continuum-change
contributions, where we use the average values of the QCD
and the obtained fit parameters. The error bars at the two ends
represent the uncertainties in the QCD parameters. FIG. 3. Same as Fig. 1 but for the sum rules (A7) and (A10).

FIG. 2 (color online). Same as Fig. 1 but for the sum rules
(A4)–(A6). The error bar at the higher end for ��� is slightly
shifted for clear viewing.
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extracted sigma terms: The second is the error due to
uncertainty in the � parameter and the first is the sum of
errors due to all remaining sources.

The large errors in the final results and the dependence
on QCD parameters can be substantially removed by con-
sidering the ratios of the sigma terms. We extract these
ratios, which are listed in the last column of Table II, by
dividing the corresponding values of the two sigma terms
for each QCD parameter set and by making a statistical
analysis of the final distribution. By comparing the values
of the sigma terms with those of the ratios, we find that the
ratios can be determined rather accurately due to cancella-
tions in the systematic errors. The errors of �50% in the
final results are reduced to a level of 10%–20% in most of
the cases when the ratios are considered. We demonstrate
this fact by studying the correlations between the fit and the
QCD parameters via scatter plots. In Fig. 7, we present the
scatter plots showing the correlations between ��, ��� ,
and 	, 	G, �. In these figures, the data are normalized with

the mean values of the sigma terms (the normalized value
is represented by ~�Bð�Þ) so that the results can be compared
on the same scale. The shaded regions represent the ex-
tracted values of the sigma terms with their errors. The data
with the error bars (in blue) are shown for reference and
give the value of the sigma terms when 	, 	G, or � is
changed by 3 standard deviations. In Fig. 8, similar scatter
plots are given for the correlations between �s

�
, �s

�� , and

	s, 	s
G, �. The Monte Carlo analysis has the advantage that

it covers wide ranges of parameter values. We observe no
correlation with 	G and 	s

G, which implies that the results

are almost independent of 	G and 	s
G. A slight positive

correlation is observed with the absolute value of 	, while
the correlations with 	s are somewhat stronger. The scatter
plots showing the correlations between the sigma terms
and the � parameter imply that the sum rules have the
strongest dependence on �. This dependence is also the
main source of error in the final results of the sigma terms.
We now turn to the ratios of the sigma terms. In Figs. 9

and 10 similar scatter plots are shown for the correlations
between the ratios ��=��, ���=��� , �s

�
=��, �

s
��=���

and the parameters 	, 	s, 	G, 	
s
G, �. It is impressive to

observe that the errors are reduced to a great extent when
the ratios are considered and only a slight dependence
remains on the QCD parameters. Even the strongest de-
pendence on the � parameter is removed. This behavior is
common to all sigma terms, which suggests that more
accurate and reliable results can be obtained by consider-
ing the ratios.

IV. CONCLUSIONS AND DISCUSSION

We have derived the QCDSR for the scalar quark con-
densates of the octet and the decuplet baryons. This, to-
gether with the definitions in Eqs. (3) and (5), leads to a
determination of meson-baryon sigma terms. We have
applied a Monte Carlo-based analysis of the sum rules,
where we have generated randomly selected parameter sets

FIG. 5. Same as Fig. 1 but for the sum rules (A11) and (A13).
The error bar at the higher end for �s

� is slightly shifted for clear

viewing.

FIG. 4. Same as Fig. 1 but for the sum rules (A8) and (A9). FIG. 6. Same as Fig. 1 but for the sum rules (A12) and (A14).
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TABLE II. The values of the sigma terms, �ðsÞ
Bð�Þ , and the transition strengths, ~CðsÞ

Bð�Þ , for each resonance as obtained from a fit of 103

parameter sets. The second error in �ðsÞ
Bð�Þ is due to the uncertainty in the � parameter and the first is the sum of errors due to all

remaining sources. The second column shows the valid Borel regions and the third column shows the continuum-plus-continuum-
change and plus-excited-state contributions at the lower ends of the valid Borel regions. We give the ratios of the sigma terms in the last
column.

Resonance Region Continuumþ excited state ~CB (GeV5) �B (MeV) �B=��

QCDSR Ref. [7] Ref. [8]

� [0.9–1.8] 14% 1.32(1.15) 14(03)(02) 45.4 33.5 1

N [0.9–1.3] 30% 7.45(2.92) 53(09)(15) 56.1 46.0 3.73(67)

� [1.1–1.7] 30% 7.91(2.96) 43(07)(08) 33.3 29.2 3.07(62)

� [0.8–1.2] 28% �3:50ð1:03Þ 7(2)(2) 27.1 12.0 0.44(16)

Resonance Region contþ exc ~CB� (GeV5) �B� (MeV) �B�=���

�� [1.2–1.6] 36% 24.25(6.49) 56(10)(12) 23 � � � 1

� [1.3–1.5] 56% 39.94(12.65) 54(10)(15) 27.6 � � � 0.96(09)

�� [1.2–1.7] 25% 11.80(2.89) 28(04)(06) 17 � � � 0.51(03)

� [1.3–2.1] 21% 2.33(1.41) 6(1)(1) 9 � � � 0.11(02)

Resonance Region contþ exc ~Cs
B (GeV5) �s

B (MeV) �s
B=�

s
�

� [0.9–1.4] 21% 1.95(52) 243(72)(31) 191 � � � 1

N [0.9–1.4] 28% 0.93(47) 161(41)(25) 58 � � � 0.69(19)

� [0.8–1.2] 30% �2:81ð39Þ 129(36)(34) 215 � � � 0.58(25)

� [1.0–1.4] 17% �2:44ð47Þ 272(99)(44) 341 � � � 1.18(16)

Resonance Region contþ exc ~Cs
B� (GeV5) �s

B� (MeV) �s
B�=�s

��
�� [1.2–1.6] 35% 7.24(2.23) 301(080)(056) 138 � � � 1

� [1.2–1.5] 41% 4.25(1.66) 173(053)(034) 29 � � � 0.57(12)

�� [1.2–1.8] 30% 10.38(3.19) 323(091)(048) 276 � � � 1.09(12)

� [1.1–1.8] 16% 11.03(2.91) 380(117)(048) 408 � � � 1.29(22)

FIG. 7 (color online). Scatter plots showing the correlations between ��, ��� , and 	, 	G, �. The data are normalized with the mean
values of the sigma terms (the normalized value is represented by ~�Bð�Þ ). The shaded regions represent the extracted values of the sigma

terms with their errors. The data with the error bars (in blue) are shown for reference and give the value of the sigma terms when 	, 	G,
or � deviates by 3 standard deviations.
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from the uncertainties in the QCD input parameters and
have made 103 fits in order to determine how the initial
errors propagate to the final fit parameters. To determine

the valid Borel windows, we have applied two criteria
which take account of the pole dominance and the OPE
convergence.

FIG. 8 (color online). Same as Fig. 7 but for the correlations between �s
�
, �s

�� , and 	s, 	s
G, �.

FIG. 9 (color online). Same as Fig. 7 but for the correlations between the ratios ��=��, ���=��� , and 	, 	G, �.
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The large errors in the fit parameters originate from
several sources. The factorization violation parameter �
and the susceptibilities are the main sources of uncertainty.
We have determined the susceptibility 	 of the light-quark
sector in a model independent way by using the chiral
perturbation theory results. The susceptibility 	s can be
related to 	 by using the three-flavor NJL model. It is
reasonable to assume 	s

G � 	s and 	G � 	 (with larger

uncertainties). Our analysis shows that the sigma terms
have no considerable dependence on 	G and 	s

G: The

results are consistent with the current ones even for the
vanishing values of these susceptibilities. We consider the
anomalous quark content of the octet and the decuplet
baryons by allowing small but nonzero values for ~	, ~	s,
~	G, and ~	s

G. Note that such an OZI-rule–violating case is

considered as a trial complementary to our analysis. In the
limit of vanishing nondiagonal susceptibilities, the sigma
terms ��, �

s
N, and �s

� vanish as well (consistent with the

OZI rule) and all other sigma terms and their ratios are
mostly unaffected.

The overlap amplitudes as determined from the baryon-
mass sum rules, which we have used to normalize the sum
rules for the sigma terms, introduce considerable uncer-
tainties and can only be improved by a better accuracy of
the mass sum rules as a result of reducing the uncertainties
in the input QCD parameters. Lastly, the transitions to
higher-order states and the unknown change of the contin-
uum thresholds with the external field are other sources of
uncertainty. We have observed that, although a generous

range is allowed for the second, it has a relatively small
impact on the final results and can be safely neglected.
However, the transitions to higher-order states, which are
not properly suppressed after the Borel transformation,
should be included on the phenomenological side as they
give large contributions for most of the cases.
It is impressive to see that the large systematic errors

cancel when we consider the ratios of the sigma terms. We
would like to stress the ratio values given in Table II as our
main results, which can be rather accurately determined
and have a minimal dependence on the QCD parameters.
We have demonstrated this fact by studying the correla-
tions between the input parameters and the sigma terms
together with their ratios. We have found that the ratios
depend very weakly on the � parameter as well as on the
susceptibilities (within a wide range of 3 standard devia-
tions), as a result of which the error bars shrink. Our results
predict the orderings �N 
 �� >�� >�� and �� �
��� >��� >�� for the pion-baryon sigma terms, inde-
pendently of the values of the susceptibilities and �. As for
the strange-quark-mass contributions to the octet and dec-
uplet baryons, we find �s

�
>�s

� >�s
N 
 �s

�
and �s

� 

�s

�� � �s
�� >�s

�.

The sigma term gives a measure of the contribution of
explicit chiral-symmetry breaking in the baryon masses.
The QCD Hamiltonian consists of the chiral-invariant
terms containing the gauge couplings of gluons and the
chiral-noninvariant quark-mass term. Suppose that the
chiral-noninvariant term is weak and therefore treated

FIG. 10 (color online). Same as Fig. 7 but for the correlations between the ratios �s
�
=�s

�, �
s
��=��� , and 	s, 	s

G, �.
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perturbatively. Then the sigma term is nothing but the
contribution of the quark-mass term to the baryon mass.
We find that, among the octet and decuplet hyperons, the
chiral-symmetry breaking gives the largest contributions to
� and �� baryons. A nontrivial outcome is that �� and �s

�

depend mainly on the nondiagonal responses of the quark
condensates (besides some small contributions from direct
couplings). These sigma terms are consistent with zero in
the limit of vanishing nondiagonal susceptibilities. We also
find that �� is considerably smaller than ��, which in-
dicates that the quark-mass term contributes to �-� mass
splitting. One caveat in the treatment of the octet baryons is
that instead of the optimum choices for the interpolating
fields, which are known to perform rather successfully in
the mass determination [28], it is possible to adopt a
generalized definition in terms of arbitrary mixings be-
tween two different local operators. Such an extension of
our analysis with more general interpolating fields is desir-
able, but has the difficulty of treating one extra parameter.
Note that in the case of the decuplet baryons we have a
unique local operator.

Finally, we would like to comment on the anomalous
quark content of the baryons. Our sum rules show that a
nonvanishing response of h �qqi to the external Ssð �ssÞ field
implies OZI-rule–violating �ss content for the nucleon and
the Delta. Similarly, a nondiagonal response of h �ssi to the
external Sð �uuþ �ddÞ field leads to a small but non-
negligible �uu content for the Omega. Therefore, the inter-
esting question of baryon anomalous quark content boils
down to a determination of the susceptibilities ~	, ~	s, ~	G,
and ~	s

G. In the range of the values considered for ~	 and ~	G,

the value we obtain for the strangeness content of the
nucleon as �s

N ¼ 161� 66 MeV is larger than that from
the NJL model but compares favorably to expectations
based on chiral perturbation theory ( ’ 130 MeV accord-
ing to Ref. [29]), and on lattice QCD (183� 8 MeV
according to Ref. [6]). This corresponds to a nucleon
strangeness fraction of y ¼ 0:34� 0:06 as defined in
Eq. (8), in agreement with that from lattice QCD as y ’
0:36 [6]. The ratio of the OZI-rule–violating contributions
to the nucleon and the Delta is of special interest:

�s
N

�s
�

¼ 0:99� 0:19; (37)

which predicts an equivalent strangeness content for the
nucleon and the Delta.
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APPENDIX A: THE QCD SUM RULES FOR THE
MESON-BARYON SIGMATERMS

In this appendix, we give the sum rules for the meson-
baryon sigma terms, which are obtained by matching the
OPE sides with the hadronic sides and applying the Borel
transformation:
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Here M is the Borel mass and we have defined ~�2
Bð�Þ ¼ 32�4�2

Bð�Þ and ~CðsÞ
Bð�Þ ¼ 16�4CðsÞ

Bð�Þ .

APPENDIX B: THE QCD SUM RULES FOR THE BARYON MASSES

We use the following chiral-odd mass sum rules for normalization of the sigma-term sum rules [24,30,31]:
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