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We present a detailed study of charmless two-body B decays into final states involving two vector
mesons (VV) or two axial-vector mesons (AA) or one vector and one axial-vector meson (VA), within the
framework of QCD factorization, where A is either a *P| or ! P, axial-vector meson. The main results are
as follows. (i) In the presence of next-to-leading-order nonfactorizable corrections, effective Wilson
coefficients a are helicity-dependent. For some penguin-dominated modes, the constructive (destructive)
interference in the negative-helicity (longitudinal-helicity) amplitude of the B — V'V decay will render the
former comparable to the latter and push up the transverse polarization. (ii) In QCD factorization, the
transverse polarization fraction can be large for penguin-dominated charmless VV modes by allowing for
sizable penguin-annihilation contributions. (iii) Using the measured K**p~ channel as an input, we
predict the branching ratios and polarization fractions for other B — K*p decays. (iv) The smallness of
the axial-vector decay constant of the 1P1 axial-vector meson can be tested by measuring various b;p
modes to see if [(B® — by p*) < T'(B*— b p~) and I'(B~ — by p°) < T'(B~ — bIp~). (v) For the
penguin-dominated modes a;K* and b, K", it is found that the former are dominated by transverse
polarization amplitudes, whereas the latter are governed by longitudinal polarization states. (vi) The rates
of B— K,(1270)K* and K, (1400)K* are generally very small. The decay modes K; K** and K|" K*~ are
of particular interest as they are the only AV modes which receive contributions solely from weak
annihilation. (vii) For tree-dominated B — AA decays, the aj ay, aj al, a; b{, ayb?, b p~ and bp~
modes have sizable branching ratios, of order (20-40) X 1076, (viii) There are many penguin-dominated
B — AA decays within the reach of B factories: K;(1270)(ay, by), K;(1400)(b;, a7), K;(1270) X

(f,(1285), f,(1420)) and K, (1400)(f,(1420), i, (1170)).
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I. INTRODUCTION

Recently we have studied the charmless two-body B
decays involving an axial-vector meson A and a pseudo-
scalar meson P in the final state [1,2]. There are two
distinct types of axial-vector mesons, namely, *P; and
'P,. We have studied their light-cone distribution ampli-
tudes using the QCD sum rule method. Owing to the G
parity, the chiral-even two-parton light-cone distribution
amplitudes of the 3Pl (lPl) mesons are symmetric (anti-
symmetric) under the exchange of quark and antiquark
momentum fractions in the SU(3) limit. For chiral-odd
light-cone distribution amplitudes, it is the other way
around. In this work, we will generalize our previous study
to charmless VA and AA modes. Moreover, we will use this
chance to reexamine B — V'V decays.

The charmless decays B — VV, VA, AA are expected to
have rich physics as they have three polarization states.
Through polarization studies, these channels can shed light
on the underlying helicity structure of the decay mecha-
nism. Experimentally, B — K*¢ decays have been studied
with full angular analysis and hence can provide informa-
tion on polarization fractions and relative strong phases
among various helicity amplitudes. Historically, it was the
observation of large transverse polarization in B — K*¢
decays that had triggered a burst of theoretical and experi-

1550-7998/2008 /78(9)/094001(37)

094001-1

PACS numbers: 13.25.Hw, 12.38.Bx, 14.40.—n

mental interest in the study of charmless B — V'V decays.
BABAR and Belle have observed that f; ~ 1/2 and f}] ~
f1 ~ 1/4in the K* ¢ channels [3,4], where f;, f and f
are the longitudinal, perpendicular, and parallel polariza-
tion fractions, respectively. The transverse polarization
fraction f7 = f| + f ~ 1/2 is found to be of the same
order magnitude as the longitudinal one f; in the penguin-
dominated K*¢ and K*p modes (except the decay B~ —
K*~ p°). While the naive expectation of fi ~ f1 is borne
out by experiment, the observed large f is in contradiction
to the naive anticipation of a small transverse polarization
of order f; ~ m3,/m%. This has promoted many to explore
the possibility of new physics in penguin-dominated B —
VV decays. If so, the new physics effects should also
manifest themselves in penguin-dominated VA and AA
modes.

The analysis of charmless B — V'V decays within the
framework of QCD factorization (QCDF) [5,6] was first
performed by us [7] followed by many others [8—13]. In
these studies, next-to-leading-order (NLO) corrections to
the helicity-dependent coefficients a such as vertex cor-
rections, penguin contributions and hard spectator scatter-
ing were calculated. However, most of the early results do
not agree with each other due to the incorrect projection on
the polarization states. Recently, Beneke, Rohrer and Yang
[13] have used the correct light-cone projection operators
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and computed complete NLO corrections to a/ and weak
annihilation amplitudes. We will follow their work closely
in the study of B — V'V decays.

The generalization of the analysis of B — V'V decays to
VA and AA modes is highly nontrivial. First of all, while
the 3P1 meson behaves similarly to the vector meson, this
is not the case for the ! P, meson. For the latter, its decay
constant vanishes in the SU(3) limit and its chiral-even
two-parton light-cone distribution amplitude (LCDA) is
antisymmetric under the exchange of quark and antiquark
momentum fractions in the SU(3) limit due to the G parity,
contrary to the symmetric behavior for the 3P, meson.
Second, there are two mixing effects for axial-vector me-
sons: one is the mixing between 3P, and ' P, states, e.g.,
K, and K3, and the other is the mixing among 3P, or ' P,
states themselves. In this work we will derive the longitu-
dinal and transverse projectors for axial-vector mesons and
work out the hard spectator scattering and annihilation
contributions to VA and AA decays.

Since the resolution of the K*¢ polarization anomaly
may call for new physics beyond the standard model, this
issue has received much attention in the past years.
However, there are two crucial points that have been often
overlooked in the literature. First, a reliable estimate of
polarization fractions cannot be achieved unless the decay
rate is correctly reproduced. Second, all of the existing
calculations except [7,8,12,13] assume that the effective
Wilson coefficients a’ are helicity-independent. This leads
to the scaling law: f ~ O(m3,/m%). Calculations based on
naive factorization often predict too small B — K*¢ and
B — K*p rates by a factor of 2-3. Obviously, it does not
make sense at all to compare theory with experiment for
for at this stage as the definition of polarization fractions
depends on the partial rate and hence the prediction can be
easily off by a factor of 2-3. The first task is to have some
mechanism to bring up the rates. While the QCD factori-
zation and perturbative QCD (pQCD) [14] approaches rely
on penguin annihilation, soft-collinear effective theory
invokes charming penguin [15] and the final-state interac-
tion model considers final-state rescattering of intermedi-
ate charm states [16-18]. Once the measured rate is
reproduced, then it becomes sensible to ask what the effect
of this mechanism is on polarization fractions. Next, it is
important to consider NLO corrections to various helicity
coefficients a’, such as vertex corrections, penguin and
hard spectator scattering contributions. It turns out that in
some of the B — V'V decays, e.g., B — K*¢, K**p° NLO
nonfactorizable corrections will render negative-helicity
amplitude comparable to the longitudinal one and hence
will bring up the transverse polarization. Therefore, any
serious solution to the polarization puzzle should take into
account NLO effects on af.

There have been a few studies of charmless B — AV and
B — AA decays in the literature [19-21]. Except for [19]
done in QCD factorization, the analysis in the other two
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references was carried out in the framework of generalized
factorization in which the nonfactorizable effects are de-
scribed by the parameter N, the effective number of
colors. It has been claimed in [21] that most of the B —
AV decays are suppressed and ['(B — AV) <T'(B— AP).
This seems to be in contradiction to the naive anticipation
that AV modes will have larger rates because of the ex-
istence of three polarization states for the vector meson.
One of the main motivations for this work is to examine if
the claim of [21] holds.

The present paper is organized as follows. In Sec. II we
summarize all of the input parameters relevant to the
present work, such as the mixing angles, decay constants,
form factors and light-cone distribution amplitudes for 3P,
and 'P, axial-vector mesons and their Gegenbauer mo-
ments. We then apply QCD factorization in Sec. III to
study B— VV, VA, AA decays and derive the relevant
spectator interaction and annihilation terms. Results and
discussions are presented in Sec. I'V. Section V contains our
conclusions. Flavor operators and the factorizable ampli-
tudes of selective B — AV and AA decays are summarized
in Appendixes A and B, respectively. In Appendix C we
give an explicit evaluation of the annihilation amplitude for
the decay B — VA. Since annihilation and hard spectator
scattering amplitudes involve end-point divergences X",
we give explicit expressions of them for various VV, VA
and AA modes in terms of Xﬁ in Appendixes D and E.

II. INPUT PARAMETERS

In this section we shall briefly discuss and summarize all
of the input parameters relevant to the present work, such
as the mixing angles, decay constants, form factors and
light-cone distribution amplitudes for vector and axial-
vector mesons.

A. Mixing angles

Mixing angles of the axial-vector mesons have been
discussed in [1,22]. Here we recapitulate the main points.
For axial-vector mesons there are two mixing angles of
interest: one is the mixing between 3P, and ' P, states, e.g.,
K, and K, and the other is the mixing among *P, or ' P,
states themselves; for example, the 3P1 states f1(1285) and
f1(1420) have mixing due to SU(3) breaking effects.

The nonstrange axial-vector mesons, for example, the
neutral a;(1260) and b;(1235), cannot have mixing be-
cause of the opposite C parities. In the isospin limit,
charged a,(1260) and b(1235) also cannot have mixing
because of the opposite G parities. On the contrary, the
strange partners of a;(1260) and b(1235), namely, K,
and K, respectively, are not mass eigenstates, and they
are mixed together due to the strange and nonstrange light
quark mass difference. We write

K1(1270) = KIA Sil’leKl + KIB COS&KI’

2.1)
K1(14OO) = KIA COSHK] - KIB SinﬁKl.
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Various experimental information yields 6, =~ *37° and
*+58° (see, e.g., [23]). The sign of O is intimately related
to the relative phase of the K, and K, states. We choose
the phase convention such that the decay constants of K,
and K, are of the same sign, while the B — K;, and B —
K, 5 form factors are opposite in sign. In this convention for
K, and K, the mixing angle 6 is favored to be negative
as implied by the experimental measurement of the ratio of
K,y production in B decays [1,24].

Just like the 1 — 7’ mixing in the pseudoscalar sector,
the 1P, states h;(1170) and h,(1380) may be mixed in

terms of the pure octet hg and singlet /;:
|h,(1170)) = |h)cosBip + |hg)sinbip,
1 1
2.2)
|h,(1380)) = _|h1>sin0]P1 + |h8)cos01P1,

and likewise the 1P, states f(1285) and f,(1420) have
mixing via

|£1(1285)) = |f1)cosl93,,I + |f8>sin03Pl,

|f1(1420)) = —|f1>sint9apl + |fg>cos03P1.

Using the Gell-Mann-Okubo mass formula [25,26], we
found that the mixing angles 6: p, and 6sp depend on the

angle 0k, and are given by [1]
Oip =25.2° Osp =27.9°
b1p =0° 05p =53.2°,

(2.3)

for O, = —37°,

for 6y = —58°. (2.4)

B. Decay constants and form factors

Decay constants of vector and axial-vector mesons are
defined as
V(p, Ogryuq:l0) = —ifymye,,
<3(1)P1(P, €)|5127#YSQ1 |0) = if3pl('Pl)m3P](1P|)fZ- (2.5)

Transverse decay constants are defined via the tensor cur-
rent by

COP\(p, €120, v50:110) = f), (10" — €114),

(V(p, 1320 ,,,4:10) = —fi(€s,p” — €,p*). (2.6)
|

i 2 .
<A(P, A)lA,u,lB(pB» = lfgﬂmﬁf(f)ngﬁABA(qz),
mp = My

(Al IV, B(ps) =~ — m) " VPG = (- i)y + )y

2

(V(p, VIV, IB(pp)) = R

(V(p, VIALIB(pp)) = (my + my) el ABY (¢?) — (€M* - pp)(ps + p),,

Suvaﬁ6?f)p§pBVBV(q2):
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The decay constants fi 3 of the 'P, nonstrange neutral
mesons 59(1235), h;(1170), and £;(1380) vanish due to
charge conjugation invariance. Likewise, the decay con-
stant f;, of the charged b; vanishes owing to its even G
parity valid in the isospin limit. In general, the decay
constants fi 3 and f3l”| are zero in the SU(3) limit. As
discussed in [1], they are related to fﬁ,l and fspl, respec-

tively, via

1P 1P
fieo, = fip (Wag " (),

Fh W = fpay " ()

(2.7)

K 1,31) ],3P
where ag " are the zeroth Gegenbauer moments of @ '
to be defined later. Since we will assume isospin symmetry
in practical calculations, this means that f1p = 0 for the b,

and /&; mesons and f%PI = 0 for a; and f; mesons. Note
that since fi 3 and f;J}, are G-parity-violating quantities,
1
their signs have to be flipped from particle to antiparticle
due to the G parity, for example, fx- = —fx_. In the
present work, the G-parity-violating parameters, e.g., aX,
agvK]A’ a(J):)ZK]A’ af-’KlB and ag:flt?
containing a strange quark.
For the decay constants f?1(1285) and f?l(l 40) fOr 1°P,

states defined by

, are considered for mesons

013y, v5qlf1(1285)(P, 1)) = =i, 12554 (1255, €0
0lgy ,ysqlf1(1420)(P, A)) = _imf1(1420)f;](1420)6%)’
(2.8)
and the tensor decay constants for 1' P, states defined by
010 gl (L1T0)(P, V) = if it 0 €uvaplyy PP,
(010 .,qlh (1380)(P, V) = if i s €uvap€lyy PP,
(2.9)

the reader is referred to [1,22] for details.
Form factors for the B — A and B — V transitions read
as

Vita) _, €V pp

A 2
— My q

M TVEA(¢?) — V£A<q2>]},
B

ASV(g?)

APUT) o € P a8y (g2) — ABY ()
mB + mV q2 3 0

(2.10)
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where ¢ = pg — p, VEA(0) = VE4(0) and

mgp —m mg +m
VIMg?) = =52 VPAg?) — =5 VI,
ZmA 2mA
mg + m mp —m
ASV(g?) = =5 —— APV (¢?) — = —— A3V (¢P).
2mv 2mV
2.11)

Form factors for B — a,(1260), b,(1235), K4, and K,
transitions have been calculated in the relativistic covariant
light-front quark model (LFQM) (Table I) [27], the light-
cone sum rule (LCSR) method (Table II) [28], and the
pQCD approach [29]. Various B — A form factors also
can be obtained in the Isgur-Scora-Grinstein-Wise
(ISGW) model [30,31] based on the nonrelativistic con-
stituent quark picture. However, as pointed out in [1], the
predicted form factor Vg “(0) = 1.0 in the ISGW2 model
[31] is too big and will lead to too large rates for B® —
ai 7 and the wrong pattern B(B® — af 7~) > B(B’ —
aym"), in contradiction to the experimental result
BB’ — af 7)) ~3B(B° — a; 7"). This may imply
that relativistic effects in heavy-to-light transitions at
maximum recoil that have been neglected in the ISGW
model should be taken into account in order to get realistic

form factors.
|

1 ) B €
VP, g1 ()7, 42(0)|0) = —ifymy fo duelwm'ﬂwx){pﬂ

L
_Jv mg, T my,

(V(P, VIq1(»)y,,v59:(x)|0) = ifv<1 -

fv my

1 ) _ N
(V(P, /\)lc_h(y)aw,qz(x)m) _ _f‘J/_/O duel(upw”m){(sl(z)l?y

#(A) #(A)

1 m,
+ E(SJ_M Ly T &, ZM)E}B(M)},

— &' Wp )y (u) +
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It should be stressed that in the convention of the present
work and LCSR, the decay constants of ' P; and *P, axial-

vector mesons are of the same sign, while form factors

1
v

; and V,»B —P have opposite signs. The sign conven-
tion is the other way around in the LFQM and pQCD
calculations. Therefore, as explained in [1], we put addi-
tional minus signs to the B — ' P, form factors in Table 1.

The momentum dependence of the form factors calcu-
lated in the light-front quark model and the LCSR ap-

proach is parametrized in the three-parameter form:

F(0)
1 —aq?/m% + bg*/m3

F(?) = (2.12)

In the LFQM we use a different parametrization for the
form factor V,(g?) in some transitions [27]

F(0)
(1 = ¢*/mp)1 — ag®/my + bg*/my]

For B — p, K*, w form factors, we shall use the results
in [32] obtained from light-cone sum rules.

F(q?) =

(2.13)

C. Light-cone distribution amplitudes

The LCDAs relevant for the present study are defined as
[22,33]

() ey

Z ) (v 1 Z
@) + 100 32 S e} @19

Pz

)81

1 (2.15)

1
®U PO i(upy+iipx
)mvsw,pge(/\)p Z /Odue

2 _#(A
my €

'z (1)
W(pﬂzv - pvzp,)h” (u)

(2.16)

TABLE I. Form factors for B — ay, b, K4, K| transitions obtained in the covariant light-front model [27] are fitted to the 3-
parameter form Eq. (2.12) except for the form factor V, denoted by * for which the fit formula Eq. (2.13) is used.

F F(0) a b F F(0) a b
ABa 0.25 1.51 0.64 ABb: —0.10 1.92 1.62
Ve 0.13 1.71 1.23 v -0.39 1.41 0.66
v 037 0.29 0.14 vih 0.18 1.03 0.32
v 0.18 1.14 0.49 vah 0.03* 2.13* 2.39*
ABKu 0.26 1.47 0.59 ABKis —0.11 1.88 1.53
vk 0.14 1.62 1.14 vk —0.41 1.40 0.64
vk 039 021 0.16 vk -0.19 0.96 0.30
VK 0.17 1.02 0.45 vk 0.05* 1.78* 2.12*
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TABLE II. Same as Table I but in the light-cone sum rule model [28].
F F(0) a b F F(0) a b
ABa 0.30 + 0.05 1.64 0.986 ABb: —0.16 + 0.03 1.69 0910
v 0.30 = 0.05 1.77 0.926 v —0.39 + 0.07 1.22 0.426
v 0.60 + 0.11 0.645 0.250 v —-0.32 £ 0.06 0.748 0.063
v 0.26 + 0.05 1.48 1.00 v —0.06 + 0.01 0.539 1.76
ABKis 0.27 = 0.05 1.60 0.974 ABKs —0.2210.0¢ 1.72 0.912
v 0.22 + 0.04 2.40 1.78 veke —0.45%0.12 1.34 0.690
vk 0.56 = 0.11 0.635 0211 vk —0.48013 0.729 0.074
vk 0.25 = 0.05 1.51 1.18 vk —-0.10*3%3 0919 0.855
APBfi 0.18 + 0.03 1.63 0.900 ABM —0.10 + 0.02 1.54 0.848
veh 0.18 = 0.03 1.81 0.880 vl —0.24 = 0.04 1.16 0.294
vih 0.37 = 0.07 0.640 0.153 Vi —-0.21 = 0.04 0.612 0.078
veh 0.16 = 0.03 1.47 0.956 v —0.04 = 0.01 0.500 1.63
ABfs 0.13 + 0.02 1.64 0.919 APBhs —0.08 + 0.02 1.56 0.827
vels 0.12 + 0.02 1.84 0.749 v —0.18 = 0.03 1.22 0.609
%k 0.26 + 0.05 0.644 0.209 vPhs —0.18 + 0.03 0.623 0.094
VA 0.11 *0.02 1.49 1.09 1% —0.03 * 0.01 0.529 1.53
e
(V(P, M g1 (y)g2(x0)]0) = _f\J/‘<1 - ]]:—K W) 2 (e‘“)z)f dueipy*apx) 1~ ” (u) 2.17)
Vv \%4

for the vector meson, and

o i
(AP, VIg1(»)Y . ¥592(0)[0) = l'fAmA[O duel(”p’vﬂm){l’n

(AP, M171 ()7 ,.q2(x)10) =

] i 7 ES
AP, D107, 750:0000 = £ [ auerr o)1,

#(A) *#(A)

1 m>
+ 5( lu iy T €4, Z,u) 2h3(u)};

(AP, V|G (0)y5q2(x)10) = fEm3 (e Wz) [ dueinyripy "

for the axial-vector meson, where z =y — x with z> = 0
and we have introduced the lightlike vector p, = P
mvm)z# /(2Pz) with the meson momengzl)m (P;) —(t) v
Here ®) and @ are twist-2 LCDAs, g , hy’, and
h'P twist-3 ones, and g3 and /i3 twist-4. In the deﬁmtlons of
LCDAs, the longitudinal and transverse projections of
polarization vectors e*ﬂu) along the z direction for the
(axial-)vector meson are given by [33]

2
gW =€ Wz _ "M z & W — 2 _ =)
e = "z \Pr 7 2p ) Lu = T
(2.22)

One should distinguish the above projectors from the ex-

€

() W

CI)”(u) + sL(i‘L)g(f)(u) —ZM o7 mAg3(u)} (2.18)

(v)
1
_ifAmAS,Lypgfa')ppZU] dueiupytip) 2L 7 gL (u) (2.19)
0
+) mje Mz )
- SJ_I/ p,U«)CDJ-(u) + (p—Z)Z(p'uZV - pvzp,)h” (u)
(2.20)
(P)(u)
(2.21)

actly longitudinal and transverse polarization vectors of the
(axial-)vector meson, which are independent of the coor-
dinate variable z = y — x, defined as

2 2
O — L[(l _ mV<A)>n,_L _ M nu]
2 2 P

My(a) 4F 4F

#(A) #(A)
eWn eWn_
ej_u)” = (e*(")“ i o — ni)(s)\,tl,

2
(2.23)

where we have defined two lightlike vectors n’ with n# =
(1,0,0,—1) and n% =(1,0,0,1) and assumed that the
meson moves along the n# direction.
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In the QCDF calculation, the LCDAs of the vector meson appear in the following way [34]:

. (a)
_ l 1 (upy+ii * 8 ( )
(V(P, VN§1a(0)q25(0)I0) = = 2 | due™ P> 291 fymy W) + 2 ppeel PPy ys SR
4 Jo » 4
" m%(e"Nz) ) y ( )
+ (A0 L0 — i pre ) — i (e o )+ ot -y
(2.24)
Here, all of the components of the parton should be taken f A fvmy [ px
into account in the calculation before the collinear approxi- M [ = V Ef) W Dy () — i 4 { J.( ‘g (f)(”)
mation is applied, so that one can assign the momenta P
. K f dv(®y(v) — gV e
ki = uEn* + k' +k—ln” 0 " kLy
! - L 4uE™™ /a)
; (2.25) “, - 81 (W)
b = _u L T igups Y€ N ys| ng
ky = ukn* — k| + ﬁmr 8

to the quark and antiquark, respectively, in an energetic
light final-state meson with the momentum P* and mass
m, satisfying the relation P* = En* + m’n" /(4E) =
En*. To obtain the light-cone projection operator of the
meson in the momentum space, we apply the following
substitution in the calculation:

.0 (' 9 d
7t — —i ~—jl——+ ,

(2.26)

where terms of order k2l have been omitted. Moreover, to
perform the calculation in the momentum space, we need
to express Eq. (2.24) in terms of z-independent variables P
and €W instead of p and €Y. Consequently, the light-
cone projection operator of the meson in the momentum
space, including twist-3 two-parton distribution ampli-
tudes, reads

Msy, = Mso + Msy1, (2.27)

where M, and M, are the longitudinal and transverse
projectors, respectively.

For the vector meson, the longitudinal projector reads
[34]

MY — —lfl my (€ (,\) ny) fVmV mV(E(,\)n+)

I 1 2E
i .
X {_EU-MVH n+h(’)(u) — lEfO dv(® | (v)

ho®y(u) — i

- hffs)(“)}

_ 3,
h (v)o ,,n* T 7

(%]

and the transverse projector has the form

k=up

(2.28)

g(f;(u) akalg]} » +@[<%)2], (2.29)

where k; is the transverse momentum of the ¢, quark in
the vector meson. For the axial-vector meson, the longitu-
dinal projector is given by

MA o —lfl mA(EEk)l)nﬁ») fA my mA(e(/\)n+)

I 4 2 2E
i . u
X {—EUW'yw&nihh’)(u) — ZE/ dv(® | (v)

hoys®Py(u) +i

— 1 (V)7 ysnk

-2}

and the transverse projector given by

o, /(”)(u)}
ok, T2

k=up

(2.30)

My = L EEO Y s, ) — LA 0 0
1 4 1 r-ys®alu l4 1 Y58, u

u * a
— Ejo dv(¢>||(v) - gJ_)(U))ﬂ 756J_(,:\L) ak

/(v)
*(A),, (M)
+ 18#,,p0'y”e [ 8

gi”;(u) akam]} » +@[(%>2], 2.31)

In the present study, we choose the coordinate systems in
the Jackson convention; that is, in the B rest frame, one of
the vector or axial-vector mesons is moving along the z
axis of the coordinate system and the other along the —z
axis, while the x axes of both daughter particles are parallel
[35]:
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0
"V = (p,, 0,0, E;)/my,
0
Gg( ) = (pc’ 0) 0) _Ez)/mz,

- 1
M = 50.F1.-0.0) (2.32)
pen _ Lo
=—(0, %1, +40),
2 \/E( )
where p, is the center mass momentum of the final-state

meson and eT(il) . —6+1 +1. In the large energy

limit, if the A meson moves along the n* direction, we will
|

E;(il) _

PHYSICAL REVIEW D 78, 094001 (2008)

have e:()‘) “ny =2E,/my6,, and e:u) -n_ = 0. Note

that if the coordinate systems are in the Jacob-Wick con-
vention where the y axes of both decay particles are
parallel, the transverse polarization vectors of the second
meson will become €5(+1)= (0, =1, —;,0)/+/2 and
ef(il) : E;(il) = 6. +. In general, the QCDF amplitudes
can be reduced to the form of [} dutr(M?...).

To obtain the projector on the transverse polarization
states in the helicity basis, one can insert €] = €% to
obtain

v f v W) ;g Svmy [ e ) 2w\ | W — g/i“)(“)
MY =~ LB ) — PN = (o = B 4 200 1y (s = )
(a)
_ _ u () _ 8 (”)) % d
B (1 =y [ do(@y0) — g0 = S e, -
(v) g(f)( ) % d my 2
— ol (4 [ ao@yw) - o) = L L o ()] (233)
4 akJ.V kJ_:() E
and
A fA (A) A fAmA #(A) (a) g/iv)(u) #(A) a) _ g/iv)(u)
MAG) = T2 EEH s ) — T 00— (o0 = S + A0 ) (0 3 )
B =y [ avl@y0) — ) T e,
4 aky,
u () ( )(u) d my\?
_EA (1 + y5)< f dv(@(v) — g0w) = & )6” } +(9[<—) ] (2.34)
0 akJ.V kJ_:O E
|
Applying equations of motion to LCDAs, one can obtain @ cI)” (v) 1Py (v)
the following Wandzura-Wilczek relations in which twist- L) = [ ,[0 7 dv + fu v dv] T
3 LCDAs are related to the twist-2 ones [33] via (2.39)
D (v) j‘l Dy (v) ]
() it A4 I
dv + dv |+, u® 1
() I:,[o v u U v g(f)(u)=2|:ﬁ[ ﬁdv-ﬁ-u'/‘ Mdl)i|+-~~,
(2.35) o v
(2.40)
Dy (v) 1D (v)
(a) |I I ud | (v 1d | (v)
() = [ ﬁ dv +u f . dv] e O = Qu - 1)[] iv( ) j s du]
(2.36) .. (2.41)
ud | (v 1P, (v
W = u= o [P gy - [1 2L, ] =2 [ 2 gy iy [ ]
u U Il 0 b Y
4o, (2.37) (2.42)
for axial-vector mesons, where the ellipses denote addi-
h(s) ) l(v) 1d | (v) dol+ ... tional contributions from three-particle distribution ampli-
(u) = [0 u _[u v v ’ tudes containing gluons and terms proportional to light
(2.38) quark masses, which we do not consider here and below.

for vector mesons, and

Equations (2.35), (2.36), (2.37), (2.38), (2.39), (2.40),
(2.41), and (2.42) further give us
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¢(w)

PHYSICAL REVIEW D 78, 094001 (2008)

el = flq)#(”)du = 0, (v),
I(a) v
Lf’) —¢Vw) = - [0 —‘D”ﬁ(“) du=—d_(v)
v 2.43
1 (w) = —2”) CI)iT(“)du - fl q)iu(”) du] = 20, (v), 249
]O" d(® () — P () = vﬁl:/OUCDJ'T(u)du - fl q’lT(”)du] — oD, (),
[ dutwyo = gy = 3o [* P8 - [P 0] =00 ) - v )
for vector mesons, and
W) ® ) vd
gl4(v) T W) = [UI ||u(u) du =D, (), gl4(v) — g9w) = _[0 ||ﬁ(u) du=—d_(v)
1(p) _ v (I)J_(M) _ 1 (I)J_(u) = _
hy (v) 2[/; - du [v ., du] 20 ,(v), 0.

1

[ du@ ) = 1) = vﬁl:fovq)J‘T(u)du -[
v @y ()

)
0
for axial-vector mesons.

After applying the Wandzura-Wilczek relations, the
transverse helicity projectors (2.33) and (2.34) can be
simplified to

1
2

u

jo " du(@y(u) — g9 (w) =

1
e = L EEOp Y - L e, w
d
X [7”(1 Fys) + uEA_(1 5 ys) T ]
) V(1 + ve) — & N
+ D0 (1 = y5) — ABA-(1 = 75)
d my\2
gl (F) ] @43
and
1
WA = i EED sty — L D0

9
ok,

X [7”(1 Fys) + uEfA_(1 5 ys)

]75

+ D0 (1 = y5) — aBA-(1 = 7)

Ll (7))

X
dky,

From Egs. (2.28), (2.29), (2.30), (2.31), (2.35), (2.36),
(2.37), (2.38), (2.39), (2.40), (2.41), (242), (2.43), and
(2.44), we see that @, and ®_ project onto transversely
polarized vector or axial-vector mesons in which quark and

(2.46)

du—v/

®, ) du] =vo®d,(v),
u

1Dy (u) _ 1 _
—du] = E(v('I)_(U) vd_ (v)),

u
f

antiquark flips helicity, respectively, while ®,,) projects
onto longitudinally polarized vector (axial-vector) mesons
in which either the quark or the antiquark flips helicity.

We next specify the LCDAs for vector and axial-vector
mesons. The general expressions of LCDAs are

Dy ) = 6x(1 =01+ 3 al(@ 2 Cx - 1)]

n=1

(2.47)

and

[e e}

2 =1+ Y awV(w)P,(2x — 1)
n=1

D0 =3

|

(2.48)

for the vector meson, where P, (x) are the Legendre poly-
nomials. The normalization of LCDAs is

1 1
/ dxdy(x) =1, f dx®,(x) = 0. (2.49)
0 0

The explicit expressions of the LCDAs of axial-vector
mesons have been discussed in detail in [1,22]. We use
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(I)]J_P‘(u) = 6uﬁ{1 + 3a1l'lP‘ Qu—1)

+ar %[5(2u RN 1]},

IL'p |I P

(I);lp‘(u) = 6uﬁ{a0' '+3 "Qu—1)

1P - 1]},

ta ||P [5(2

. () = 3[(2u "

+ 3P u- 1] (2.50)
n=1
for ' P, mesons, and
CI)Tlp‘(u) = 6uu{1 + 3a|1| P‘(2u -1
3
+ad "5 0u— 17 - 1]},
(I)Bfl (u) = 6uﬁ{aé”3pl +3 f'sP‘(2u - 1)
L13p 3 5
+ay " SI5u - 12 - 111,
O (1) = 3[a§’3”1 Qu—1)
- 1P,
+ 3 P u- 1] @s1)
n=1
for 3P, mesons. The normalization conditions are
1 1 1 1 3
/ dxq)”P‘ (x) = ag’ P‘, f dx(I)”P‘(x) =1,
0 0
1 P 1 13P,
j dx® | '(x) =1, f dxq) ‘(x) =a, ', (252)
0 0

1 1 1
f dx@aP‘ (x) = f dxq)}aP‘(x) =0.
0 0

3p
and @ ' are
and fspl, respec-

It should be stressed that the LCDAs (I)lllp‘
defined with the decay constants f ILP
1

tively, even though their corresponding normalizations
are flPI and f}P . As stressed in [1], if we employ the
1

1
decay constants f 3 and ff}, to define the LCDAs (D“P‘
1

and CDT‘, they will have the form

(Dlllpl (w) = fip 6uu{1 + pip Za” P C?/Z(Zu - 1)},

3 3
CI)lPI(u) = f3l1,16u12{1 + pap Zal-l’ P C?/z(Zu - 1)},
i=1

(2.53)

PHYSICAL REVIEW D 78, 094001 (2008)

IL'p, 1°P, .
where wip =1/ay ' and pip =1/ay" "' which be-
come infinite in the SU(3) limit. Therefore, it is most

1
convenient to use Eq. (2.50) for the LCDA CI)”P‘ and

(2.51) for the LCDA <I>T|P‘ which amount to treating the

decay constant of ' P, as f 1lP and the tensor decay constant
1
of 3P, as fsp

is equal to fH},l (fapl)
For the B meson, we use the light-cone projector [34]

Mga _ lf[i‘-mB{l '; ﬁ[¢>3(w)ﬂ+ (I)g(w)

Jd
X (ri_ —LyY W)]Vs} A
1 o

The integral of the B meson wave function is parametrized

as [5]
1 dp
PB(p)=—
ﬂ)l p (p) = )‘B

where 1 — p is the momentum fraction carried by the light
spectator quark in the B meson.

- Of course, this does not mean that flpl (f# )
1

(2.54)

(2.55)

D. A summary of input quantities

It is useful to summarize all of the input quantities we
have used in this work.

For the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements, we use the Wolfenstein parameters A = 0.807 =
0.018, A = 0.2265 = 0.0008, p = 0.141*59% and 7 =
0.343 = 0.016 [36]. The corresponding three unitarity an-
gles are @ = (90.7%13)°, B = (21.7 £0.017)° and y =
(67.672%)°.

For the running quark masses we shall use [25,37]

my,(my,) = 4.2 GeV,
m(1 GeV) = 6.34 GeV,
m (2.1 GeV) = 1.06 GeV,
my(2.1 GeV) = 95 MeV,
my(2.1 GeV) = 5.0 MeV,

m, (2.1 GeV) = 4.94 GeV,
m.(m;) = 0.91 GeV,
m. (1 GeV) = 1.32 GeV,

my(1 GeV) = 118 MeV,

m, (2.1 GeV) = 2.2 MeV.
(2.56)

Among the quarks, the strange quark gives the major
theoretical uncertainty to the decay amplitude. Hence, we
will only consider the uncertainty in the strange quark mass
given by my (2.1 GeV) = 95 = 20 MeV. Notice that for
the one-loop penguin contribution, the relevant quark
mass is the pole mass rather than the current one [38].
Since the penguin loop correction is governed by the ratio
of the pole masses squared s; = (m?(’le/ m‘;(’le)2 [see
Egs. (3.18) and (3.20) below] and since the pole mass is
meaningful only for heavy quarks, we only need to con-
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TABLE III.

Gegenbauer moments of @ and @ for 13P, and 1' P, mesons, respectively, where aol

PHYSICAL REVIEW D 78, 094001 (2008)

K
" and a(l)l‘ '# are updated from

the B — K,y analysis [24], and a” Ku, l Ku, " iz and al " are then obtained from Eq. (141) in [22]. The scale dependence of
Gegenbauer moments is referred to Eq (2 57)
ll.a, (1260) e e LK 4 ILK
)% a, a’ a’s a, a
1 GeV —0.02 = 0.02 —0.04 £0.03 —0.07 = 0.04 —0.05 = 0.03 —0.30936
2.2 GeV —0.01 = 0.01 —0.03 = 0.02 —0.05 = 0.03 —0.04 + 0.02 —0.24+03)
3 3
P J. a,(1260) a,llf, " alL,ng‘ J. Kia K azi,KM
1 GeV —1 04 = 034 —1.06 = 0.36 —1.11 =031 -1 08 *0.48 0.26109% 0.02 = 0.21
22 GeV —0.81 = 0.26 —0.82 = 0.28 —0.86 = 0.24 —0.84 £0.37 0.247593 0.01 £0.15
“ all?1(1239) a n a n al ks all K s
1 GeV —1.95 =035 —200+035 —195+o35 195 % 045 —0.15+0.15 oo9+g{g
2.2 GeV —1.56 +0.28 —1.60 + 0.28 —1.56 + 0.28 —1.56 = 0.36 —0.15+0.15 0.0673:13
1 1

“ J. b,(1235) ath.P‘ azL,th‘ J. Kz f' Kip
1 GeV 003 +0.19 0.18 = 0.22 0.14 = 0.22 —0. 02+022 0.3075%9
2.2 GeV 0.02 = 0.14 0.14 £ 0.17 0.11 £0.17 -0.02 +0.17 0.25759
sider the ratio of ¢ and b quark pole masses given by s. = fx,270) = —184 = 11 MeV,
(0.3)%.

The strong coupling constants employed in the present Fra400) = 177 =12 MeV,  for 0, = —37°, (2.60)
work are Fi (270 = —234 = 15 MeV,

K. (14 =100 %= 12 MeV, for 01( = —58°.
1(1400) 1

a,(4.2 GeV) = 0.221,
a,(1.45 GeV) = 0.359,

a,(2.1 GeV) = 0.293,

a,(1 GeV) = 0.495.
2.57)

For longitudinal and transverse decay constants of the
vector mesons, we use (in units of MeV)

f, =216 +3, fo =187 %5, frr =220+ 5,
fo=215%5  fL=165+9  fL=151%9,
fi =185%10, f3=186%09, (2.58)

where the values of f and fir (1 GeV) are taken from [39].
The decay constants fsp for ay, fy, fs' and fllP (1 GeV)
1 1

for by, hy, and hg obtained from QCD sum rule methods
are listed in [22]. For the decay constants of K4 and K,
we use

fk,, =250 = 13 MeV,

IK.s (2.59)
leB =q leB =

—28 MeV,

= 190 = 10 MeV [22] and the value of
ag’K”’ from Table III have been made. Therefore,

where uses of f 1%13

"Recall that fs and f; are SU(3)-octet and -singlet states.

The Gegenbauer moments a(l) ¥ and allu‘)’A have been

studied using the QCD sum rule method. Here we employ
the most recent updated values evaluated at u = 1 GeV
[40]:

=0.03 = 0.02, a® =0.04 = 0.03,

K 1

aj 1

a¥ =011=0.09,  aF* =0.10=0.08,
| (2.61)

ah® =0.15 = 0.07, 70 =014 *+ 0.06,

a? =0.18 £0.08,  ay® =0.14 + 0.07.

=0 and aiV' =0 for V=p, ®, ¢. The
lI(L).A

Note that ay

Gegenbauer moments a; for axial-vector mesons are
summarized in Table III. This table is taken from [22] with

LK K
some updates on the Gegenbauer moments a; ", g ",

3p
alll Kia a;‘ Kia ag Kis alJ' s and all’f‘ . As stressed
before the values of the G parity-violating Gegenbauer
moments (e.g., a{(, alllK'A, a(')LZK"‘, alL’K'B and a” K'B) are
displayed for the mesons containing a strange quark. Their
signs are flipped for the mesons containing a § quark. In
general, @ (1 — x) = Pp(x).

For the B meson, we shall use Ag(l GeV) =
(250 = 100) MeV for its wave function and fz = 210 =
20 MeV for its decay constant.

The Wilson coefficients c;(u) at various scales u = 4.4,
2.1, 1.45 and 1 GeV are taken from [41]. For the renormal-
ization scale of the decay amplitude, we choose u =

my,(m,,). However, as will be discussed below, the hard

J.,al
a
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spectator and annihilation contributions will be evaluated

at the hard-collinear scale w;, =+ uA,, with A, =
500 MeV.

III. B— VA, AA DECAYS IN QCD
FACTORIZATION

Within the framework of QCD factorization [5], the
effective Hamiltonian matrix elements are written in the
form

_ G
(M M| H | B) = g > M M| T 40

\/_p=u,c

+ T 3"?|B), 3.1)

where A, = v,,,,v;;q, with ¢ = d, s, and the superscript &
denotes the helicity of the final-state meson. T 5 "7 de-
scribes contributions from naive factorization, vertex cor-

rections, penguin contractions and spectator scattering
expressed in terms of the flavor operators a? " while T’ B
contains annihilation topology amplitudes characterized
by the annihilation operators b"".

The flavor operators a? " are basically the Wilson coef-
ficients in conjunction with short-distance nonfactorizable
corrections such as vertex corrections and hard spectator

|

PHYSICAL REVIEW D 78, 094001 (2008)

interactions. In general, they have the expressions [5,6]

. 1
) = (e + ";V—l)zvﬁ(Mz) [ wreiax
c 0
Ci+1 CFas I 4-’7T2 h ]
ViM,) + HY (MM
S| vion) + ST HOn )
+ PP (M), (3.2)

where i = 1, ..., 10, the upper (lower) signs apply when i
is odd (even), ¢; are the Wilson coefficients, Cr = (N2 —
1)/(2N.), with N, = 3, M, is the emitted meson and M,
shares the same spectator quark with the B meson. The
quantities V/(M,) account for vertex corrections,
H!(MM,) for hard spectator interactions with a hard
gluon exchange between the emitted meson and the spec-
tator quark of the B meson and P;(M,) for penguin con-
tractions. The LCDA ®M" in the first term of Eq. (3.2) is
P\ for i = 0 and @Y for h = *. The expression of the

quantities N"(M,) reads

0, i=628

1, otherwise. 3.3)

N?(Mz) ={

Vertex corrections.—The vertex corrections are given by

Jbdx®(0)[121n% — 18 + g(x)] (i = 1-4,9,10),
VIM,) = { [hdx®P()[~121n% + 6 — g(1 = x)] (i =5,7), 3.4
J3dx®,, ()[—6 + h(x)] (i=6,28),
I dxcl>’52(x)[121n% — 18 + g;(x)] (i = 1-4,9, 10),
VEMo) = o [3dx®¥ ([ 1210 + 6 — g;(1 — x)] (i =157, (3.5)
0 (i=623),
with
glx) = 3(1 —_2x Inx — iw) + [2Li2(x) —In%x + 21_nx —B+2imhx—(x = 1— x)]
(3.6)

h(x) = 2Liy(x) — In’x — (1 + 2im)Inx — (x = 1 — x),

where x = 1 — x, <I)f” is a twist-2 light-cone distribution
amplitude of the meson M and ®,, (for the longitudinal
component) and .. (for transverse components) are twist-
3 ones. Specifically, ®,, = ®, for M =V and ®,, = O,
for M = A.

Hard spectator terms.—H"(M;M,) arise from hard
spectator interactions with a hard gluon exchange between
the emitted meson and the spectator quark of the B meson.
HY(M,M,) have the expressions:

gr(x) = g(v) + %,
X

0 _ Fsfu Sy, mp 1
H) (M M,) X(()BMI,Mz) A odudv

» (Cbﬂﬂ(u_)c{)ﬂh(v) " @ml(uZCI)ﬁ@(v))

(3.7)

fori =149, 10,
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HY M) = — BT T s [ l dudv<q)”m(mq)”%(v)

X(BMIJMZ) TB v

w1, P, ()P (@)
.y I )

uv

(3.8)

for i = 5,7, and HY(M,;M,) = 0 for i = 6,8, where the
upper (lower) signs apply when M; =V (M; = A). The
transverse hard spectator terms H:"(M;M,) read

ZifoIJV-IIfMZmMZ mp
mBX(_BMl’MZ) /\B

I O (u) DM
dudv—+—-—"—""-"" (u_)z (v),
u-v

H,'_(Mle) =7 (M,M,)

3.9
0

2ifoM1fM2 My My, Mp

H (M\M,) = n*(M,M,)

2x(BM1vM2) )\_B
1 M, M,
y f dudv v)(I)_2 (ZM)(I) (v)
(3.10)

fori = 14,9, 10, and

2lfoM szmM2 mp
X(_BM] M) Ag
1 (I)Ml (I)Mz
dude,
0 v

H; (M\M,) = o~ (MM,)
3.11)

ZifoleMzli My, mpg

+ — +
H (M\M,) = o (M M,) 2X(BM1,M2) Ag

' (u — v)® (u)<I>M2(v)
X .[o dudv

—22

PHYSICAL REVIEW D 78, 094001 (2008)

lfoleMzmMz mphiy, Mg
B 2
mp X BM1M:) my, g

H (M\M,) = o~ (MM,)

Ot (u) @'
f dudy 2 WP (3.13)
VUU
for i = 6, 8, where

_ _ +1 for M1M2 = VV, VA,

1 (MiM) =1 2y gy MM, = AV, AA,

B _[+1 for M\M, = VA, AV,
o- (M\Mz) =1 for MM, = VV,AA, 1Y)

. _ [+ for MMy = VA, AA,

o MM) =111 o m M, = VV, AV,

and " (MM,) = —1. To write down Eq. (3.13), we have
factored out the rﬁjz term so that ag will contribute to the
decay amplitude in the product of ry?a’ = rY?HZ . Two
remarks are in order: (i) We have checked explicitly that
the hard spectator terms depend on the B meson wave
function ®%(p) but not on ®5(p). (ii) Since Beneke,
Rohrer, and Yang [13] adopted the Jacob convention for
transverse polarization states, they have €] - €; = 1. As a

. . + +
consequence, their expressions for the parameters 7=, o~

and the decay amplitudes X(fV"V” defined below have

signs opposite to ours. Nevertheless, the expressions for
H:"(MM,) are independent of the choice for transverse
polarization vectors.

The helicity-dependent factorizable amplitudes defined
by

XBMM) = (M, (p,, €T, |0XM, (p,, €)IJ#|B) (3.16)

(3.12)
fori = 5,7, and have the expressions
|
; 2.2
(BV,,M5) __ ifu BV 4mgyp BV
XV = S = i, = i omg + A ) = A )]
_ i 4 2 .2
X O = = ma VI g2) = 2By g |
2m4, B Ay (3.17)
(BV.My) _ - My, \,Bvi( 2 2p, BV, (2
X = —ify,mpmy, || 1 +—)A] (6])+7V (g°) |,
mB B +m
5 m
X(fA]’MZ) = _iszmBmMZI:(l - i)VfAl(lf) -+ — ABA‘(qz):I,
mpg mpg mA1
where M, = V,, A, and p,. is the c.m. momentum.

Penguin terms.—At order «g, corrections from penguin contractions are present only for i = 4, 6. For i = 4 we obtain

CFCY
47N,

h,
P4p(M2) =

b
LGl ) + 23] + eslGl (5 + Gl (1) + 261 + (04 + c0) 3G 5 + ] ~ 26516}

i=u

(3.18)
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where s; = m7/mj, and the function G}, (s) is given by

1 1
G’j,,z(s) = 4] du(IDMZ’h(u)jO dxxxIn[s — iixx — i€,

4 2\ (!
gm, = < e + )jo DMl (x)dx

3w 3
L [ oMt 3.19
g, —3 07 . x)dx, (3.19)

with ®M20 = CI)ﬂ42 and M+ = @sz. For i = 6, the result
for the penguin contribution is

Pg (M) =

CFas Ah A Ab
477'NL_ {C]GMz(sp) + C3[GM2(SS) + GMz(l)]

b
+ (¢4 + c6) Z Gf{,b(vl)}

i=u

(3.20)

In analogy with (3.19), the function GMZ(S) is defined as
A 1 |
G?wz(s) = 4[ du(Dm,(u)[ dxxxIn[s — iixx — i€,

0 : 0

G, (s) = 0. (3.21)

Therefore the transverse penguin contractions vanish for
=68 P 8” 0. Note that we have factored out the rf
term in Eq. (3 20) so that when the vertex correction Vg is
neglected, a6 will contribute to the decay amplitude in the
product ry2al =~ r¥*PY.
For i = 8, 10 we find

o N
PP (M,) = gn €1+ Nec2) Gl (s,), (3.22)
Py (M) = 5 Ay + Neea)[ Gl (5,) + 28]
— 3c¢fGhy. (3.23)
Fori= 17,09,
_ 2
P D M) = — Aem Cefmemb em +N
7,9 ( 2) 37 m%/lz T (Cl Cz)
m2 2
X [5 In—5 + 8, In— + 1], (3.24)
u? w?

if M, = p°, w, ¢; otherwise, P; ' (M,) = 0. Here the first
term is an electromagnetic penguin contribution to the
transverse helicity amplitude enhanced by a factor of
mpmy,/m3, , as first pointed out in [42]. Note that the quark
loop contains an ultraviolet divergence for both transverse
and longitudinal components which must be subtracted in
accordance with the scheme used to define the Wilson
coefficients. The scale and scheme dependence after sub-
traction is required to cancel the scale and scheme depen-
dence of the electroweak penguin coefficients. Therefore,
the scale u in the above equation is the same as the one
appearing in the expressions for the penguin corrections,
e.g., Eq. (3.19). On the other hand, the scale v is referred to
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as the scale of the decay constant f), (») as the operator
gy*q has a nonvanishing anomalous dimension in the
presence of electromagnetic interactions [6]. The » depen-
dence of Eq. (3.24) is compensated by that of f),, (v).
The relevant integrals for the dipole operators O, , are

]’1 " D" (u)
0 a

Gr = f du[ (@D (1) — u®>(u)) — ad¥>(u)

0 —
G, =

8

0
-2 @G0 + b)) | (3.25)
Using Eq. (2.44), G; can be further reduced to
Gf = fol du[@">(u) — ()] =0, Gy =0.
(3.26)

Hence, G; in Eq. (3.25) are actually equal to zero. It was
first pointed out by Kagan [11] that the dipole operators
Qs, and Q7, do not contribute to the transverse penguin
amplitudes at O(a,) due to angular momentum
conservation.

Annihilation topologies.—The weak annihilation contri-

butions to the decay B — MM, can be described in terms
of the building blocks """ and b’y

\/_ =3 MM M| T 57| B0

p=u,c

G
= z\/g > A fefu, fMZZ(d b+ bl (3.27)
p=u,c
The building blocks have the expressions
C A
bl = N_g ClAl B
C
C . . .
by = N—g[c3A’1 + es(AL + AD) + N.ceAl],
c
C A
b2 = Nil;CZAl,
¢ (3.28)

C . .
by = N—i[cma + ceA}],

b3,EW N2 [CgA + C7(A + A ) + N CSA ]
bypw = N%[cloA’i + cgAlL],

where for simplicity we have omitted the superscripts p
and & in above expressions. The subscripts 1, 2, and 3 of
AL! denote the annihilation amplitudes induced from (V —
A)(V—A),(V—A)(V+A)and (S — P) (S + P) opera-
tors, respectively, and the superscripts i and f refer to
gluon emission from the initial- and final-state quarks,
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respectively. Following [6] we choose the convention that
M, contains an antiquark from the weak vertex and M,
contains a quark from the weak vertex. The explicit ex-
pressions of weak annihilation amplitudes are

. 1
AOM M) = 7a, f dudv{CM1M2®ﬂ41(v)®ﬂ42(v)
0

X[ﬁ+%]

= DA AR, (), () }

(3.29)
i,— 2WlM] My,
Ay (M\M) = —ma,——5—=
mp
1
X [ dudv{q)ﬁ,”l (1) DM2(v)
0
u+tuv 1
X + , 3.30
[ wo? (1 — ﬁv)z]} 530
i+ 2limMz
AT (M M) = IR e
mp

X /01 dudv{@ﬁ/[‘ (u)CI)Afz(v)

x [% T —UIZU)2 T30 = uv)]}’
(3.31)

. 1
AM M) = 7a, j dudv{CM1M2®ﬂ4‘(v)®ﬂ42(v)
0

s )
— P M (), (v) }

(3.32)
. 2 1
Ay (M My) = —wa‘y%f dudv{CM'Mz(I)Af‘(u)
B

CDMZ(U)I:M v, i _lﬁv)z]}, (3.33)

) 2 1
ALY (M M,) = —Wasw [ dudv{CMlMZCI)A_’II(u)
my 0
2 i
X M [— -
@) wo o (1 — av)?

(3.34)

il
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' 1
A,3,0(M1M2) = 7Ta5[ dudv{CM‘M”qu)ml(U)q)ﬂ/lz(v)
0

2 MM, M M
w09, 0)

2vu
X m}, (3.35)

_ 1 m
Ay (M\M,) = —wa‘Y[ dudv{—CM'MZﬂri/I‘q)Af‘(u)
0 myy,
+ DMIMZ%rMZ
uv(l — iv) my, ©

X OM2(y)

2

M, M, 2
X DY WP ) s ﬁv)}, (3.36)

1
AL (M M) = 7a, f dudv{CMlM”Af ', ()P (v)

2(1 V)

— — DMiM, r])l(/]2 CI)ﬂ/[’ (u)

20 )

X ®, (v) , (3.37)

1
A’;’_(Mle) = —Wasf dudv{CM1M2 Mty r[;I‘ (DIJ‘_/I‘ (u)
0 myy,

2 m
X s () 2= 1 pMat "
u-v my,

2
X O () (v) W} (3.38)
and A" =AD" = ALY = ALT =0, where
A, ALY DVA = DAY = —1,
AR AL OV =AY =
Ay AL AL T oV = oM =
DVA = DA = —], (3.39)

and the parameters C and D are equal to +1 for all other

cases. Note that our results for A * have opposite signs
to that in [13] as Beneke, Rohrer, and Yang adopted the
Jacob convention for the transverse polarization vectors.
We employ the same convention as in [6] that M, contains
an antiquark from the weak vertex with longitudinal frac-
tion y, while M, contains a quark from the weak vertex
with momentum fraction x.

Since the annihilation contributions Aﬁ are suppressed
by a factor of m,m,/m3 relative to other terms, in numeri-
cal analysis we will consider only the annihilation contri-
butions due to A}, AL~ A’l 55 and A5,

Finally, two remarks are in order: (i) Although the
parameters a;(i # 6, 8) and aggr, are formally renormal-
ization scale- and 5 scheme-independent, in practice there
exists some residual scale dependence in a;(w) to finite
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order. To be specific, we shall evaluate the vertex correc-
tions to the decay amplitude at the scale w = m,. (The
issue with the renormalization scale p will be discussed in
more detail in Sec. IV.) In contrast, as stressed in [5], the
hard spectator and annihilation contributions should be
evaluated at the hard-collinear scale w;, = /uA,, with
A, = 500 MeV. (ii) Power corrections in QCDF always
involve troublesome end-point divergences. For example,
the annihilation amplitude has end-point divergences even
at twist-2 level and the hard spectator scattering diagram at
twist-3 order is power suppressed and possesses soft and
collinear divergences arising from the soft spectator quark.
Since the treatment of end-point divergences is model-
dependent, subleading power corrections generally can
be studied only in a phenomenological way. We shall
follow [5] to model the end-point divergence X =
I (1) dx/x in the annihilation and hard spectator scattering
diagrams as

XA = h’l(%)(l + pAeid’A),
g (3.40)

XH = ln(@)(l + pHeid)H),
Ay

with the unknown real parameters p,y and ¢, . For
simplicity, we shall assume that X/ and X7, are helicity-
independent; that is, X, = X; = X} and X, = X;, =
XY

IV. NUMERICAL RESULTS

The decay amplitude of B — M ;M,, with M =V, A,
has the general expression of 8},71 (Aur,)enrs Ay, )M, with
Ay, um, being the corresponding helicities. Hence, the de-
cay amplitude can be decomposed into three components,
one for each helicity of the final state: A, A, ,and A _.
The transverse amplitudes defined in the transversity basis
are related to the helicity ones via

A, - A_
—

The decay rate can be expressed in terms of these ampli-
tudes as

A, = 4.1)

T=_Lc (|ALR+IAL+IA_P)

2
8mmy

— L (AL + 1A +]ALP),

(4.2)
8mm?

with p,. being the c.m. momentum of the final-state meson.
Polarization fractions are defined as

r | ALl

L =-2= , 43
le =T TlArr 1A IALE ¢
with @ = L, ||, L. The relative phases are

¢ =arg(A, /A, o = arg(A)/ Ay). 44)
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Note that the experimental results of ¢ and ¢ ; obtained
by BABAR and Belle are for B — ¢ K™ decays [43-45].
According to the convention given by BABAR and Belle,
|A|>|A_| and ¢ = ¢, = 7 for B— ¢K" in the
absence of final-state interactions. Since our calculations
are for B— ¢K* decays, in Eq. (4.14) below we shall
transform BABAR and Belle results from ¢ to 7 — ¢
and ¢, to —¢, so that | A,|<|A_| in B— ¢K*.
When strong phases vanish, ¢ =0, ¢ = — for B—
dK™.

A. B — VV decays

The branching ratios and polarization fractions of
charmless B — VV decays have been measured for pp,
pw, pK*, $K*, wK* and K*K* final states. It is naively
expected that the helicity amplitudes A, (helicities h =
0, —, +) for B — VV respect the hierarchy pattern

Ay A A, = 1(AQ_)(AL)

my my,

(4.5)

Hence, they are dominated by the longitudinal polarization
states and satisfy the scaling law, namely [11],

1—f, = @(Z_zv) fi_ 4 @(@)

4.6
B fi mp 0

with f;, f1 and f) being the longitudinal, perpendicular,
and parallel polarization fractions, respectively. In sharp
contrast to the pp case, the large fraction of transverse
polarization observed in B— K*p and B — K" ¢ decays
at B factories (see Table IV below) is thus a surprise and
poses an interesting challenge for any theoretical interpre-
tation. Therefore, in order to obtain a large transverse
polarization in B — K*p, K*¢, this scaling law must be
circumvented in one way or another. Various mechanisms
such as sizable penguin-induced annihilation contributions
[11], final-state interactions [16,18], form-factor tuning
[59] and new physics [9,12,60,61] (where only the models
with large scalar or tensor coupling can explain the obser-
vation for f} = f), [12,60]) have been proposed for solving
the B — VV polarization puzzle. It has been shown that
when the data for ¢ K* and K ') modes are simultaneously
taken into account, the standard model predictions with
weak annihilation corrections can explain the observation,
while the new physics effect due to scalar-type operators is
negligible [62].

Before proceeding, we would like to make a few re-
marks on the polarization anomaly. First, the hierarchy of
helicity amplitudes given by Eq. (4.5) is valid only for
factorizable W-emission amplitudes. It may be violated
in the presence of nonfactorizable corrections (e.g., vertex,
penguin and hard spectator scattering contributions) and
annihilation contributions. Indeed, we shall show below
that the polarization pattern (4.6) will get modified when
nonfactorizable contributions are included in QCD facto-
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TABLE IV. CP-averaged branching ratios (in units of 10~°) and polarization fractions for B — pp, pw, K*p, K*¢, K*w, and K*K*
decays. The annihilation parameters are specified to be p, = 0.78 and ¢, = —43° for K*p and K*K* and p, = 0.65 and ¢p, = —53°
for K* ¢ and K™ w by default. For the longitudinal polarization fraction, the theoretical uncertainty is dominated by p, 5 and ¢, 5, and
hence only this error is listed in the table for f;. Experimental results are taken from [3,4,43-57] and the world averages from [58].

PHYSICAL REVIEW D 78, 094001 (2008)

fL f1

Decay Theory Expt Theory Expt Theory Expt
B~ —p p° 20.0749%29 18.2 3.0 0.965:92 0.91210.044 0.02 = 0.01
B'—ptp- 25.5113+24 24.2%3) 0.92+001 0.9787505 0.04+208
B — p°p° 0.9* 53780 0.68 = 0.27 0.9270:9 0.70 = 0.15 0.0475 14
B —p w 19.2%3417 10.6725 0.9675:%2 0.82 = 0.11 0.02 = 0.01
B'— pw 0.1%01704 <15 0.557947 0.22 ¥21¢ 0.247518
B~ — K*0p* 9.2+12+30 92+ 1.5 0.481032 0.48 = 0.08 0.26+920
B~ — K*~p° 5.5700713 <6.1 0.67934 0.9679% © 0.16792%
B'— K" p* 8.9 148 <12 0.53794 0.24101¢
B — K*0p° 4.6108432 56+ 1.6 0.39757 0.57 £0.12 0.307543
B~ — K" ¢° 10.07 14123 10.0 * 1.1 0.49%031 0.50 = 0.05 0.25+021 0.20 + 0.05
B"— K¢ 9.571374° 9.5+0.8 0.507539 0.484 = 0.034 0.257031 0.256 = 0.032

-, g +0.4+3.0 +0.32 +0.20
I Pt - popite s S 11
B — K*OK*— 0 6:8?:—(1)§ <71 0 4518%2 022 0 27+0.l9

—0.1-0.3 © =038 =1=0.27

B"— K K** 0.1700701 <141 1 0
BY — KK 0.6751703 1.28%937 0.52+948 0.80*%12 0.24+0.24

“This mode is employed as an input for extracting the parameters p, and ¢, for B— K*p decays.

A recent BABAR measurement gives f; (K*~p°®) = 0.9 + 0.2 [46].

“This mode is employed as an input for extracting the parameters p, and ¢, for B— K" ¢ decays.

rization. We shall see later that the polarization anomaly is
not so serious as originally believed. Second, it is known
that the predicted rates for the penguin-dominated B —
VP, VV decays in QCD factorization are generally too
small by a factor of 2—3 compared to the data. It is obvious
that in order to have a reliable calculation for polarization
fractions, it is of great importance to first reproduce the
decay rates correctly. Otherwise, the estimation of f; ) |
will not be trustworthy. Hence, our first priority is to have a
mechanism resolving the branching ratio puzzle for the
penguin-dominated charmless B — VV decays and hope-
fully the same mechanism also unravels the polarization
anomaly.

1. Tree-dominated decays

Branching ratios and polarization fractions for tree-
dominated B — pp and pw are shown in Table IV. The
theoretical errors correspond to the uncertainties due to
variation of (i) the Gegenbauer moments, the decay con-
stants, (ii) the heavy-to-light form factors and the strange
quark mass, and (iii) the wave function of the B meson
characterized by the parameter Ag, the power corrections
due to weak annihilation and hard spectator interactions
described by the parameters p, y and ¢, g, respectively.
To obtain the errors shown in Tables VII, VIII, IX, X, and
XI, we first scan randomly the points in the allowed ranges
of the above nine parameters and then add errors in quad-
rature. More specifically, the second error in the table

refers to the uncertainties caused by the variation of p, y
and ¢, g, where all other uncertainties are lumped into the
first error. Here we consider the default results for tree-
dominated decays by setting the annihilation parameters to
be zero, i.e. py = ¢, = 0, though the predictions are
insensitive to the choice of them.

It is obvious from Table IV that the longitudinal ampli-
tude dominates the tree-dominated decays except for the
p’w mode where the transverse polarization could be
equally important. The naive expectation of f; =
1-4m? /m% =~ 0.92 is experimentally confirmed. The cal-
culated rates are also in agreement with experiment except
that the predicted rate for B~ — p~ w is slightly high. Its
decay amplitude reads

V2 Al

h h
Bopw = [6,.(ah + BY) + 220" + af

h Bp,w
+ BYMIXPP) + 16, (al + B

+ab + BrIX ). 4.7

It is obvious that this decay is dominantly governed by
B — o transition form factors. The data of B~ — p~ w
and B — K*w to be discussed below seem to suggest that
B — o form factors are slightly smaller than what are
expected from the light-cone sum rules [33].
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2. Penguin-dominated decays

The decays of interest in this category are B — K*p,
K*¢, K*w and K*K*.

B— K*p.—We first consider B — K*p decays.
Retaining the leading contributions, their decay amplitudes
are approximated by

Ap g, = Velad" + BYX) e
V2 Ay g o = [V,al + Vo(a§" + BIIX!
+[V,ah +V, a3EW]XK* ,
Ap_g e = [Vl +V a8 + Bl ]Xﬁk*,

_\/E.ﬂgo_,lg*opo =~ Vc(ac’

—[V,ah +V, gCMQEW]XIQP,

+ ﬁ';)xh

(4.8)
where V, = V,,V;, with |V,.| > |V,|, B; characterizes
the penguin-induced weak annihilation [see Eq. (B1) for
definition] and Xﬁ -. 1S a shorthand notation for Xg PR
with its explicit expression shown in Eq. (3.17). The ex-

. hp -
pressions of the flavor parameters «;"” in terms of the

coefficients a?”’ can be found in Eq. (Al). To proceed,

we shall first neglect annihilation completely by setting

B3 = 0. In the absence of NLO nonfactorizable correc-

. h,
tions, the parameters o’

;* are helicity-independent and
hence the hierarchy relation (4.5) for helicity amplitudes

is respected as IX0 pl IX | |XZ. | = 1:0.26:0.03 and

+
I 1 X | =

guin and hard spectator corrections are taken into account,
we see from Table V that &, af’ " and a’t o\ for negative
helicity differ significantly from that of the longitudinal
ones. For example, the real parts of o} and oy, have
opposite signs for 7 = 0 and 7 = —. Let us consider two
extreme cases for the longitudinal polarization fraction.
From Eq. (4.8) we have

PHYSICAL REVIEW D 78, 094001 (2008)

From Table V we see that the interference between af”
and ol .y is constructive for h = — and destructive for

h = 0 for the decay B — K**p® and the other way around
for B~ — K*~ p°. As a consequence, A ~ is comparable to
A9 for the former but is highly suppressed relative to A°
for the latter. The longitudinal polarization fraction for the
penguin-dominated processes can be approximated as

T+ a3EW~|—,83| | X~

N o
fr(pK*) =1 h:zo‘i h4e a3EW+'B3|2|XZK*| ,
fr(K*p)=1— lag + o™ +3a5py + By PIXg ’

hzoi.i| h+a +1 aSEW+,8 |2| ¢|2
4.10)
where pK*/XOK* 2 (mk*/mB)QAg_”’/Flj—'p o

(mg+/mp)*, ¢, =0 for K*°p~ and K*~ p* modes, c, =
1 for K*~ p° and c, = —1 for K*%p0 (see Ref. [13] for the
definitions of the Ay and F_ form factors). The calculated
branching ratios and the longitudinal polarization fractions
f1 in QCDF are shown in case (i) of Table VI. Indeed, we
find £, (K*°p%) = 0.46 and f,(K*~ p°) = 0.97. If the co-
efficients a” are helicity-independent, we will have
frL(K*9p% = 0.91 rather than 0.46. However, the NLO
corrections to a; will render the negative-helicity ampli-
tude A~ (K*p") comparable to the longitudinal one
AYK*p%) so that even at the short-distance level, f;
for B — K*0p® can be as low as 50%. Similar detailed
discussions for ¢ K* modes will be given later.
Comparing with the data, it appears that even though the
naive estimate of f; is too large for K*p~, the experi-
mental observations of a large f; for K*~ p® and a small f,
for K*9p® are well accommodated. However, as stressed
before, in order to have a trustworthy estimate of polariza-
tion fractions one has to reproduce the rates correctly as the
predicted branching fractions for K**p~ and K*°p° are too

- o= _ 3.~ X2 small compared to experiment (see Table VI). In the
A ay 503 ew\ [ K p .
= = ( SR )(XO ) present work, we shall follow [11] to ascribe the necessary
AY 1 B—k0p ay 2“3 EW (4.9) enhancement to a potentially large penguin annihilation
A at” +3as Xz, ' characterized by the parameter 35. We fit the data of B~ —
= ~ (2 2BV (52 K™p~ by adjusting th ¢ d ¢, that ch
A0 |y 20 L340 X0 ) p~ by adjusting the parameters p, an ¢4 that char-
L 4 2 73EW K'p acterize the nonperturbative effects of soft gluon ex-
TABLE V. Longitudinal- and negative-helicity amplitude parameters.
Parameter h=20 h=— Parameter h=20 h=—
a,(pK*) 0.96 + 0.01i 1.11 + 0.03i aspw(K*p) —0.009 — 0.000i 0.010 — 0.000i
a,(K*p) 0.24 — 0.08i —0.16 — 0.16i aspw(K*p) —0.002 + 0.001i 0.001 + 0.001i
al(pK®) —0.022 — 0.014 —0.048 — 0.016i Bi(pK*) 0.008 — 0.018i —0.031 + 0.060i
a(pK®) —0.030 — 0.010: —0.047 — 0.002i
a3 (K" ¢) 0.005 — 0.001: —0.004 — 0.001: aszpw(K*¢) —0.009 — 0.000i 0.002 — 0.000i
ai(K*¢) —0.022 — 0.014i —0.048 — 0.016i aj(K*¢) —0.030 — 0.010: —0.046 — 0.002i
B3 (K* ) 0.008 — 0.019: —0.028 + 0.053i

094001-17



HAI-YANG CHENG AND KWEI-CHOU YANG
TABLE VL

PHYSICAL REVIEW D 78, 094001 (2008)

CP-averaged branching ratios (in units of 107®) and the longitudinal polarization fraction f; for B — K*p and K*¢

decays for three cases: (i) no annihilation contribution, (ii) adding annihilation contributions with p, = 0.78, ¢, = —43° for K*p and

pa=0.65 ¢, =

—53° for K*¢. The predictions by Beneke, Rohrer and Yang [13] are shown in the last two columns. For simplicity,

only the central values are exhibited. The theoretical uncertainties in case (ii) are shown in Table IV. Experimental results are taken

from [3,46,47].

Expt (i) (ii) BRY

Decay B fr fr B fr B fr
B~ — K~ 9.2+ 1.5 0.48 = 0.08 4.0 0.82 9.2 0.48 59 0.56
B~ — K p° <6.1 0.96+296 3.8 0.97 5.5 0.67 4.5 0.84
B'— K" p* <12 e 38 0.86 8.9 0.53 55 0.61
B — K*0p° 56+ 1.6 0.57 =0.12 1.1 0.50 4.6 0.39 2.4 0.22
B~ — K" ¢ 10.0 = 1.1 0.50 = 0.05 4.1 0.62 10.0 0.49 10.1 0.45
B*— K¢ 9.5+0.8 0.484 * 0.034 38 0.62 9.5 0.50 9.3 0.44

changes in annihilation diagrams. From Fig. 1(a) we see
that p4 is preferred to be around 0.78 in order to fit the rate,
while the corresponding f; is around 0.48 [see Fig. 1(c)].
Only the theoretical uncertainty due to the variation of the
phase ¢, is considered in Fig. 1. It is clear that the total
branching ratio and the longitudinal one B, increase with
pa, whereas f; decreases slowly with p,. To fit the rate
and f; simultaneously for B~ — K*'p~, we find p, =
0.78 and ¢4, = —43°. Using this set of parameters, we are
able to predict branching ratios and polarization fractions
for other B — K*p decays as exhibited in Table IV and in
case (ii) of Table VI. In the presence of penguin annihila-
tion, the parameter aZ’h in Egs. (4.8) and (4.9) should be
replaced by aj’h + B4. From Table V, one can check that
both f, (K*p®) and f,(K*~ p°) will be decreased when
penguin annihilation is turned on.

Within the QCDF framework, Beneke, Rohrer and Yang
(BRY) have employed the choice p, = 0.6 and ¢, =
—40° obtained from a fit to the data of K*¢ to study
K*p decays [13]. They have noticed that the calculated
K* p branching fractions are systematically below the mea-
surements. This is not a surprise as their p, is smaller than
0.78 [see also Fig. 1(a)], since as emphasized before, the
estimation of polarization fractions will not be reliable

unless the calculated partial rate agrees with experiment
and as shown below that K*¢ and K*p data cannot be
fitted simultaneously by two universal parameters p, and
¢ 4. This may be a potential problem for QCDF.

The large longitudinal polarization fraction of B~ —
K*~p° fr =0.9673%, measured by BABAR [3] seems
to be peculiar as a smaller f; of order 0.5 is observed in
other K*p modes such as K**p~ and K*p°. At first sight,
it appears that BRY’s prediction of f,(K* p°) =
0.84+0:02+0.18 can account for the BABAR measurement.
However, as we note in Appendix D, there are sign errors in
the expressions of the annihilation terms Ag‘o and A%° [see
Egs. (D2) and (D17), respectively] by BRY: The signs of
the r}/z terms in these two equations are erroneous in [13].
Because of the (incorrect) cancellation between r;‘ and r?
terms in A{;’O, BRY claimed (wrongly) that the longitudinal
penguin-annihilation amplitude ,8(3) is strongly suppressed,
while the 85 term receives a sizable penguin-annihilation
contribution. If a wrong sign for rxz terms is used, both
rates and longitudinal polarization fractions will be re-
duced, especially for the K**p® mode where f; is reduced
by more than a factor of 2. For comparison, BRY’s pre-
dictions are shown in the last two columns of the same

sE T T T T ki sE T T T T H L T I —— ===
f; C I’; C 08 7 =
= I (=] - |Q -
*x - ] x - gl
e 100 ] ke 10F 7 S 06k < E
1T L i T L /// ] [ N
5[ — 10w - 10 .
g I == 1 = .r = 1 by 04
Q s === — Q@ s - - = N
R i ° t ] = -
=+ g = == 02F N =
4 F o ———_ SN
4 - T —— So -
b | | | | H = L | | Tt —— =" | | | "~ ——r—
0 0.2 04 0.6 0.8 1. 0 0.2 04 0.6 0.8 1 0 02 04 0.6 0.8 1
PA PA Pa

FIG. 1 (color online). Predicted branching ratios [(a) and (b) are for the total and longitudinal branching ratios, respectively] and
(c) the longitudinal polarization fraction for B~ — K*°p~ as a function of the parameter p,. The solid and dashed curves correspond
to the central value and the allowed theoretical uncertainty due to the variation of ¢y, respectively. The horizontal band represents
experimental values with one sigma errors.
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table. Using the correct expressions for A'§’0 and A5°, we
find that f;(K* p°) is reduced to the 70% level and
FrL(K™pP) is predicted to be 0.3970%). The latter agrees
with the experimental value f;(K*'p%) = 0.57 +0.12
[58]. As explained above, the corresponding prediction

0.227393+022 by BRY is too small owing to the incorrect

signs in their Ag’o amplitudes.
In short, we have the pattern (see also [13])

FLEp%) > fL(K* p*) > fL(Kp7) > fr(Kp°)
@.11)

for the longitudinal fractions in B — K*p decays. Note
that the quoted experimental value f; (K*~ p°) = 0.9675:9¢
in Tables IV and VI was obtained by BABAR in a previous
measurement where K*~p° and K* f,(980) were not
separated [3]. This has been overcome in a recent
BABAR measurement, but the resultant value
FL(K*"p®) = 0.9 £ 0.2 has only 2.50 significance [46].
At any rate, it would be important to have a refined
measurement of longitudinal polarization fraction for
K p® and K“p° and a new measurement of
fL(K*~ p™) to test the hierarchy pattern (4.11).

B — K*¢.—Experimentally, B — K*¢ decays have
been studied with full angular analysis from which infor-
mation on final-state interactions can be extracted.
Historically, it was the observation of large transverse
polarization in these decays that had triggered the theoreti-
cal and experimental interest in the study of charmless
B — VV decays.

Theoretically, B — K*¢ decays can be analyzed in the
same manner as the K*p modes. The decay amplitude of
B~ — K"~ ¢ can be approximated as

ﬂh

~ h eh h_1.h h
Bk g = V(o + ay" + B3 Eale)XK*(ﬁ.

(4.12)

When the penguin-annihilation contribution S5 is turned
off, we have
A
A0

ay +ay — %aiEw)(XEw)

~ " ).
B —K*" ¢ ( af +af” —fal ey I \Xgey
(4.13)

From the amplitude parameters given in Table V, it is clear
that there exists a constructive (destructive) interference in
the A~ (A% amplitude. As a consequence, although the
factorizable  amplitudes  respect  the  hierarchy
X% 11X g 111X 4 | = 1:0.35:0.007 due to the (V — A)
structure of weak interactions and helicity conservation in
strong interactions, the negative- and longitudinal-helicity
amplitudes are comparable in magnitude. Numerically, we
indeed find f;, = 0.62 and f|| ~ f = 0.19 (see Table VI).
This is very similar to the decay B — K*p® where f; is

PHYSICAL REVIEW D 78, 094001 (2008)

also found to be small, of order 0.50. Experimentally, the
naive expectation of f; = 1-4my/m% ~ 0.90 is strongly
violated in charmless penguin-dominated VV modes.
Nevertheless, a small f; for K* ¢ is quite natural in QCD
factorization because the parameters af are helicity-
dependent. The fact that real parts of a; and asgw flip
signs from h =0 to h = — and that o/ is smaller in
magnitude for the longitudinal amplitude (see Table V)
will render the negative-helicity amplitude comparable to
the longitudinal one.

Even though the longitudinal polarization fraction is
reduced to the 60% level in the absence of penguin anni-
hilation, this does not mean that the polarization anomaly
is resolved. As stated before, irrespective of the predictions
for polarization fractions, the first task we need to focus on
is to reproduce the correct rate for B — K* ¢ because the
calculated branching ratio of order 4.1 X 107 is too small
by a factor of ~2.5 compared to the measured one, ~10 X
1076 (cf. Table IV). Assuming weak annihilation to ac-
count for the discrepancy between theory and experiment,
we can fit the data of branching ratios and f; simulta-
neously by adjusting the parameters p, and ¢4. However,
this also means that QCDF loses its predictive power in this
manner. We find that the rate and f; can be accommodated
by having p, = 0.65 and ¢, = —53°. This set of the
annihilation parameters differs slightly from that extracted
from B — K*p decays, namely, p,(K*p) =~ 0.78 and
P 4(K*p) = —43°. Therefore, within the framework of
QCDF, one cannot account for all charmless B — VV
data by a universal set of p, and ¢, parameters. This
could be an indication that large penguin annihilation
cannot be the ultimate story for understanding B — VV
decays.

Since the complete angular analysis of B — K*¢ has
been performed by both BABAR and Belle, information on
the parallel and perpendicular polarizations and their
phases relative to the longitudinal one is available. We
see from Table IV that f, and f} are very similar, of
order 0.25. Experimentally, the phases ¢ and ¢ deviate
from either 7 or zero by more than 4.60 and 3.30 for
K*~ ¢ and 5.50 for K*0¢ [58]. This implies the presence
of final-state interactions. The relative phases are calcu-
lated to be

(K~ p) = (807§)°
& (K0p) = (7818)°

[expt: (46 + 10)°],
(4.14)
[expt: (4478)°]

and SY(K*™p) — ¢ LK™ @) — 7= ¢ (K¢p) —
¢ (K*0¢p) — 7 = 0.7°. They are consistent with the data.

Thus far we have chosen the renormalization scale to be
n = m,(m,) in calculations. We now address the issue
with u. In principle, physics should be independent of
the choice of w, but in practice there exists some residual
p dependence in the truncated calculations. We have
checked explicitly that the decay rates without annihilation
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are indeed essentially stable against w. However, when
penguin annihilation is turned on, it is sensitive to the
choice of the renormalization scale because the penguin-
annihilation contribution characterized by the parameter b3
is dominantly proportional to a,(uy)ce(pey) at the hard-
collinear scale u), = 4/ A,. For the hadronic scale A;, =
500 MeV, we have u;, = 1.45 and 1 GeV for u = 4.2 and
2.1 GeV, respectively. At the amplitude level, the enhance-
ment of penguin annihilation at u = 2.1 GeV is of order
ay(1)cg(1)/[a,(1.45)cs(1.45)] ~ 1.8. We find that if the
renormalization scale is chosen to be u = my,(m,)/2 =
2.1 GeV, we cannot fit the branching ratios and polariza-
tion fractions simultaneously for both B — K*¢ and B —
K*p decays. For example, the rate of the former can be
accommodated with p, ~ 0.25, but the corresponding
fr ~0.28 is too small. Likewise, although B(B~ —
K*%p7) can be fitted well with p, ~ 0.55, the resultant
fr = 0.12is highly suppressed. This is ascribed to the fact
that at the scale u = 2.1 GeV, the negative-helicity am-
plitude receives much more enhancement than the longi-
tudinal one and hence the longitudinal polarization is
suppressed at the small u scale. In order to ensure the
validity of the penguin-annihilation mechanism for de-
scribing B — VV decays, we will confine ourselves to
the renormalization scale u = m,(m,) in the ensuing
study.

J

PHYSICAL REVIEW D 78, 094001 (2008)
B — K*w.—The decay amplitudes for B — K" read
V2A g = [V} + V(a§" + BOIX" .
+[V,ah + vV .2ah + %aé’yEW)]X}}(*w,
\/-Z—.ABO_,K*O(U = [Vc(ag’h + BQ)]XZKX
+ [Veah + V.Q2ah + 3ol ) IXE. .
(4.15)

From the previous analysis of K*p and K*¢ decays, we
found two distinct sets of the penguin-annihilation parame-
ters p, and ¢ 4. If the set of parameters inferred from B —
K*p decays, namely, p4, = 0.78 and ¢, = —43°, is em-
ployed, we obtain B(B~ — K* ) = 4.5 X 107 and
B(B* — K*w) = 3.9 X 107°, which are slightly higher
than the respective experimental upper limits 3.4 X 1076
and 2.7 X 107° [54,57]. By contrast, if the parameters
ps = 0.65 and ¢, = —53° extracted from K*¢ modes
are used, the resultant predictions B(B~ — K* w) =
3.5% 107% and B(B* — K*%w) =~ 3.0 X 107° are consis-
tent with experiment (see Table I'V). Of course, if the B —
o form factors are smaller than what we expected as
implied by the measurement of B~ — p~ w, then B(B —
K*w) will be safely below the current bounds.

B — K*K*.—The expressions of B — K*K* decay am-
plitudes read

Gr y 1 —_—
Ap—gog = Nz Z Ay SpulBa t ay — Eaf,Ew + B+ BQEW]X(BK 0,

p=u,c -

G 5o o 1
Agoggr = \TS Z )‘Ead) [5pu31 + By + ﬁf,Ew]X(BK A +fo%(*|:bf - *biEw]K*ﬁ}’

p=u,c

Gr

(4.16)
2

- Wl 1 1 I 1
A po_grogo = 7 Z Ap I:af‘ _EaZEW + BL + By _EIBQEW _EIBZEW]X(BK K +fo%(*|:b£ — bl ew |

p=u,.c

Both B — K*K* and B~ — K*K*~ are b—d
penguin-dominated decays, while B — K*~ K** proceeds
only through weak annihilation. Hence, their branching
ratios are expected to be small, of order = 107°,
Recently, the K*K*® mode was first measured by
BABAR with the branching ratio (1.28f8:§;) X 107 [55].
Our prediction is slightly smaller, about 10 away from the
BABAR measurement (Table IV). The absence of trans-
verse polarization in the K*~K** mode is due to the
approximation we have adapted; that is, we have neglected
the transverse annihilation contributions Aj, relative to
other terms. Hence, transverse polarization does not re-
ceive contributions from the annihilation terms b, b5, b},
and b}y within our approximation [see Eq. (3.28)].

Comparison with other works.—Within the framework
of QCD factorization, we have studied charmless B — VV
decays closely to the works of Kagan [11] and BRY [13].
Nevertheless, there are some differences between our work
and theirs as we are going to discuss below.

2

Without penguin annihilation, Kagan found f; = 0.90
for the K**¢ mode, while BRY got f; =~ 0.67 and we
obtained f; =~ 0.62. Kagan did not consider vertex correc-
tions and hard spectator interactions in his realistic calcu-

lations of a””", though he has discussed the latter briefly. It
seems to us that a are essentially helicity-independent in
Kagan’s calculation and this accounts for the difference in
the estimation of f;. Moreover, what is the initial value of
f1 in the absence of penguin annihilation is immaterial
because we will use the unknown annihilation parameters
to accommodate the data of branching ratios and f; rather
than to predict them.

We differ from BRY mainly in using different p4 and ¢,
parameters for describing B — K*p decays. If we follow
BRY to use the set of p, and ¢4 parameters extracted from
B — K*¢ decays to describe K*p modes, the rates for the
latter will be systematically below the measurements.
Since it is necessary to reproduce the measured rates first
in order to have a reliable estimate of polarization frac-
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tions, we need to fit the K*p data separately. The resultant
pa and ¢, parameters differ from the ones determined
from K*¢ modes. This can be viewed as a potential prob-
lem of QCDF.

In the pQCD approach, the calculated branching ratio of
B — K*¢ is too large, of order 15 X 107® and f, ~ 0.75
[14]. It has been proposed in [59] that a smaller form factor
ABK(0) =~ 0.30 will bring down both the rates and f; and
bring up f}; and f; . While this sounds plausible, the NLO
corrections to helicity-dependent coefficients a/ should be
taken into account in this approach as we have demon-
strated that NLO corrections to a; and a? will bring down
f1 significantly. It is also important to compute the rates
and polarization fractions for B — K*p decays in this
framework and compare with experiment.

Another plausible solution is to consider the long-
distance rescattering contributions from some charm inter-

mediate states such as D(*)Dﬁ*) [16—18]. The idea is simple:
First, B — D*Dj decays are CKM favored and hence final-
state interactions via charm intermediate states will bring
up the K* ¢ rates. This is welcome since the short-distance
predictions of the branching fractions for penguin-
dominated B — VV modes in most of the models under
consideration are too small compared to experiment.
Second, large transverse polarization induced from B —
D*Dj will be propagated to ¢ K™ via final-state rescatter-
ing. The unknown parameter in the model for final-state
rescattering is fixed by the measured rate [18]. However,
this approach has one drawback. That is, while the longi-
tudinal polarization fraction can be reduced significantly
from short-distance predictions due to final-state interac-
tion effects, no sizable perpendicular polarization f is
found owing mainly to the large cancellations occurring in
the processes B — DiD — ¢K* and B— D,D* — ¢K*
and this can be understood as a consequence of CP and SU
(3) symmetry [18]. That is, final-state rescattering leads to
the suppression of f7(= f, + f}) at the expense of f}| >
f1. As pointed out in [18], one possibility to circumvent
the aforementioned cancellation is to consider the contri-
butions from the even-parity charmed meson intermediate
states. In view of the fact that even at the short-distance
level, f; can be as small as 40%—70% after NLO correc-
tions to effective Wilson coefficients are taken into ac-
count, it is worth reexamining this type of solution again.

In soft-collinear effective theory (SCET) [15], large
transverse polarization in penguin-dominated V'V modes
may arise from the long-distance charming penguin con-
tribution. Indeed, the aforementioned mechanism of final-
state rescattering of charm intermediate states mimics the
charming penguin in SCET, while both QCDF and pQCD
approaches rely on penguin annihilation to resolve the
polarization anomaly.”

*Ways of distinguishing penguin annihilation from rescatter-
ing have been recently proposed in [63].

PHYSICAL REVIEW D 78, 094001 (2008)
B. B — V A decays

The calculated branching ratios and longitudinal polar-
ization fractions for the decays B — Ap, AK*, Aw, and A¢
with A = a,(1260), b,(1235), K,(1270), K,(1400),
f1(1285), f,(1420), h(1170), and h,(1380) are collected
in Tables VII, VIII, and IX.

1. B— a,V, b,V decays

The decays B® — (a], b )(p~, m~) are governed by the
decay constants of the p and 7, respectively. Since f, >
fa» we thus expect to have B(B — af p~) > B(B* —
af7™) and BB’ — bip~)> B(B*— bi7™) ~ 10X
1075, These features are borne out in our realistic calcu-
lations (see Table VII). Calder6n, Muifioz and Vera (CMV)
[21] found the other way around: (af, b{)p~ modes have
rates smaller than (a),b{)7m~ ones, with which we
strongly disagree. Since the modes (a;, by )(p™, 7") are
governed by f, and f; , respectively, and since f, ~ f,
and f; is very small (vanishing for the neutral b;), we
anticipate that a; p* and a; 7" have comparable rates and
the b7 p™ mode is highly suppressed relative to the b} p~
one.”> The decays (a;, by )p° receive both color-allowed
and color-suppressed contributions:

A g (af + )X 4 (X P,

‘AB’—'bl’p“ o (alt + - .)X;lép,bl) +(ah + - _)X](/lgbl,p)’
4.17)

where XBMiM2) g the factorizable amplitude defined by
Eq. (3.16). Since the color-allowed amplitude of the b; p°
mode is highly suppressed by the smallness of the b, decay
constant and the color-suppressed amplitude is suppressed
by the small ratio of a,/a;, it is clear that B(B~ —
a;y p°) > B(B~ — by p°). The decays (a;, b )w should
have rates similar to (a;, by )p°. So far there is only one
experimental measurement of B — VA decays, namely,
BY — ai p* with the result [64]

B(B°— ayp*)Bla; — Bm)*) <61 X 1076 (4.18)

Assuming that a;” decays exclusively to p®7*, we then
have the upper limit of 61 X 10~° for the branching ratio of
B — aj p*. Our prediction B(B’—ajp¥)=~59x107°
is thus consistent with experiment.

To discuss the effect of the annihilation contribution, let
us take the penguin-dominated decays B — (a;, b )K*~
as an example. From Eq. (A3) of [1] we have

3As explained in [1], within the QCD factorization approach,
the suppression of by (7", p™) modes is not directly related to
the smallness of the b decay constant, but is ascribed to the tiny
coefficient ;. However, the smallness of a; has to do with the
decay constant suppression. For more details, see [1].
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TABLE VII. Branching ratios (in units of 107°) and the longitudinal polarization fraction (in parentheses) for the decays B —
(ay, by)(p, o, ¢, K*) with a; = a,(1260) and b, = b;(1235). The theoretical errors correspond to the uncertainties due to variation of
(i) Gegenbauer moments, decay constants, quark masses, form factors, the Az parameter for the B meson wave function, and (ii) p, y
and ¢, 4, respectively. For longitudinal polarization fraction, we add all errors in quadrature as the theoretical uncertainty is usually
dominated by (ii). Default results are for p, = 0.65 and ¢, = —53°. We use the light-cone sum rule results for the B — a; and
B — b, transition form factors (see Table II). The model predictions by CMV [21] are also displayed here for comparison.

Mode This work CMV Mode This work CMV
B —afp- 2397090357 (0.8270 4.3 B — bfp~ 32171937150 (0.96100) 1.6
B'—a;p* 36.0733753 (0.84700%) 4.7 B'—byp* 0.6795783 (0.98799% 0.55
B — a¥p° 12729431 (0.82709%) 0.01 B° — bV 3.2533 857 (0.9970.9 0.002
B~ —alp~ 178791031 (0.91759%) 24 B~ —bip~ 29.17162%34 (0.967501) 0.86
B~ —a;p° 23.2738%4% (0.897211) 3.0 B~ — by p° 0.9757%28(0.9019%) 0.36
B’ — ddw 0.2F01404 (0.755%41 0.003 B — bw 0.1%93%85 (0.047938 0.004
B —ajw 225739430 (0.887(19) 22 B-—blw 0.8%14131 (0.91%99) 0.38
B'— a%¢ 0.00270-902 0008 (0.9470:99) 0.0005 B — b0 0.017005 7000 (0.98709%) 0.0002
B —a;¢ 0.01+201+0:04 (0.9475:91) 0.001 B —b ¢ 0.025903+0:05 (0.98*99%) 0.0004
B’ — af K*~ 10.673:07357 (0.3710:39) 0.92 B — b K*~ 12.5747301 (0820 1%) 0.32
B® — aVk* 421284155 (0231045 0.64 B® — pOK* 6.4724+8% (0,79+021) 0.15
B~ — a; K* 11.2761+39 (0.37+048) 0.51 B~ — b, K* 12.8530+201 (0.79+021) 0.18
B~ — aVK*~ 7.87321163 (0.52404)) 0.86 B~ — b{K*~ 7.0728%1%° (0.8210.19) 0.12

TABLE VIII. Same as Table VII except for b — s penguin-dominated decays (top) B — K;(p, K*, w) and b — d penguin-

dominated ones (bottom) B — K,K* for two different mixing angles Ok, = —37° and —58°. Default results are for p, = 0.65
and ¢, = —53°.
Og, = —37° Og, = —58°
Decay B fL B fr
B — K[ (1270)p* 16.8° 28311 0.57%03% 19.47 %1456 0.49704%
B® — K{(1270)p° 9.1733+3% 050037 9.859713%" 04004
i — K0
B~ — K; (1270 827578 0.567 3 10.37 327 % 0.56"
BO — k01(1270)wp 7 3+?¥:;+g'4].0 0 59+8%g 8 2+§:§+g'17.5 0 48+8g(7)
B — K w AT .56 ARSI 527
BY — K’Ol(1270)¢ 3'6+%%+g:g 0.67+8:‘%§ 3.2+%Y+;5 0.314—8:%3
B o 15—(1270) & 3 grlorE1 0.67+033 34423435 0.31+08
B — K0(1400) - 10 9:%21?582 0 6518:33 7 5;21067-%—‘1(9.4 0 85;81?
- ‘_(1400)” 0 3 grared 0.61 7033 5705497 0.70+024
B —_ K p . - . M . 3 - . ST . - . 3 - .
- 1\ 9-22-25 -14-036 V-_1.7-35 o028
B~ — K; (1400)w 4.5+18+60 0.687032 3.1+13+81 0.87+0%
B° — K9(1400)¢ 1047797383 0.4619:2 10755 1+30.69 0.57531
B~ — K; (1400)¢ 111785+ 0.45°5.13 11.3773+402 0.57+532
B® — Ky (1270)K** 0.018:01 000 1.0 0.00"8:000:00 1.0
B® — K (1270)K*~ 0.06°593% 06 1.0 0.060:93 500 1.0
B° — K; (1400)K** 0.08*203+0.28 1.0 0.097593+0.30 1.0
B° — K| (1400)K*~ 0.000:00 050 1.0 0.0078:00 000 1.0
BO — K’O(1270)K*0 0'404:0.254:0.65 0.86t0'08 0.29t019t0441 0.84t0'16
B9 — KO(1270)k*0 0.09+§3§36*+§%§ 0.34+§?§§ 0.25+§3§§+§?§§ 052034
B — 1(10(1270)1{*— 0.0510:0412:21 0.33;0:58 0.13;0:0412100 05418%%
1 -1 -0.11-0.29 -11-029 "2 0-001-030 090,54
B~ — K(li(l400)K**:) 0.28f§;§§£§;2§ 0.77;%;%% 0.19t§;§g$;;9 0'85£§3é§
B~ — K, (1400)K 0.017600% 560 0.93777 0.055803 5600 0.9209
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TABLE IX. Same as Table VII except for the decays B — (f}, h;)(p, o, K*, ¢) with f| = f,(1285), f1(1420) and h, = h(1170),
h,(1380). We use two different sets of mixing angles: (i) Osp = 27.9° and Oip, = 25.2° (in first entry), corresponding to 6, = —37°,

and (ii) Osp, = 53.2°, Oip, = 0° (in second entry), corresponding to 6y, = —58°.
Mode B fL Mode B fL
B~ — f,(1285)p~ 10.2%%%;% 0.91§§;§§ B~ — f,(1420)p~ 0.1%§;g§;('2) 0.70£§;é§
_ 8.9732703 0.90% 03 ~ 13753700 0.93%503
B0 — £,(1285)p° 0 2;8):?;%? 0.77;%:%2) BY — £,(1420)p° 0 Olzgfg’ézggé 0.38%’%:(%
~ 0 27011704(5) 0.717536 ~ 0-047({0%70:00 0-87702210
B — f,(1285)w 1.03)%%?% 0.87;%%% B’ — £,(1420)w 0.0%%%&)28:88 0.53%%3%
0.97 52751 0.867 )¢5 0.1751 707 0.86" %

+83+10.8
5.8+53

B~ — f1(1285)K*" 3410
5'7+3.8+21.4
—2.2-4.38

o]
0.47 0345

B° — £,(1285)K* 5.5+75+101 0.89+0.1

5153000 045543

Poposss o omilian 0l
0.0020.002+0. 0.90"%

_— - +10.115% "0 F001

B~ — hy(1170)p 17.4+ 10142 0.96901

10.9763+18 0.9600¢

BO — /’11(1170)/00 0051%1%2-&116 0224—892

on pypes 1

) 12995500 1008

B° — h(1170)w 1.5524+03 0.99+00

0.9%5a03 0.9970%

B~ — hy(1170)K*~ 5.3+23+128 0.84+013

77754310 0.817017

B% — hy(1170)K*° 455330053 0.827518

ARERSFS 0.8110:19

'+0.007+0.010
o001 S
0.00176603 "0.000

B® — h(1170)¢ 0.97:03%

0.937997

+8.4+18.0

12.21?6.91'10.4
14.8132%11'7‘4

14.91?'0‘2_#10‘1
-9 -5.0-46

B~ — f,(1420)K*~ o.sozg;gg
e
06473

. —0.61

BY — £,(1420)K*

B — f,(1420)¢ 0.0001 (000800000 0.9754%
00008 8RN 098y

B~ — h;(1380)p~ 0.9%9303 0.950:00
i 595311 0.95%00)
B — 1,(1380)p° 0.0173:00 000 0.307033
y 0.02 5557006 0.01 %500
B° — hy(1380)w 01501708 0.9770%%
0.5707+04 0.98709%

B~ — hy(1380)K*~ 8113972 0.877013
+2.0+7.8 +0.12

B® — 1, (1380)K*0 315551355'58 812258%
! 3 9+%8+ng 0 88+821«2)

B® — h,(1380)¢ 0.004 "0 0030230 1007080
. —0.003—0.001 ©2 2 —0.14

Ba, K*
Apr_gr g © (af + afgy)XBerk)

+ifpfa Sk (b§ — 305 Ew)a ke

. . c (Bb,,K*)
‘ABO—»I;]*K*’ o« (af + a4‘Ew)X I

+ ifo;ﬂ‘,fK*(bg = 3DS ew)b k">

where we have replaced the decay constant f;, by f bll as
explained before [see the paragraph after Eq. (2.52)]. From
penguin-dominated B — V'V decays we learn that the pre-
dicted rates in default are typically too small by a factor of
2-3. In the absence of the experimental information for
penguin-dominated B — VA decays, we shall use the
penguin-annihilation parameters p, = 0.65 and ¢, =
—53° inferred from B — K*¢ decays as a guidance for
annihilation enhancement. Since the magnitude of b5 is
large for the b K* modes [specifically, bJ(bK*) =
—1.78 +9.92i and b%(a,;K*) = —0.19 + 4.11i], B—
b K* decays receive more enhancement from penguin
annihilation than B — a;K* ones. When penguin annihi-
lation is turned off, we have, for example,

B(B*— afK*7) = (3.671:4703) X 1079,
BB — by K*) = (4.1733753) x 1076,
BB~ — a; K*) = (4.1120717) x 1076,
B(B~ — by K*0) = (4.0139107) x 107°.

(4.19)

(4.20)

We see from Table VII that ¢;K* and b;K* modes are
substantially enhanced by penguin annihilation.
Experimentally, it is thus very important to measure them
to test the importance of the penguin-annihilation
mechanism.

We have checked explicitly that, in the absence of
penguin annihilation, the longitudinal polarization frac-
tions are close to one-half in a;K* modes and 90% in
b, K™ ones. This can be seen from the ratio of the negative-
and longitudinal-helicity amplitudes

A ~ (“Z’_ + “4,EW)(X§a1yK*) (4.21)
_ L c,0 0 : .
ﬂo B—»arKf a4 + ag‘EW XB{,ZI,K*

As discussed in the section of B— VV decays, the
interference between " and aj gy is generally construc-

tive for h = — and destructive for h = 0. Since
0 y— v+ — 1. .
|X§a1,1(*|‘|XBaI,K*|'|XBa1,1<* = 1:0.50:0.06, and
. — . + —1- . o o o
|XBh1,K* 'lXBh,,K* '|XBb|,K*| = 1:0.21:0.03, it is obvious

that the A~ amplitude of a;K* channels has more of a
chance to be comparable to A° than the b, K* ones. When
penguin annihilation is turned on, it is evident from
Table VII that a¢;K* modes are dominated by transverse
polarization amplitudes, whereas b;K* are governed by
longitudinal polarization states.
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The decays B — (ay, b;)¢ are highly suppressed rela-
tive to the tree-dominated (a;, b;)p modes as they proceed
through b — d penguin process and are thus suppressed by
the small coefficients for penguin operators. Moreover,
they do not receive any annihilation contribution.

On the experimental ground, our calculations suggest
that the tree-dominated channels af p~, a;p~, alp~,
a; p°, ay o, by p~ and bYp~ should be readily accessible
to B factories. Measurements of the penguin-dominated
modes a;K* and b;K* are crucial for testing the mecha-
nism of penguin annihilation.

2. B— K,(1270)V, K,(1400)V decays

To obtain the branching ratios and f; listed in Table VIII
for B — K,V decays, we have used the light-cone sum rule
results for the B — K4 and B — K form factors given in
Table II. The decays B — K¢ have been considered in
[20] based on the generalized factorization framework
where nonfactorizable effects are lumped into N¢', the
effective number of colors. It is interesting to note that
the results of [20] for B — K(1270)¢ are similar to ours
when N¢T is close to 5, but the predicted rates for
K (1400)¢ are smaller than ours irrespective of the value
of N°. From Egs. (B10) and (B11) we have the decay
amplitudes given by

ﬂh

. . v (BK,(1270), )
B —K; (1270)p ~ [@f + af + BS1X,

« [af + af + BSlk,, ¢ FPX1 sinf,
+[af + af + BSlk,, ¢ FP15 cosby,,

ﬂh

(BK,(1400),¢)
B~—K [ (1400)¢ * [a§ + azcl + :Bg]Xh 1

« [a§ + af + BSlk,, ¢ FP51 cosb,

- [ag + CYZ‘ + Bg]KlB¢FBKIB SinHKl,
(4.22)

where F2Kia denotes generic form factors for the B — K,
transition and likewise for FEXi5_ In our convention, form
factors FBX4 and FBX5 have opposite signs (see Table II).
Since the mixing angle 6, is negative, it follows that the
two amplitudes in Eq. (4.22) contribute constructively to
B~ — K;(1270)"¢ and destructively to BT —
K(1400)~ ¢. Hence, it is naively expected that the former
has a rate larger than the latter. Indeed, when the penguin
annihilation (B;) is turned off, we find BB~ —
K,(1270)" ¢) = 3.2 X 1076 > B(B~ — K,(1400)" ¢) =
3.1 X 10”7, However, this feature is dramatically changed
in the presence of weak annihilation with p, = 0.65 and

4 = —53°. Since B5(K;,¢) and B5(K ;) are opposite
in sign, the interference becomes destructive in B~ —
K,(1270)"¢ and constructive in B~ — K;(1400)" ¢.
This explains why we have B(B~™ — K,(1270)" ¢) <
B(B~ — K,(1400)~ ¢) in Table VIIL If this relation is
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not borne out by experiment, this will indicate that the
parameter p, and hence weak annihilation are small.

The decays B — K;(1270)p have rates larger than that
of B— K;(1400)p and this can be understood as follows.
Their decay amplitudes have the expressions, for example,

ﬂh

. v (Bp,K,(1270))
BO—K; (1270)p* « [ag + B51X;, "™

« [a§ + BS),k,, fk,, Sinfg,
+ [af + Bg]pKIBf,%IB cosby,,

leh o [az + Bg]XEIBp,K](14OO))

B—K; (1400)p ™
« [a§ + BS),k,, fk,, cOsOk,

— [a§ + Bg]pKleKt; sinf, . (4.23)

Just as for the case for B — K ¢ decays, the interference is
constructive (destructive) in K; (1270)p™ and destructive
(constructive) in K (1400)p ™ in the presence (absence) of
weak annihilation with p, = 0.65 and ¢4, = —53°. This
explains why the rates of the former are larger than the
latter, especially for 6x, = —58°, in Table VIII. Hence,
measurements of the relative rates of K;(1270)p and
K,(1400)p will enable us to see the role played by the
weak annihilation effect. If B(B — K,(1270)p) < B(B —
K ,(1400)p) is observed, this will hint at the smallness of
weak annihilation. The reader may notice that the decay
modes involving K(1270) and K,(1400) always have
opposite dependence on the mixing angle 6. For ex-
ample,  K;(1270)p*  gets enhanced  whereas
K{(1400)p™ is suppressed when @, is changed from
—37° to —58°.

Decay rates of B— K,(1270)K* and K;(1400)K* are
generally small because they proceed through b — d pen-
guin diagrams and are suppressed by the smallness of the
penguin Wilson coefficients. Their branching ratios are of
order 1077-1078. The decay modes K; K** and K K*~
are of particular interest as they are the only AV modes
which receive contributions solely from weak annihilation.
Just as for the decay B — K** K*~ discussed before, the
absence of transverse polarization in the K; K** and
K" K*~ modes is due to the fact that the annihilation terms
by, by, by, and b}y, vanish under our approximation.

From Table VIII, it is clear that the channels K p+ and
K9p~ for K, = K;(1270) and K(1400) have sizable rates
and the experimental search for them would be
encouraging.

3. B— f,V, h,V decays

Results for the decays B — (f}, h;)(p, o, K*, ¢), with
f1 = f1(1285), £1(1420) and h; = h;(1170), h,(1380) for
two distinct sets of the mixing angles 6: 3 and 6. p» are

summarized in Table IX. Among tree-dominated decays,
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the channels 4,(1380)p~ for 6ip =0°, f1(1285)p~ and

hy(1170)p~ have branching ratios of order 107> as they
receive color-allowed tree contributions. Many of the
penguin-dominated modes, e.g., f;(1420)K™, have branch-
ing ratios in the range of (5-15) X 107°. It is of interest to
notice that the decays involving /,(1380) in the final state
have a sharp dependence on the rates on the mixing angle
Oip -

C. B— AA decays

For the axial-vector mesons a;(1260), b,(1235),
f1(1285), f,(1420), h,(1170), h;(1380) and K,(1270),
K,(1400), there exist many possible B — AA two-body
decay channels. We will classify them into tree- and
penguin-dominated decays. The latter involves the strange
axial-vector meson K.

PHYSICAL REVIEW D 78, 094001 (2008)

1. Tree-dominated decays

The decay amplitudes for some of tree-dominated B —
AA decays are shown in Appendix B. Since the decay
constant of the b; is either vanishing or very small, it is
anticipated that b; b, channels are highly suppressed rela-
tive to a;a;. Some of a; b, decays are comparable to aa;.
We find that a; a; and a; @) modes have rates larger than
the corresponding p* p~ and p~ p° ones, but afa) is very
similar to p°p®. While afay, ayal, ayb{ and a;b?
modes have branching ratios of order (20-40) X 107°,
the other channels are suppressed by the smallness of either
f», or the coefficient a,.

Among various B — (ay, b;)(f}, h;) decays, we see
from Table X that only a; f(1285) and a; h;(1170) modes
and a; h(1380) with 61p = 0° can have sizable rates and

all other charged and neutral channels are suppressed.

TABLE X. Branching ratios (in units of 107°) and the longitudinal polarization fraction for tree-dominated B — AA decays. For
decays involving f; and h; states, we use two different sets of mixing angles: (i) 03,)1 = 27.9° and 01P1 = 25.2° (in first entry) and

(i1) Osp, = 53.2°, Oip, = 0° (in second entry).

Mode B fL Mode B fL
B~ —a;a) 22,41 107466 0.741023 B —afay 37.4418070] 0.647097
B~ —a; b 37.81539 1k 0.92+0:9 B’ — alal 0.5708+0:3 0.60+0:9
B~ — adb; LOZ SH0s 0.73751 B — a; by 41.31207+166 0.9075:%2
i S wmE Do
E_%O — bl+b17 3 21%:61(1)587 0.9518:8(3) BY — a\bj 3.8735755 0.987,3,
B = byb, 1.0Z5770% 0.96%0 65 _
B~ — aj f,(1285) 12.4734+62 0.73%922 B° — af,(1285) 0.1501%38 0.537013
110734769 0.71193] 0.170%27 0.49+2%
B~ — aj f1(1420) 0 2;%4%5%;) 0.42%%;‘%% B° — alf,(1420) o.ozz(g);ggg;éi 0.14%%
15253700 0.77 33 ) 0.02Z601 20,01 0.18Z57s
B~ — aj hy(1170) 22,4+ 145433 0.91%993 B° — aYh,(1170) 0.1793+2 0.24+976
14170508 091508 0.087047%33 030107
B~ — aj h(1380) 12757403 0.9059 B° — afh,(1380) 0.01t§;§}t§;5§ 0.32t§;§;
7.6%30%09 0.8905% _ 0.05 7063000 0.08%4:03
B~ — by f,(1285) 0.8%5:3%43 0.821010 B° — bYf(1285) 0.2104727 0.487033
0 7%2?35 1 0.79t8;£ i 0.2tg;~ft3§ 1 0.36}%22
B~ — by f,(1420) o.oia('é;g%,gg;o? 0'73%8?; B — b f,(1420) 0.01 g%ﬁiggb‘f 0.6618;?2
0.2Z07707 0.8975 _ 0.120770% 0.81%0 4
B~ — by hy(1170) 1.2325%02 0.95%993 B° — bYh,(1170) 0.2502%>1 0.861012
0.8 53430 0.9470.03 0.1702+34 0.867012
B~ — by hy(1380) o.oigg;é%tog;gg 0'85§§3§§ B — bYh,(1380) 0.01§§;§£§l;;§§ 0.47;%;1{;
_ 0.3%02 03 0.94577 B 0.04Z5.65 %600 0.817079
B® — f,(1285)f,(1285) 0.3103131 0.67+0% B° — hy(1170)h;(1170) 0.873671¢ 0.97+291
0.2703722 0.661007 0.4701%0% 0.97*0%
B% — £,(1285)f,(1420) 0.01£§;§£§;é§ 0.26£§;% BY — h,(1170)h,(1380) m%ﬁé 0 97;%;2{1
0.05+395+0 0.57+% 0.3796+0. 0.96*%
fiEn IS = B s peE 4
; P oo B o o 07
B — £,(1285)h,(1170) L1t5oeh] 0.98+5.92 B® — f,(1285)h,(1380) 0.05F 053007 0.97+99
0.675:10% 0.97700% 0.3%05%03 0.9770%
B — £,(1420)h,(1170) 0'02§§3$§$§3§§ 0.87£§;(12)é B — £,(1420)h,(1380) 0'0013%3%%%%3883 0.74;%21
0.08Z5,040.01 0.967571; 0.04Z5 03 001 0.95%571;
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2. Penguin-dominated decays

The penguin-dominated B — AA decays involve at least
one K; meson. Results for the decay modes K (a;, by, f},
hy, K,) are summarized in Table XI. Some salient features

PHYSICAL REVIEW D 78, 094001 (2008)

K1(1270)b1) > F(B_’ K1(1400)a1), (11) B_’Kl (Cll, bl) de-
cays are dominated by transverse polarization amplitudes
except for K;(1400)b, and K;(1400)a, with 0y = —58°,

TABLE XI. Branching ratios (in units of 107°) and the longitudinal polarization fraction for penguin-dominated B — KA decays
for the mixing angles: (i) 0, = —37°, 03*’1 =27.9° and 01,3] = 25.2° and (ii) O, = —58°, 03Pl = 53.2° and 01P1 = 0°. Default

results are for p, = 0.65 and ¢4

53°.

0[(1 _37° 91([

Decay B fr B fr
B® — K, (1270)a; 42.373831 1656 0.241016 461750971768 0.167238
B° — KY(1270)a! 21632357582 0.27+0¢ 22.4+308+887 0.15%028
— fime, sl il aniily
B~ — K; (1270)a 2387301484 0.26*0 263316487 0.20*0
B0 — R9(1400)a! 67733774 0,453 5574371 0,981
B — K0(1400)07 13 8I?l;fls7 1 0 42;858 9 0184;238 0 98;812
B — K a 34+ 13340 (] H3e+lo. .94 +0.
BO — K1_1(1270)bi& 14 8+?20.9f235 8 028+8gg 141-%—%5?7363.1 0134—83?
B° — R9(1270)° 73;7)%1'153(7) 02918}1% 69194711%411% 0'12;8%3

1 1 Y —7.5-14.9 Y1 =0.13 *¥—6.0-10.8 —0.09
B~ — K (1270)b) 9.07%31363 0.397040 8.115313%2 0.22753

BY — K (1400)b;
B® — K9(1400)p"
B~ — K%(1400)b;
B~ — K (1400)p°
B° — K9(1270)£,(1285)
BY — K%(1270)f,(1420)
B® — K9(1270)h,(1170)
B® — K9(1270)h,(1380)
B~ — K, (1270)f,(1285)
B~ — K, (1270)f,(1420)
B~ — K; (1270)h,(1170)
B~ — K (1270)h,(1380)
RO _, 70
Ko

1 1
B® — K9(1400)h,(1170)
B® — K9(1400)h,(1380)
B~ — K, (1400)f,(1285)
B~ — K, (1400)f,(1420)
B~ — K (1400)h,(1170)
B~ — K, (1400)h,(1380)
B — K (1270)K; (1270)
B — K, (1270)K; (1400)
B — K (1400)K; (1270)
BY — K (1400)K; (1400)
B — KY(1270)K9(1270)
B — K%(1400)K?(1400)
B — K%(1270)K{(1400)
BY — K9(1270)K9(1400)
B~ — K)(1270)K (1400)
B~ — K; (1270)K)(1270)
B~ — K; (1270)K?(1400)
B~ — K, (1400)K?(1400)

137342055
25.01}3:;111%6';
13.07 1344110

+28.6+231.4
e
13.3%55755"

+20.1+68.4
0483
*T-35-63
5.3+8.7+2547
+13.3+38.4
1221%’1.51”7344
10.9+97+557
9497+

76,
+9.3427.4

6.57357%

9.0 +147+40.4

+0.12+1.07
ppdpi TR
0.20-030+39
0.16+0.17+1:03
0.29+023+49)
g5+034+ 105
PR LIRS
*Y=—=0.01-0.0
0.135007 5003

+0.16+3.16
0.2175 15 502

0.9109%3
+0.05
oor i
0.92+091
0.5670:35
0.93+0:2%8
0.52+0A46
0.60+046
-0.75
Rt
2 —-0.62
0.93t§;§§
0.127948
0.04+0A95
0.96 002
0.557019
0.15+037
0.0370:33
0.96*29
0.56+0'12
) —0.09

1

1

1
0.67702)
+0.32
gt 11
0,660
0.9470%
051707
0.74+O.28
—0.53

0.417538

3.9-5.9

26 2+24.2+209.2
+123+100.4

13.7+12%

+27.2+235.5

Tagr B
5 7+84eI10
7 —=8.0-10.7
4. 1+11.3+7.8

+11.5+33.5
8'513'013'42
6.275¢72%
19 7+21.8+85.6

el
5.6712240

+12.3+33.5
8.97557 4
2 2+2.2+ 10.7
$262+95.4
o
21.0%574 97
6 5+8.4+33.2

3,
2.2+23+10

+27.3+99.9
22,5757 10

0.104:8.104:1423

+0.02+0.34
02302
0,04+0.08+063
04405833
ot R L
“YY=0.01-0.0
s V15728
0000000
*=2=0.13-0.02

+0.10+0.36
0117505 004

o753t
V=029
e
0.91+004
7 7=091
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and (iii) the charged and neutral B decays have similar rates and longitudinal polarization fractions. For example, B(B__ —
Ky (fi, ) =BB°— K, (f1,h)), BB~ — K (a}, b)) = B(B* — K(a}, b)) and B(B~ — K(a;, by)) =~ B(B" —

K (af, b)).

The first feature can be understood as follows. Consider the decays B — K| (a{, b{") as an illustration. Their decay

amplitudes are given by

h
A BY—K; (1270)a;
Ah

BY—K; (1400)a;
Al

A h

BO—K; (1400)b;

x[.. ‘]alKlAleA cosb,

B'—K; (1270)b/

x[.. -]bIKMfKM cosbg,

Since Ka; modes are dominated by transverse amplitudes
and since the negative-helicity parameters such as
ay(a1K,) and a; (a;K,p) have opposite signs, it is clear
that the interference is constructive in B — K;(1270)a,
and destructive in B — K;(1400)a, for a negative mixing
angle O . This also explains why the former increases and
the latter decreases when the mixing angle is changed from
—37° to —58°. For the K;(1400)b; modes dominated by
the longitudinal amplitudes, they have large rates as
a9(h,K,,) and aY(b,K ) are of the same sign. In general,
Kia, and Kb rates are insensitive to the value of O ,
—37° or —58°, except for K;(1400)a; modes. It is inter-
esting to notice that K;(1400)a, channels are dominated by
transverse amplitudes for 6 = —37° and by longitudinal
ones for g = —58°. Therefore, measurement of polar-
ization fractions in B — K;(1400)a, will yield a clear
discrimination between the two different K, — K;5 mix-
ing angles. Branching ratios of B — K, (f}, i) fall into the
range of 107°-107>. At first sight, it appears that they
depend on the mixing angles 6 and 6, p, O Osp.
However, the latter two angles are correlated to the first
one [see Eq. (2.4)]. Consequently, the decays B —
K,(f1, hy) depend on only one mixing angle 6 . From
Table XI it is clear that the mode K;(1400)%4,(1380) has a
strong dependence on 6, .

Justas B — K, K* decays branching ratios of the b — d
penguin-dominated K;K, modes are small, of order
1077-107% owing to the smallness of the penguin
coefficients.

In short, there are many penguin-dominated B — AA
decays within the reach of B factories: K;(1270)a;,
K(1400)b;, K,(1270)by, K,(1400)a;, K,(1270) X
(f1(1285), f,(1420)) and K,(1400)(f(1420), h,(1170)).
In most cases, transverse polarization is large except for
K,(1400)(b,, h,(1170)), K,(1270)(f,(1420), h,(1380))

I I I (Bay,K,) :
[afl +a fléW + BC - ZB3EW H1K1Xh e [ : ']“]KIAfKIA slneKl + [ : ']alKleIJ(_lB COSHK]’

= [ Juk, /i, sinfx,,

(4.24)

[y k,, Sk, sinOk, + [.. ']blKIBf%m cost,,

- [ . ']blKIBf;(_m Sinﬁkl .

with 0x = —37° and K,(1400)a, with O, = —58°
where longitudinal polarization dominates.

V. CONCLUSIONS

In this work we have presented a detailed study of
charmless two-body B decays into final states involving
two vector mesons (VV) or two axial-vector mesons (AA)
or one vector and one axial-vector meson (VA), within the
framework of QCD factorization, where A is either a *P| or
!P, axial-vector meson. Owing to the G parity, the chiral-
even two-parton light-cone distribution amplitudes of the
3P1 ( P,) mesons are symmetric (antisymmetric) under the
exchange of quark and antiquark momentum fractions in
the SU(3) limit. For chiral-odd light-cone distribution am-
plitudes, it is other way around. The main results are as
follows.

(i) We have worked out the hard spectator scattering

and annihilation contributions to B — VA and B —
AA decays.

(ii)) NLO nonfactorizable corrections to longitudinal-
and negative-helicity effective Wilson coefficients
al' generally differ in magnitude and even in sign.
For some VV modes, the constructive (destructive)
interference in the negative-helicity (longitudinal-
helicity) amplitude of the B — V'V decay will render
the former comparable to the latter and bring up the
transverse polarization. Any serious solution to the
polarization puzzle should take into account NLO
effects on a’.

(iii)) The measured rates and f; of penguin-dominated
charmless VV modes can be accommodated (but
cannot be predicted at first) in QCD factorization
by allowing for sizable penguin-annihilation contri-
butions. However, the parameters p, and ¢, fit to
the data of K*¢ and K*p are not the same. Hence,
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@iv)

)

(vi)

(vii)

(viii)

(ix)

we do not have a good hint at the values of p, and
¢4 for B— AV and B — AA decays.

While NLO contributions due to vertex, penguin
and hard scattering corrections are insensitive to
the choice of the renormalization scale u, the
penguin-annihilation contribution at the hard-
collinear scale is sensitive to w. In the present
work, we choose u = my,(m,,) for the reason that if
u = my(m,)/2 is selected, the decay rates and po-
larization fractions of B — K*¢ or B — K™ p cannot
be simultaneously fitted by the annihilation parame-
ters p4 and ¢y4.

The predicted rates and longitudinal polarization
fractions by QCD factorization for tree-dominated
pp modes are in good agreement with experiment,
but the calculated B(B~ — p~ w) is slightly high.
The latter may imply that the B — o transition form
factors are slightly smaller than what are expected
from the light-cone sum rules. Only in the decay
B° — p%w where a large deviation from the naive
expectation of f; ~1 is possible. We found
f1(p°w) ~ 0.55.

Using the measured K*’p~ channel as an input,
we predict the branching ratios and polarization
fractions for other B — K*p decays and find the
relation f; (K*~p%) > fL(K*~p™) > fL(K*p7) >
f1L(K*°p?). Experimentally, it is quite important to
measure them to test theory. Our result of
frL(K*p% ~0.39 is consistent with experiment
and is higher than the prediction ~0.22 made by
Beneke, Rohrer and Yang.

The calculations suggest that the tree-dominated
channels af p~, ayp~, alp~, a; p°, aj w, b p~
and bYp~ should be readily accessible to B factories.
One of the salient features of the 'P; axial-vector
meson is that its axial-vector decay constant is small,
vanishing in the SU(3) limit. This can be tested by
measuring various b;p modes to see if I'(B® —
byp*) <T(B"—bfp~) and I'(B~ — by p°) <«
LB~ — bip).

In the absence of the experimental guideline, we
employed the penguin-annihilation parameters p, =
0.65 and ¢4, = —53° inferred from the channel B —
K*¢ to describe penguin-dominated B — VA, AA
decays. It is very crucial to measure the penguin-
dominated modes a;K* and b;K* to test the impor-
tance of penguin annihilation. We found that a; K*
modes are dominated by transverse polarization am-
plitudes, whereas b K™ are governed by longitudinal
polarization states.

For B— K,V decays involving the K;(1270) or
K(1400) meson, the channels K; p™ and K{p~
have sizable rates and the experimental search for
them would be encouraging. Measurements of
the relative strengths of K;(1270)¢(p) and
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K,(1400) ¢ (p) will enable us to test the importance
of weak annihilation. The rates of B — K,(1270)K*
and K,(1400)K* are generally very small. The
decay modes K; K*" and K K*~ are of particu-
lar interest as they are the only VA modes
which receive contributions solely from weak
annihilation.

(x) Among the decays B — (f}, h;)(p, w, K*, ¢) with
f1=f1(1285), f,(1420) and h; = h,(1170),
h(1380), the tree-dominated modes /;(1380)p,
f1(1285)p~, h;(1170)p~ and several of the
penguin-dominated channels, e.g., f;(1420)K*,
have appreciable rates.

(xi) For tree-dominated B — AA decays, the a;aj,
a; a%, ayb{ and a; b? modes have sizable branch-
ing ratios, of order (20—40) X 107%. Among various
B — (ay, by)(f,, hy) decays, only a; f(1285) and
ay h(1170) modes and a; h,(1380) with rp =0°
can have large rates and all other charged and neutral
channels are suppressed.

(xii) There are two salient features for penguin-dominated
B—AA decays: (i) I'(B — K,(1270)a;) > I'(B —
K,(1400)b,) > I'(B — K,(1270)b,) > I'(B —
K(1400)a,) and (ii) most of them are dominated by
transverse polarization amplitudes except for
K,(1400)b; and K;(1400)a; with 6y = —58°.
Since the K(1400)a; channels are dominated by
transverse amplitudes for 6 = —37° and by lon-
gitudinal ones for 6 K = —58°, measurement of po-
larization fractions in B — K;(1400)a; will yield a
clear discrimination between the two different
K4 — K, mixing angles. Many penguin-dominated
B — AA decays are readily detectable at B factories:
K(1270)a;, K,(1400)b,, K,(1270)b7, K;(1400)a},
K (1270)(f,(1285), f,(1420)) and K,;(1400) X
(f1(1420), 1,(1170)).
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APPENDIX A: FLAVOR OPERATORS

p

The coefficients of the flavor operators a?’ can be ex-

pressed in terms of af"p [5,6] as follows™:

“The numerical values of the coefficients a;(M,M,) also
depend on the nature of the initial-state B meson. This depen-
dence is not indicated explicitly in our notation. The same
remark applies to the annihilation coefficients b? defined below.
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at(MM,) = a'(MM,),
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“g(Mle) = aél(Mle),

hp ag (M, M,) — ag’P(Mle) for M, M, = VA, AA,
as (M M,) = p hp
(M Mz) + ds (M Mz) for M1M2 VV AV
o (M M) = {a4 (M, M,) + r¥2 P(M,M,) for MM, = AV, VA,
4 : (M My) — rX a6"(M M,) for M{M, = AA, V'V, (A1)
hp 619 (M M2) (M M2) for M M2 = VA AA
Cl3,EW(M1M2 = hp ]7
(M M2) + 617 (M M2) for M Mz =VV, AV
B alo P(M,M,) + r,/ bP(M\M,) for M{M, = AV, VA,
a4EW(M M2 = hp _ hp
a"P (M My) — rY2al? (M My)  for M{M, = AA, VV.

Note that the order of the arguments of a”(M;M,) and
a?(MM,) is relevant. For vector mesons we have

, (A2)
my(u)  fy
while for axial-vector mesons we have
2my fa(w)
MA(p) = —A A (A3)
T

APPENDIX B: DECAY AMPLITUDES

For simplicity, here we do not explicitly show the argu-

ments M, and M, of a” " and BY " coefficients. The order
|

G
VA, =2LS )d,,f”{[ s+ B + 208"+ &+ Skl —

B~ —>a w \/ip:uyc

+ [517;4(611 + ﬁ )+ aph + a/f:élw + ﬁph + B3EW]X(BwaI)}

of the arguments of af (M, M,) and B} (M, M,) is consis-
tent with the order of the arguments of X(®¥1M2) where

ifsfu S,

p _

(B

The decay amplitudes for (ay, b,)p, (a;, b))K*, (f}, hi)p,
(f1, h)K*, K;p and K;K* can be obtained from
Appendix A of [1] by the replacement of P by V with
the same quark content.

For VA modes, we only list those channels involving @
and ¢ vector mesons. For other B— VA decay ampli-
tudes, the reader is referred to Appendix A of [1] with a
simple replacement of the pseudoscalar meson by the
vector meson.

1 1

Ba,,
3 C(4 EW :8 :83 EW]X§1 awe)

(B2)

o 1 1 3 o
_2‘5420—»(1% = T Z )‘(d){[ - B+ 2aph + aph + 5a é’ﬁ:’w 2a4EW Bph :33 EW 4EW]X(B )
0 3 o0 1 ph 3 opi ylBea)
5pu( a2 Bi) + a 2“3 EW 2“4Ew + 18 3EW T 5 P4EW X g (B3)
Gr i .

Ao =5 T A" —gativ i} ®

SAn Gr @[[ gon — L pi Jyara]
- 2“541?0—»“?(;5 = NG Z Ap il ez — 5 ¥3EW X, (B5)

p=u,.c

for B — a(w, @),
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h h 1 1 1 h (Efq»w)
2547;0_.f1w \/— =D /\(d){[apu( bt Bl +2ad" + o e g~ 20‘4Ew+ﬁph+2,3 _25§éw 2IB4EW]Xh 1
p=u,.c

1 1
h h (B S
+[ W(az—l-,Bh)—f-Za +af +2a§Ew 2a4Ew+,8 -i-2,8£’17 ,83Ew+ B4EW:| @

A g = Sathy o) (B6)
f
Gr @ w1 o B9 Gr (s) J a_ L o
2Ry = g 5 A e ety 7 Ao = 5 3 W[ 08"t =3l
p=u,c =u
1 1
I ph_ 1 oo ] 1 n B ] B, ¢)}
Fofrafo B8 =580 Saliy + B = 2Bl
(B11)

1
+ 2fof;f¢|: - 5 Z'lf:lw:l } (B7)
I
for B — K,(w, ¢).

for B— f(w, ¢), The relevant decay amplitudes for B — AA decays are

\/—‘AB —K o T z /\(‘){[apu(a’ + Blzl) + a G 3
’ :C hy (Bw,K)) VDAL —ay ! :TF > )‘(d)[Spu(“l +ab) + 2 ag’é’w
+ )y + By 3EW]X fok o
’ 3 o Jy(Bayay
+ [5 Lol + 2a”h + lafgw]x}gﬁpw)} + 2a£Ew]Xh e (B12)
> ,
(B3)
G
h =LY A9 s + B +
h Gr O[[ pn 1 Aaar V2 :Z ! [ o+ )+ o
V2 A% g, = 75 > | el 50‘4Ew + By e
p=u,c h h N 1 h
U on Totbo i i +a£EW+B§ +2,8ff ) g,EW
L R+ [+ 2 |
1 S +3 ,34EW:|XEIBa1'al)r (B13)
+ 5kt el (B9)
— Ah % Z (d) 8 .( h)_
. ] Bl ~ 5 puleh = BY) = af”
an =G ,\(”{ Bl + ol + b e
B =K ¢ 2p=zu,c p | pui=2 3 p.h 1 ph _ pph p.h
. | + ) A3pw Tt 50‘4,Ew 3 2P,
ph ph
— + By by e ] 1
) A3pw — B Q4w ’iEW :83EW 4Ew:|X(Ba1 al) (B14)
X x,(f’“"ﬁ)}, (B10)

1 1

d ,h n,h h (Bu f)

\/_AB —aify 2 Z ’\( ){I:(Spu(ag + :83) + 2a§ ay” + 5 ng 2a4EW + B "+ BzEW] '
p=u,.c

- \/E[ag'h 2a££W]X(Balf U (8 pu(e} af + ) + aph + “f]f:lw Bg’h 3EW]XW1 “1)}’ (B15)
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2Rl = A“”{[apu( — B+ 2k apt Sl — sty + B =3 B — 3 B
V2,5,
+ \/_[ 5 ggw]le?al,fi) + [8Pu(_ag - B}f) + af’h - ; ggw ;a41~:w + IBPh
~ 5 Bl — 3 Bt ), ®16
for B — a(a,, f1), and ﬁﬂ%pgv _r Z A(,‘f){[aff’h l“4EW + By
V2 An Gr (s) h h p.h N ﬁp:m T s ’
2A% e ﬁpg’c)lp {[apu(al +B3) +ay _% é’:}’gw X;Bf?’K‘) + [5Pua§' + 2a§’h

p.h p.h (Ba,K;)
T ayrw T B3 +B3wah o

3 BK,a
+|:5pua§ B SEW]X( 1)}

(B17)
Gr (s) w1 o
3~ G T o et
+ B+ BY Ew]x}f“"’?'), (B18)
Gr
ﬂgo_«f(ﬁ = T z /\(S)I:5 ah + ozph + afélw
B Bl R B1o)
B =% 5 [t Lt -t
BO— RO40 \/5 20‘4,Ew 3

+ [apua’; 5 ”gw]xf’?l'“”}, (B20)
Gp s
\/Eﬂlg_ﬁ,(l_fl = 7, :Z Al ){[apu(al + BN + af
, (BfRy)
+ af;gw ,th zEw]X v

1 BE,
+ [8puag + 2a§’h + Eag,’gw]XilBK"f‘)

1
+ 8,uB + b+ al” Sl

Lo, h B
2a§ElW+BP +183EW] ] }

(B21)

+ %aﬁ’é’w:Xiﬁ"ﬁ) + \/zl:ag‘h + aff‘h
;“glf:lw_;a%Ew"',B - :83EW]
x X\ PRl (B22)
for B— K,(a,, f,), where A = Vs Vias A = o5 Vs
and the helicity- dependent factorlzable amphtudes

X(BMl M>) are defined in Eq. (3.16). The decay amplitudes

for B — b,(w, ¢) are obtained from B — a,(w, ¢) by
replacing a; — b,. Likewise, the expressions for B —
h(w, @) decay amplitudes are obtained by setting (f;® —
hiw) and (f1 ¢ — hi ).
APPENDIX C: AN EXAMPLE OF THE
ANNIHILATION AMPLITUDES IN B — AV
DECAYS

In this appendix we show an explicit evaluation of the
annihilation diagrams in Fig. 2 with (M, M,) = (A, V) and
the conventions p}, = En# and p’ = En’;. The longitudi-
nal annihilation amplitudes of Figs. 2(a) and 2(b) read

T aa
Agig 2 = —2(0ld(1 — y5)b|B)(ig,)? r(t 1)
X f()l /: dxdy(_I)Tr[Mﬁ()’))’ng‘l’(x)'y‘sya
i(=i)(k + py)*
X (1+ C1
( 75)] (k + pv)z()_CpV + k)2 k=ypa (b
and
(®) © (d)

FIG. 2 (color online). Annihilation contributions to the decay
amplitude of B — AV, where (a) and (b) correspond to A'ﬁ and
(c) and (d) give rise to Al.
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Tr(t“ %)

Agig 20) = —2(0ld(1 — y5)b|B)(ig,)?

C

[ j dxdy(— 1) TH] ~ y, ysM{ () 7P MY (3)

i(—i)(pa + B
(k+ypa)?(k + pa)? | t=sp,

X (14 ys)] (C2)

respectively. The longitudinal projectors Mﬁ and M |‘|/ are
given in Eqs. (2.28) and (2.30), respectively.

Case 1: Taking

My — — L A ) gy

s 2
(y)—> _ fA;”A mA(GzAE n.)
x{éawvsnﬁnzhf,’)(y)— /(,,z)(y )}, (C3)
and using
Old(1 — ys)blB) = i f o Bmd (C4)
we have

A¥igs. 2(2)+2(b)

- —iﬂ'asﬁfovar;‘( jl ]1 dxdy®/(x)

y '><y> +3h"0) ")
()

1 1
= —2i7TaS—CF Fofvfart [ j dxdy®/ (x)
N, XJo Jo I

1
< 0,00(). (C5)
Xy
where use of [ldy®,(y) =0 has been made.
Case 2: Taking
fv my my(€" - n,)
M) = =iy 2E
i i)
X {—Eaﬂyn“n+h(t)(x) + } (C6)
and
famy(e - n_)
Mi(y) — —z%‘ P, (€D
we obtain
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AFigs, 2(a)+2(b) —

C
~ima Efafutart [ [ dsayey o)

y h(’)(x) +1 h'(s)(x) hi (x)
(=)

. C 1 [
= ~2ima, L fututart [ [ drdyaf)
N, 0 Jo

1
X ch(x)(W). (C8)
Case 3: If
M) — =L My g, (o)
and
(y) fA4’:nA mA(EzE )
X{iE yo (y)o n L} (C10)
Yy \y ,LLVYS + akly »

then we have

C
3) . F
AFlgs 2(a)+2(b) Zlﬂas FfoVfArﬁ
11 1
X [ / dxdyCDl‘l/(x)(I)a(y)<_—). (C11)
0 Jo Xy
Case 4: For
d
(x) fva mv(€2E n;) {iEx)E(I)U(X)U;w”f kl,,}’
(C12)
and
M) — —i T2 M)y e, c1s)
we have
) C
Agé 2(b) = 2ima FFfovar}(/
1 [l 1
X f f dxdyCID‘l‘l‘(y)(I)v(x)<_—). (C14)
0 Jo Xy
Finally, we obtain
A+0) —rira CF "
Figs. 2(a)+2(b) ”Tas_foVfA X
/ [ dxdy®d, (y)CD (x)( ) (C15)
and
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C 1 [l
A5 Sy = 2ime S Fut bt [ [ vy
X CDv(x)(1_+2y ) (C16)
Xy
We are led to
21 +
ALAV) = 7a, ﬁ dxdy{—rj‘(cba( YOI (y) =5 ( y)
O, (y 2L+ ) ”)}. C17)
Likewise,
) 1 2(1 +
ALV = e, [Lasa o, o T ( y)
— A () x)}, C18)
a i) = ma [ asar] - v LY
—ﬁwwaxﬁ“”} (C19)
Ag’O(VA) = wasf dxdy{ Vd (x)(I) (v )2(1 *3)
+ ADY ()P, (y )2(1 * x)}. (C20)
This implies
CVV — CVA — _CAV — _CAA — 1’
(C21)

DVV:DAA — _DAV= _DVA — 1’

which lead to the third line of Eq. (3.39).

APPENDIX D: EXPLICIT EXPRESSIONS OF
ANNIHILATION AMPLITUDES

The general expressions of the helicity-dependent anni-
hilation amplitudes are given in Egs. (3.29), (3.30), (3.31),
(3.32),(3.33),(3.34), (3.35), (3.36), (3.37), and (3.38). They
can be further simplified by considering the asymptotic

1
distribution amplitudes for ®,, ®,, <I> ' and @f‘ and the

|| ’
. i 'p
leading contributions to @, "' and CI)a
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p
(Dl‘l/(u) = 6ui, (ID“ "(u) = 6ui,

P, e,
CD” (u) = 18a, 'ua(u — 1), D, (u) =32u — 1),

CI)ZP‘ (u) = Baf"w‘ (6u? — 6u + 1),
O () =30u—1), Y (u) = 6ui,
CI)lp'(u) = 18a1l’3p‘u12(2u — 1), q)llp'(u) = 6uii,
M M
ov = [ av ) v [ o 2
+ " v ’ — 0 'D .
(D1)
We find
f.0 ~ Vi Vay(y0 0
AL(ViV,) = —187a(ry' + r?)(X5 —2)(2X5 — 1),

(D2)

- m m
AT (V) = —187Tozs< v+ m—“rXZ)(2X; -3)
Va

Vi
X (X7 — 1), (D3)
ALVIP) ~ 187a,(2X0 — Dal " rl1(x0 - 3)
— V(X9 - 2)] (D4)
ALT(V3P) = —187a,(2X; — 3)[ il Xy — 1)
my
—3q P P x - 2)], (D5)
ALOp! - 0 'P) (30
POWip)) =~ 18ma (X0 — 2)[r, (2X3 — 1)
al "1 (exg — 11)] (D6)
ALT(VIP) = —187a (X, — 1)[ rX "exy - 3)
myp,
Fen(exi - 5))]
+ 2X; ——) |, D7
a; my 4T3 (D7)
AYPCP V) = —AL(VPP)), )
ALTCPV) = —ALT(VPP)),
AP Y)Y = AV, 0o
ALT(PV) = AT (VIP)),
AP EP L) = —187a,(2X — 1)(X§ — 3)

3 3
X [a 1 CP, [ Pl + af-,[ P,]er(Pl]z]’

(D10)
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AT (CP PP L) = —S4ma,2X; — 3)(X; —2)
m
mpp

Lpp L, M,

+a] Ark ] (D11)

mpp ,
AP P, L) = 187a, (X9 — 2)(6X9 — 11)

I 1 1 1
% [Clllll P]]ZFE/PI]I + alll,[ Pl]lr&Pl]z]’

(D12)

ALT([PLIP L) = 187a (X — 1)(2)(; - 1?7)

% I:alll,['Pl]z mep 1, AP
m[ll’l]l

e, 1, e, [IP]]z]

(ll —r/\/ y

m[IPI:IZ

+ (D13)

ALOCPP)) = —18ma,r" (X) — 2)2X5 — 1)

+a" D (X9 - 3)6x9 — 11)]
(D14)
F=GBp ip ) ~ "Bp Py -
Ay CP'P)) = —187ay Erx (X, — DX, —3)
1
1 3 mi 3
+ 3a|]|’ P‘alL’ L rXPl
m3Pl
17
X (X7 — 2)(2)(; - ?)] (D15)
Ag’o(lpﬁpl) — AJ;',O(3P] lPl)’ (D16)

Ag'i(IPlSPl) = _A§’7(3P11P1)’

2
AL (Vi V) = 18ma (—ry + rXZ)(XgZ —2X§ +4 - %)

(D17)
. m m
A (V) = —187TC¥S<— V2 r}?' + r)‘;z)
mV] sz
X (XX2 —2X, + 2), (D18)

. 3 3 2
AP(V3P) = —18ms[af"’31 e (ng —2X9 -6+ %)

2
+ r¥<ng —2XQ + 4 — %):I (D19)
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m3Pl

A (VPP = 18m5[ P2 - 2X; +2)

my
L3p my 3 _ 27
+ 3a P v rXP‘<XA2—4XA +—)],
msp 3

(D20)

. 1 2
APWVIP) = —187Ta5|:rXP‘ (Xff —2X9 +4 - ”—)

I'p

3
+ 3a; ‘rX(ng — 4Xg -4+ 77'2)],

(D21)

1
ol - 2x5 +2)

Ay (VIP)) = 187ms[
) mip

1

1 mi
+ alll' i ry(X 2 —2X, — 2)],
my

(D22)

. 3 3 2
A§0(3P1V) =~ 187Ta3|:a1l’ P rXPl <X32 -2X} -6+ %)

2
- rK(ng — XY + 4 — 1) ] (D23)

3

001 P[0 0 m
A ('PV) = 18may| —ry '| Xy —2X3 +4— —

I'p

3
+ 3a, ‘r;(/(ng — 4Xg -4+ 772)],

(D24)

ASTGPV) = A (VP)),

: , (D25)
A(IP V) = —AS(VIP)),

2
Ago([3P1]1[3P1]2) = 1877'0%()(22 - 2X91 —6+ %)

J-’[SPI]] r[SPl]I
X

3 3
X [a] _ af-)[ P]]ZrE‘/PI]Z],

(D26)

i~ (3 3 -2 _ 2
Ay (PP LPP L) = —S4ma | X, 7 — 4X, +T

% [_ali,PP,]l mpp g, L
m[3P1]1

3 mps 3
+ TPk TR P ] (D27)
m[3P1]2
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AL[P P L) = —54ma, (XS — 4X3 — 4 + )
% [agv[]Pl]er\iPl]l + alll’[]P‘]‘rE(lP‘]z],

(D28)
Ay ([P LI'P L) = —187ma (X2 - 2X, — 2)
% [a'll’[lp‘]z Mk [P
m[lP 1
niri
|1|[]P]1 [P]] [P]Z]’ (D29)
mep L,

i03p 1 P[0 0 ™
Ay CP)'P)) = 187Tas|:r)( (XA —2X, +4 —?)

|I‘P UP 3p,
+ 3a a; 'ry!

1172
X (ng — 4X9 + 40 — 3” )] (D30)

AOPP)) ~ —18ma,| AP (X2 = 2X; +2)
3 11 T mip Fx \A&a A
1

I'p, L3p Mip,

3
—3a, 'a ;’)(P‘(X;2 —4X;

mSPl

+24 — 2772)], (D31)

i0(1p 3 P00 0 m
Ay (‘PP = —187Tas|:r)( (XA - 2X3 +4—?)

“’IP] J-’3})1 3Pl 0% 0
+3a, 'a, ¥ Xy —4X,

1172
+40 — 3” )] (D32)
AL (PP = AL CP'P)), (033)
0 2
AL (Vi Vy) = 187chs[<X91 — 4+ ?)
+ rX r')(2 (XO 2)2]’ (D34)
APV = AP (VP
2
~ 18was[<xg — 4+ %)
_ af‘ 2F‘] V P] (X02 o SXO + 6)] (D35)
AOVIP) = 187a,[a" 1 (BXY + 4 — 7?)
—rY rX I(XO )2], (D36)
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IL'P

ASWIP) = 187a[—da) (X + 29 — 37?)

+ (xS - 2] (D37)
AP V) ~ —187a,[al" T (X0 + 29 — 372)
+ rXrle‘ (X3 —2)] (D38)
AX(PV) = 187a [a” P1(3X0 +4—72)
+ (x4 - 2] (D39)
AYCP V) = —AYCPY)
77.2
- 1877013[()(2 44 ?)
+ all PerrXP1 (ng — SXX + 6)], (D40)
AP V) = A (VIP)), (D41)
2 77.2
ASCP PP L) = 1877“S[<X2 —4+ ?)
3 3 3 3
_ all,[ PI],aIL,[ Pl]er(P]], VE‘/PIJZ
X (Xa — 3)2], (D42)

ASCPLIP L) = 18ma[~3alt Ml (xg — 71

+ 77 + AT rE(P‘]Z(Xg ~2y)

(D43)
APCP P ~ 187a[d" " (3XY + 4 — )
—a "D (- sxg 4 6))

(D44)

AGPIP) ~ 187a[a" T (X0 + 29 — 372)

3 3 1
— all Py rXPl r)(Pl (ng — SXX +6)],
(D45)
AP(PRP) = A CP P, (D46)

where the logarithmic divergences occurred in weak anni-
hilation are described by the variable X,

1d 1] 1
f X, f M, X, (D47)
0o u 0 Uu 2
Following [5], these variables are parametrized as
XA = ln<A )(1 + paeé d)A) (D48)

with the unknown real parameters p, and ¢,. For sim-
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plicity, we shall assume in practical calculations that X/
are helicity-independent: X, = X = X§.

Note that while our result for Ag*(VV) is in agreement
with Kagan [11] and Beneke, Rohrer, and Yang [13] (up to
a sign), the relative sign between r;‘ and rXZ in Ag’O(VV)
[AgO(VV)] is positive (negative) in our case [see Egs. (D2)
and (D17)] and in [11], but negative (positive) in [13].

APPENDIX E: EXPLICIT EXPRESSIONS FOR
HARD SPECTATOR TERMS

Using the asymptotic distribution amplitudes, the ex-
plicit expressions of the integrals [} dudv appearing in
the transverse hard spectator interaction amplitudes
H; (MM,) and H;(MM,) [see Egs. (3.9), (3.10),
(3.11), (3.12), and (3.13)] are summarized in Table XII.

PHYSICAL REVIEW D 78, 094001 (2008)

TABLE XII. The explicit expressions for the integrals
Jldudv ... appearing in the transverse hard spectator interac-
tion amplitudes H; (M ;M,) and H;(M;M,) described by
3
Egs. (3.9), (3.10), (3.11), (3.12), and (3.13), where a = all' P‘,
1

B = alll' P and the upper (lower) sign is for H, (HJ).

MM, His Hg H{s
ViV, 9(X,; — 1) 9 0
V3P, 9Xy — 1) 0 0
PV 27a(Xy —2) 9 0
VP, -38(X; — 1) 9 -3
'pv 9(X; — 1) 3B 3B
3p,'p, —9aB(X;; —2) 9 -3
'p3p, 9Xy — 1) 0 F38
3pip 27a(X; —2) 0 0
1 1 H
'pp, =3B(X, — 1) 38 —682
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