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At tree-level Higgs production in association with a b-quark pair proceeds through the small Yukawa

bottom coupling in the standard model. Even in the limit where this coupling vanishes, electroweak one-

loop effects, through the top-Higgs Yukawa coupling, in particular, can still trigger this reaction. This

contribution is small for Higgs masses around 120 GeV but it quickly picks up for higher Higgs masses

especially because the one-loop amplitude develops a leading Landau singularity and new thresholds open

up. These effects can be viewed as the production of a pair of top quarks which rescatter to give rise to

Higgs production through WW fusion. We study the leading Landau singularity in detail. Since this

singularity is not integrable when the one-loop amplitude is squared, we regulate the cross section by

taking into account the width of the internal top and W particles. This requires that we extend the usual

box one-loop function to the case of complex masses. We show how this can be implemented analytically

in our case. We study in some detail the cross section at the CERN LHC as a function of the Higgs mass

and show how some distributions can be drastically affected compared to the tree-level result.
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I. INTRODUCTION

The CERN LHC will soon start running and collecting
data. Although one expects surprises, discovering the
Higgs is the highest priority. A lot of effort has gone in
calculating the rate of production of this particle, within the
standard model and beyond, for a host of channels and
signatures; see [1,2] for a review.

Higgs production in association with a pair of bottom
quarks is not, especially in the standard model, a discovery
channel since the coupling of the Higgs to the bottom
quark is given by the small, Oðmb=vÞ bottom-Higgs
Yukawa coupling, where mb is the bottom mass and v�
246 GeV is the scale of electroweak symmetry breaking.
Nonetheless, given the special role that can play the third
generation of fermions in the mechanism of symmetry
breaking and, in particular, the top-bottom quark doublet,
a reconstruction of this Higgs coupling to bottom quarks is
important. This reconstruction and interpretation of the
measurements requires theoretical predictions that go be-
yond the tree-level approximation. Many of these calcu-
lations, most of which concern the important QCD
corrections, have already been performed [3]. Usually
one expects the electroweak corrections to be small and
not compete with the QCD corrections. However, one
should bear in mind that the top Yukawa coupling
Oðmt=vÞ is of order the strong coupling constant. If this
coupling takes part in the electroweak corrections the latter
may not necessarily be small. Other Yukawa couplings that
are not negligible are the Higgs Yukawa coupling.1 Both
these couplings are involved when one considers the elec-

troweak corrections to b �bH production at the LHC.
Another important property of the electroweak effects is
that this cross section can be triggered off by one-loop
corrections involving the top quark andW gauge boson (or
Goldstone) loops even for vanishing b �bH (or mb ¼ 0)
coupling, where the Born cross section vanishes.
We [4] have, very recently, studied the effects of the

leading (Yukawa-type) electroweak corrections for b �bH
production at the LHC in a situation where both b’s are
tagged, requiring somewhat large pT b, as would be rele-
vant for a measurement of the b �bH couplings and a com-
plete identification of this channel. The study we
performed concentrated on a Higgs with a mass below
150 GeV not only because this range is preferred by the
precision electroweak data but also because the cross
section decreases much with increasing Higgs mass. It
was found that, after all, the next-to-leading order (NLO)
corrections were small and could be safely neglected. In
the limit where the b �bH coupling vanishes and where the
cross section is induced solely through electroweak loops,
we found that this effect is much larger than the NLO
correction and increases rapidly with the Higgs mass. We
pointed out that, for this contribution, as MH � 2MW our
perturbative calculation becomes unreliable since the loop
integrals start showing numerical instabilities. We had
identified this behavior as a leading Landau singularity
(LLS) [5,6] which is a pinch singularity of the loop inte-
gral. This, in part, has an interesting physical origin: the on
shell production and rescattering of the top quarks into on
shell W bosons, the latter giving rise to Higgs production
throughWW boson fusion. This LLS of the one-loop four-
point function is not integrable when one considers the
square of the loop amplitude as needed for vanishing b �bH
coupling. The NLO contribution, on the other hand, is
integrable.

1As this paper is on the Yukawa corrections neglecting cor-
rections of order the electroweak gauge coupling, we use the
terminology Higgs Yukawa coupling for the Higgs self-coupling
which in the standard model is not a gauge coupling.
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The aim of this paper is to extend the study we made in
[4] to higher Higgs masses. The emphasis will be on the
LLS problem and the pure one-loop contribution in the
limit of vanishing mb since this is the major hurdle. For
completeness we will also give results for the NLO con-
tribution for Higgs masses not covered in our previous
calculation. Beyond the phenomenological impact of the
LLS for the case at hand, the study of the LLS in this paper
should be of interest for other situations considering that
one rarely encounters such singularities, as compared to
the inverse (vanishing) Gram determinant which is not a
genuine physical singularity but an artifact of the reduction
of the tensorial integrals. Some of the few examples in the
relatively recent literature where some aspect of a Landau
singularity shows up include ZZ ! ZZ [7] and the 6-
photon amplitude [8] in the standard model both with
massless particles in the internal states involving a four-
point function. Beyond the standard model we can mention
loop corrections to sfermion pair production in supersym-
metry [9] and Higgs production from the decay of a fourth-
generation b-like quark [10], both these examples involve
heavy instable particles in a three-point function. In [9], no
special treatment of the singularity is required since the
study is made at the NLO level where this singularity is
integrable. In [10], the width of the internal unstable par-
ticle is called for. In ZZ ! ZZ, the study [7] keeps away
from the region of the LLS, while it is argued that the LLS
should disappear if one considers a more inclusive cross
section where the Z boson would decay or the initial Z are
grafted to light stable fermions. For the case of the 6-
photon amplitude the situation is quite subtle. The QED
dynamics is such that the LLS disappears at the level of the
total gauge invariant amplitude after summing on individ-
ual diagrams. The LLS issue can also be relevant for the
nascent cut techniques of computing loop amplitudes; for a
recent review see [11]. This is the reason we devote a fair
part of this paper to the study and solution of the LLS. Our
solution to the problem of the LLS for Higgs production
through gg ! b �bH is to endow the resonating internal
particles, namely, the top quark and W gauge boson with
a width. The extension of the usual loop libraries, such as
FF [12] of LOOPTOOLS [13], to the case of complex masses

is not trivial especially if one insists on an analytical
implementation. We will show how the case at hand lends
itself to a fairly manageable implementation of complex
masses for the four-point function which is computer-time
effective. The introduction of the widths avoids all numeri-
cal instabilities and smooths out the cross section when we
enter the phase-space region of the LLS. It rests that this
effect can still give large corrections particularly for some
specific distributions, like, for example, the pT distribution
of the bottom quark or the Higgs boson.

The plan of the paper is as follows. In the next section we
set the framework for our calculation with a reminder on
the SUð3Þ (QCD) gauge invariant classes of the electro-

weak contributions and the helicity properties of the am-
plitudes. We then briefly uncover the class and type of
diagrams that contain a potential leading Landau singular-
ity. Section III follows with a general discussion on the
Landau singularities first exposing the conditions under
which such singularities can show up for the scalar
N-point function. We then carefully extract the nature of
the singularity before moving into a detailed investigation
of the scalar four-point function at the origin of the LLS in
our case, for gg ! b �bH. Section IV discusses how this
singularity can be regulated through taking into account
the width of the unstable particles running in the loop.
Section V describes how these widths are implemented
through a modification of the loop integrals that should
be defined for complex masses of the loop particles. In
particular we describe our analytical implementation of the
complex masses suitable for our problem. We will also
discuss the various checks we made to insure the correct-
ness of the implementation. Section VI gives briefly our
input parameters and cuts and describe how the cross
section at the pp level is obtained. Section VII gives our
main results for the cross section pp ! b �bH at the LHC in
the limit of vanishing Higgs coupling to b-quarks. In this
case, the cross section is induced at one-loop and we need,
in particular, to integrate the square of the four-point loop
integral over the kinematical phase space. This calls for our
new implementation of the box one-loop functions. We
will discuss the behavior of the cross section as a function
of the Higgs mass and study a few distributions.
Section VIII turns to the NLO result for MH > 150 GeV,
completing therefore the study we made in [4]. Section IX
summarizes our findings. The paper contains also three
appendices. In the first, we give the details of our derivation
of the nature of the singularity while the second appendix
gives technical details about the handling of complex
masses in one-loop scalar box functions. The third appen-
dix details the singularities of the three-point function.
Many key issues about the LLS are unravelled in this
case which help in better understanding the issues in the
four-point function.

II. A QUICK REMINDER AND GENERAL
CONSIDERATIONS OF THE ONE-LOOP

ELECTROWEAK STRUCTURE

At LHC energies the exclusive b �bH production with
both b-quarks tagged is dominated, by far, by the gluon-
gluon initiated subprocess. We therefore only consider, as
we have done in [4], the gluon-gluon initiated subprocess
gðp1; �1Þ þ gðp2; �2Þ ! bðp3; �3Þ þ �bðp4; �4Þ þHðp5Þ.
�i ¼ � and pi with i ¼ 1, 2, 3, 4 stand for the helicity for
the momentum of the particle. The corresponding helicity
amplitude will be denoted as Að�1; �2;�3; �4Þ.
At tree-level the process is given by Higgs radiation off

the b-quark line; see Fig. 1. The tree-level amplitude
A0ð�1; �2;�3; �4Þ is therefore proportional to �bbH the
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Higgs coupling to b. As has been done in previous analyses
[4,14,15], for the exclusive b �bH final state, we will require

the outgoing b and �b to have transverse momenta jpb; �b
T j �

20 GeV and pseudorapidity j�b; �bj< 2:5. These kinemati-
cal cuts reduce the total rate of the signal but also greatly
reduce the QCD background. As pointed in [16] these cuts
also stabilize the scale dependence of the QCD NLO
corrections compared to the case where no cut is applied.
In the approximation of neglecting the bottom mass the
whole contribution vanishes, since the Higgs coupling to b
vanishes. The massless bottom limit can also be taken, but
by keeping �bbH as an independent parameter with a non-
zero value. In this limit the tree-level contribution consists
of only the amplitude A0ð�1; �2;�;��Þ.2 This turns out
to be a very good approximation with the cuts we have
taken; see [4].

At the one-loop level the electroweak effects introduce a
rich structure even in the limit where one takes the leading
Yukawa (top and Higgs) couplings that are most easily
given by the contribution of the top/charged Goldstones
contribution in the Feynman gauge [4]; see Fig. 2. At one-
loop, the diagrams are classified into three QCD gauge
invariant classes as displayed in Fig. 2. The Higgs couples
to the bottom quark in class (a), to the top quark in the class
(b), and to the charged Goldstone boson in class (c). As
shown in Fig. 2, each class can be efficiently reconstructed
from the one-loop vertex b �bH, depending on which leg one
attaches the Higgs, by then grafting the gluons in all
possible ways. The difference in the coupling structure is
another indication that each group forms a QCD gauge
independent subset; see [4] for details. The analysis of [4]
reveals that the contribution of class (a) at NLO is about
�0:1% and thus can be totally neglected. Class (a) con-
tribution naturally vanishes in the limit �bbH ¼ 0 as does
the tree-level. In this limit, the process is loop induced and
triggered by diagrams in classes (b) and (c). Moreover in
the limit mb ! 0 with �bbH � 0, the one-loop corrections

g(p2, λ2)

g(p1, λ1) b(p3, λ3)

b(p4, λ4)

H(p5)

FIG. 1. All the eight Feynman diagrams can be obtained by inserting the Higgs line to all possible positions in the bottom line.

(a)

(b)

(c)

χW

χW

b

χW

b

b

b

t

t

t

bb

g(p1)

g(p2)

b(p3)

H(p5)

b(p4)

t χW

g(p2)

g(p1)

t

b(p3)

b(p4)

H(p5)

g(p1)

g(p2)

χW
t

b(p3)

b(p4)

H(p5)

χW

t

χW

H

H

H

FIG. 2. All the diagrams in each group can be obtained by inserting the two gluon lines or one triple gluon vertex [shown in class (c)]
to all possible positions in the generic bottom line, which is the first diagram on the left.

2The helicity amplitude method and the convention we use in
this paper for the definition of the helicity state are based on
[4,17].
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induce new helicity structures compared to those found at
tree-level in this limit.

When trying to extend the study we have performed in
[4] for MH > 2MW we encountered severe numerical in-
stabilities for the cross section involving the square of the
one-loop induced amplitude, which is the only remaining
contribution in the limit �bbH ! 0. At the level of the NLO
which involves the interference term between the tree-level
and one-loop amplitudes no instability was present. On
close inspection it was found that the instabilities were
only due to the contribution from class (c), in particular, to
the box diagrams, including the box obtained from the
reduction of the pentagon diagrams as displayed in
Fig. 4. At the partonic gluon-gluon level it was found there
is no instability for

ffiffiffiffiffiffiffi
sgg

p
< 2mt and that independently of

MH and
ffiffiffiffiffiffiffi
sgg

p
the result was completely stable for mt ¼

MW . These threshold conditions were a sign for the pos-
sible existence of a leading Landau singularity for the box
diagrams whose square is not integrable. The pentagon
diagram in class (c) has no LLS but contains a subleading
Landau singularity which is exactly the same as the LLS of
the box diagram, obtained through the reduction of the
pentagon to boxes. Some triangle diagrams of class (c)
have also LLS (see Appendix C) but they are integrable
hence do not cause any numerical instability. Since such
singularities are little known nowadays and hardly encoun-
tered though we have referred to a few examples from the
relatively recent literature in the introduction, we will
discuss the issue of the LLS, their location and the condi-
tion on their appearance in the next section.

Before that, let us remind the reader that, to calculate the
cross sections, we use the same helicity amplitude method
as the one used and explained in [4]. Details of the renor-
malization scheme, for the NLO, and the optimization
implemented in our code are the same as in [4]. To check
the amplitudes and the cross sections we perform (QCD)
gauge invariance tests and verify that our results are ultra-
violet finite; see [4] for details of implementing these
checks.

III. LANDAU SINGULARITIES

Part of the discussion in this section has been summa-
rized in [11] and relies on [5,6] although a few results are
new.

A. Conditions for a Landau singularity and the nature
of the singularity

Consider the one-loop process F1ðp1Þ þ F2ðp2Þ þ
. . .FNðpNÞ ! 0, where Fi stands for either a scalar, fer-
mion, or vector field with momentum pi as in Fig. 3. The
internal momentum for each propagator is qi with i ¼
1; . . .N. Each momentum qi is associated with one real
Feynman parameter xi, respectively. The scalar N-point
loop integral in D space-time dimension reads

TN
0 �

Z dDq

ð2�ÞDi
1

D1D2 � � �DN

;

Di ¼ q2i �m2
i þ i" with " > 0;

qi ¼ qþ ri and qi ¼ q�i ;

ri ¼
Xi
j¼1

pj; i ¼ 1; . . . ; N;

(1)

qi ¼ q�i comes from the fact that the q-integration hyper-
contour is along the real axis, according to the (infinitesi-
mal) i" prescription. The Feynman parameter
representation reads

TN
0 ¼ �ðNÞ

Z 1

0
dx1 � � � dxN�

�XN
i¼1

xi � 1

�Z dDq

ð2�ÞDi

� 1

ðx1D1 þ x2D2 þ � � � xNDNÞN : (2)

Because of the Dirac delta function, the integration bound-
ary in the Feynman parameter space is xi ¼ 0, i ¼
1; . . . ; N. Thus the only important condition on xi is that
they are real and not negative. The singularities are given
by the Landau conditions [5,6,18]

8><
>:
8 ixiðq2i �m2

i Þ ¼ 0;P
N
i¼1 xiqi ¼ 0;

qi ¼ q�i :
(3)

If Eq. (3) has a solution xi > 0 for every i 2 f1; . . . ; Ng, i.e.
all particles in the loop are simultaneously on shell, then
the integral TN

0 has a leading Landau singularity. If a

solution exists but with some xi ¼ 0 while the other xi’s
are positive, the Landau condition corresponds to a sub-

mN
m1

q1 qN

p1

pN
p2

FIG. 3. One-loop Feynman diagram with N external particles.
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leading Landau singularity. To keep the analysis general let
us therefore assume that Eq. (3) admits a solution with
xi ¼ 0 for i ¼ Mþ 1; . . . ; N with 1 	 M 	 N and xi > 0
for every i 2 f1; . . . ;Mg. Equation (3) would read8><

>:
xi ¼ 0 for i ¼ Mþ 1; . . . ; N;

q2i ¼ m2
i ; xi > 0 for i ¼ 1; . . . ;M;P

M
i¼1 xiqi ¼ 0:

(4)

ForM ¼ N one has a leading singularity, otherwise ifM<
N this is a subleading singularity. Multiplying the third
equation in Eq. (4) by qj leads to a system of M equations8>>>>>><

>>>>>>:

Q11x1 þQ12x2 þ � � �Q1MxM ¼ 0;

Q21x1 þQ22x2 þ � � �Q2MxM ¼ 0;

..

.

QM1x1 þQM2x2 þ � � �QMMxM ¼ 0;

(5)

where the Q matrix is defined as

Qij ¼ 2qi:qj ¼ m2
i þm2

j � ðqi � qjÞ2
¼ m2

i þm2
j � ðri � rjÞ2;

i; j 2 f1; 2; . . . ;Mg;
(6)

and use is made of the on shell constraint, i.e. the second
equation in (4). Note that in Eq. (5) xi > 0.

The necessary conditions for the appearance of a Landau
singularity can be summarized as follows8>>>>>><

>>>>>>:

detðQÞ ¼ 0

xi > 0

q2i ¼ m2
i

qi ¼ q�i

(7)

for i ¼ 1; . . . ;M. The last condition, already encoded in
Eq. (3), will prove to be useful, as we shall see.

It has been shown by Coleman and Norton [19] that if
the matrix Qij has only one zero eigenvalue then these

equations are necessary and sufficient conditions for the
appearance of a singularity in the physical region.

If some internal (external) particles are massless like in
the case of six photon scattering [8], then some Qij are

zero, the above conditions can be easily checked. However,
if the internal particles are massive then it is difficult to
check the second condition in Eq. (7) explicitly, especially
if M is large. In this case, we can rewrite the second
condition as follows

xj ¼ detðQ̂jMÞ= detðQ̂MMÞ> 0; j ¼ 1; . . . ;M� 1;

(8)

where Q̂ij is obtained from Q by discarding row i and

column j from Q and detðQ̂jMÞ ¼ d½detðQÞ
=ð2dQjMÞ,
detðQ̂MMÞ ¼ d½detðQÞ
=dQMM. If detðQ̂MMÞ ¼ 0 then

condition Eq. (8) becomes detðQ̂jMÞ ¼ 0 with j ¼
1; . . . ;M� 1.
The condition of vanishing Landau determinant means

thatQ has at least one zero eigenvalue. In general,Q has N
real eigenvalues �1; . . . ; �N . Consider the case whereQ has
only one (non degenerate) very small eigenvalue �N � 1,
which is what is occurring in our present calculation for
gg ! b �bH. To leading order

�N ¼ a0
a1

; a1 ¼ �1�2 . . .�N�1 � 0; a0 ¼ detðQÞ:
(9)

With V ¼ fx01; x02; . . . ; x0Ng the eigenvector corresponding to
�N , we define �2 ¼ V:V. We will assume that �i > 0 for
i ¼ 1; . . . ; K and �j < 0 for j ¼ K þ 1; . . . ; N � 1 with

0 	 K 	 N � 1. It can then be shown that in D dimension
(see Appendix A).

ðTN
0 Þdiv ¼

1

�

ð�1ÞNþ1

2ðNþ3Þ=2
ei��K�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1Þ2�Ka1

p ð4�Þ�D�ð�DÞ
ð12�N�

2 � i"Þ�D

�K ¼ N � K þ 1

2
�D ¼ N �Dþ 1

2
: (10)

This result holds provided a1 � 0 or in other words that the
matrix Q does not have a degenerate zero eigenvalue. A
similar result for the nature of the singularity has been
derived in [18] in the general case of a multiloop diagram
including the behavior of the nonleading singularity. The
extraction of the overall, regular, factor which is the
K-dependent part in Eq. (10) is more transparent in our
derivation. As stressed earlier, the above result holds pro-
vided a1 � 0. This general result has been derived with the
assumption that formally N �Dþ 1> 0, however unlike
in [18] we can trivially analytically continue the result by
using dimensional regularization with D ¼ 4� 2� so that
we can easily derive the nature of the singularity from Eq.
(10) even for the case of N 	 3 in D ¼ 4. For the box in 4
dimensions, N ¼ 4, D ¼ 4, a0 ! 0, and a1 � 0, we get

ðT4
0Þdiv ¼

ei�ð3�KÞ=2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1Þ3�K detðQ4Þ � i"

p : (11)

This shows that ðT4
0Þdiv is integrable but its square is not. In

the case N ¼ 3 (the triangle), D ¼ 4, one gets (see
Appendix A for an alternative derivation not based on
dimensional regularization but along the one followed in
[18])

ðT3
0Þdiv ¼

ei�ð2�KÞ=2�

8�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1Þ2�K�1�2

p lnð�3�
2 � i"Þ: (12)

T3
0 and its square are therefore integrable.

The situation becomes more complicated when Q has a
degenerate zero eigenvalue which happens in the case of
the box diagram obtained in the case of the 6 photon
amplitude or gg ! WþW� [20] with massless internal
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particles. In D ¼ 4 and for N � 6 a leading Landau sin-
gularity does not obtain; see, for example, p. 115 of [6]. We
leave some of these issues for another publication though
and will concentrate here only on our process.

B. Application to gg ! b �bH

Having set the stage for the occurrence of the Landau
singularities we now turn to check that the numerical
instabilities found in gg ! b �bH are indeed due to a
Landau singularity. We concentrate on the box diagram
in Fig. 4 which can contribute a leading Landau singularity.
The leading singularity of the threepoint function relevant
for our problem is studied in Appendix C and serves as
good starting point for the discussion to follow. The asso-
ciated five-point function where both external gluons at-
tach to the internal top quark has no leading Landau
singularity but rather a subleading Landau singularity
which is exactly the same as the leading singularity that
appears in the box diagram in Fig. 4. It is thus enough to
study, in detail, the structure and the singularity behavior of
this box diagram. We will keep the bottom quark massless
unless otherwise stated.

Defining the invariants s ¼ sgg ¼ ðp1 þ p2Þ2, s1 ¼
ðp3 þ p5Þ2, s2 ¼ ðp4 þ p5Þ2, and the on shell conditions
p2
1 ¼ p2

2 ¼ p2
3 ¼ p2

4 ¼ 0, p2
5 ¼ M2

H, the kinematically al-

lowed phase-space region leads to the constraint

M2
H 	 s1 	 s; M2

H

s

s1
	 s2 	 M2

H þ s� s1: (13)

We need to keep these constraints in mind as the solution
of the Landau equations may fall outside the phase space.

In terms of these invariants, the scalar box integral
depicted in Fig. 4 writes, in the nomenclature of
LOOPTOOLS, for example, as

T4
0ðs1; s2Þ ¼ D0ðM2

H; 0; s; 0; s1; s2;M
2
W;M

2
W;m

2
t ; m

2
t Þ:
(14)

1. On shell and real conditions on the internal momenta
qi

For the leading Landau singularity of the box in Fig. 4,
the on shell conditions on the internal particles read as
q21 ¼ q22 ¼ m2

1 ¼ m2
2 ¼ M2

W , q23 ¼ q24 ¼ m2
3 ¼ m2

4 ¼ m2
t .

The condition of real qi ¼ ðq0i ;qiÞ means that q2
i � 0. At

each vertex, one has

�ðM2
i ; m

2
i ; m

2
iþ1Þ ¼ ðM2

i � ðmi þmiþ1Þ2Þ
� ðM2

i � ðmi �miþ1Þ2Þ � 0;

M2
i ¼ ðqi � qiþ1Þ2; (15)

with the usual � kinematical function, vertex i is identified
as the vertex to which the vector qi points according to
Fig. 4.Mi is the invariant mass of the external leg at vertex
i. Applying the condition of Eq. (15) for the cases i ¼ 1, 3
we get

MH � 2MW and
ffiffiffi
s

p � 2mt: (16)

This requires that the normal thresholds for top-quark
production and Higgs decay into a W pair be opened.
Condition

PN
i¼1 xiqi ¼ 0 in Eq. (3) in the case of the

leading Landau singularity with xi > 0 is nothing else but
the addition ofN vectors, xiqi, with norm jximij. This says,
for example, that not all time components q0i can be
positive or negative. For N ¼ 4, either one vector has
signðxiq0i Þ opposite to all the other three or there are 2
vectors xiq

0
i with positive signs while the others have a

negative sign. In our case, it is easy to see that we can only
take q01;4 > 0, q02;3 < 0. These simple considerations fur-

nish additional inequalities that are constraints on the
appearance of a LLS. Applied at the four vertices, for
example, in the rest frame of one of the internal on shell
particle [21], these give the additional normal thresholds of
this four-point function

mt >MW; (17)

s1 � ðmt þMWÞ2 and s2 � ðmt þMWÞ2: (18)

These strong requirements on the opening up of the normal
thresholds will delimit the region where a LLS will occur,
as given by the vanishing of the Landau determinant. These
normal thresholds are also normal thresholds of the re-
duced diagrams, three-point, and two-point functions, ob-
tained from xi ¼ 0 and are necessary condition for a LLS
for these integrals; see Appendix C.
The on shell and real conditions on the internal momenta

qi with
P

xiqi ¼ 0, xi > 0 have been given a beautiful
pictorial physical interpretation by Coleman and Norton
[19]. Each qi can be regarded as the physical momentum of
a physical particle; we can associate to the Feynman
diagram a space-time graph of a process with on shell
classical particles moving forward in time; and ximi can
be regarded as the proper time of particle i. The vertices are

p3

p5

p4

p1

p2

q1

q2

q4

H

b

b

t

t

χW

χW

q3g

g

FIG. 4 (color online). A box diagram contributing to gg !
b �bH that can develop a Landau singularity for MH � 2MW andffiffiffi
s

p � 2mt, i.e. all the four particles in the loop can be simulta-
neously on shell.
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regarded as space-time points. �Xi ¼ xiqi (no sum over i)
is a space-time separation.

2. Landau determinant

The necessary conditions given by the inequalities above
having to do with the opening up of normal thresholds need
to be supplemented by the requirements of a vanishing

Landau determinant. The reduced matrix, Sð4Þ, which is
equivalent in this case to the Q matrix for studying the
Landau singularity, is given by

S4 ¼

1
2M2

W�M2
H

2M2
W

m2
tþM2

W�s1
2MWmt

M2
Wþm2

t

2MWmt

2M2
W�M2

H

2M2
W

1
M2

Wþm2
t

2MWmt

m2
tþM2

W�s2
2MWmt

m2
tþM2

W�s1
2MWmt

M2
Wþm2

t

2MWmt
1

2m2
t�s

2m2
t

M2
Wþm2

t

2MWmt

m2
tþM2

W�s2
2MWmt

2m2
t�s

2m2
t

1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

Sij4 ¼ Qij
4

2mimj

: (19)

With s and MH fixed one can study the behavior of the
determinant as a function of the invariant s1 and s2. The
determinant is a polynomial of order 2 in each of these
variables. In terms of s2, for example, it reads

detðQ4Þ ¼ 16M4
Wm

4
t detðS4Þ ¼ as22 þ bs2 þ c

¼ afðs2 � s02Þ2 þ ��ðs1Þg;
a¼ �ðs1;m2

t ;M
2
WÞ ¼ ½s1 � ðmt þMWÞ2


� ½s1 � ðmt �MWÞ2
;
b¼ 2f�s21ðm2

t þM2
WÞ þ s1½ðm2

t þM2
WÞ2

� ðs� 2m2
t ÞðM2

H � 2M2
WÞ
 þ sM2

Hðm2
t þM2

WÞg;
s02 ¼�b=2a;

c¼ s21ðm2
t �M2

WÞ2 þ 2M2
Hsðm2

t þM2
WÞs1

þ sM2
H½ðs� 4m2

t ÞðM2
H � 4M2

WÞ
� 4ðm2

t þM2
WÞ2
;

��ðs1Þ ¼ �b2 � 4ac

4a2
: (20)

Writing detQ4 as perfect square in s2, like above, for
example, and a remainder which is the discriminant of the
quadratic form that does not depend on s2 can be revealing.
In our case, we find

detðQ4Þ ¼ � detQ2ðs1;m2
t ;M

2
WÞ

�
ðs2 � s02Þ2

� detQ3ðs1;M2
H; 0;m

2
t ;M

2
W;M

2
WÞ

detQ2ðs1;m2
t ;M

2
WÞ

� detQ3ðs1; s; 0;M2
W;m

2
t ; m

2
t Þ

detQ2ðs1;m2
t ;M

2
WÞ

�
: (21)

detQ3’s are the Landau determinants of the three-point
function subdiagrams obtained from the original four-point
function by shrinking one internal line to a point, forming
subdiagrams where the invariant s1 is an argument of these
three-point functions. Likewise for detQ2 obtained by
further shrinking one of the triangles. The corresponding
two- and three-point functions are shown in Fig. 5. Our
convention for detQ3;2 as concerns its arguments is given in

Appendix C. The factorization in Eq. (21) can be derived
[22] for symmetric matrices based on the Jacobi ratio
theorem for determinants [23]. Each subdeterminant of
the reduced three-point function can be further reduced
into exactly such a factorized form; see Appendix C. This
makes the identification of the subleading singularities
very transparent. For example, detQ2ðs1;mt;MWÞ ¼ 0 cor-
responds to a normal threshold; see Eq. (18). It occurs forffiffiffiffiffi
s1

p ¼ mt þMW (
ffiffiffiffiffi
s1

p ¼ mt �MW is outside the physical

region for Higgs masses of interest). Obviously we could
have written the quadratic form in any of the variables s1,
s2, M

2
H, s, the completion of the determinant will be the

product of the determinant of two subdiagrams.

3. Numerical investigation of the four-point function and
the Landau determinant

We will always take mt ¼ 174 GeV and MW ¼
80:3766 GeV. Our investigation starts by taking

ffiffiffi
s

p ¼
353 GeV, MH ¼ 165 GeV. The behavior of the Landau
determinant, the real and imaginary parts of the four-point
function T4

0 are displayed in Fig. 6 as a function of s1, s2
within the phase space. We clearly see that the Landau
determinant vanishes inside the phase space and leads to

FIG. 5. Three reduced diagrams of the box diagram in Fig. 4, that contain s1 as an invariant of the two- and three-point functions and
whose Landau determinants are given in Eq. (21). The self-energy diagram has a normal threshold. The two triangle diagrams contain
anomalous thresholds. Note that the singularity structure of the second diagram, in the s1, MH variables, is the same as the triangle
studied in much detail in Appendix C but with s1 ! s2; see Fig. 19. The singularities of the second triangle can be obtained from the
first one by s $ M2

H , mt $ MW .
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regions of severe instability in both the real and imaginary
parts of the scalar integral.

To investigate the structure of the singularities in more

detail let us fix
ffiffiffiffiffi
s1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

t þM2
WÞ

q
� 271:06 GeV, such

that the properties are studied for the single variable s2.
This will also exhibit the subleading Landau singularities
related to the reduced diagrams. In the variables s2, these
are exactly the same as the ones we uncovered through Eq.
(21). They are represented in Fig. 5 allowing for s1 ! s2
(and x2 ! x1, x4 ! x3).

Figure 7 is very educative. We see that there are four
discontinuities in the function representing the real part of
the scalar integral in the variable

ffiffiffiffiffi
s2

p
.

(i) As s2 increases, we first encounter a discontinuity at

the normal threshold
ffiffiffiffiffi
s2

p ¼
ffiffiffiffiffiffiffi
stW2

q
¼ mt þMW ¼

254:38 GeV, representing Hb ! Wt. This corre-
sponds to the solution (for the Feynman parameters)
x1;3 ¼ 0 and x2;4 > 0 of the Landau equations and

can be associated to a leading Landau singularity for
the two-point scalar integral.
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FIG. 6 (color online). The Landau determinant as a function of s1 and s2 (upper figure). The real and imaginary parts of D0 as a
function of s1 and s2. The figure for the real part of D0 has been rotated since the structure is best seen with this view.
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FIG. 7 (color online). The imaginary, real parts of D0 and the
Landau determinant as functions of

ffiffiffiffiffi
s2

p
.
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(ii) The second discontinuity occurs
ffiffiffiffiffi
s2

p ¼
257:09 GeV. This corresponds to an anomalous
threshold of a reduced triangle diagram. This corre-
sponds to the solution x3 ¼ 0 and x1;2;4 > 0 of the

Landau equations (see Fig. 5). The singularity struc-
ture of this diagram is studied in more detail in
Appendix C. We can explicitly check that

ffiffiffiffiffi
s2

p ¼
257:09 GeV corresponds to the condition of vanish-
ing determinant. One solution of this equation does
not satisfy the sign condition Eq. (8), and is not even
inside of phase space. As shown in Appendix C only
one solution [see also Eq. (C11)] is acceptable with

sH2 ¼ 1

2M2
W

ðM2
HðM2

W þm2
t Þ

� ðm2
t �M2

WÞMH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H � 4M2
W

q
Þ

¼ 2ðm2
t þM2

WÞ þ ðM2
H � 4M2

WÞ

�
�
1þm2

t �M2
W

2M2
W

�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4M2
W=M

2
H

q
��
;

(22)

which gives
ffiffiffiffiffiffi
sH2

q
¼ 257:09 GeV. Note that one of

the necessary conditions for this anomalous thresh-
old to occur in the physical region isMH � 2MW . At
this normal threshold the value of sH2 is sH2 ¼
2ðm2

t þM2
WÞ; see Eq. (22).

(iii) The third discontinuity at
ffiffiffiffiffi
s2

p ¼ 259:58 GeV corre-
sponds to the anomalous threshold of the reduced
three-point function obtained from the box diagram
by contracting to a point the x1 line (see the third
diagram in Fig. 5) so that detQ3ðs1; s; 0;
M2

W;m
2
t ; m

2
t Þ ¼ 0. Analogously

ffiffiffiffiffi
s2

p ¼ 259:58 GeV
is given by

ss2 ¼
1

2m2
t

ðsðm2
t þM2

WÞ �
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 4m2

t

q
ðm2

t �M2
WÞÞ

¼ 2ðm2
t þM2

WÞ þ ðs� 4m2
t Þ

�
�
1þm2

t �M2
W

2m2
t

�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2
t =s

p
��

: (23)

(iv) The last singular discontinuity is the leading Landau
singularity. The condition detðS4Þ ¼ 0 for the box
has two solutions which numerically correspond toffiffiffiffiffi
s2

p ¼ 263:88 GeV or
ffiffiffiffiffi
s2

p ¼ 279:18 GeV. Both

values are inside the phase space; see Fig. 7.
However after inspection of the corresponding sign
condition, only

ffiffiffiffiffi
s2

p ¼ 263:88 GeV (with x1 � 0:53,
x2 � 0:75, x3 � 0:77) qualifies as a leading Landau
singularity.

ffiffiffiffiffi
s2

p ¼ 279:18 GeV has x1 � �0:74,
x2 � �0:75, x3 � 1:07 and is outside the physical
region.

The nature of the LLS in Fig. 7 can be extracted by using
the general formula (11). With the input parameters given
above, the Landau matrix has only one positive eigenvalue
at the leading singular point, i.e. K ¼ 1. The leading
singularity behaves as3

Ddiv
0 ¼ � 1

16M2
Wm

2
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðS4Þ � i"

p : (24)

When approaching the singularity from the left, detðS4Þ>
0, the real part turns singular. When we cross the leading
singularity from the right, detðS4Þ< 0, the imaginary part
of the singularity switches on, while the real part vanishes.
In this example, both the real and imaginary parts are
singular because detðS4Þ changes sign when the leading
singular point is crossed.

4. The leading Landau singularity region in the ðMH;
ffiffiffi
s

p Þ
plane

In practice, we will have to integrate over the s1 and s2
variables to obtain the total cross section at the partonic
level. We will also have to integrate over s ¼ sgg to arrive

at the cross section at the pp level. Moreover, we would
like to study the behavior of the cross section by varying
MH. It is therefore important to quickly localize the range
or region in the ð ffiffiffi

s
p

;MHÞ plane where the leading Landau
singularity occurs. This approach should in fact be fol-
lowed in more general cases to check if one might encoun-
ter a potential problem prior to carrying the full phase-
space integration procedure with the full matrix elements.
Necessary (but not sufficient) conditions on MH and

ffiffiffi
s

p
to

have a LLS correspond to the opening of normal thresholds
as given in Eq. (16). These are easy to guess and are
contained in the last two equations of Eq. (7). We have,
however, to solve all of Eq. (7) together with the constraint
that one is inside the phase space Eq. (13). This, in general,
is too complicated to be done analytically in a situation like
ours with four variables (MH, s, s1, s2) and two parameters
(MW , mt). However numerically the algorithm that goes
through all the conditions is quite simple to implement. For
instance, one can start with the Landau determinant written
as a quadratic form in s2 by first computing the discrimi-
nant of the quadratic equation and check whether the latter
is positive or negative, assuming the solutions are in the
physical region. If the discriminant is positive one checks if
the corresponding solution does not conflict with the pos-
itivity solution as implemented in Eq. (8). If this condition
is satisfied then there is a LLS. In our case, the result is
shown in Fig. 8. We conclude that the LLS occurs when
2MW 	 MH < 211 GeV and 2mt 	

ffiffiffi
s

p
< 457 GeV. The

range of the LLS region depends on MW and mt. If
mt=MW 	 1 then the first two conditions in Eq. (7) can

3The singularity of the three-point function is logarithmic; see
Eq. (12). Figure 7 shows 2 three-point singularities which look as
if better behaved within LOOPTOOLS.
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never be satisfied. In particular, if mt=MW ¼ 1 then the
Landau determinant can vanish but the sign condition
cannot be realized. When MH > 210 GeV or

ffiffiffi
s

p
>

456 GeV the Landau determinant detðQ4Þ can vanish in-
side the phase space but the sign condition xi > 0 cannot be
fulfilled.

The region of the leading Landau singularity in Fig. 8 is
a surface of singularities in the plane of the kinematical
variables

ffiffiffi
s

p ¼ ffiffiffiffiffiffiffi
sgg

p
;MH. This is bounded by three curves.

It is important to stress again that the horizontal and
vertical lines or boundaries correspond to the normal
thresholds. These lines are also tangent to the upper curve
delimiting the surface of LLS. We will get back to this
property later.

The algorithm we have just outlined is very easy to
implement. The importance of the sign condition is crucial
in determining the boundary of the leading Landau singu-
larity region which occurs when xi ! 0. We will come
back to this point shortly. Before doing so, it is worth
coming back to the behavior of D0 as a function of s2
(like what we have shown in Fig. 7) and see how the
location of the leading Landau singularity and the other
discontinuities (related to other thresholds) move as MH is
varied.

As in Fig. 7, we fix
ffiffiffi
s

p ¼ 353 GeV and
ffiffiffiffiffi
s1

p
but withffiffiffiffiffi

s1
p ¼ 260 GeV for MH ¼ 159, 165, 190 GeV. All the

curves will therefore show the two-point function disconti-

nuity (normal threshold) at
ffiffiffiffiffiffiffi
stW2

q
¼ 254:38 GeV and the

three-point function discontinuity at
ffiffiffiffiffi
ss2

p ¼ 259:58 GeV;
see Eq. (23). The other three-point function discontinuity

at
ffiffiffiffiffiffi
sH2

q
and the leading Landau singularity, if at all there,

will of course move. The results are shown in Fig. 9.
(i) For MH ¼ 159 GeV only the normal threshold atffiffiffiffiffiffiffi

stW2

q
, and the

ffiffiffiffiffi
ss2

p
discontinuity show up as expected

since MH < 2MW .

(ii) For MH ¼ 165 GeV (MH > 2MW), the other three-

point singularity shows at
ffiffiffiffiffiffi
sH2

q
¼ 257:09 GeV, to-

gether with the LLS at
ffiffiffiffiffiffiffiffiffi
sLLS2

q
� 283:5 GeV. As

ffiffiffiffiffi
s1

p
is increased the LLS moves to smaller values of s2,
closer to the three-point function singularity as can
be seen by comparing with Fig. 7 for the same value
of MH but higher value of

ffiffiffiffiffi
s1

p
. This will be a

common feature with the other cases with MH >
2MW , until the LLS disappears from the physical
region. For

ffiffiffiffiffi
s1

p
< 260 GeV, no LLS develops. We

have the ordering
ffiffiffiffiffiffiffi
stW2

q
<

ffiffiffiffiffiffi
sH2

q
<

ffiffiffiffiffi
ss2

p
<

ffiffiffiffiffiffiffiffiffi
sLLS2

q
.

(iii) For MH � 173 GeV,
ffiffiffiffiffiffi
sH2

q
¼

ffiffiffiffiffiffiffi
stW2

q
¼ 254:38 GeV,

i.e the sH2 threshold coincides with the normal thresh-

old. The LLS starts showing up at
ffiffiffiffiffi
s2

p � 274 GeV

when
ffiffiffiffiffi
s1

p ¼ 260 GeV and moves to smaller values

of s2 as
ffiffiffiffiffi
s1

p
increases. We have the ordering

ffiffiffiffiffiffiffi
stW2

q
¼ffiffiffiffiffiffi

sH2

q
<

ffiffiffiffiffi
ss2

p
<

ffiffiffiffiffiffiffiffiffi
sLLS2

q
. The coincidence

ffiffiffiffiffiffiffi
stW2

q
¼

ffiffiffiffiffiffi
sH2

q
signals the termination a leading singularity in the
three-point function; see Appendix C. As we in-
crease MH, the LLS moves to smaller values of s2
and the sH2 discontinuity disappears from the physi-

cal region.
(iv) For the special value MH ¼ 190:88 GeV, the sH2

singularity has moved out of the physical region
but now the LLS coincides with the location of the
ss2 three-point function singularity. We therefore

have
ffiffiffiffiffiffiffi
stW2

q
<

ffiffiffiffiffi
ss2

p ¼
ffiffiffiffiffiffiffiffiffi
sLLS2

q
. For MH > 190:88 GeV

the LLS disappears from the physical region.
(v) Finally, we consider the special case of the threshold

MH ¼ 2MW where
ffiffiffiffiffiffi
sH2

q
¼ 271:06 GeV. One has to

change s1 in the range defined by Eq. (13) with the
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FIG. 8 (color online). The region of the leading Landau sin-
gularity in the variables
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p ¼ ffiffiffiffiffiffiffi
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p
;MH.
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FIG. 9 (color online). The real part of D0 as a function of
ffiffiffiffiffi
s2

p
for various values of MH. For MH ¼ 2MW , we have taken s1 ¼
2ðm2

t þM2
WÞ. For the other cases, we take s1 ¼ 260 GeV.
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condition s1 � ðmt þMWÞ2 to make the LLS appear.
It is easy to find out that the LLS only occurs whenffiffiffiffiffi
s1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

t þM2
WÞ

q
¼ 271:06 GeV and the LLS

position coincides with the position of the three-

point singularity
ffiffiffiffiffiffi
sH2

q
. We have the ordering

ffiffiffiffiffiffiffi
stW2

q
<ffiffiffiffiffi

ss2
p

<
ffiffiffiffiffiffi
sH2

q
¼

ffiffiffiffiffiffiffiffiffi
sLLS2

q
.

For future reference, it is worth noting that the LLS
region opens up rather sharply when the normal thresholds
open up and the bulk of the region is concentrated around
these thresholds. Already for MH � 200 GeV the region
squeezes into a very thin line.

5. The leading Landau singularity region:
analytical insight

We will take two approaches. The first one is based on
the observation that the boundary of the singularity region
corresponds to a coincidence of a leading Landau singu-
larity with a subleading singularity, this is the termination
of the LLS [21,22,24]. The second approach starts directly
from the constraint or equation given by the vanishing of
the Landau determinant. The extrema of this equation with
respect to a particular choice of kinematical variables will
define the termination of the LLS. Interpreting the equation
as that defining a surface or a hypercurve, the extrema are
tangents to the surface and are parallel to the corresponding
coordinate variables. This will become clearer when we
expose the derivation.

(i) A study of the LLS in the three-point scalar integral
relevant to our problem is quite simple since this function
does, for fixed mt, MW , involve a very small number of
variables. Yet the study (see Appendix C) reveals some
very general features. There is an LLS region, or curve,
that is bounded by the normal threshold. This a manifes-
tation of the fact that at the boundary, the leading singu-
larity moves to the subleading singularity [21,22,24]. This
is also a phenomenon we observed in Sec. III B 4. Let us
now analytically derive the surface shown in Fig. 8, or
rather the curve representing its boundaries in the ðMH; sÞ
range. The lower bounds are just given by the normal
thresholds of the two-point function so that MH � 2MW

and
ffiffiffi
s

p � 2mt; see Eq. (16). For each value of ðMH; sÞ
there is a curve of LLSs defined byF ðs1; s2; jMH; sÞ which
is constrained by the vanishing of detQ4ðs1; s2Þ and subject
to the sign conditions. For this discussion about the ðMH; sÞ
range it is sufficient to only keep the ðs1; s2Þ dependence of
detQ4. As we scan over ðMH; sÞwe span a surface of LLSs.
The key observation is that the curves terminate at a point
corresponding to a subleading singularity, in this case a
leading singularity of one of the three-point function sub-
diagrams which itself will terminate at the two-point sin-
gularity, i.e. the normal threshold. For instance, writing
detðQ4Þ as a quadratic polynomial of s2 as we did in Eq.
(21), there are 2 three-point sub-LLSs given by each detQ3

in Eq. (21) vanishing. The solutions of the latter are given,
respectively, by Eq. (22) and (23). Let us take for definite-
ness the subleading singularity corresponding to sH2 in Eq.
(22). The argument works just as well with the other three-
point singularity ss2. The coincidence constraint implies,

for s2, for example, a solution ŝ2 ¼ s2 ¼ sH2 and
detQ4ðs1; s2Þ ¼ 0 (with the proviso about the sign condi-
tion). Exactly the same argument can be put but now
solving for the variable s1 and exploiting the fact that our
problem is symmetric in s1 $ s2. The coincidence prob-
lem or the constraint we are looking for translates into

s2 ¼ sH2 and detQ4ðs1; s2Þ ¼ 0;

s1 ¼ sH2 and detQ4ðs1; s2Þ ¼ 0;

) detQ4ðŝ2; ŝ2Þ ¼ 0 and ŝ2 ¼ sH2 :

(25)

Only one solution to detQ4ðŝ2; ŝ2Þ ¼ 0 passes the LLS sign
conditions, with

ŝ 2 ¼ 2ðm2
t þM2

WÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 4m2

t ÞðM2
H � 4M2

WÞ
q

: (26)

Equating Eq. (26) with Eq. (22), we arrive at the equation
of the termination curveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs� 4m2
t Þ

q
¼ 1

2M2
W

ðMHðm2
t �M2

WÞ

� ðm2
t þM2

WÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

H � 4M2
WÞ

q
Þ: (27)

Observe that this equation shows, in a very transparent
way, that all thresholds:

mt >MW; MH � 2MW;
ffiffiffi
s

p � 2mt

need to be open simultaneously. We can invert Eq. (27) to
write the solution in terms of MH. To arrive at the same
result, it is more judicious however to go through exactly
the same steps but choosing ss2 instead of sH2 . We deriveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2
H � 4M2

WÞ
q

¼ 1

2m2
t

ð ffiffiffi
s

p ðm2
t �M2

WÞ

� ðm2
t þM2

WÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 4m2

t Þ
q

Þ: (28)

The maximum value of MH (
ffiffiffi
s

p
) is obtained by settingffiffiffi

s
p ¼ 2mt (MH ¼ 2MW), i.e. when the LLS, the 2 three-
point sub-LLSs and the normal threshold coincide. We
have

4M2
W 	 M2

H 	 4M2
W þ ðm2

t �M2
WÞ2

m2
t

;

4m2
t 	 s 	 4m2

t þ ðm2
t �M2

WÞ2
M2

W

:

(29)

or numerically,

348:00 GeV 	 ffiffiffi
s

p 	 457:05 GeV and

160:75 GeV 	 MH 	 211:13 GeV:
(30)
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Of course, these analytical formulae reproduce exactly the
curve in Fig. 8 that was obtained numerically. For example,
we have arrived at the same, unique solution by taking
s1;2 ¼ sH2 and s1;2 ¼ ss2 in turn. This also means that the

curve is also given by

ss2 ¼ sH2 : (31)

This constraint gives directly the equation for the bounding
curve and avoids having to solve for s1 or s2 as is done as
an intermediate step in Eq. (26).

(ii) Another interesting interpretation of the bounding
curve which also leads to Eq. (31) is based on the follow-
ing. The leading Landau singularity in the ðs1; s2Þ plane is a
solution of detQ4ðs1; s2Þ ¼ 0 supplemented by the sign
conditions. With fixed values of the internal masses, the
constraint detQ4ðs1; s2; s;M2

HÞ ¼ 0 is a constraint on the
kinematical invariants for which a LLS can occur. This
therefore defines a surface of LLS singularities, which one
may want to visualize in the plane ðs1; s2Þ or ðs;M2

HÞ.
Within the plane ðs1; s2Þ, the extrema of this surface are
given by the tangents to this surface which are parallel to
the coordinate variables, in this case s1, s2 [22], therefore

@ detQ4ðs1; s2Þ
@s2

¼ 0 with detQ4ðs1; s2Þ ¼ 0 and

@ detQ4ðs1; s2Þ
@s1

¼ 0 with detQ4ðs1; s2Þ ¼ 0: (32)

These conditions are best exploited by using the quadratic
form of detQ4ðs1; s2Þ in s2 (and s1) given in Eq. (21). The
first equation in Eq. (32) with the help of Eq. (21) leads to

detQ3ðs1;M2
HÞ detQ3ðs1; sÞ ¼ 0: (33)

The second equation, using again the same quadratic form
in Eq. (21) leads to

@ detQ3ðs1;M2
HÞ

@s1
detQ3ðs1; sÞ

þ @ detQ3ðs1; sÞ
@s1

detQ3ðs1;M2
HÞ ¼ 0:

(34)

Equations (33) and (34) have three solutions. The first
solution requires (a) both subdeterminants in Eq. (21) to
vanish, detQ3ðs1;M2

HÞ ¼ detQ3ðs1; sÞ ¼ 0. This require-
ment is exactly the condition given in Eq. (27). The other
solutions of Eqs. (33) and (34) give the boundaries related
to the normal thresholds, (b) detQ3ðs1;M2

HÞ ¼
@ detQ3ðs1;M2

HÞ
@s1

¼ 0 which implies [see Eq. (C14)] the normal

threshold MH ¼ 2MW is reached, while the third solution

(c) detQ3ðs1; sÞ ¼ @ detQ3ðs1;sÞ
@s1

¼ 0 corresponds to the nor-

mal threshold s ¼ ð2mtÞ2. These equations for the bound-
ary define the LLS region presented in Fig. 8. Note that (b)
and (c) can also be derived from (a) if one insists on finding
the extrema of the curve detQ3ðs1;M2

HÞ ¼ 0 for example.
This is the same argument that is used in Appendix C for

the three-point function. Here we can carry this argument
one step further starting from the fact that detQ3 ¼ 0 is a
condition for the Landau singularity of a three-point func-
tion. The extrema and tangent argument applied at this
level will show that the range inMH and s are given by the
vanishing of the corresponding detQ2 which give the nor-
mal thresholds, MH ¼ 2MW and s ¼ ð2mtÞ2. This deriva-
tion shows that when the normal threshold is met all
singularities of the two-, three- and four-point function
coalesce. Observe that in Fig. 8 the lines given by MH ¼
2MW and

ffiffiffi
s

p ¼ 2mt are not only boundaries of the LLS
region but also tangents to the extremum bounding curve
given by Eq. (27).
The arguments given above can be applied to derive the

bounding curve and the range of the LLSs in the ðs1; s2Þ
plane after elimination of the variables ðM2

H; sÞ and taking
into account the normal threshold condition, s1;2 > ðmt þ
MWÞ2 as the lower bound. The starting point in this case is
to express detQ4 as a quadratic polynomial in M2

H, for
example. The solution of the bounding curve is given by

s1 � s2 ¼ m2
t �M2

W

m2
t þM2

W

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs1; m2

t ;M
2
WÞ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs2; m2

t ;M
2
WÞ

q
Þ: (35)

This translates into the bounds

ðmt þMWÞ2 	 s1;2 	 ðmt þMWÞ2 þ ðm2
t �M2

WÞ2
mtMW

;

numerically 254:38 GeV 	 ffiffiffiffiffiffiffi
s1;2

p 	 324:44 GeV:

(36)

IV. THE WIDTH AS A REGULATOR OF THE
LANDAU SINGULARITY

As we have seen the leading Landau singularity requires
all internal particles to be on their mass shell; see, for
example, Eq. (7). This is akin to the usual singularity that
occurs on resonance for a massive particle. These equa-
tions also show that if any parameter mi is complex with a
nonzero imaginary part, the singularity is avoided. For an
unstable particle the width provides this imaginary part. As
can be inferred from Eq. (7), mathematically, the width
effect is to move the Landau singularities into the complex
plane, so they do not occur in the physical region (the real
axis). For our problem, the Landau condition in the inter-
pretation of Coleman and Norton through Eq. (17), mt >
MW , clearly shows that the singularity develops because of
the instability of the top quark. Therefore, in principle, one
should only include the width of the top as a regulator.
Including the width of an unstable particle, whereby the
mass of the internal particle becomes complex effectively
sums a subset of higher order Feynman diagrams thereby
taming the Landau singularity [10]. On the other hand, if
one goes to higher order to implement the width then we
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would not only induce a width for the top but also for the
W. Therefore to be realistic one should include the widths
of both the top quark �t, as well as the width of theW, �W .

We take the simple prescription of a fixed width and
make the substitution

m2
t ! m2

t � imt�t; M2
W ! M2

W � iMW�W: (37)

Applied to the case of our four-point function, one sees in
Fig. 10 that indeed the width regulates the LLS and gives a
smooth result that nicely interpolates with the result at zero
width away from the singularity. The normal threshold and
the three-point subleading singularity are also softened.
The real part of the four-point function still shows a smooth
valley at the location of the LLS after regularization. For
the imaginary part we note that after introducing the width
the LLS singularity is drastically reduced with a contribu-
tion of the order of the subleading singularity.

As we will explain in the next section and in more detail
in Appendix B the introduction of the width in a four-point
function requires careful extension of the usual four-point
function libraries. In the case at hand, as will be shown, the
four-point function with complex internal masses can be
written in an analytical form, albeit with a larger number of
Spence functions compared to the case of real masses.

In our calculation of Yukawa corrections where all the
relevant couplings depend only on the top-quark mass, the
Higgs mass and the vacuum expectation value �, we will
keepmt,MH, and � real while applying rules (37) to all the
loop integrals.

One might ask whether the same prescription as in Eq.
(37) for the Higgs mass can be of any relevance. A justi-
fication for this will require to consider the corresponding
process including the Higgs decays with among other
contributions, ‘‘resonant contributions’’ with an integration
over the propagator of the Higgs. At least on a diagram by

diagram basis this will not solve the problem since, for
example, one still has to deal with the same four-point
function but withM2

H replaced by a certain p2
H, taking into

account the fact the leading Landau singularity occurs for a
wide range of Higgs masses and values of the invariant p2

H.
On the practical side, recall that compared to the top andW
width of about 2 GeV, for Higgs masses of about 2MW the
width of the Higgs is 0.1 GeV, more than an order of
magnitude smaller.4

V. IMPLEMENTATION OF COMPLEX MASSES IN
THE LOOP INTEGRALS

We have implemented complex masses in all the loop
integrals we encounter in calculating the cross section in
the limit �bbH ¼ 0 where the tree-level prediction van-
ishes. In this limit, we can also set the mass of the bottom
quark to zero. In the SUð3Þ-gauge invariant classification
of Fig. 2, class (a) vanishes in this approximation. In fact,
we had shown [4] that even with mb ¼ 4:62 GeV class (a)
is totally negligible. Although it is only class (c) that shows
severe numerical instabilities due to the presence of a
leading Landau singularity in the four-point box function
and nonleading singularity in the five-point function we
introduce the width in all diagrams of both classes (b) and
(c).
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FIG. 10 (color online). Effect of the width of the W, �W and of the top, �t, on the real and imaginary part of the four-point scalar
function.

4Our calculation of the leading Yukawa effects involves the
charged Goldstone boson in the Feynman gauge through which
theW mass enters. One may question whether it is appropriate to
introduce a width here for a Goldstone boson considering that a
Goldstone is defined as a massless state. Independently of the
width one should first question why the Goldstone has a mass
here. The point is in any other gauge than the Feynman gauge we
would have had to consider the effect of the Goldstone and W
exchange to derive the leading Yukawa effects. The physical
thresholds are therefore captured in the Feynman gauge.
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For the tensorial and scalar loop integrals with up to
three legs we rely on LOOPTOOLS [13] which handles
complex masses in up to three-point functions. The five-
point functions are reduced to four-point functions accord-
ing to [25,26]. The tensorial four-point functions are re-
duced to the scalar four-point function and three-point
functions. We therefore have to calculate only the scalar
four-point function with complex masses. The analytical
calculation of the four-point function with complex masses
in the most general case is practically intractable. If one of
the external particles is lightlike, the standard technique of
’t Hooft and Veltman [27] brings some light although the
result writes in terms of 72 Spence functions. In our
example, gg ! b �bH with massless bottom quarks, there
are at least 2 lightlike external momenta in all boxes,
including the ones derived from the pentagon diagrams.
If the positions, in the box, of two lightlike momenta are
opposite then we can write the result in terms of 32 Spence
functions. If the two lightlike momenta are adjacent, the
result contains 60 Spence functions. The detailed deriva-
tion and results are given in Appendix B. We have imple-
mented those analytical formulae for the case of two
massless external momenta into a code and added this
into LOOPTOOLS.5

We have performed a variety of checks on the new loop
integrals with complex internal masses. First of all, for all
the tensorial and scalar loop integrals (four- and five-point
functions), we have performed a trivial numerical consis-
tency check making sure that as the numerical value of the
widths is negligibly small, widths ! 0þ, one recovers the
well-tested result with real internal masses. For the scalar
loop integrals, the results are compared to the ones calcu-
lated numerically in the limit of large widths, e.g. �t;W ¼
100 GeV, and we find an excellent agreement.
Furthermore, for the scalar box integrals the results can
be checked by using the segmentation technique described
in [28]. The idea is the following. At the boundary of phase
space where the Gram determinant vanishes, the four-point
function can be written as a sum of 4 three-point functions.
The three-point functions with complex masses can be
calculated by usingLOOPTOOLS . In this way, we have
verified with excellent precision that the results of the
scalar four-point functions are correct at the boundary of
phase space. We have also carried out a comparison with a
dedicated purely numerical approach based on an exten-
sion of the extrapolation technique [29]. We have found
perfect agreement.6

In a second stage, we have performed checks at the
amplitude level. A very trivial one was to check that the
results with the new loop library exactly match the ones

with the standard loop library with real masses in the limit
widths ! 0þ. Another important check was to verify that
the results calculated with complex internal masses are
QCD gauge invariant; see [4] for this check.
Since the leading Landau singularity is integrable at

interference level, the NLO calculation with �bbH � 0
performed in [4] can be trivially extended to the region
of MH � 2MW by using the same method without intro-
ducing widths for unstable internal particles. However,
there is a small problem related to the universal correction

ð�Z1=2
H � ��Þ where the wave function renormalization of

the Higgs �Z1=2
H related to the derivative of the Higgs two-

point function becomes singular whenMH equal to 2MW or
2MZ [30]. We regularize this singularity by separately
introducing the widths of theW and the Z. This singularity,
contrary to the leading Landau singularity, is due to the
Higgs being an external one-shell particle. Other ways for
dealing with this problem have been discussed [31].

VI. INPUT PARAMETERS AND KINEMATICAL
CUTS

The input parameters are the same as given in [4]. We
rewrite them here together with new inputs which are the
widths of the unstable particles appearing in the calcula-
tion.

�ð0Þ ¼ 1=137:03599911; �sðMZÞ ¼ 0:118;

MW ¼ 80:3766 GeVðG� ¼ 1:16639� 10�5 GeV�2Þ;
MZ ¼ 91:1876 GeV; mt ¼ 174:0 GeV;

�W ¼ 2:1 GeV; �Z ¼ 2:4952 GeV: (38)

The top-quark width is calculated at the tree level in the
standard model as

�t ¼
G�ðm2

t �M2
WÞ2ðm2

t þ 2M2
WÞ

8�
ffiffiffi
2

p
m3

t

� 1:5 GeV; (39)

where the bottom-quark mass has been neglected. The
Cabibbo-Kobayashi-Maskawa parameter Vtb is set to be
1. Most of our discussion concerns the most interesting
case of the limit �bbH ! 0, where as we have discussed at
length (see also [4]), the effect of the b-quark mass other
than in the Higgs coupling is totally negligible. Therefore
we set this mass to zero when discussing this limit in
Sec. VII. For completeness we will also give results for
the NLO corrections in Sec. VIII which require �bbH � 0.
There we will set mb ¼ 4:62 GeV. When we refer to the
leading order contribution we will have in mind the cross
section at the Born level calculated with mb ¼ 4:62 GeV.
The cross section from the one-loop amplitude squared
with �bbH ! 0 will, in a few instances, be normalized to
this Born cross section to give a measure of the new
electroweak effect and so as to allow comparison with
the NLO corrections.

5The implementation for the case of one massless external
momentum is straightforward. However, we have not done this
yet since it is not necessary for our present calculation.

6We thank F. Yuasa for sending us the results of the extrapo-
lation technique.
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We consider the case at the LHC where the pp center of
mass energy is

ffiffiffi
s

p ¼ 14 TeV. Neglecting the small light
quark initiated contribution (see [4]), we use CTEQ6L
[32–35] for the gluon density function in the proton. The
factorization scale for this density and the energy scale for
the strong coupling constant are both chosen to beQ ¼ MZ

for simplicity.
As has been done in previous analyses [4,14,15], for the

exclusive b �bH final state, we require the outgoing b and �b

to have high transverse momenta jpb; �b
T j � 20 GeV and

pseudorapidity j�b; �bj< 2:5. These kinematical cuts reduce
the total rate of the signal but also greatly reduce the QCD
background. As pointed in [16] these cuts also stabilize the
scale dependence of the QCD NLO corrections compared
to the case where no cut is applied. In the following, these
kinematical cuts are always applied.

VII. RESULTS IN THE LIMIT OF VANISHING �bbH

A. Total cross section

We start with the cross section in the case where �bbH ¼
0. In [4], we reported on results up toMH ¼ 150 GeV that
showed that this cross section was rising fast as one ap-
proached the thresholdMH ¼ 2MW . Beyond this threshold
our integrated cross sections showed large instabilities. As
we discussed in Sec. III this is due to the appearance of a
leading singularity which as we have advocated can be
cured by the introduction of a width for the unstable top
quark and W gauge boson. We also showed in Sec. III that
the region of Landau singularity spans the region 2MW 	
MH 	 211 GeV with 2mt <

ffiffiffiffiffiffiffi
sgg

p ¼ ffiffiffi
s

p 	 457 GeV; see

Fig. 8. Before convoluting with the gluon distribution let us
briefly look at the behavior of the partonic cross section
gg ! b �bH, paying a particular attention to this leading
Landau singularity region.

Figures 11 show that indeed the widths do regulate the
cross section. Moreover it is within this range that the cross
section is largest even after being regulated. The (highest)
peak of the cross section occurs for a Higgs mass of
163 GeV about �W above the MH ¼ 2MW threshold, and
for

ffiffiffi
s

p ¼ 351 GeV about 2�t above the
ffiffiffi
s

p ¼ 2mt thresh-
old. Figures 11 show that the cross section exhibits a peak
structure close to the onset of the normal thresholds inMH,ffiffiffi
s

p
even when one is slightly outside the leading Landau

singularity region of the four-point function. In fact, this
enhancement at the normal threshold is far from being
totally due the four-point LLS especially after the latter
has been regularized by the introduction of the width. At
the normal threshold there is an enhancement from the
accumulation of all the two-point, three-point, and, of
course, the four-point function. Moreover as we noted in
Sec. IV (see Fig. 10), the introduction of the widths brings
the contribution of the LLS to the level of a subleading
singularity.
The cross section at the pp level for the 14 TeV center of

mass energy at the LHC as a function of the Higgs mass is
shown in Fig. 12, taking into account the width of the top
quark and the W gauge boson. For comparison we also
show the cross section without the width effect outside the
leading Landau singularity range of MH. The sharp rise
above MH > 150 GeV is nicely tamed. On the other hand,
note that on leaving the leading Landau singularity region
around MH ¼ 211 GeV, the width effect is much smaller
and the figures suggest that one could have ‘‘entered this
region from the right’’ without having recourse to intro-
ducing a width. Indeed our numerical integration routine
over phase space with the default LOOPTOOLS library does
not show as bad behavior until we venture around values of
2MW 	 MH < 200 GeV. The reason for this can be under-
stood by taking a glance at Fig. 8. For 200 GeV<MH <
211 GeV the singularity region is considerably shrunk to a
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FIG. 11 (color online). Left panel: the cross section for the subprocess gg ! b �bH as functions of MH for various values of
ffiffiffi
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p
including the case
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p ¼ 2mt ¼ 348 GeV. Right panel: the cross section for the subprocess gg ! b �bH as functions of
ffiffiffi
s

p
for various

values of MH including the case MH ¼ 2MW ¼ 160:7532 GeV.
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line so that one is integrating over an almost zero measure.
The effect of the widths outside the singularity region is to
reduce the cross section forMH ¼ 120 GeV, 140 GeV, and
150 GeV by, respectively, 15%, 24%, and 33% while for
MH ¼ 210 GeV, 230 GeV, and 250 GeV the reduction is
comparatively more modest with, respectively, 15%, 5%,
and 2%.

Normalized to the Born cross section the new contribu-
tion represents a mere 2.6% for MH ¼ 120 GeV. It in-
creases, however, to as much as 49% for MH ¼ 163 GeV
before stabilizing to about 10% for larger Higgs masses.

B. Distributions

Since the effect of the new purely one-loop contribution
is as large as �50% (compared to the Born cross section
even after being regulated through the introduction of the
widths), it is essential that one looks at different distribu-
tions to see if this new effect can be described as a simpleK
factor. The two examples we show for MH ¼ 150 GeV
(before the onset of the leading Landau singularity) and for
MH ¼ 163 GeV, where the effect on the total cross section
are largest, show that the corrections are not uniformly
distributed for all distributions. Figures 13 and 14 for
MH ¼ 150 GeV show the effect of the width. While the
relative difference is rather uniform, about 33%, on the
Higgs pseudorapidity �H distribution, the transverse mo-
mentum distributions of the Higgs pH

T , and the bottom pb
T

are strongly affected, in particular, for values which in the
absence of the width showed a peak structure. There is still
some peak structure in the pT distributions but the width
effect reduces this by as much as 50%, while in the tails it is
about 10%.

Let us now turn to MH ¼ 163 GeV. The correction,
normalized to the Born cross section, for the Higgs pseu-
dorapidity distribution is about 60% around the center
region. The corrections to the pT distributions can be

enormous in some regions of phase space, up to 200%
for the Higgs and about 170% for the bottom-quark case.
These huge corrections to the distributions in some region
of phase space are again due to the effect of Landau
singularities.
One may question whether these large corrections signal

the breakdown of perturbation theory and whether one
expects (even) higher order effects to be large. We do not
think so. First of all, the relative large corrections have to
do with the fact that for vanishing �bbH the tree-level cross
section vanishes. Second, higher order effects have been
captured in the introduction of the width and there is no
reason to suspect that the leading Landau singularity we
have encountered is affected by higher order effects.

VIII. RESULTS AT NLOWITH �bbH � 0

The results of the electroweak corrections at NLO which
represent the interference contribution between the Born
and the one-loop amplitude are much less interesting and
numerically quite small, a trend that we had found already
when studying at some length the electroweak NLO for
MH < 150 GeV [4]. Moreover, although some one-loop
diagrams contain a leading Landau singularity at the inter-
ference level this singularity as we have shown in Sec. III is
integrable; see Eq. (11). The NLO contribution, apart from
the Higgs wave function renormalization effect, is numeri-
cally stable even if one does not implement widths of the
internal particles. The purpose of this section is to briefly
present the results for the NLO. We first show that the
effect of introducing the width is very small then show the
NLO result without the internal widths being implemented
hence these results are genuinely NLO results. These re-
sults thus complement the study we made for MH <
150 GeV [4].
As discussed in Sec. II, the NLO Yukawa corrections

consist of 3 QCD gauge invariant classes; see Fig. 2. Class
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FIG. 13 (color online). The pseudorapidity of the Higgs and transverse momentum distributions of the Higgs and the bottom for
MH ¼ 150 GeV arising from the purely one-loop contribution in the limit of vanishing LO (�bbH ¼ 0) for two cases: with and without
widths. The relative percentage contribution d	ð�bbH ¼ 0Þ=d	LO is also shown.
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(a) gives a totally negligible correction below 0.1%. We
will not discuss this contribution any further here.
Moreover, the leading Landau singularity we have dis-
cussed only shows up in class (c). As a first step we there-
fore study the NLO correction due to class (c) and weigh
the effect of implementing the width of the internal parti-
cles. Class (b) does not develop a leading Landau singu-
larity and therefore the width effects will be marginal.
Another correction with enhanced Yukawa coupling is

the universal correction, ð�Z1=2
H � ��Þ where �Z1=2

H , the
Higgs wave function renormalization constant involving
the derivative of the two-point function Higgs self-energy.
The latter is ill defined when MH is equal to 2MW or 2MZ.
Here the width of all unstable particles, W, Z, t, will be
kept.7

H
η

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

[p
b

]
Hη

/dσd

7

8

9

10

11

12

13

14

15
-410×

Hbb→pp
=14TeVs

=0bbHλ
=163GeVHM
1.5GeV≈tΓ
=2.1GeVWΓ

H
η

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

40

45

50

55

60

[%]LOσ=0)/d
bbH

λ(σd

Hbb→pp
=14TeVs
=163GeVHM
1.5GeV≈tΓ
=2.1GeVWΓ

[GeV]H
T

p
0 20 40 60 80 100 120 140 160 180 200

[p
b

/G
eV

]
H T

/d
p

σd

0

1

2

3

4

5

6

7

8

-510×

Hbb→pp
=14TeVs

=0bbHλ
=163GeVHM
1.5GeV≈tΓ
=2.1GeVWΓ

[GeV]H
T

p
0 20 40 60 80 100 120 140 160 180 2000

20

40

60

80

100

120

140

160

180

200
Hbb→pp

=14TeVs
=163GeVHM
1.5GeV≈tΓ
=2.1GeVWΓ

[%]LOσ=0)/d
bbH

λ(σd

[GeV]b
T

p

20 40 60 80 100 120 140 160 180 200

[p
b

/G
eV

]
b T

/d
p

σd

0

2

4

6

8

10

12

-510×

Hbb→pp

=14TeVs
=0bbHλ

=163GeVHM
1.5GeV≈tΓ
=2.1GeVWΓ

[GeV]b
T

p

20 40 60 80 100 120 140 160 180 2000

20

40

60

80

100

120

140

160

180
Hbb→pp

=14TeVs
=163GeVHM
1.5GeV≈tΓ
=2.1GeVWΓ

[%]LOσ=0)/d
bbH

λ(σd

FIG. 14 (color online). The pseudorapidity of the Higgs and transverse momentum distributions of the Higgs and the bottom for
MH ¼ 163 GeV arising from the purely one-loop contribution in the limit of vanishing LO (�bbH ¼ 0). Its relative percentage
contribution d	ð�bbH ¼ 0Þ=d	LO is also shown.

7Note that �Z1=2
H does not diverge when MH ¼ 2mt and the

top-quark width thus has a marginal effect on �Z1=2
H .
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A. Width effect at NLO

Our implementation of the width in the four-point func-
tion has been done in the limit of massless external quarks.
To be fully consistent in the calculation of the one-loop
amplitude with widths using the modified four-point func-
tion we switch off the bottom mass in the spinors and
propagators but keep �bbH � 0 as an independent parame-
ter. Our result for the NLO contribution of class (c) is
shown in Fig. 15. First of all, as we can see the overall
correction is quite small, even at the onset of the (inte-
grable) leading Landau singularity, the correction to the
Born term is below 3.5%. The existence of a dip at the
expected location is noticeable. Width effect softens the
dip behavior somehow but the effect is not as dramatic as
what we have seen in the previous section for the loop

squared results. We find that if MH < 158 GeV or MH >
165 GeV then the width effects change the NLO result but
not more than 5%, and are therefore totally negligible
especially if one takes into account the smallness of the
NLO result itself. Therefore the full NLO results can be
studied by safely neglecting the width effect in classes (b)
and (c).

B. NLO corrections with mb � 0

The results for the NLO corrections are shown in Fig. 16
as a function of the Higgs mass. We implement widths only
in the two-point function wave function renormalization of
the Higgs. The latter contributes an almost constant �1%
correction apart from oscillations in the range 2MW to 2MZ

due to the dips at 2MW and 2MZ where the Higgs wave
function is not analytic at those values. The effect of the
widths of the W and Z smooths the behavior and the
correction is never larger than 3.5% in this range of
Higgs masses. The contribution from class (b) where the
Higgs couples to the internal top decreases very slowly as
the Higgs mass increases from 110 to 250 GeV; as ex-
pected, there is no structure as would be the case if this
contribution were sensitive to any threshold or singularity.
Class (c) on the other hand does, as expected, reveal some
structure around MH ¼ 2MW where we see a fall in the
relative correction. The correction is however, despite this
fall, quite modest ranging from �� 1% for MH ¼
160 GeV to �4% for MH ¼ 210 GeV. When we studied
the effect of the width of the internal particles on class (c)
at NLO, we did so in the massless quark limit. In that limit,
the outgoing quarks have opposite helicity so that only the
��3;��4

helicity amplitude survives; �3;4 are the quark

helicities. In our case here when the quark mass is rein-
stated, the ��3;�4

helicity amplitude switches on. Figure 16
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(right) shows that these two helicity amplitudes behave
differently as a function of the Higgs mass. The effect of
the b-quark mass makes the dip in the ��3;��4

much softer

that in the massless case displayed in Fig. 15. In the ��3;�4
,

the fall of the correction around MH ¼ 2MW is more
apparent. This is another manifestation of how the dynam-
ics can affect the structure of a singularity.

Adding the effect of all the contributions at NLO the
total correction changes from�4% forMH ¼ 110 GeV to
�8% at MH � 2MZ stabilizing to around �7% past this
value up to MH ¼ 250 GeV.

IX. CONCLUSIONS

At tree-level, Higgs production in association with a
b-quark pair at the LHC is dominated by gg ! b �bH,
where the Higgs is radiated from the b quark with a
strength proportional to the bottom-Higgs Yukawa cou-
pling. Unfortunately in the standard model this coupling
is extremely small and therefore this mechanism is not a
Higgs discovery channel, although once the Higgs has been
found the study of the Higgs coupling to the b quark
through this reaction could probe interesting phenomena
having to do with the mechanism of symmetry breaking
and the role played by the third generation fermions.
Electroweak one-loop effects are usually small compared
to the QCD corrections, however processes involving the
bottom quark, electroweak one-loop corrections involve
the top quark whose Yukawa coupling is of the order the
QCD strength. More interesting for b �bH production is that
even in the limit where the bottom-Higgs Yukawa coupling
vanishes and therefore the Born tree-level cross section
vanishes, electroweak one-loop effects, through the top-
Higgs Yukawa coupling, in particular, can still trigger this
reaction. We studied these effects in some detail in a
previous publication [4] but presented results for Higgs
masses below 2MW . We remarked that for the one-loop
contribution in the limit of vanishing bottom-Higgs
Yukawa coupling, the cross section was growing as the
Higgs mass increased and that numerical results started
showing instabilities past MH � 2MW . The aim of this
paper was to extend the study performed in [4] to the
mass range where numerical instabilities occurred. The
origin of the numerical instabilities is due to the fact that
some one-loop contributions, contained in some box dia-
grams, develop a leading Landau singularity. We have here
reviewed in some detail the problem of the occurrence of
the leading Landau singularity and investigated in more
details the conditions and dynamics as concerns b �bH
production. Since this singularity is not integrable when
the one-loop amplitude is squared, we regulate the cross
section by taking into account the width of the internal top
andW particles. This requires that we extend the usual box
one-loop function to the case of complex masses. We show
how this can be implemented analytically in our case. We
study in some detail the cross section at the LHC as a

function of the Higgs mass and show how some distribu-
tions can be drastically affected compared to the tree-level
result. For completeness we have also extended our study
of the NLO Yukawa electroweak corrections which repre-
sent the interference between the one-loop amplitude and
the tree-level amplitude. At this level the Landau singular-
ity is integrable and therefore does not require that one
endows the internal particle with a width. The NLO cor-
rection is found to be small.
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APPENDIX A: NATURE OF THE LEADING
LANDAU SINGULARITY

We give in this section more detail about our derivation
of Eq. (10). One can rewrite Eq. (2) in the form

TN
0 ¼ �ðNÞ

Z 1

0
dx1 � � � dxN�

�XN
i¼1

xi � 1

�

�
Z dDq

ð2�ÞDi
1

ðq2 ��ÞN ; (A1)

where

� ¼ 1

2

XN
i;j¼1

xixjQij � i" (A2)

with Qij given in Eq. (6). Integrating over q gives

TN
0 ¼ ð�1ÞN�ðN �D=2Þ

ð4�ÞD=2

Z 1

0
dx1 � � � dxN �ðPN

i¼1 xi � 1Þ
�N�D=2

:

(A3)

The Landau equations for the representation (A3) are [6]8<
:
� ¼ 0;
@�
@xi

¼ 0:
(A4)

Since � is a homogeneous function of xi, the first equation
in (A4) is automatically satisfied when the second is.
Equation (A4) is equivalent to Eq. (5), which means that
the solution of Eq. (A4) is an eigenvector of Q with zero
eigenvalue. In general, Q has N real eigenvalues
�1; . . . ; �N . The characteristic equation of Q is given by
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fð�Þ ¼ �N þ ð�1ÞaN�1�
N�1 þ ð�1Þ2aN�2�

N�2

� . . . ð�1ÞN�1a1�þ ð�1ÞNa0
¼ ð�� �1Þð�� �2Þ . . . ð�� �nÞ ¼ 0: (A5)

For the case N ¼ 4 we have

a0 ¼ �1�2�3�4 ¼ detðQ4Þ;
a1 ¼ �1�2�3 þ �1�2�4 þ �1�3�4 þ �2�3�4;

a2 ¼ �1�2 þ �1�3 þ �1�4 þ �2�3 þ �2�4 þ �3�4;

a3 ¼ �1 þ �2 þ �3 þ �4 ¼ TrðQ4Þ: (A6)

Consider the case where Q has only one very small eigen-
value �N � 1, then to a very good approximation

�N ’ a0
a1

; a1 ¼ �1�2 . . .�N�1 � 0: (A7)

Let V ¼ fx01; x02; . . . ; x0Ng be the eigenvector corresponding
to the eigenvalue �N . V is normalized to

XN
i¼1

x0i ¼ 1: (A8)

For latter use, we define

�2 ¼ V:V: (A9)

The expansion of � around V reads

� ¼ 1

2

XN
i;j¼1

Qijyiyj þ �N

XN
i¼1

x0i yi þ
1

2
�N�

2 � i"; (A10)

where yi ¼ xi � x0i . In order to find the leading singularity,
it will be sufficient to neglect the linear term in the right-
hand side. The Q matrix can be diagonalized by rotating
the y vector

yi ¼
XN
j¼1

Aijzj; (A11)

where A is an orthogonal matrix whose columns are the
normalized eigenvectors of Q. Thus we have

detðAÞ ¼ 1;
XN
j¼1

ANj ¼
P

N
i¼1 x

0
iffiffiffiffiffiffiffiffiffi

V:V
p ¼ 1

�
;

� ¼ 1

2

XN�1

i¼1

�iz
2
i þ

1

2
�N�

2 � i":

(A12)

Note that the term �Nz
2
N in the right-hand side has been

neglected as this term would give a contribution of the
order Oð�2

NÞ to the final result. Equation (A3) can now be
rewritten in the form

TN
0 ¼ ð�1ÞN�ðN �D=2Þ

�D=223D=2�N

Z þ1

�1
dz1 � � �dzN

� �ðPN
i;j¼1 AijzjÞ

ðPN�1
i¼1 �iz

2
i þ �N�

2 � i"ÞN�D=2
: (A13)

Although the original integration contour is some segment
around the singular point zi ¼ 0 with i ¼ 1; . . . ; N, the
singular part will not be changed if we extend the integra-
tion contour to infinity, provided the power ðN �D=2Þ of
the denominator in Eq. (A13) is sufficiently large.
Integrating over zN gives

TN
0 ¼ ð�1ÞN�ðN �D=2Þ�

�D=223D=2�N

Z þ1

�1
dz1 � � � dzN�1

� 1

ðPN�1
i¼1 �iz

2
i þ �N�

2 � i"ÞN�D=2
; (A14)

where the factor � comes from the � function. Assuming
that �i > 0 for i ¼ 1; . . . ; K and �j < 0 for j ¼
K þ 1; . . . ; N � 1 with 0 	 K 	 N � 1, we change the
integration variables as follows:�

ti ¼
ffiffiffiffiffi
�i

p
zi for i ¼ 1; . . .K;

tj ¼
ffiffiffiffiffiffiffiffiffi��j

p
zj for j ¼ K þ 1; . . .N � 1:

(A15)

This makes sure that all ti are real. We get

TN
0 ¼ ð�1ÞN�ðN �D=2Þ�

�D=223D=2�N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1ÞN�K�1a1

p �
Z þ1

�1
dt1 � � � dtK

�
Z þ1

�1
dtKþ1 � � � dtN�1

1

ð�PN�1
i¼Kþ1 t

2
i þ b2ÞN�D=2

;

(A16)

where

b2 ¼ XK
i¼1

t2i þ �N�
2 � i"; Reðb2Þ> 0: (A17)

Changing to spherical coordinates and using the following
formulae for the volumeZ þ1

�1
dt1 � � � dtK ¼

Z 1

0
rK�1drd�K�1;

Z
d�K�1 ¼ 2�K=2

�ðK=2Þ ;
(A18)

we arrive at

TN
0 ¼ ð�1ÞN�ðN �D=2Þ�

�D=223D=2�N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1ÞN�K�1a1

p 2�ðN�K�1Þ=2

�ððN � K � 1Þ=2Þ

�
Z þ1

�1
dt1 � � � dtK

Z 1

0
dr

rN�K�2

ðb2 � r2ÞN�D=2
: (A19)

Note that ðb2 � r2ÞN�D=2 ¼ e�i�ðN�D=2Þðr2 � b2ÞN�D=2

due to the fact that " > 0. UsingZ 1

0
ds

s��1

ðzþ sÞ
 ¼ zð��
Þ �ð
� �Þ�ð�Þ
�ð
Þ ; (A20)

gives

TN
0 ¼ ð�1ÞNei�ðN�K�1Þ=2�

�D=223D=2�N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1ÞN�K�1a1

p �ðN�K�1Þ=2

� �ððN �Dþ K þ 1Þ=2Þ �
Z þ1

�1
dt1 � � �dtK

� 1

ðPK
i¼1 t

2
i þ �N�

2 � i"ÞðN�DþKþ1Þ=2 : (A21)
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Repeat the above steps to write

TN
0 ¼ ð�1ÞNei�ðN�K�1Þ=2�

23D=2�N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1ÞN�K�1a1

p

� �ðN�D�1Þ=2�ððN �Dþ 1Þ=2Þ
ð�N�

2 � i"ÞðN�Dþ1Þ=2 : (A22)

This result was derived with the condition
a1 � 0 and N �Dþ 1> 0: (A23)

However it can be trivially analytically continued if we
work in D ¼ 4� 2� so that it applies to N 	 3 in D ¼ 4
by taking the limit � ! 0. Alternatively, with D ¼ 4 and
N ¼ 3 the scalar function

T3
0 ¼ ��

8�2

Z
dz1dz2

1

ð�1z
2
1 þ �2z

2
2 þ �3�

2 � i"Þ : (A24)

One first needs to dispose of the ultraviolet divergent. To
that effect we differentiate the above equation with respect
to � ¼ �3�

2 with the result
dT3

0

d�
¼ �

8�2

Z 1

�1
dz1dz2

1

ð�1z
2
1 þ �2z

2
2 þ �� i"Þ2

¼ ei�ð2�KÞ=2�

8�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1Þ2�K�1�2

p 1

�� i"
: (A25)

Integrating back (with respect to �) we get

T3
0 ¼ ei�ð2�KÞ=2�

8�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1Þ2�K�1�2

p lnð�3�
2 � i"Þ þ C; (A26)

where C is a constant independent of �. This result co-
incides with Eq. (12).

APPENDIX B: SCALAR BOX INTEGRALS WITH
COMPLEX MASSES

The derivation of the analytical expression of the scalar
one-loop function for the box (N ¼ 4) with complex in-
ternal masses in the most general case with no restriction
on the external invariants is not tractable. However, if at
least one of the invariant masses of the external legs is
lightlike one can derive an analytical formula in closed
form starting from the standard approach of ’t Hooft and
Veltman [27] (see also [36]). For our application there are
at least 2 lightlike external momenta in all boxes. We
explain here our derivation based on the method given in
[27] for this special case.
The scalar box integral is deduced from Eq. (A3) with x4

integrated out with the result

D0 � ð4�Þ2T4
0 ¼

Z 1

0
dx

Z x

0
dy

Z y

0
dz

1

ðax2 þ by2 þ gz2 þ cxyþ hxzþ jyzþ dxþ eyþ kzþ fÞ2 ; (B1)

where we have changed the integration variables as t ¼ P
4
i¼1 xi, x ¼ P3

i¼1 xi, y ¼ x1 þ x2, z ¼ x1; and

a ¼ 1

2
ðQ33 þQ44 � 2Q34Þ ¼ p2

3; b ¼ 1

2
ðQ22 þQ33 � 2Q23Þ ¼ p2

2;

g ¼ 1

2
ðQ11 þQ22 � 2Q12Þ ¼ p2

1; c ¼ Q23 þQ34 �Q33 �Q24 ¼ 2p2:p3;

h ¼ Q13 þQ24 �Q14 �Q23 ¼ 2p1:p3; j ¼ Q12 þQ23 �Q22 �Q13 ¼ 2p1:p2;

d ¼ Q34 �Q44 ¼ m2
3 �m2

4 � p2
3; e ¼ Q24 �Q34 ¼ m2

2 �m2
3 � p2

2 � 2p2:p3;

k ¼ Q14 �Q24 ¼ m2
1 �m2

2 þ p2
1 þ 2p1:p4; f ¼ Q44

2
� i" ¼ m2

4 � i";

(B2)

with Qij is defined in Eq. (6). Our application will be to complex masses, m2
i , with i ¼ 1, 2, 3, 4, d, e, k, f are therefore

complex parameters while other parameters are real. The two lightlike external momenta can be either adjacent or opposite
to each other. We consider in each of these two cases separately.

1. Integral with two opposite lightlike external momenta

For the box shown in Fig. 17 with p2
1 ¼ p2

3 ¼ 0 one gets a ¼ g ¼ 0 and writes

Dð13Þ
0 ¼

Z 1

0
dx

Z x

0
dy

Z y

0
dz

1

ðby2 þ cxyþ hxzþ jyzþ dxþ eyþ kzþ fÞ2 : (B3)

Integrating over z to get

Dð13Þ
0 ¼

Z 1

0
dx

Z x

0
dy

y

ðAxþ BÞðCxþDÞ ; (B4)

with
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A ¼ cyþ d; B ¼ by2 þ eyþ f;

C ¼ ðcþ hÞyþ d; D ¼ ðbþ jÞy2 þ ðeþ kÞyþ f:

(B5)

One changes the integration order as

Z 1

0
dx

Z x

0
dy ¼

Z 1

0
dy

Z 1

y
dx: (B6)

We get

Dð13Þ
0 ¼

Z 1

0
dyy

Z 1

y
dx

1

ðAxþ BÞðCxþDÞ ; (B7)

where A, B, C, D are complex. Integrating over x as
follows:

Z 1

y
dx

1

ðAxþ BÞðCxþDÞ ¼
1

AC

Z 1

y

dx

ðxþ B
AÞðxþ D

CÞ
¼ 1

AD� BC

Z 1

y

�
1

xþ B
A

� 1

xþ D
C

�
dx

¼ 1

AD� BC

�
ln
1þ B

A

yþ B
A

� ln
1þ D

C

yþ D
C

�
¼ 1

AD� BC

�
ln

Aþ B

Ayþ B
� ln

CþD

CyþD

�
; (B8)

where we have made sure that the arguments of the logarithms never cross the cut along the negative real axis. One easily
gets

Dð13Þ
0 ¼

Z 1

0

dy

ðcj� bhÞy2 þ ðdjþ ck� ehÞyþ dk� fh

�
ln

Aþ B

Ayþ B
� ln

CþD

CyþD

�
: (B9)

The discriminant of the quadratic function in the denomi-
nator of the prefactor is nothing but the Landau determi-
nant. Indeed,

detQ4 ¼ ðdjþ ck� ehÞ2 � 4ðcj� bhÞðdk� fhÞ:
(B10)

We write

Dð13Þ
0 ¼ 1

ðcj� bhÞðy2 � y1Þ
Z 1

0

�
1

y� y2
� 1

y� y1

�

�
�
ln

Aþ B

Ayþ B
� ln

CþD

CyþD

�
; (B11)

with

y1
2
¼ �ðdjþ ck� ehÞ  ffiffiffiffiffiffiffiffiffiffiffiffiffi

detQ4

p
2ðcj� bhÞ : (B12)

Now we have to look at the imaginary parts of the
arguments of the logarithms in (B11). We write them

explicitly

Aþ B ¼ by2 þ ðcþ eÞyþ dþ f;

Ayþ B ¼ ðbþ cÞy2 þ ðeþ dÞyþ f;

CþD ¼ ðbþ jÞy2 þ ðeþ kþ cþ hÞyþ dþ f;

CyþD ¼ ðbþ jþ cþ hÞy2 þ ðeþ kþ dÞyþ f:

(B13)

Imaginary parts read

Im ðAþ BÞ ¼ Imðeyþ dþ fÞ
¼ Im½ym2

2 þ ð1� yÞm2
3 � i"
< 0;

ImðAyþ BÞ ¼ Imðeyþ dyþ fÞ
¼ Im½ym2

2 þ ð1� yÞm2
4 � i"
< 0;

ImðCþDÞ ¼ Im½ðeþ kÞyþ dþ f

¼ Im½ym2

1 þ ð1� yÞm2
3 � i"
< 0;

ImðCyþDÞ ¼ Im½ðeþ kÞyþ dyþ f

¼ Im½ym2

1 þ ð1� yÞm2
4 � i"
< 0:

(B14)

Using formula lnða=bÞ ¼ lna� lnb for ImðaÞImðbÞ> 0,
we rewrite (B11) as

Dð13Þ
0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

detQ4

p X2
i¼1

X4
j¼1

ð�1Þiþj
Z 1

0
dy

1

y� yi

� lnðAjy
2 þ Bjyþ CjÞ; (B15)

with

p1

p3

p4

p2

FIG. 17. A box diagram with two opposite lightlike external
momenta p1 and p3. Double line means massless.
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A1 ¼ bþ c; B1 ¼ eþ d; C1 ¼ f;

A2 ¼ b; B2 ¼ cþ e; C2 ¼ dþ f;

A3 ¼ bþ j; B3 ¼ eþ kþ cþ h; C3 ¼ dþ f;

A4 ¼ bþ jþ cþ h; B4 ¼ eþ kþ d; C4 ¼ f:

(B16)

We would like to make an important remark here. From
Eq. (B14) we can rewrite Eq. (B11) in the form

Dð13Þ
0 ¼ 1

ðcj� bhÞðy2 � y1Þ
Z 1

0

�
1

y� y2
� 1

y� y1

�

�
�
ln
Aþ B

CþD
� ln

Ayþ B

CyþD

�
: (B17)

We notice that if y ¼ y1;2 then AD ¼ BC which means

Aþ B

CþD

��������y¼y1;2

¼ Ayþ B

CyþD

��������y¼y1;2

¼ B

D

��������y¼y1;2

: (B18)

Thus, we get

Z 1

0

�
1

y� y2
� 1

y� y1

��
ln
Aþ B

CþD

��������y¼y1;2

� ln
Ayþ B

CyþD

��������y¼y1;2

�
¼ 0: (B19)

Subtracting this zero contribution from Eq. (B15), we get
another form

Dð13Þ
0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðQ4Þ
p X2

i¼1

X4
j¼1

ð�1Þiþj �
Z 1

0
dy

� lnðAjy
2 þ Bjyþ CjÞ � lnðAjy

2
i þ Bjyi þ CjÞ

y� yi

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQ4Þ

p X2
i;j¼1

ð�1Þiþj�ij ln
yi � 1

yi
; (B20)

where �i1 ¼ �ðAþ B; 1=ðCþDÞÞjy¼yi and �i2 ¼
�ðAyþ B; 1=ðCyþDÞÞjy¼yi with i ¼ 1; 2 and the defini-

tion of the eta function �ðx; yÞ is given in [27]. This
representation is more convenient for the evaluation in
terms of Spence functions.
Each integral in Eq. (B20) can be written in terms of 4

Spence functions as given in Appendix B of [27]. Thus

Dð13Þ
0 can be written in terms of 32 Spence functions.

2. Integral with two adjacent lightlike external
momenta

For the box shown in Fig. 18 with p2
1 ¼ p2

2 ¼ 0 one gets
b ¼ g ¼ 0 and writes

Dð12Þ
0 ¼

Z 1

0
dx

Z x

0
dy

Z y

0
dz

1

ðax2 þ cxyþ hxzþ jyzþ dxþ eyþ kzþ fÞ2 : (B21)

As in the case of Dð13Þ
0 , integrating over z gives

Dð12Þ
0 ¼

Z 1

0
dx

Z x

0
dy

1

a1b1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I1

þ sk
Z 1

0
dx

Z x

0
dy

1

�ska1ða1yþ b1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I2

; (B22)

with

sk ¼ signðImðkÞÞ;
�ska1 ¼ �skðhxþ jyþ kÞ � i"0;

b1 ¼ ax2 þ cxyþ dxþ eyþ f;

a1yþ b1 ¼ ax2 þ jy2 þ ðcþ hÞxy
þ dxþ ðeþ kÞyþ f� i"; (B23)

where we have used the fact that Imða1yþ b1Þ ¼ Im½dxþ
ðeþ kÞyþ f
 ¼ Im½ðx� yÞm2

3 þ ð1� xÞm2
4 þ ym2

1 �
i"
< 0 because 0 	 y 	 x 	 1. " and "0 are infinitesimal
positive quantities which carry the sign of the imaginary
parts of �ska1 and a1yþ b1. For I1, we integrate over y,
similar to (B8), to get

I1 ¼
Z 1

0
dy

1

ðja� hcÞy2 þ ðjd� he� kcÞyþ jf� ke

�
�
ln
ðjþ hÞyþ k� i"0

hyþ k� i"0

� ln
ðaþ cÞy2 þ ðdþ eÞyþ f

ay2 þ dyþ f

�
: (B24)

Consider the prefactor

p1

p3
p4

p2

FIG. 18. A box diagram with two adjacent lightlike external
momenta p1 and p2. Double line means massless.
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detðQ4Þ ¼ ðjd� he� kcÞ2 � 4ðja� hcÞðjf� keÞ;

y11ð12Þ ¼ ðheþ kc� jdÞ  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQ4Þ

p
2ðja� hcÞ ; (B25)

where the indices 11, 12 correspond to � and þ signs,
respectively. We rewrite I1 as

I1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQ4Þ

p X2
i¼1

ð�1Þi
Z 1

0
dy

1

y� y1i

�
�
ln
ðjþ hÞyþ k� i"0

hyþ k� i"0

� ln
ðaþ cÞy2 þ ðdþ eÞyþ f

ay2 þ dyþ f

�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQ4Þ

p X2
i¼1

X4
j¼1

ð�1Þiþj
Z 1

0
dy

1

y� y1i

� lnðA1jy
2 þ B1jyþ C1jÞ; (B26)

with

A11 ¼ 0; B11 ¼ h; C11 ¼ k;

A12 ¼ 0; B12 ¼ jþ h; C12 ¼ k;

A13 ¼ aþ c; B13 ¼ dþ e; C13 ¼ f;

A14 ¼ a; B14 ¼ d; C14 ¼ f:

(B27)

Thus I1 can be written in terms of 24 Spence functions. For
I2 we shift y ¼ yþ �x, � such that

j�2 þ ðcþ hÞ�þ a ¼ 0: (B28)

There are, in general, two values of �. The final result does
not depend on which value of �we take. We have used this
freedom to find bugs in the numerical calculation and it
turns out to be a very powerful method to check the
correctness of the imaginary part which can be very tricky
for the case of equal masses. One gets

I2 ¼
Z 1

0
dx

Z ð1��Þx

��x
dy

1

ðGxþH � i"0ÞðExþ F� i"Þ ;
(B29)

with

G ¼ �skh� skj�; H ¼ �skjy� skk;

E ¼ ð2j�þ cþ hÞyþ dþ �ðeþ kÞ;
F ¼ jy2 þ ðeþ kÞyþ f:

(B30)

For real � we have

Z 1

0
dx

Z ð1��Þx

��x
dy ¼

Z 1

0
dx

Z ð1��Þx

0
dy�

Z 1

0
dx

Z ��x

0
dy

¼
Z 1��

0
dy

Z 1

y=ð1��Þ
dx

�
Z ��

0
dy

Z 1

�y=�
dx: (B31)

We write

1

ðGxþH � i"0ÞðExþ F� i"Þ
¼ 1

GF�HE

�
G

GxþH � i"0
� E

Exþ F� i"

�
: (B32)

Integrating over x, we get

I2 ¼
Z 1��

��

dy

GF�HE
ln
GþH

Eþ F
�

Z 1��

0

dy

GF�HE

� ln
Gy
1�� þH
Ey
1�� þ F

þ
Z ��

0

dy

GF�HE
ln

Gy
�� þH
Ey
�� þ F

:

(B33)

The prefactor

GF�HE

sk
¼ jðj�þ cÞy2 þ ð2�jkþ jd� heþ kcÞy

þ �ðkeþ k2 � jfÞ þ kd� hf

¼ jðj�þ cÞðy� y21Þðy� y22Þ; (B34)

with

y21ð22Þ ¼ �ð2�jkþ jd� heþ kcÞ  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQ4Þ

p
2jðj�þ cÞ ; (B35)

where the indices 21, 22 correspond to � and þ signs,
respectively. We rewrite I2 as

I2 ¼ 1

sk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQ4Þ

p X2
i¼1

ð�1ÞiIðiÞ2 ;

IðiÞ2 ¼
Z 1��

��

dy

y� y2i
ln
GþH

Eþ F
�

Z 1��

0

dy

y� y2i
ln

Gy
1�� þH
Ey
1�� þ F

þ
Z ��

0

dy

y� y2i
ln

Gy
�� þH
Ey
�� þ F

: (B36)

We make the substitutions y ¼ y� � for the first integral,
y ¼ ð1� �Þy for the second integral, and y ¼ ��y for the
third integral to get

IðiÞ2 ¼
Z 1

0

dy

y� �� y2i
ln

�skjy� skh� skk� i"0

jy2 þ ðcþ hþ eþ kÞyþ aþ dþ f� i"
�

Z 1

0

ð1� �Þdy
ð1� �Þy� y2i

� ln
�skðjþ hÞy� skk� i"0

ðaþ cþ jþ hÞy2 þ ðdþ eþ kÞyþ f� i"
þ

Z 1

0

��dy

��y� y2i
ln
�skhy� skk� i"0

ay2 þ dyþ f� i"
: (B37)
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Consider the arguments of the three logarithms, as demonstrated in (B14), it is easy to see that the sign of the imaginary
parts of the denominators is negative as indicated by �i". The derivation is for real �. However, this result can be easily
generalized to cover the case of complex � as shown below. We can now rewrite I2 as

I2 ¼ 1

sk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQ4Þ

p X2
i¼1

X6
j¼1

ð�1Þi
Z 1

0
dy

cj
ajy� bj � y2i

lnðA2jy
2 þ B2jyþ C2jÞ; (B38)

with

c1 ¼ 1; a1 ¼ 1; b1 ¼ �; c2 ¼ �ð1� �Þ; a2 ¼ 1� �; b2 ¼ 0;

c3 ¼ ��; a3 ¼ ��; b3 ¼ 0; c4 ¼ �1; a4 ¼ 1; b4 ¼ �;

c5 ¼ 1� �; a5 ¼ 1� �; b5 ¼ 0; c6 ¼ �; a6 ¼ ��; b6 ¼ 0;

A21 ¼ 0; B21 ¼ �skj; C21 ¼ �skk� skh; A22 ¼ 0; B22 ¼ �skðjþ hÞ; C22 ¼ �skk;

A23 ¼ 0; B23 ¼ �skh; C23 ¼ �skk; A24 ¼ j; B24 ¼ cþ hþ eþ k; C24 ¼ aþ dþ f;

A25 ¼ aþ cþ jþ h; B25 ¼ dþ eþ k; C25 ¼ f; A26 ¼ a; B26 ¼ d; C26 ¼ f:

(B39)

I2 can be written in terms of 36 Spence functions. Thus

Dð12Þ
0 ¼ I1 þ skI2 (B40)

contains 60 Spence functions. For the evaluation ofDð12Þ
0 in

terms of Spence functions and to generalize Eq. (B38) for
complex �, we have to do the following replacement for
each logarithm in I1;2:

lnðA1jy
2 þ B1jyþ C1jÞ ! lnðA1jy

2 þ B1jyþ C1jÞ
� lnðA1jy

2
1i þ B1jy1i þ C1jÞ;

lnðA2jy
2 þ B2jyþ C2jÞ ! lnðA2jy

2 þ B2jyþ C2jÞ
� lnðA2jŷ

2
2i þ B2jŷ2i þ C2jÞ;

(B41)

with ŷ2i ¼ ðy2i þ bjÞ=aj, and add the corresponding extra
terms related to the eta functions. The argument for this is
similar to that explained in the previous section; see Eq.
(B20).

For the boxes with one lightlike external momentum, the
result is written in terms of 72 Spence functions by using
exactly the same method.

APPENDIX C: SINGULARITIES OF THE
THREE-POINT FUNCTION

In the main text, we concentrated on the properties of the
four-point one-loop function especially as concerns the
occurrence of the leading Landau singularity which in
that case is not integrable. Although a leading singularity
in the three-point function is integrable, it is instructive to
study the case of the three-point function in some detail as
it sheds light on some properties we unravelled in the four-
point function. Moreover the three-point function appears
also when shrinking or collapsing one of the internal lines
into a point and therefore its singularities are part of the
singularities of the corresponding four-point function. The

study of the three-point scalar integral is easier to handle as
it involves less parameters. We take as an example, the
three-point loop integral shown in Fig. 19 that is part of the
diagrams contributing to class (c).
In terms of the Passarino-Veltman appellation, this sca-

lar integral writes

T3
0ðs2Þ ¼ C0ðs2;M2

H; 0; m
2
t ;M

2
W;M

2
WÞ;

s2 ¼ ðp4 þ p5Þ2: (C1)

The bottom-quark mass has been neglected by setting it to
0. The phase-space constraint on s2 is M2

H 	 s2 	 s; see
Eq. (13).
We will define the Landau determinant, detQ3, corre-

sponding to a three-point function, C0ðp2
1; p

2
2; p

3
3;

m2
1; m

2
2; m

2
3Þ according to the Passarino-Veltman notation

detQ3ðp2
1; p

2
2; p

3
3;m

2
1; m

2
2; m

2
3Þ (C2)

with mi the internal masses and p2
i the invariants of the

external momenta. In the same spirit the determinant of a
two-point function will be defined as

detQ2ðp2;m2
1; m

2
2Þ ¼ ��ðp2;m2

1; m
2
2Þ

¼ �ðp2 � ðm1 þm2Þ2Þ
� ðp2 � ðm1 �m2Þ2Þ; (C3)

where �ða; b; cÞ is the usual kinematic function; see Eq.
(15). For completeness and later reference, the determinant
of the one-point function is defined as

detQ1ðm2Þ ¼ 2m2: (C4)

A necessary condition for a three-point function to have a
LLS is that it has exactly two cuts which can produce
physical on shell particles. The diagram in Fig. 19 satisfies
this condition when

MH � 2MW and
ffiffiffiffiffi
s2

p � mt þMW: (C5)
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These conditions are part of the conditions for our four-
point function (that we studied in Sec. III) to have an LLS.
In fact, this three-point function is a reduced diagram from
the point of view of our four-point function where it is
considered as a subleading Landau singularity. These con-
ditions Eq. (C5) represent the opening up of normal thresh-
olds. We will refer to the first thresholdMH � 2MW as the
Higgs threshold (H ! WþW�), while the second condi-
tion will be referred to as the s2 threshold (Hb ! Wt). The
sign condition (xi > 0), Eq. (8) for the case at hand, is
particularly simple here. For example,

detQ̂13 ¼ �M2
Hðm2

t þM2
WÞ þ 2s2M

2
W 	 0;

detQ̂23 ¼ �M2
Hðm2

t þM2
WÞ þ s2ðM2

H � 2M2
WÞ 	 0;

(C6)

which together with Eq. (C5) give

s2 	 M2
W þm2

t

M2
H � 2M2

W

M2
H 	 2ðm2

t þM2
WÞ: (C7)

These inequalities are supplemented by the condition of
vanishing Landau determinant in order for the appearance
of the LLS. The Landau determinant in our case is

detQ3ðs2;M2
HÞ � detðs2;M2

H; 0;m
2
t ;M

2
W;M

2
WÞ

¼ �2M2
Ws

2
2 þ 2M2

Hðm2
t þM2

WÞs2
� 2M2

HðM2
Hm

2
t þ ðm2

t �M2
WÞ2Þ: (C8)

We have chosen to pick up s2 as the variable in which to
study the location of the LLS, hence our notation
detQ3ðs2;M2

HÞ. It is very rewarding to express this deter-
minant in terms of a perfect square in s2 plus a remainder
which is the discriminant of the quadratic equation. We can
then write

detQ3ðs2;M2
HÞ ¼ � detQ1ðm2

t Þ

�
�
ðs2 � s02Þ2 �

detQ0
2

detQ1ðm2
t Þ

detQ
M2

H

2

Q1ðm2
t Þ
�

with detQ
M2

H

2 ¼ detQ2ðM2
H;M

2
W;M

2
WÞ;

detQ0
2 ¼ detQ2ð0;m2

t ;M
2
WÞ; (C9)

s02 ¼ 2ðm2
t þM2

WÞ þ ðM2
H � 4M2

WÞ
�
1þm2

t �M2
W

2M2
W

�
:

(C10)

It is important to note that the discriminant is the product of
two subdetermiants, independent of s2, corresponding to 2
two-point functions each one obtained by collapsing or
shrinking one of the internal lines bringing one vertex of
the original three-point function to coincide with the ‘‘s2
vertex’’, s2 in which we write the perfect square. This is a
general theorem [22] that applies to symmetric matrices
based on the Jacobi ratio theorem for determinants [23].
The roots s2;� (from detQ3ðs2;M2

HÞ ¼ 0) give the posi-
tion of the LLS as a function of MH, for fixed mt, MW . In
view of the constraint Eq. (C7) only one solution is pos-
sible. It is given by

sH2 ¼ sLLS2

¼ 1

2M2
W

ðM2
HðM2

W þm2
t Þ

� ðm2
t �M2

WÞMH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H � 4M2
W

q
Þ

¼ s02 �
m2

t �M2
W

2M2
W

M2
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

W=M
2
H

q
: (C11)

The surface that defines Eq. (C11) is the surface of the LLS
region. This surface is bounded, however, due to the con-
straint from the inequalities due to the normal thresholds
and the sign condition. This is what defines the region of
the LLS singularity. In fact, the normal thresholds are
directly related to the range of the LLS region. First of
all, if MH < 2MW there is no LLS. At exactly the Higgs

threshold, MH ¼ 2MW and detQ
M2

H

2 ¼ 0, the LLS accord-

ing to Eq. (C11) occurs at sLLS2 ¼ 2ðm2
t þM2

WÞ which is
the maximum value of s2 given by Eq. (C7). When MH

increases, the value of sLLS2 decreases until s2 reaches the s2
threshold, ðmt þMWÞ2, below which the LLS disappears.
Therefore the s2 threshold, via the vanishing of the Landau
determinant will give the maximum value of MH for the
appearance of the LLS. We therefore find that the region of
the LLS is delimited as

4M2
W 	 M2

H 	 4M2
W þMW

mt

ðmt �MWÞ2;

ðmt þMWÞ2 	 s2 	 2ðm2
t þM2

WÞ:
(C12)

Numerically, this corresponds to

FIG. 19 (color online). A triangle diagram contributing to
gg ! b �bH that can develop a leading Landau singularity for
MH � 2MW and

ffiffiffiffiffi
s2

p � mt þMW , i.e. all the three particles in

the loop can be simultaneously on shell.
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160:75 GeV 	 MH 	 172:89 GeV;

254:38 GeV 	 ffiffiffiffiffi
s2

p 	 271:06 GeV:
(C13)

This range in the variablesMH, s2 can be derived in a much
simpler way. The Landau constraint of vanishing determi-
nant detQ3ðs2;M2

HÞ is a surface. This is bounded by tan-
gents parallel to the coordinate variables [22], s2, M

2
H so

that with mt and MW fixed, these extrema are given by

@ detQ3ðs2;M2
HÞ

@s2
¼ 0 ) sext2 ¼ s02 ) detQ

M2
H

2

¼ 0ðsince detQ3ðs2;M2
HÞ ¼ 0Þ ) MH

¼ 2MW ) sextr:12 ¼ 2ðm2
t þM2

WÞ:
(C14)

The other extrema are derived in a similar way by consid-
ering

@ detQ3ðs2;M2
HÞ

@M2
H

¼ 0 ) detQs2
2 ¼ 0 ) sextr:22

¼ ðmt þMWÞ2 ) M2
H

¼ 4M2
W þMW

mt

ðmt �MWÞ2: (C15)

It is crucially important to observe that these extrema do
correspond to normal thresholds where a leading singular-
ity and a subleading singularity coincide. This feature will
be carried through to the case of the four-point function.
The location of the singularity, as well as its range, is

well rendered in Fig. 20 which shows how the location of
the LLSmoves as we vary the Higgs mass. Figure 20 shows
both the real and imaginary part of scalar three-point
function. Note that as shown in Sec. III, here the LLS is
of a logarithm type. This explains why one observes a
jump, a step function discontinuity, in the real part and a
logarithmic singularity in the imaginary part or vice versa.
We see that forMH ¼ 159 GeV< 2MW , a funnel develops
at the normal s2 threshold for the real part while the
imaginary part develops a nonzero value past this threshold
with a rather smooth and broad structure. ForMH ¼ 2MW ,
at the Higgs threshold, the imaginary part develops are
very sharp dip at s2 ¼ 2ðm2

t þM2
WÞ which is furthest from

the normal s2 threshold at s2 ¼ ðmt þMWÞ2. As the Higgs
mass increases, this sharp dip moves to the left towards the
normal s2 threshold beyond which the sharp peaks signal-
ling the LLS disappear leaving only a dent at the normal
(s2) threshold.
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