
Mimicking the QCD equation of state with a dual black hole

Steven S. Gubser and Abhinav Nellore

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA
(Received 25 June 2008; published 29 October 2008)

We present numerical and analytical studies of the equation of state of translationally invariant black

hole solutions to five-dimensional gravity coupled to a single scalar. As an application, we construct a

family of black holes that closely mimics the equation of state of quantum chromodynamics at zero

chemical potential.
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I. INTRODUCTION

In the supergravity approximation, the near-extremal D3
brane has equation of state s / T3, with a constant of
proportionality that is 3=4 of the free-field value for the
dual N ¼ 4 super-Yang-Mills theory [1]. The speed of

sound is cs ¼ 1=
ffiffiffi
3

p
, as required by conformal invariance.

On the other hand, the speed of sound of a thermal state in
quantum chromodynamics (QCD) has an interesting and
phenomenologically important dependence on tempera-
ture, with a minimum near the crossover temperature Tc.
Lattice studies of the equation of state are too numerous to
cite comprehensively, but they include [2] (for pure glue),
[3] (a review article), and [4,5] (recent studies with 2þ 1
flavors).

We would like to find a five-dimensional gravitational
theory that has black hole solutions whose speed of sound
as a function of temperature mimics that of QCD. We will
not try to include chemical potentials or to account for
chiral symmetry breaking. We will not try to include
asymptotic freedom, but instead will limit our computation
to T & 4Tc and assume conformal behavior in the extreme
UV.Wewill not even try to give an account of confinement,
except insofar as the steep rise in the number of degrees of
freedom near the crossover temperature Tc is recovered in
our setup, corresponding to a minimum of cs near Tc. We
will not try to embed our construction in string theory, but
instead adjust parameters in a five-dimensional gravita-
tional action to recover approximately the dependence
csðTÞ found from the lattice. That action is

S ¼ 1

2�2
5

Z
d5x

ffiffiffiffiffiffiffi�g
p �

R� 1

2
ð@�Þ2 � Vð�Þ

�
; (1)

up to total derivative terms which affect the evaluation of
the free energy, but not the entropy or temperature. We will
not include higher derivative corrections, which would
arise from �0 and loop corrections if the theory (1) were
embedded explicitly in string theory.

The ansatz we will study is

ds2 ¼ e2Að�hdt2 þ d~x2Þ þ e2B
dr2

h
; (2)

where A, B, and h are functions of r, and � is also some
function of r. This ansatz is dictated by the symmetries: we
want translation invariance in the R3;1 directions parame-
trized by ðt; ~xÞ, and we want SOð3Þ symmetry in the ~x
directions but not SOð3; 1Þ boost invariance—because
boost invariance is broken by finite temperature.
Assuming conformal behavior in the extreme UV means
that we assume the geometry (2) is asymptotically anti-
de Sitter. A regular horizon arises when h has a simple
zero. Let us say the first such zero (that is, the one closest to
the conformal boundary) is at r ¼ rH. It is assumed that A
and B are finite and regular at r ¼ rH. Standard manipu-
lations lead to the following formulas for entropy density
and temperature:

s ¼ 2�

�2
5

e3AðrHÞ T ¼ eAðrHÞ�BðrHÞjh0ðrHÞj
4�

; (3)

and once these quantities are known, the speed of sound
can be read off from

c2s ¼ d logT

d logs
: (4)

The formula for the entropy density in (3) comes from the
Bekenstein-Hawking result S ¼ A=4GN , where A is the
area of the horizon (really a volume in our case) and GN ¼
�2
5=8�. The formula for the temperature comes from

Hawking’s result T ¼ �=2�, where � is the surface gravity
at the horizon.
By adjusting Vð�Þ one might expect to be able to

recover any prespecified csðTÞ, at least within certain
limits—perhaps including that sðTÞ=T3 should be mono-
tonic or some similar criterion (in this connection see [6]).
The main aim of this paper is to characterize how Vð�Þ
translates into csðTÞ and vice versa. In Sec. II, we begin
with the simplest possible case: csðTÞ constant. It translates
into Vð�Þ ¼ V0e

�� for some V0 < 0 and � related to cs. In
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Sec. III, we tackle the general case, exploiting a weak form
of integrability of the equations resulting from plugging (2)
into (1). In Sec. V, we exhibit several examples. These
include a particular Vð�Þwhose corresponding csðTÞ curve
closely mimics that of QCD.1 We close with a discussion in
Sec. VI.

The results in this paper are based in large part on [9],
and aspects of them will also be summarized in [10]. After
this paper appeared on arXiv as a preprint, we received
[11], which has some overlap with our results.

II. CHAMBLIN-REALL SOLUTIONS AND AN
ADIABATIC GENERALIZATION OF THEM

In a D-dimensional conformal field theory (meaning a
conformal field theory in D� 1 spatial dimensions plus
one time dimension), the entropy density must obey

s / TD�1; (5)

simply because this expression is dimensionally correct
and there is no scale other than the temperature that would
permit a more complicated dependence. So the speed of

sound is cs ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 1

p
. If D> 4, then we could obtain a

nonconformal theory in four dimensions by compactifying
our CFTD on a D� 4-dimensional torus. (A similar idea
has been considered in [12,13].) Doing so should not
change the speed of sound: a planar sound wave in the
resulting 4-dimensional theory would correspond to a pla-
nar sound wave in the original theory whose propagation is
in the direction of the uncompactified directions.

The AdSDþ1-Schwarzschild solution is an extremum of
the action

S ¼ 1

2�2
Dþ1

Z
dDþ1x

ffiffiffiffiffiffiffi�ĝ
p �

R̂þDðD� 1Þ
L2

�
; (6)

and it takes the form

dŝ2 ¼ L2

z2

�
�hdt2 þ d ~̂x2 þ dz2

h

�
; (7)

where

h ¼ 1� zD

zDH
: (8)

We use hats to distinguish Dþ 1-dimensional quantities
from 4-dimensional ones. It is easy to see that T / 1=zH
and s / 1=zD�1

H , so that s / TD�1 as the conformal field
theory requires. Suppose we now perform the dimensional
reduction described in the previous paragraph on the solu-
tion (7). In slightly more generality than we need, the

Kaluza-Klein ansatz is

dŝ2 ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

D� 4

D� 1

s
�

�
ds2

þ exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

ðD� 1ÞðD� 4Þ

s
�

�
ds2D�4; (9)

where ds2 is a five-dimensional metric and ds2D�4 is the flat
metric on a torus TD�4, whose shape we will assume to be
square with side length ‘, so that VolTD�4 ¼ ‘D�4. All
components of the metric, and also �, are assumed to
depend only on the five-dimensional coordinates. It is
assumed that ‘ is a constant; variation of the size of the
torus is taken care of by the exponential prefactor multi-
plying ds2D�4 in (9). The particular coefficients in the
exponentials were chosen presciently to obtain a simple
five-dimensional action. Comparing the general form (9)
with the specific solution (7), one finds

ds2 ¼
�
L

z

�ð2=3ÞðD�1Þ��hdt2 þ d~x2 þ dz2

h

�

e� ¼
�
z

L

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3ÞðD�1ÞðD�4Þ

p
;

(10)

where h ¼ 1� zD=zDH as in (8). The line element (10) was
obtained by the authors of [14], but not via Kaluza-Klein
reduction; instead, they considered black hole solutions to
the equations of motion from an action like (1) with
potentials of the form

Vð�Þ ¼ V0e
��; (11)

with V0 < 0. To see that the solutions have to come out the
same in either approach, let us carry through the Kaluza-
Klein reduction at the level of the action by plugging (9)
into (6). After performing the trivial integral over TD�4,
one obtains

S ¼ ‘D�4

2�2
Dþ1

Z
d5x

ffiffiffiffiffiffiffi�g
p �

R� 1

2
ð@�Þ2 � Vð�Þ

�
; (12)

where Vð�Þ has the form (11) with the identifications

V0 ¼ �DðD� 1Þ
L2

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

D� 4

D� 1

s
: (13)

Evidently, the length scale ‘ enters the action only as a
prefactor, which can be absorbed into a definition of the
five-dimensional gravitational constant: �2

5 ¼ �2
Dþ1=‘

D�4.

By comparing the expression for � in (13) with the result

cs ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 1

p
for the speed of sound, we find

c2s ¼ 1

3
� �2

2
: (14)

This result can be derived more directly by showing that

s / T6=ð2�3�2Þ for Chamblin-Reall solutions: explicitly,

1Two earlier studies [7,8] of thermodynamic properties of
putative holographic duals to QCD obtain s� T3e�T2

0
=T2

for
some constant T0 in a region above the deconfinement transition
temperature. But the line elements considered in these studies
are simply assumed, rather than derived starting from a fully
specified classical action, as our solutions are.
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s ¼ 1

2�2
5

�
L

zH

�
D�1 ¼ 1

2�2
5

exp

�
��H

�

�

T ¼ D

4�zH
¼ 1

4�L

8� 3�2

2� 3�2
exp

��
�

2
� 1

3�

�
�H

�
;

(15)

where�H is the value of� at the horizon. The dimensional
reduction we have described is well defined only for in-
teger D> 4, but for the purposes of the computations
presented here, it can be any real number greater than 4.

Suppose we rewrite the result (15) as

logs ¼ ��H

�
þ ðconstant in �HÞ

logT ¼
�
�

2
� 1

3�

�
�H þ ðconstant in �HÞ:

(16)

Given (16) and the formula � ¼ V 0ð�Þ=Vð�Þ, a natural
next step would be to guess the following dependence of s
and T on �H when � is a slowly varying function of �
rather than a constant:

logs ¼ �
Z �H

�0

d�
Vð�Þ
V0ð�Þ þ ðslowly varying in �HÞ

logT ¼
Z �H

�0

d�

�
1

2

V 0ð�Þ
Vð�Þ �

1

3

Vð�Þ
V0ð�Þ

�

þ ðslowly varying in �HÞ:
(17)

The lower limit �0 in the integrals is an arbitrary cutoff. If
we assume that Vð�Þ has a maximum at � ¼ 0 and an
expansion of the form (37), then Vð�Þ=V 0ð�Þ �
�12=ðm2L2�Þ near� ¼ 0. So the integrals in (17) diverge
if they are continued all the way to � ¼ 0, and the cutoff
�0 must be chosen to have the same sign as �H to avoid
this divergence.

A consequence of the estimates (17) is a simple formula
for the speed of sound:

c2s ¼ d logT=d�H

d logs=d�H

� 1

3
� 1

2

V0ð�HÞ2
Vð�HÞ2

: (18)

Another consequence is

log
s

T3
¼ � 3

2

Z �H

�0

d�
V0ð�Þ
Vð�Þ þ ðslowly varying in �HÞ

¼ � 3

2
log

Vð�HÞ
Vð�0Þ þ ðslowly varying in �HÞ: (19)

A simpler way of expressing (19) is

s

T3 / jVð�HÞj�3=2; (20)

up to corrections from slowly varying terms. This is inter-
esting because s=T3 is one way of defining the effective
number of degrees of freedom available to a system, and
we see from (20) that it is closely related to the potential
evaluated at the horizon.

The results (18) and (19) are a first attempt at solving the
problem of translating an arbitrary Vð�Þ to an equation of
state, or an arbitrary equation of state into Vð�Þ. Here is
how the latter process would work. Suppose one specifies
the equation of state as s ¼ sðTÞ. Ignoring corrections to
(19), one has

f � � 2

3
log

s

T3
¼ log

V

V0

; (21)

where V0 is some constant. Let us regard f as the indepen-
dent variable. Because V ¼ V0e

f, all we need is to find
� ¼ �ðfÞ, and we will have a parametric representation of
Vð�Þ. One may rewrite (18) as

c2s ¼ 1

3
� 1

2ðd�=dfÞ2 ; (22)

where corrections have again been ignored. Knowing sðTÞ
with good precision means one can express c2s as a function
of f. Then (22) can readily be integrated to give

�ðfÞ ¼
Z dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð13 � csðfÞ2Þ
q : (23)

The integral is left in indefinite form because adding a
constant to � is obviously allowed.
We stress that the result of plugging (23) into the form

V ¼ V0e
f will result in a Vð�Þ that only approximately

reproduces the desired sðTÞ. If the speed of sound varies
rapidly with T, the approximation may be poor. In Sec. IV
we will show how to improve this approximation without
resorting to differential equations that cannot be explicitly
solved in terms of indefinite integrals.

III. A NONLINEAR MASTER EQUATION

There is a residual gauge freedom in the ansatz (2),
namely, reparametrization of the radial direction. A con-
venient gauge choice, which should be at least piecewise
valid in any geometry where the scalar is nonvanishing, is
to set r ¼ �. Then the line element becomes

ds2 ¼ e2Að�hdt2 þ d~x2Þ þ e2B
d�2

h
; (24)

and the equations of motion following from the action (1)
take the form

A00 � A0B0 þ 1
6 ¼ 0; (25a)

h00 þ ð4A0 � B0Þh0 ¼ 0; (25b)

6A0h0 þ hð24A02 � 1Þ þ 2e2BV ¼ 0; (25c)

4A0 � B0 þ h0

h
� e2B

h
V 0 ¼ 0; (25d)

where primes denote d=d�. The first two of these equa-
tions come from the tt and x1x1 Einstein equations; the
third comes from the �� Einstein equation; and the last
comes from the scalar equation of motion. There is typi-
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cally some redundancy in equations obtained from classi-
cal gravity, with or without matter. In the case of (25), the
redundancy is that the � derivative of the third equation
follows algebraically from the four equations listed.

The ansatz (24) has one peculiar feature: e2B must have
dimensions of length squared. This is because � is
dimensionless.

The equations of motion (25) enjoy a weak form of
integrability, in the following sense: If a smooth ‘‘generat-
ing function’’ Gð�Þ is specified, then it is possible to find a
black hole solution where A0ð�Þ ¼ Gð�Þ in terms of in-
definite integrals of simple functions of Gð�Þ and G0ð�Þ.
But Vð�Þ itself is expressed in terms of such integrals, and
one cannot easily find all the possible Gð�Þ that lead to a
specified Vð�Þ. In other words, there can be simple ana-
lytic solutions to (25) for special Vð�Þ at a special value of
the temperature, but as far as we know, there is no non-
trivial Vð�Þ (i.e., none besides the exponential form) for
which analytic solutions exist over a continuous range of
temperatures.

To understand this claim of integrability, let us consider
A0ð�Þ ¼ Gð�Þ to be fixed as a function of � and work out
Að�Þ, Bð�Þ, hð�Þ, and Vð�Þ. The first of these is trivial:

Að�Þ ¼ A0 þ
Z �

�0

d ~�Gð ~�Þ: (26)

Computing Bð�Þ is immediate once one solves (25a) for
B0:

Bð�Þ ¼ B0 þ
Z �

�0

d ~�
G0ð ~�Þ þ 1=6

Gð ~�Þ : (27)

Next, one observes that (25b) is straightforwardly solved
once one knows Að�Þ and Bð�Þ:

hð�Þ ¼ h0 þ h1
Z �

�0

d ~�e�4Að ~�ÞþBð ~�Þ: (28)

Now, (25c) can be solved for Vð�Þ in terms of known
quantities:

Vð�Þ ¼ hð�Þ e
�2Bð�Þ

2

�
1� 24Gð�Þ2 � 6Gð�Þ h

0ð�Þ
hð�Þ

�
:

(29)

The constraint Eq. (25d) does not yield any new
information.

If one chooses

Gð�Þ ¼ � 1

3�
; (30)

then by working through (26)–(29) one recovers the
Chamblin-Reall solution in the form

Að�Þ ¼ A0 ����0

3�

Bð�Þ ¼ B0 � �

2
ð���0Þ

hð�Þ ¼ h0 þ ~h1 exp

�
8� 3�2

6�
ð���0Þ

�

Vð�Þ ¼ V0e
��;

(31)

where

~h 1 ¼ 6e�4A0þB0�

8� 3�2
h1 V0 ¼ � 8� 3�2

6�
e�2B0���0h0:

(32)

By choosing

�0 ¼ 1

�
ðlogh0 � 2B0Þ; (33)

one obtains Vð�Þ in a form that does not depend on any
integration constants at all. This situation is very special
and corresponds to the fact that for Vð�Þ / �e�� one can
find a whole family of analytic solutions parametrized by
�H.
By differentiating combinations of (26)–(29), one can

derive the following ‘‘nonlinear master equation:’’

G0

Gþ V=3V0 ¼
d

d�
log

�
G0

G
þ 1

6G
� 4G� G0

Gþ V=3V 0

�
:

(34)

Describing (34) as the master equation is appropriate be-
cause if one starts knowing Vð�Þ and manages to solve
(34), then to obtain a black hole solution one only needs to
perform the ‘‘trivial’’ integrations (26)–(28). A numeri-
cally efficient strategy for obtaining an equation of state
given Vð�Þ centers around solving (34) numerically. In
more detail, the procedure is
(1) Choose the value �H of the scalar at the horizon.
(2) Find a series solution of the nonlinear master equa-

tion around � ¼ �H.
(3) Seed a numerical integrator like Mathematica’s

NDSolve close to � ¼ �H using the series
solution.

(4) Integrate the nonlinear master equation up to a value
of � close to a maximum, corresponding to the
asymptotically anti-de Sitter part of the geometry.

(5) Extract s and T from integrals of simple functions of
Gð�Þ.

Most of these steps require further explanation, which will
occupy the remainder of this section.
At the horizon, h has a simple zero, and the other

quantities appearing in (25c) and (25d) are finite.
Evaluating these two equations at the horizon gives
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Vð�HÞ ¼ �3e�2Bð�HÞGð�HÞh0ð�HÞ
V0ð�HÞ ¼ e�2Bð�HÞh0ð�HÞ;

(35)

which implies that Gþ V=3V 0 vanishes at the horizon.
Starting from this condition, one may develop a power
series solution around the horizon

Gð�Þ ¼ � 1

3

Vð�HÞ
V0ð�HÞ þ

1

6

�
Vð�HÞV00ð�HÞ

V 0ð�HÞ2
� 1

�
ð���HÞ

þO½ð���HÞ2�: (36)

This series solution can be developed to any desired order
without encountering arbitrary integration constants.

To understand the asymptotic behavior far from the
horizon, let us specialize to the case where Vð�Þ has a
maximum at � ¼ 0

Vð�Þ ¼ � 12

L2
þ 1

2
m2�2 þOð�3Þ; (37)

where m2 < 0 in order for � ¼ 0 to be a maximum. The
gauge theory operator O� dual to � has dimension �,

where

�ð�� 4Þ ¼ m2L2: (38)

We will be primarily interested in the case where� is close
to 4. It helps our intuition at this point to pass to a more
standard gauge: instead of setting r ¼ �, we can set B ¼ 0
to obtain

ds2 ¼ e2Að�hdt2 þ d~x2Þ þ dr2

h
: (39)

We note that A and h appearing in (39) are precisely the
same as when we use the r ¼ � gauge, only expressed as
functions of r rather than �. Large r corresponds to the
region far from the horizon, and the leading asymptotic
behavior of solutions there is

A � r

L
h � 1 � � ð�LÞ4��eð��4ÞA: (40)

Each approximate equality in (40) means that the ratio of
the two expressions on each side approaches 1 as r be-
comes large. The behavior of � indicates a relevant defor-
mation of the conformal field theory

L ¼ LCFT þ�4��O�: (41)

As we vary temperature to compute the equation of state,
we should of course keep � fixed. A simple way to do this
is to set �L ¼ 1. Then the last equation in (40) becomes

Að�Þ ¼ log�

�� 4
þ oð1Þ (42)

for small�, where oð1Þmeans a quantity that is parametri-
cally smaller than 1 in the limit under consideration—so in
the limit � ! 0 in the case of (42).

In order to compute the entropy density using (3), we
need to know Að�HÞ. This can be extracted by comparing
(42) to (26) with �0 set equal to �H and A0 set equal to

AH ¼ Að�HÞ

Að�Þ ¼ AH þ
Z �

�H

d ~�Gð ~�Þ ¼ log�

�� 4
þ oð1Þ: (43)

Solving for AH and then taking � ! 0, one finds

AH ¼ log�H

�� 4
þ

Z �H

0
d�

�
Gð�Þ � 1

ð�� 4Þ�
�
: (44)

The integral converges because the explicit 1=� term
cancels against the leading behavior of Gð�Þ for small
�. Plugging (44) into the expression for entropy density
from (3), we find at last

s ¼ 2�

�2
5

�3=ð��4Þ
H exp

�
3
Z �H

H
d�

�
Gð�Þ � 1

ð�� 4Þ�
��
:

(45)

A similar formula for the temperature may be derived
starting with the observation that

dr

d�
¼ �eB; (46)

where B is the function controlling the g�� metric com-

ponent in r ¼ � gauge. One obtains (46) by comparing
(24) with (39). The sign is based on assuming that �
increases from 0 to positive values as r decreases from
þ1 to finite values. The first equation in (40) implies
dA=dr ! 1=L as r ! 1. Combining this with (46) gives

G ¼ dA

d�
¼ dr

d�

dA

dr
� �eB

1

L
; (47)

where the approximate equality means that the ratio of the
last expression to the previous ones approaches 1 as� goes
to 0. In summary,

1 � �LGð�Þe�Bð�Þ; (48)

using the same sense of approximate equalities. (Recall
that e�B has dimensions of inverse length, while Gð�Þ is
dimensionless, so (48) is dimensionally correct.) We may
cast the expression for temperature from (3) in terms of
Gð�Þ by multiplying by 1 in the form indicated in (48):

T ¼ eAH�Bð�HÞjh0ð�HÞj
4�

� eAH�Bð�HÞh0ð�HÞ
4�

LGð�Þe�Bð�Þ

¼ Le�2Bð�HÞGð�HÞh0ð�HÞ
4�

� exp

�
AH þ Bð�HÞ � Bð�Þ � log

Gð�HÞ
Gð�Þ

�

¼ �LVð�HÞ
12�

exp

�
AH þ

Z �H

�

d ~�

6Gð ~�Þ
�
: (49)

In the second step, we assumed that h0ð�HÞ< 0, which is
the expected sign when � vanishes on the boundary and is
positive at the horizon. In the last step, we used the first
equation from (35) to simplify the prefactor and also
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Bð�HÞ � Bð�Þ ¼ log
Gð�HÞ
Gð�Þ þ

Z �H

�

d ~�

6Gð ~�Þ ; (50)

which is a consequence of (27). The integral in the last
expression of (51) converges even when � ! 0. We use
(44) to eliminate AH from (51) and obtain at last

T ¼ �1=ð��4Þ
H

�L

Vð�HÞ
Vð0Þ exp

�Z �H

0
d�

�
Gð�Þ � 1

ð�� 4Þ�
þ 1

6Gð�Þ
��
: (51)

The measure of the number of degrees of freedom that is
easiest for us to access is

s

T3 ¼ 2�4 L
3

�2
5

Vð0Þ3
Vð�HÞ3

exp

�
�3

Z �H

0

d�

6Gð�Þ
�
; (52)

where to obtain the right-hand side we simply combined
(45) and (51). When �H is small, entropy and temperature

become large because of the factors �3=ð��4Þ
H and �1=ð��4Þ

H

in (45) and (51). In this limit, the integrals in the exponent
become negligible, and (52) becomes

s

T3 � 2�4 L
3

�2
5

: (53)

So we recover conformal behavior in the ultraviolet, as
expected.

IV. AN APPROXIMATE DETERMINATION OF THE
EQUATION OF STATE

The adiabatic formulas (17) work well when �H is in a
region where Vð�Þ is nearly exponential, but they do not
work well for small �H, where Vð�Þ is close to attaining a
maximum. This is shown in Fig. 1 for Vð�Þ ¼
�ð12=L2Þ coshð�=2Þ. On the other hand, it is easy to

extract asymptotic formulas valid in the �H ! 0 limit
from (45) and (51): using the expansion (37), one finds

T ¼ 1

�L
�1=ð��4Þ

H s ¼ 2�

�2
5

�3=ð��4Þ
H : (54)

We wish to find formulas that interpolate smoothly be-
tween (17) and (54) and involve at most indefinite inte-
grals, not solutions to a difficult, nonlinear, second-order
differential equation such as (34). We start by noting that
the formulas (54) together with (37) imply

d logT

d�H

� �

4

�
1

2

V 0ð�HÞ
Vð�HÞ �

1

3

Vð�HÞ
V 0ð�HÞ

�

d logs

d�H

� �

4

�
� Vð�HÞ

V0ð�HÞ
�

for small �H;

(55)

where approximate equality means that the ratio of the two
sides tends to 1 as �H ! 0. On the other hand, provided
Vð�Þ tends to an exponential form V0e

�� for large �, the
adiabatic approximation becomes good if �H is large. So
for such potentials, (17) can be rephrased as

d logT

d�H

� 1

2

V 0ð�HÞ
Vð�HÞ �

1

3

Vð�HÞ
V 0ð�HÞ

d logs

d�H

� � Vð�HÞ
V 0ð�HÞ for large �H:

(56)

Comparing (55) and (56), we are led to introduce ‘‘fudge
factors’’ �sð�HÞ and �Tð�HÞ such that

d logT

d�H

¼ �Tð�HÞ
�
1

2

V0ð�HÞ
Vð�HÞ �

1

3

Vð�HÞ
V 0ð�HÞ

�

d logs

d�H

¼ �sð�HÞ
�
� Vð�HÞ
V 0ð�HÞ

�
:

(57)

We can rephrase (55) and (56) as the statements that both
�Tð�HÞ and �sð�HÞ interpolate between �=4 at small �H

FIG. 1 (color online). A comparison of the exact dðlogsÞd�H
and dðlogTÞ

d�H
for Vð�Þ ¼ � 12

L2 cosh
�
2 with the adiabatic approximation (17), and

the improved approximation scheme, (57) with the choice (58).
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and 1 at large �H. Our improved estimate of the equation
of state consists simply of guessing an interpolating func-
tion with these properties. The guess is

�Tð�HÞ � �sð�HÞ � �ð�HÞ � 1þ Vð0Þ
Vð�HÞ

�
�

4
� 1

�
:

(58)

In (58) approximate equality means that �T , �s, and � are
supposed to be nearly equal for all �H. But away from the
small �H and large �H limits, (58) is not a controlled
approximation, in the sense that there is not a parameter
that we can tune to make it better. It is nevertheless useful
for quickly determining the qualitative features of an equa-
tion of state given Vð�Þ, as illustrated in Fig. 1. There
might be a better choice of �Tð�HÞ and �sð�HÞ, or perhaps
even a systematic expansion for them in terms of powers of
the potential and its derivatives.

Starting from (57), we have immediately

c2s ¼ d logT=d�H

d logs=d�H

¼ �Tð�HÞ
�sð�HÞ

�
1

3
� 1

2

V0ð�HÞ2
Vð�HÞ2

�
: (59)

Thus, assuming �Tð�HÞ � �sð�HÞ is the same as assum-
ing that the speed of sound, as a function of �H, is well
approximated by the adiabatic formula (18).

V. EXAMPLES

In this section, we will present results for c2s or s=T3

versus T based on numerical integration of the nonlinear
master Eq. (34), for several different choices of the scalar
potential Vð�Þ.

The simplest analytical form that interpolates between a
maximum at� ¼ 0 and exponential behavior for large� is

Vð�Þ ¼ Vcoshð�Þ � � 12

L2
cosh��: (60)

The adiabatic treatment discussed in Sec. II leads us to

expect that the speed of sound will be cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1
3 � �2

2

q
for

large �H. So in order to have stable black holes in this

regime, we must have � � ffiffiffiffiffiffiffiffi
2=3

p
. This bound can be

regarded as an application of the correlated stability con-
jecture (CSC) [15,16]. But there is a tighter bound on �
coming from the behavior near � ¼ 0

Vcoshð�Þ ¼ � 12

L2
� 6�2

L2
�2 þOð�4Þ; (61)

so m2 ¼ �12�2=L2. In order to satisfy the Breitenlohner-

Freedman bound m2L2 � �4 [17–19], we must have � �
1=

ffiffiffi
3

p
. This means that the minimum speed of sound we

can arrange at large �H using the pure cosh potential (60)

is cs ¼ 1=
ffiffiffi
6

p � 0:41. The behavior of c2s as a function of T

is shown in Fig. 2 for � ¼ 1=
ffiffiffi
6

p
.

If one uses the potential (60), then cs in the infrared is
tied to the dimension � of the operator that breaks confor-

mal invariance in the ultraviolet. Let us consider a minimal
generalization that loosens this artificial constraint:

Vð�Þ ¼ Vð�; b;�Þ � � 12

L2
cosh��þ b�2: (62)

A parameter equivalent to �, as before, is the speed of

sound in the infrared c2s ¼ 1
3 � �2

2 . With � fixed, a parame-

ter equivalent to b is the dimension � of the operator dual
to � near the UV fixed point

b ¼ 6�2

L2
þ �ð�� 4Þ

2L2
: (63)

Note that taking � close to 4 amounts to making Vð�Þ
nearly quartic near its maximum. As we will report in more

0.0 0.2 0.4 0.6 0.8 1.0 1.2
TL0.24

0.26

0.28

0.30

0.32

0.34

cs
2

FIG. 2 (color online). The speed of sound for Vð�Þ ¼ � 12
L2 �

cosh�ffiffi
6

p .

FIG. 3 (color online). The equation of state of a black hole
(red) compared to the lattice equation of state for pure glue
(blue) and 2þ 1-flavor QCD. The pure glue curve is based on
[2] and private communications from F. Karsch. The 2þ
1-flavor QCD points are based on [5].
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detail in [10], the choice

� ¼ 0:606 b ¼ 2:06

L2
; (64)

corresponding to c2s ¼ 0:15 in the infrared and � ¼ 3:93,
leads to an equation of state that bears a striking resem-
blance to the one expected for QCD: see Fig. 3. It may
seem surprising that the most distinctive feature of the
equation of state of QCD, namely, a smooth but rapid
crossover, emerges from a potential that is nearly feature-
less. To gain some intuition about why this happened,
consider again the adiabatic approximation (18) to the
speed of sound. When �H is close to where the nearly
quartic behavior of Vð�Þ rolls over into nearly exponential
behavior, this approximate formula predicts that c2s dips to
a fairly low value, only to rise back up again for larger �H

toward its infrared limit, 0.15. See Fig. 4.
Other behaviors emerge from the potential (62) for other

choices of b and �. For example, if � >
ffiffiffiffiffiffiffiffi
2=3

p
, the adia-

batic approximation suggests that there is a minimum
temperature Tmin for black hole solutions. A particular

case is illustrated in Fig. 5. Solutions with very low entropy
have high temperature and negative specific heat, and they
are always thermodynamically disfavored compared with a
branch of high-entropy solutions. Presumably there is a
first-order transition to geometries with no horizon, similar
to the Hawking-Page transition [20]. This transition proba-
bly happens at a temperature above Tmin. It is worth noting
that the specific heat diverges at Tmin, because T reaches a
minimum as a function of�H, while S is varying smoothly.
It is also possible to have a first-order transition between

high entropy and low entropy black holes. An example
where this happens is illustrated in Fig. 6. For a finite range
of �H, the speed of sound is imaginary, indicating a
Gregory-Laflamme instability. This touches once again
on the CSC, so let us pause to review it. It was proposed
in [15,16] and further argued in [21] that, in the absence of
conserved charges related to gauge symmetries, existence
of a Gregory-Laflamme instability [22,23] is equivalent to
positivity of the specific heat C ¼ T@S=@T. According to a
more general version of the CSC, dynamical stability of a
horizon is equivalent to positivity of an appropriate

0.20 0.21 0.22 0.23 0.24 0.25
TL0

20

40

60

80

100

120

140

L L

FIG. 6 (color online). The equation of state for Vð�Þ ¼
� 12

L2 cosh
ffiffiffiffi
7
12

q
�þ 2

L2 �
2.

FIG. 4 (color online). Left: The potential (62) with the parameter choices (63) that give an equation of state resembling QCD’s.

Right: Although Vð�Þ is relatively featureless, the adiabatic formula c2s � 1
3 � 1

2
V0ð�H Þ2
Vð�H Þ2 suggests that the equation of state resulting

from it will indeed exhibit a low minimum for the speed of sound.

0.4 0.5 0.6 0.7
TL

50

100

150

200

FIG. 5 (color online). The equation of state for Vð�Þ ¼
� 12

L2 cosh
ffiffi
3
4

q
�þ 3

L2 �
2.
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Hessian matrix of susceptibilities, one of which is the
specific heat [15,16]. As pointed out in [24], C> 0 is
equivalent to c2s > 0, which makes the CSC seem inevi-
table, at least in the absence of conserved charges and in
the presence of some kind of holographic dual. The argu-
ment of [24] can probably be extended to cover the general
case by considering the dispersion relations for all the
hydrodynamical modes, including those arising from the
dual conserved currents. However, the CSC remains a
conjecture, and there appears to be room for violations:
see for example [25–27].

The CSC relates only to the existence of a linearized
instability around a static or stationary horizon.
Considerable work has been devoted to the question of
what the endpoint of the evolution of the Gregory-
Laflamme instability might be: see for example [28–33].
When there are thermodynamically stable horizons both
with larger and smaller entropy, it seems to us likely that
the endpoint of the evolution is a mixed phase with uni-
formly small curvatures outside the horizon, which re-
mains unbroken. A mixed phase is a configuration where
high entropy and low entropy regions with the same tem-
perature are separated by domain walls. Typical solutions
may not be static, but may instead evolve slowly according
toward larger domains according to an effective theory
with domain walls whose width is eventually negligible
compared with the size of the domains. Mixed phases were
previously suggested in connection with the Gregory-
Laflamme instability in [34].

Finally, it is possible to arrange second-order behavior
by tuning the potential Vð�Þ so that c2s goes to 0 at some
value of �H but never becomes negative: see Fig. 7. There
is a corresponding critical temperature, and near it the
equation of state typically takes the form

s � s0 þ s1=3t
1=3 where t ¼ T � Tc

Tc

: (65)

The specific heat diverges as C� t�2=3, and consequently

the speed of sound behaves as jtj�1=3.

VI. DISCUSSION

Since the inception of the anti-de Sitter/conformal field
theory correspondence [35–37], it has been hoped that it
would help solve QCD. This hope was articulated most
clearly in the early literature in [38]. Subsequently, a large
and somewhat heterogeneous literature has grown up
around the idea of ‘‘AdS/QCD.’’ Points of entry into this
literature include [39–42].
The first thermodynamic question one might ask of a

putative dual to QCD is whether the equation of state is
right. We have shown that the equation of state can be built
into the construction by choosing an appropriate potential
Vð�Þ for a scalar field that describes the breaking of
conformal invariance. Indeed, within certain limitations,
any equation of state s ¼ sðTÞ can be translated into a
choice of Vð�Þ, and vice versa. The limitations include
that we use the supergravity approximation. This immedi-
ately points to a weakness of our approach: the shear
viscosity will always satisfy �=s ¼ 1=4�, regardless of
temperature [43–46]. Low shear viscosity is in conflict
with expectations for the low-temperature phase of QCD,
where the mean free path becomes large. Another reason to
be suspicious of any attempt to describe the low-
temperature phase using a black hole horizon is that at
large N, entropy of a horizon scales as N2, whereas the
number of degrees of freedom in the confined phase of an
SUðNÞ gauge theory scales as N0. A black hole description
may be approximately valid above Tc, and its validity may
fail only gradually as one passes through the crossover. But
sufficiently far below the transition, the paradigm of
weakly interacting hadrons should take over, and that is
not part of our construction. One might imagine improve-
ments on our construction, where, for example, higher
curvature corrections significantly increase �=s, especially
around or below the transition temperature. Eventually—
perhaps when curvatures near the horizon become suffi-
ciently large compared with the string scale—there could
be a crossover to a gas of strings in a curved spacetime.

FIG. 7 (color online). The equation of state and the speed of sound for Vð�Þ ¼ � 12
L2 cosh

�ffiffi
2

p þ 1:942
L2 �2. The point where c2s ¼ 0 is a

second-order phase transition. If one considers instead Vð�Þ ¼ � 12
L2 cosh

�ffiffi
2

p þ b�2 for b > 1:942, the transition becomes first order,

while if b < 1:942, it is a crossover.
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Our methods for constructing black holes are more
general than the particular problem of mimicking the
equation of state of QCD. Smooth crossovers, second-
order transitions, first-order transitions, and perhaps even
mixed phases may all be accommodated within the frame-
work we have proposed. Our nonlinear master equation
approach is special to the case of a single scalar, and it
takes advantage of a weak form of integrability of the
underlying equations. However, it is straightforward in
principle to work with multiple scalars as well as with
gauge fields: in this connection see for example [47,48].

It seems likely that black holes in suitably designed theo-
ries exhibit a remarkable diversity of phase transitions.
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