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We investigate the signatures of Fermi liquid formation in theN ¼ 4 super Yang-Mills theory coupled

to fundamental hypermultiplet at nonvanishing chemical potential for the globalUð1Þ vector symmetry. At

strong ’t Hooft coupling the system can be analyzed in terms of the D7-brane dynamics in the AdS5 � S5

background. The phases with vanishing and finite charge density are separated at zero temperature by a

quantum phase transition. In the case of vanishing hypermultiplet mass, Karch, Son, and Starinets

discovered a gapless excitation whose speed equals the speed of sound. We find that this zero sound

mode persists to all values of the hypermultiplet mass, and its speed vanishes at the point of phase

transition. The value of critical exponent and the ratio of the velocities of zero and first sounds are

consistent with the predictions of Landau Fermi liquid theory at strong coupling.
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I. INTRODUCTION AND SUMMARY

Gauge/string duality is a spin-off of string theory which
allows access to the dynamics of strongly coupled field
theories by relating them to string theories in certain back-
grounds. In principle, this relation provides a unique way
of understanding phenomena at strong coupling which
cannot be analyzed by other means. One of the fundamen-
tally interesting questions (with many practical applica-
tions) concerns the behavior of the Fermi systems at strong
coupling. Here we attempt to analyze the possibility of the
formation of Fermi liquid in a very specific system—Nf

N ¼ 2 fundamental hypermultiplets coupled to SUðNcÞ
N ¼ 4 super Yang-Mills theory. As usual, gauge/string
duality methods are applicable in the regime ofN ! 1,Nf

finite, and large four-dimensional ’t Hooft coupling �.
Recent work on this system in the strong coupling regime
includes [1–13].

The hypermultiplet field content includes two Weyl
fermions and two complex scalars. The global symmetry
of the theory is UðNfÞ, but we will be mostly concerned

with its Uð1ÞB subgroup1 and our results are not going to
depend on the value of Nf. We will be interested in the

situation where nonvanishing chemical potential for Uð1ÞB
is turned on. In the case of free fermions, such a setup
would result in the formation of a degenerate gas of fer-
mions, whose Fermi energy is equal to the value of the
chemical potential �. As the interaction is turned on,
possible scenarios include formation of the Fermi liquid,
superfluid, superconductor, or, possibly, some other exotic
phase.

Fermi liquid is a state whose properties can be described
in terms of the dynamics of quasiparticles of Fermi statis-
tics taking place in the narrow region around Fermi sur-
face. The momentum and energy of a quasiparticle in the

degenerate Fermi liquid at T ¼ 0 are bounded from above
by the Fermi momentum kF and Fermi energy.
Nonrelativistic Fermi liquids are characterized by a num-
ber of properties. Among them are heat capacity propor-
tional to T and the existence of zero sound. In [14] the D3-
D7 system with vanishing hypermultiplet mass m has been
investigated. It has been noted that the heat capacity of the
system is proportional to T6 (unlike the normal Fermi
liquid). However, on the basis of the existence of a gapless
excitation (arising as a massless pole in the density-density
correlator) [14] argued that a novel kind of quantum liquid
might be formed. This massless excitation is associated
with zero sound in [14], and we discuss some issues related
to this identification in this paper.
We generalize the work of [14] to the finite value of m

and find that the gapless excitation persists and the disper-
sion relation has an interesting dependence on m. In the
relativistic regime, � � m, we reproduce the results of
[14] where the speed of zero sound u0 was found to be
equal to the speed of regular sound. On the other hand, in
the nonrelativistic regime, ��m � m, we find that u0 is

proportional to ð��mÞ1=2, and differs from the value of
the first sound, u1 by an overall multiplicative constant.
Such a behavior is consistent with the prediction of Landau
Fermi liquid theory. In particular, the value of the critical
exponent is precisely the expected 1=2, while the ratio of
u0 and u1 is expected to go to a constant in the limit of
strong coupling.
The rest of the paper is organized as follows. In the next

section we give a brief review of the relevant parts of
Landau’s theory of Fermi liquids. In Sec. III we review
the thermodynamics of the D3-D7 system. At large value
of the ’t Hooft coupling the dynamics of fundamental
matter are captured by the Dirac-Born-Infeld (DBI) action
for D7-branes propagating in the AdS5 � S5 background
[15]. At low temperatures, increasing the value of chemical
potential results in a phase transition between the phases1The subscript here stands for ‘‘baryon symmetry.’’
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with vanishing and nonvanishing charge density. In the
brane setup this corresponds to the brane embedding inter-
secting the horizon becoming thermodynamically pre-
ferred. In the limit of small temperature, the
thermodynamics can be studied analytically [16].

In Sec. IV we derive equations of motion for the fluctu-
ating fields on the brane. We largely follow [15,17], with
the new ingredient being the finite value of the hyper-
multiplet mass m. We then proceed to analyze the equa-
tions in the regime of small frequency and momentum, find
the massless excitation, and compute its velocity as a
function of the hypermultiplet mass m. We discuss our
results in Sec. V. Some technical results appear in the
appendixes.

II. LANDAU FERMI LIQUID THEORY

In this section we review the basics of Landau Fermi
liquid theory and quote the results for the velocities of first
and zero sound. We also show that the ratio of these
velocities goes to a constant for generic strong interactions
between the quasiparticles. Nonrelativistic Fermi liquid at
zero temperature involves the dynamics of quasiparticles
of Fermi statistics whose dispersion relation is not neces-
sarily equal to that of free fermions. The momentum
distribution is described by a step function �ðjkj � kFÞ,
where kF is the value of the Fermi momentum, which is
related to the particle density via

n � N

V
¼ k3F

3�3
@
3
: (2.1)

The quasiparticle description is, in fact, only valid in the
small vicinity of the Fermi surface. The change in the total
energy of the system due to the change in the distribution
function �nðkÞ is

�E ¼
Z

�ðkÞ�nðkÞd�þ
Z

fðk;k0Þ�nðkÞ�nðk0Þd�d�0;
(2.2)

where d� ¼ Vd3k=ð2�@Þ3 is the element of the phase
space and �ðkÞ is the energy of a quasiparticle with mo-
mentum k (whose absolute value we denote by k). In
Eq. (2.2) the second term describes interaction of the
quasiparticles which takes place only in the narrow region
near the Fermi surface. It is natural then to assume that in
fðk;k0Þ the quasiparticle momenta lie on the Fermi sur-
face. The function fðk;k0Þ therefore only depends on the
relative angle #.

It is convenient to introduce the Fermi velocity and the
effective quasiparticle mass by

�F ¼ @�ðkÞ
@k

��������k¼kF

; m� ¼ kF
�F

(2.3)

and write

fðk;k0Þ ¼ kFm
�

�2
@
3
Fð#Þ; (2.4)

where Fð#Þ is a dimensionless function which can be
expanded in terms of Legendre polynomials,

Fð#Þ ¼ X
l

ð2lþ 1ÞFlPlðcos#Þ: (2.5)

In the right-hand side of (2.4) the prefactor is equal to the
density of states on the Fermi surface. According to [18],
the quasiparticle mass is related to the bare mass via

m�

m
¼ 1þ F1

3
: (2.6)

An interesting property of the Fermi liquid at zero
temperature is its compressibility,

u2 ¼ @P

@	
¼ N

m

@�

@N
; (2.7)

where P is the pressure, 	 is the density, and N is the
number of particles. The value of u also defines the speed
of (normal) sound in the Fermi liquid. According to [18], it
is given by

u2 ¼ k2F
3mm� ð1þ F0Þ ¼ �2

F

3
ð1þ F0Þ

�
1þ F1

3

�
; (2.8)

where in the second equality we used (2.3) and (2.6).
Another interesting property of the Fermi liquid is the
existence of a massless excitation in the limit of zero
temperature. This excitation, called zero sound, corre-
sponds to the deformation of the shape of the Fermi
surface. The speed of zero sound u0 is bounded from below
by, and is generally proportional to, the Fermi velocity �F.
To compute the ratio s � u0=�F one is instructed to solve
the following integral equation:

ðs� cos#Þ
ð#;’Þ ¼ cos#
Z

Fð# 0Þ
ð# 0; ’0Þd�
0

2�
: (2.9)

In Eq. (2.9) the integral is over the solid angle, and function

ð#;’Þ parametrizes the displacement of the spherical
Fermi surface.
In particular, when Fð#Þ contains only the zeroth F0 and

first F1 harmonic [19], one has

s

2
log

�
sþ 1

s� 1

�
� 1 ¼

1
3F1 þ 1

F0 þ 1
3F0F1 þ F1s

2
; (2.10)

where s is the ratio between the speed of zero sound and the
Fermi velocity.2 In the limit of noninteracting quasipar-
ticles, the speed of zero sound is equal to the Fermi
velocity. In other words, s ¼ 1 and u20=u

2 ¼ 3. [This result
is independent of the particular form of Fð#Þ.] Another

2Here zero sound velocity refers to the velocity of the mode for
which 
ð#;’Þ is isotropic in the plane perpendicular to its
momentum.
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interesting case is the limit of strongly interacting quasi-
particles with F0 and F1 considerably larger than unity.

From (2.10) we infer s2 ’ F0F1

9 which combined with (2.8)

leads to

u20
u2

’ 1: (2.11)

For generic and large Fl one can argue that the ratio
between the speed of zero and first sound goes to a constant
in the limit of strong coupling. This is because for a generic
function Fð#Þ � F the right-hand side of (2.9) scales like F
and therefore s� F. But according to (2.8) u� F as well,
which justifies our assertion.

This argument may fail for some nongeneric values of
Fl. In particular, when only F0 is nonvanishing and large,

Eq. (2.10) implies s � ffiffiffiffiffiffiffiffiffiffiffi
F0=3

p
. But in this case (2.8) again

leads to u0=u � 1.

III. D3-D7 SYSTEM

In this section we review the D3-D7 system at zero
temperature with nonvanishing chemical potential.
Consider Nc D3-branes extended along x0; . . . ; x3 direc-
tions and Nf D7-branes extended along x0; . . . ; x7 direc-

tions. Separating these branes in the x8-x9 plane gives a
mass to the hypermultiplet whose degrees of freedom are
massless excitations of the fundamental string stretched
between the D3- and D7-branes. Taking the near horizon
limit, Nc ! 1, gs ! 0 with � fixed but large and Nf �
Nc, we obtain the AdS5 � S5 geometry with Nc units of
Ramond-Ramond five-form flux and D7-branes propagat-
ing in this background. Studying the holographic dual of
the D3-D7 system with nonvanishing chemical potential
involves analyzing the DBI action for the D7-branes em-
bedded in AdS5 � S5 with the electric field flux on their
world volume turned on. The value of the chemical poten-
tial is equal to the asymptotic value of the gauge field on
the brane.

In the following we review the results of [16], where
analytic results for the zero temperature limit of the D3-D7
system were first obtained.3 The background metric can be
written as

ds2 ¼
�
	

L

�
2ð�dt2 þ dxidxiÞ

þ
�
	

L

��2ðdr2 þ r2d�2
3 þ dR2 þ R2d�2Þ; (3.1)

where t is time, i ¼ 1, 2, 3 denote the spatial directions
along the D3-brane, and d�2

3 is the metric of a unit three-

sphere within S5. In Eq. (3.1) 	 is the radial coordinate
transverse to the D3-branes which is further expressed as

	2 ¼ r2 þ R2: (3.2)

In this parametrization R and� are the polar coordinates in
the x8-x9 plane, and U(1) symmetry allows one to set � ¼
const. Hence, the brane embedding is specified by a single
function RðrÞ. The induced metric is then

ds2D7 ¼
�
	

L

�
2ð�dt2 þ dxidxiÞ

þ
�
	

L

��2½ð1þ R0ðrÞ2Þdr2 þ r2d�2
3	; (3.3)

where R0ðrÞ ¼ @R
@r . The DBI action for this configuration is

now relatively simple. Warp factors drop out and we have

SD7 ¼ �N
Z

drr3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R0ðrÞ2 � A0

0ðrÞ2
q

; (3.4)

where N ¼ 1
ð2�Þ4

1
2�NcNf. Note that we divided by the

volume of R1;3; therefore (3.4) is actually an action density.
Moreover, we fixed the gauge by choosing Ar ¼ 0 and
rescaled A0 according to

A0 ! 2�A0: (3.5)

Here and in the rest of the paper we set the string length to
one. Given that (3.4) contains only first derivatives of the
fields RðrÞ and A0ðrÞ there are two conserved charges:

�r3
R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R02 � ðA0
0Þ2

q ¼ �c;

r3
A0
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R02 � ðA0
0Þ2

q ¼ d:

(3.6)

One can reexpress R0ðrÞ, A0
0ðrÞ in terms of c and d:

R0 ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r6 þ d2 � c2

p ; A0
0 ¼

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r6 þ d2 � c2

p : (3.7)

The bare quark mass m and chemical potential � are
related to the asymptotic values of Rðr ! 1Þ and A0ðr !
1Þ as

Rðr ! 1Þ ¼ ~m ¼ 2�m; A0ðr ! 1Þ ¼ ~� ¼ 2��:

(3.8)

Possible phases of this system are classified by the
values of integration constants c and d. For c ¼ d ¼ 0,
both RðrÞ and A0ðrÞ are constant. In this phase the conden-
sate and the charge density vanish, and the values of R and
A0 correspond to the quark mass and the chemical poten-
tial, respectively. This is the zero temperature limit of the
‘‘Minkowski’’ embedding. Solutions of (3.7) for all other
values of c and d satisfying d2 � c2 > 0 are the zero
temperature limits of the finite temperature black hole

3Note that our notations are slightly different from those of
[16].
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embeddings. They are characterized by the boundary con-
ditions

Rðr ¼ 0Þ ¼ 0; A0ðr ¼ 0Þ ¼ 0 (3.9)

and nonvanishing values for both the condensate and the
charge density. Equation (3.7) in this case yields

RðrÞ ¼ 1

6
cðd2 � c2Þ�1=3B

�
r6

r6 þ d2 � c2
;
1

6
;
1

3

�
;

A0ðrÞ ¼ 1

6
dðd2 � c2Þ�1=3B

�
r6

r6 þ d2 � c2
;
1

6
;
1

3

�
;

(3.10)

where B½ r6

r6þd2�c2
; 16 ;

1
3	 denotes the incomplete beta func-

tion, while the values of c and d are related to the physical

variables m ¼ ~m
2� and � ¼ ~�

2� through

c ¼ � ~mð ~�2 � ~m2Þ; d ¼ � ~�ð ~�2 � ~m2Þ;
� ¼ ð16B½16; 13	Þ�3:

(3.11)

Equation (3.11) can be inverted to yield

~m ¼ c��1=3ðd2 � c2Þ�1=3;

~� ¼ d��1=3ðd2 � c2Þ�1=3;

k0F � ~�2 � ~m2 ¼ ��2=3ðd2 � c2Þ1=3:
(3.12)

Combined with d2 � c2 > 0, (3.12) shows that black hole
embeddings are only realized when the chemical potential
is greater than the bare quark mass, �>m.

The phase structure of the D3-D7 system at T ¼ 0 has
been analyzed in [16] with the following results. When
�<m there is only one configuration available, the
Minkowski embedding. In this phase, the system is char-
acterized by zero condensate and charge density. For �>
m the configuration with brane falling to R ¼ r ¼ 0, the
black hole embedding, is thermodynamically preferred.
The two phases are separated by a quantum phase transi-
tion at � ¼ m. The black hole embeddings are distin-
guished by the nonvanishing values of both the
condensate and the charge density.

hOmi ¼ 2�cN ; hJ0i ¼ 2�dN ; (3.13)

where c and d are related to m and � via (3.11). Note that
the expectation values in Eq. (3.13), and, in particular, the
charge density, vanish at the point of phase transition � ¼
m. In the rest of the paper we will be concerned with the
black hole embeddings.

IV. ZERO SOUND

We will be interested in finding the massless excitation
in the D3-D7 system at strong coupling. This requires
analyzing linearized equations of motion which follow
from the DBI action for the D7-brane propagating in
AdS5 � S5. In this section we only quote a few key results.

For technical details the reader is encouraged to consult
Appendix A.
The DBI action can be written as4

SD7 �
Z

d�3

Z
d4x

Z
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detG

q
; (4.1)

where G ¼ GþF is the sum of the induced metric and
gauge field strength. Here we will only be interested in
perturbations which are independent of the coordinates on
S3. We therefore expand the D7-brane embedding coordi-

nate R ¼ R0 þ , the gauge field A0 ¼ Að0Þ
0 þ A0, Ai ¼

Ai and the gauge field strength F 0r ¼ Fð0Þ
0r þ F0r, F ij ¼

Fij, where i, j ¼ 1, 2, 3 and the superscript (0) denotes the

background values of the corresponding fields (whose
profile follows from the results of the previous section.)
In addition, we set A� ¼ 0, 8 � 2 S3 and choose the
Ar ¼ 0 gauge. To expand the DBI action to quadratic
order in fluctuations, one can make use of the formula

ffiffiffiffiffiffiffiffiffiffiffi
detG

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detG0

q
ð1þ 1

8ðtrG�1
0 �GÞ2

� 1
4 trðG�1

0 �GG�1
0 �GÞÞ; (4.2)

where we write G ¼ G0 þ �G and �G stands for the
fluctuations. In (4.2) there is of course a linear term, but
it vanishes by equations of motion. It is convenient to keep
the fluctuations of the brane embedding  (but not deriva-
tives of ) as a part ofG0. Both the leading term and a term
linear in fluctuations do not contain , which means it does
not appear at quadratic order in fluctuations.
The action for fluctuations is given by [see also

Eq. (A1)]

SD7;fl ¼ � 1

2
N

Z
d4x

Z
drgðrÞ

�X
i

F2
ir � f1ðrÞF2

0r

� L4f2ðrÞ
X
i

F2
0i þ L4f3ðrÞ

X
i<j

F2
ij þ f5ðrÞð@rÞ2

� L4

	4
0

ð@0Þ2 þ L4f4ðrÞ
X
i

ð@iÞ2

� 2L4f6
X
i

F0ið@iÞ � 2f7ðrÞF0rð@rÞ
�
; (4.3)

where the functions fi, i ¼ 1; . . . ; 7 can be found in (A2)
and (A3). It is convenient to use the momentum space
representation,

AMðx�; rÞ ¼
Z d4k

ð2�Þ4 e
ik�x

� ~AMðk�; rÞ (4.4)

and

4The full action contains a Chern-Simons term. It can be
shown that it does not contribute to quadratic order in the
fluctuations for the field configurations considered below.
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ðx�; rÞ ¼
Z d4k

ð2�Þ4 e
ik�x

� ~ðk�; rÞ: (4.5)

We can also choose the direction of wave propagation by
setting k� ¼ ð�!; 0; 0; qÞ. It is important to work with the

gauge invariant combination,

E ¼ ~q ~A0 þ ~! ~Ak: (4.6)

We can use Gauss’s law (equation of motion for Ar),

~q ~A0
k þ ~!f1 ~A

0
0 � ~!f7 ~

0 ¼ 0; (4.7)

to express A0
0 (or A0

jj) in terms of E0 and ~0. Here prime

denotes differentiation with respect to r. In these equations

and in the following we define ~q ¼ qL2 ¼ q
ffiffiffiffiffiffi
2�

p
and ~! ¼

!L2 ¼ !
ffiffiffiffiffiffi
2�

p
. Equations of motion are in general quite

complicated. In particular, the equations for the longitudi-
nal components of the gauge field are coupled to the
equations for the embedding fluctuation . It turns out,
however, that they can be solved analytically in the two
overlapping regimes, much like in [14].

As explained in Appendix A, in the vicinity of the

horizon equations for E and ~ decouple:

€Eþ 2

z
_Eþ�2E ¼ 0; (4.8)

€~þ 2

z
_~þ�2 ~ ¼ 0; (4.9)

where �2 � ~!2 d2�c2

d2
and the dot denotes differentiation

with respect to z ¼ 1=r. The solutions of (4.8) and (4.9) are

EðzÞ ¼ A
eþi�z

z
; ~ðzÞ ¼ B

eþi�z

z
: (4.10)

The positive exponent is singled out by incoming boundary
conditions at the horizon [14,20–23]. In the limit of small
~!, �z � 1 (4.10) becomes

EðzÞ ¼ i�Aþ A

z
; ~ ¼ i�Bþ B

z
: (4.11)

On the other hand, for sufficiently small ~! and ~q equations
of motion simplify again:

_Zþ
�
2

z
þ 1

hf5

~q2 _f1
~q2 � ~!2f1

�
Z�

� _f7
hf5

~q2 � ~!2

~q2 � ~!2f1

�
Y ¼ 0;

_Y þ
�
2

z
þ

_f5
hf5

~q2 � ~!2

~q2 � ~!2f1

�
Y þ

� _f7
hf5

~q2

~q2 � ~!2f1

�
Z ¼ 0:

(4.12)

where Z ¼ gðzÞ _EðzÞ, Y ¼ ~qgðzÞ _~ðzÞ, and hðzÞ ¼
ð1þ ðd2 � c2Þz6Þ=ð1� c2z6Þ. The solution of (4.12) is
given by

_E ¼ � z

ð1þ ðd2 � c2Þz6Þ3=2 ½C1½ð1� c2z6Þ~q2

� ð1þ ðd2 � c2Þz6Þ ~!2	 þ C2cdz
6~q2	;

_~ ¼ qz

ð1þ ðd2 � c2Þz6Þ3=2 ½C1cdz
6 � C2ð1þ d2z6Þ	;

(4.13)

where C1 and C2 are arbitrary integration constants.
Equation (4.13) can also be obtained directly from
Eq. (A6) by neglecting all nonderivative terms, performing

trivial integration, and using Gauss’s law to express ~A0
0 in

terms of E0 and ~0. Equation (4.13) can in turn be integrated
to yield

E ¼ C0 þ
Z z

0

�xdx

ð1þ ðd2 � c2Þx6Þ3=2 ½C1½ð1� c2x6Þ~q2

� ð1þ ðd2 � c2Þx6Þ ~!2	 þ C2cdx
6~q2	;

~ ¼ ~C0 þ
Z z

0

qxdx

ð1þ ðd2 � c2Þx6Þ3=2
� ½C1cdx

6 � C2ð1þ d2x6Þ	:

(4.14)

The integrals can be expressed in terms of hypergeometric
functions. We do not need this representation, since only
small and large z asymptotics are important for our pur-
poses. In particular, near the boundary

E ¼ C0 þOðz2Þ;  ¼ ~C0 þOðz2Þ: (4.15)

This implies that the spectrum of quasinormal modes can

be obtained by requiring C0 ¼ ~C0 ¼ 0.
In the region z � 1 the leading asymptotic behavior of

(4.14) is a constant whose value we can infer by performing
integration from z ¼ 0 to z ¼ 1. The subleading 1=z term
can be extracted from the expression for the derivatives
(4.13). The results are

E ¼ C0 þ b1C1 þ b2C2 þ a1C1

z
þ a2C2

z
; (4.16)

where

a1 ¼ � c2~q2 þ ðd2 � c2Þ ~!2

ðd2 � c2Þ3=2 ; a2 ¼ cd~q2

ðd2 � c2Þ3=2
(4.17)

and

b1 ¼
�ð76Þ�ð43Þ

ðd2 � c2Þ4=3 ffiffiffiffi
�

p ½ð3c2 � d2Þ~q2 þ 3ðd2 � c2Þ ~!2	;

b2 ¼ �2cd~q2
�ð76Þ�ð43Þ

ðd2 � c2Þ4=3 ffiffiffiffi
�

p : (4.18)

Likewise,

~ ¼ ~C0 þ ~b1C1 þ ~b2C2 þ ~a1C1

z
þ ~a2C2

z
; (4.19)

where
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~a 1 ¼ � cd

ðd2 � c2Þ3=2 ; ~a2 ¼ d2

ðd2 � c2Þ3=2 (4.20)

and

~b1 ¼
2cd�ð76Þ�ð43Þ

ðd2 � c2Þ4=3 ffiffiffiffi
�

p ;

~b2 ¼ � �ð76Þ�ð43Þ
ðd2 � c2Þ4=3 ffiffiffiffi

�
p ð3d2 � c2Þ:

(4.21)

We will focus on the quasinormal mode with the linear
dispersion relation in the regime of small ~! and ~q. In this
case we can match the near horizon solutions (4.11) to

(4.16) and (4.19). Requiring C0 ¼ ~C0 ¼ 0 and neglecting
terms of higher order in ~! and ~q, we obtain

b1C1 þ b2C2 ¼ 0; ~b1 ~C1 þ ~b2 ~C2 ¼ 0: (4.22)

These equations can be simultaneously solved with non-

vanishing C1 and C2 whenever b1 ~b2 � b2 ~b1 ¼ 0. Using
(4.18) and (4.21) we arrive at

~! 2 ¼ u20~q
2; u20 ¼

d2 � c2

3d2 � c2
: (4.23)

Using (3.11) we can write the expression for the speed of
zero sound as

u20 ¼
�2 �m2

3�2 �m2
: (4.24)

This is the main result of this paper. In the relativistic limit
� � m we recover the result of [14], u20 ¼ 1=3. In the

vicinity of the phase transition, where �� ¼ ��m � m,
the speed of zero sound vanishes as u20 � ��=m. As dis-

cussed below, precisely such a behavior is expected from
the Landau’s theory of Fermi liquids at strong coupling.

V. DISCUSSION

Before discussing the significance of (4.24) let us make a
comment regarding the identification of the gapless mode
with zero sound. At first sight, our calculations imply that
the dispersion relation is modified by a term of the type
�iq2. In particular, in the simpler case of vanishing mass
considered in [14], the dispersion relation looks like

~! ¼ 
 ~q

3
� i

~q2

d1=3
: (5.1)

Note that in [14] the�iq2 behavior of the imaginary part of
the pole was important for identification of the massless
mode with zero sound. In the derivation of dispersion

relation it has been assumed that ~!z � 1 and d1=3z � 1
regions overlap. More precisely, the solutions (4.8), (4.9),
and (4.13) are valid up to terms Oðd�2z�6Þ and Oðw2z2Þ,
respectively. This seems to imply that (5.1) is only cor-
rected at higher order in q.

A number of quantities in the Fermi liquid setup can be
computed if the particle density is known as a function of

�� ¼ ��m. In principle, we can compute the charge
density using

	 ¼ N 2�d; N ¼ NfNc

ð2�Þ42� : (5.2)

It would be equal to the quark density n, if the quarks were
the only degrees of freedom. This would allow one to
determine kF as a function of �. However, the situation
is more complicated, as both the fermions and the scalars in
the fundamental hypermultiplet are charged under Uð1ÞB.
At vanishing coupling the system is unstable due to the
condensation of bosons. However, the Lagrangian contains
a term which is quartic in scalar fields. Hence, at large �
the condensation of bosons can be stabilized, and indeed
the solution for the brane embedding does not exhibit
instabilities. At large coupling one can use the holographic
dictionary to compute the expectation value of the operator
which contains the scalar bilinear. And, as noted in [16],
the dependence of this condensate on �� is consistent with
the quartic potential for the scalars and a quadratic term of
the form ðm2 ��2Þqq�. In summary, using (5.2) to deter-

mine kF would yield kF � ðd=�Þ1=3 � ðm2��=�Þ1=3, but
this result is unreliable due to the contribution of the boson
condensate to the charge density. However, the expression
for 	 can still serve as an upper bound on n.
We can deduce the critical behavior of various quantities

using the results reviewed in Sec. II. Writing (2.7) in the
form

u2 ¼ n

m

@��

@n
(5.3)

and noting that n vanishes near the critical point faster than

��, we infer u2 � �� and, consecutively, �F � ��1=2.
This implies a dispersion relation of the form �ðkÞ ¼
k2=2m� þOðk3Þ. Hence, in the vicinity of the critical point
the density of quarks behaves like n� k3F � ��3=2. This,
in turn, leads to

u2 � 2��

3m
: (5.4)

As reviewed in Sec. II, the speed of zero sound is
proportional to Fermi velocity as well, and must therefore

vanish at the critical point as u0 � ��1=2. This is precisely
what Eq. (4.24) implies in the limit �� � m:

u20 �
��

m
: (5.5)

Hence, we observe that our string theoretic computation
reproduces (in a rather nontrivial fashion) the critical ex-
ponent predicted by the phenomenological theory.
What about the coefficient in (5.5)? As reviewed in

Sec. II, in the limit of noninteracting fermions uð0Þ0 ¼ �F

or, in other words, ðuð0Þ0 Þ2 ¼ 2��=m. This implies

uð0Þ0 =uð0Þ ¼ ffiffiffi
3

p
. However, this ratio is expected to be modi-
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fied when the coupling is strong. Indeed, our result u0=u ¼ffiffiffiffiffiffiffiffi
3=2

p
differs from the value at weak coupling by a factor offfiffiffi

2
p

. This is not surprising since, as discussed in Sec. II, the
ratio of the velocities of first and zero sound goes to a
constant which is Oð1Þ for generic strong interaction be-
tween quasiparticles.
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APPENDIX A: FLUCTUATIONS

The action is

SD7;fl ¼ � 1

2
N

Z
d4x

Z
drgðrÞ

�X
i

F2
ir � f1ðrÞF2

0r

� L4f2ðrÞ
X
i

F2
0i þ L4f3ðrÞ

X
i<j

F2
ij þ f5ðrÞð@rÞ2

� L4

	4
0

ð@0Þ2 þ L4f4ðrÞ
X
i

ð@iÞ2

� 2L4f6ðrÞ
X
i

F0ið@iÞ � 2f7ðrÞF0rð@rÞ
�
;

(A1)

where the functions fi with i ¼ 1; � � � 7 are defined in
terms of the background fields as follows:

gðrÞ ¼ r3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R02 � Fð0Þ2

0r

q ; f1ðrÞ ¼ 1þ R02

1þ R02 � Fð0Þ2
0r

;

f2ðrÞ ¼ 1þ R02

	4
0

; f3ðrÞ ¼ 1þ R02 � Fð0Þ2
0r

	4
0

;

f4ðrÞ ¼ 1� Fð0Þ2
0r

	4
0

; f5ðrÞ ¼ 1� Fð0Þ2
0r

1þ R02 � Fð0Þ2
0r

;

f6ðrÞ ¼ �R0
0F

ð0Þ
0r

	4
0

; f7ðrÞ ¼ � R0
0F

ð0Þ
0r

1þ R02 � Fð0Þ2
0r

:

(A2)

Using (3.7) we can rewrite these functions as

gðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r6 þ d2 � c2

p
; f1ðrÞ ¼ 1þ d2

r6
;

f2ðrÞ ¼ r6 þ d2

r6 þ d2 � c2
1

	4
0

; f3ðrÞ ¼ r6

r6 þ d2 � c2
1

	4
0

;

f4ðrÞ ¼ r6 � c2

r6 þ d2 � c2
1

	4
0

; f5ðrÞ ¼ 1� c2

r6
;

f6ðrÞ ¼ cd

r6 þ d2 � c2
1

	4
0

; f7ðrÞ ¼ cd

r6
; (A3)

with 	0ðrÞ given by (3.2). It is useful to note that not all of
these functions are independent from one another. For
instance

f2 ¼ f3f1; f6 ¼ f3f7; f4 ¼ f3f5: (A4)

These identities will be particularly useful in expressing
the equations of motion in a compact manner. The field
equations are more conveniently expressed in the momen-
tum space representation

AMðx�; rÞ ¼
Z d4k

ð2�Þ4 e
ik�x

� ~AMðk�; rÞ (A5)

and

ðx�; rÞ ¼
Z d4k

ð2�Þ4 e
ik�x

� ~ðk�; rÞ: (A6)

Further choosing k� ¼ ð�!; 0; 0; qÞ we find

@r½gf1ð@r ~A0Þ � gf7ð@r ~Þ	 � ~! ~q gf2 ~Ak � ~q2gf2 ~A0 þ ~q2gf6 ~ ¼ 0;

@r½gð@r ~AkÞ	 þ ~! ~qgf2 ~A0 þ ~!2gf2 ~Ak � ~! ~q gf6 ~ ¼ 0;

@r½gf5ð@r ~Þ þ gf7ð@r ~A0Þ	 þ ~!2 g

	4
0

~� ~q2gf4 ~� ~q ~!gf6 ~Ak � ~q2gf6 ~A0 ¼ 0;

@r½gð@r ~A?Þ	 þ g½ ~!2f2 � ~q2f3	 ~A? ¼ 0:

(A7)
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Here we have absorbed the ’t Hooft coupling constant �
into the variables ~!, ~q defined as ~q ¼ qL2 ¼ q

ffiffiffiffiffiffi
2�

p
and

~! ¼ !L2 ¼ !
ffiffiffiffiffiffi
2�

p
. To fix the residual gauge invariance

we impose Gauss law

~q ~A0
k þ ~!f1 ~A

0
0 � ~!f7 ~

0 ¼ 0: (A8)

Choosing the gauge invariant combination

E ¼ ~q ~A0 þ ~! ~Ak (A9)

and using (A8) to express the first derivative of ~A0 in terms
of E0 and ~0,

~A 0
0 ¼

~q

~q2 � ~!2f1

�
E0 � ~!2

~q
f7 ~

0
�

(A10)

leads to

E00 þ
�
g0

g
þ f01

f1
þ ~!2f01

~q2 � ~!2f1

�
E0 þ f3ð ~!2f1 � ~q2ÞE� f7

f1

�
X00 þ

�
g0

g
þ f07

f7
þ ~!2f01

~q2 � ~!2f1

�
X0 þ f3ð ~!2f1 � ~q2ÞX

�
¼ 0;

f7
f5

~q2

~q2 � h ~!2

�
E00 þ

�
g0

g
þ f07

f7
þ ~!2f01

~q2 � ~!2f1

�
E0 þ f3ð ~!2f1 � ~q2Þ

�
Eþ X00

þ
�
g0

g
þ f05

f5
þ ~!2f01

~q2 � ~!2f1
� ~!2h0

~q2 � ~!2h

�
X0 þ f3ð ~!2f1 � ~q2ÞX ¼ 0; (A11)

where

h � 1

f4	
4
0

¼ f27 þ f1f5
f5

¼ r6 þ ðd2 � c2Þ
r6 � c2

(A12)

and we defined X ¼ q~. Performing a change of variable from r to z ¼ 1
r (A11) is recast into

€Eþ
�
2

z
þ _g

g
þ

_f1
f1

þ ~!2 _f1
~q2 � ~!2f1

�
_Eþ f3

z4
ð ~!2f1 � ~q2ÞE� f7

f1

�
€Xþ

�
2

z
þ _g

g
þ

_f7
f7

þ ~!2 _f1
~q2 � ~!2f1

�
_Xþ f3

z4
ð ~!2f1 � ~q2ÞX

�
¼ 0;

f7
f5

~q2

~q2 � h ~!2

�
€Eþ

�
2

z
þ _g

g
þ

_f7
f7

þ ~!2 _f1
~q2 � ~!2f1

�
_Eþ f3

z4
ð ~!2f1 � ~q2ÞE

�
þ €X

þ
�
2

z
þ _g

g
þ

_f5
f5

þ ~!2 _f1
~q2 � ~!2f1

� ~!2 _h

~q2 � ~!2h

�
_Xþ f3

z4
ð ~!2f1 � ~q2ÞX ¼ 0; (A13)

where dots indicated differentiation with respect to the
variable z. Observe that (A13) reduces to two independent
equations for E and X near the boundary since the prefac-
tors

f7
f1

¼ cdz6

1þ d2z6
;

f7
f5

~q2

~q2 � h ~!2
’ cdz6

1� c2z6
~q2

~q2 � ~!2

(A14)

vanish when z ! 0. We are then left with

€EðzÞ � 1

z
_EðzÞ þ ð ~!2 � ~q2ÞEðzÞ ¼ 0;

€XðzÞ � 1

z
_XðzÞ þ ð ~!2 � ~q2ÞXðzÞ ¼ 0:

(A15)

The general solution of this equation can be written in
terms of Bessel functions of the first kind as

EðzÞ ¼ A1Y1½z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2 � ~q2

q
	 þB1J1½z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2 � ~q2

q
	;

XðzÞ ¼ A2Y1½z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2 � ~q2

q
	 þB2J1½z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2 � ~q2

q
	:

(A16)

Expanding around z ¼ 0 yields

EðzÞ ’ A1

�
1þ 1

4
ð ~!2 � ~q2Þ

�
�
1� 2~�� ln

�
~!2 � ~q2

4
z2
��

z2
�
þB1z

2;

XðzÞ ’ A2

�
1þ 1

4
ð ~!2 � ~q2Þ

�
�
1� 2~�� ln

�
~!2 � ~q2

4
z2
��

z2
�
þB2z

2:

(A17)

This identifies the constants Ai and Bi for i ¼ 1, 2 with
the coefficients of the non-normalizable and the normal-
izable mode, respectively.
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In the vicinity of the horizon on the other hand notice
that

_g

g
’ � 3

z

1

ðd2 � c2Þz6 ;
_f1
f1

’ 6

z
;

~!2 _f1
~q2 � ~!2f1

’ � 6

z
;

_f5
f5

’ 6

z
;

_f7
f7

¼ 6

z
;

~!2 _h

~q2 � ~!2h
’ 6

z

d2

c4z6
~!2

~q2 þ d2�c2

c2
~!2

;

(A18)

whereas

f3
z4

ð ~!2f1 � ~q2Þ ’ ~!2 d
2 � c2

d2
(A19)

since R0ðzÞ behaves for large z as cffiffiffiffiffiffiffiffiffiffi
d2�c2

p 1
z . It follows that

Eq. (A13) reduces to

€Eþ 2

z
_Eþ�2E� c

d

�
€Xþ 2

z
_Xþ�2X

�
¼ 0;

€Xþ 2

z
_Xþ�2Xþd

c

~q2

~q2 þ d2�c2

c2
~!2

�
€Eþ 2

z
_Eþ�2E

�
¼ 0;

(A20)

where we defined� ¼ ~!
ffiffiffiffiffiffiffiffiffiffi
d2�c2

d2

q
. Multiplying either of the

equations with appropriate factors and adding them up
yields the following system of decoupled equations near
the ‘‘horizon’’:

€Eþ 2

z
_Eþ�2E ¼ 0; €X þ 2

z
_X þ�2X ¼ 0; (A21)

with solutions

EðzÞ ¼ A
ei�z

z
; XðzÞ ¼ B

ei�z

z
: (A22)

Note that the incoming wave boundary condition singled
out the positive exponent in (A22).
Equation (A13) can be simplified even further.

€Eþ
�
2

z
þ _g

g
þ 1

hf5

~q2 _f1
~q2 � ~!2f1

�
_Eþ f3

z4
ð ~!2f1 � ~q2ÞE�

� _f7
hf5

~q2 � ~!2

~q2 � ~!2f1

�
_X ¼ 0;

€X þ
�
2

z
þ _g

g
þ

_f5
hf5

~q2 � ~!2

~q2 � ~!2f1

�
_Xþ f3

z4
ð ~!2f1 � ~q2ÞX þ

� _f7
hf5

~q2

~q2 � ~!2f1

�
_E ¼ 0:

(A23)

To arrive at (A23) multiply either of the equations with the relevant factor and add it to the other one. Note that the
equations for E and X are now coupled only through first derivative terms of the fields. This form is particularly useful
when considering the region�z � 1. In this case, terms without derivatives of the fields E and X can be neglected to yield

_Zþ
�
2

z
þ 1

hf5

~q2 _f1
~q2 � ~!2f1

�
Z�

� _f7
hf5

~q2 � ~!2

~q2 � ~!2f1

�
Y ¼ 0; _Y þ

�
2

z
þ

_f5
hf5

~q2 � ~!2

~q2 � ~!2f1

�
Y þ

� _f7
hf5

~q2

~q2 � ~!2f1

�
Z ¼ 0;

(A24)

where Z ¼ gðzÞ _EðzÞ and Y ¼ gðzÞ _XðzÞ. Solutions for Z and Y are given by

Z ¼ d2Ĉ1½~q2 � ~!2ð1þ ðd2 � c2Þz6Þ	 þ ~q2Ĉ2½�~q2ð1� c2z6Þ þ ~!2ð1þ ðd2 � c2Þz6Þ	
cd~q2z2½1þ ðd2 � c2Þz6	 ;

Y ¼ 1

z2
Ĉ1

1þ ðd2 � c2Þz6 þ z4
Ĉ2

1þ ðd2 � c2Þz6 ;
(A25)

where the integration constants Ĉ1 and Ĉ2 are related to the
ones appearing in the main text through

Ĉ 1 ¼ �C2~q
2; Ĉ2 ¼ �dðdC2 � cC1Þ~q2: (A26)

Equation (A25) can be easily integrated to yield an ex-
pression for E and X in terms of hypergeometric functions.

APPENDIX B: THE MATCHING TECHNIQUE IN
DETAIL

Here we investigate in detail the regions of applicability
of the matching technique used in Sec. V. Let us focus on
understanding the precise conditions under which
Eq. (A23) reduces to Eq. (A21) or (A24).
Observe that in the vicinity of the horizon, when z is

large enough so that z � ðd2 � c2Þ�1=6 > d�1=3, the fol-
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lowing simplifications occur:

_g

g
’ � 3

z

1

ðd2 � c2Þz6 ;
1

hf5

~q2 _f1
~q2 � ~!2f1

’ 6

z

d2

d2 � c2
1

1� ~!2

~q2
d2z6

;

_f5
hf5

~q2 � ~!2

~q2 � ~!2f1
’ � 6

z

c2

d2 � c2

1� ~!2

~q2

1� ~!2

~q2
d2z6

;

_f7
hf5

~q2 � ~!2

~q2 � ~!2f1
’ 6

z

cd

d2 � c2

1� ~!2

~q2

1� ~!2

~q2
d2z6

;

_f7
hf5

~q2

~q2 � ~!2f1
’ 6

z

cd

d2 � c2
1

1� ~!2

~q2
d2z6

:

(B1)

Moreover, given that RðzÞ for large z behaves like RðzÞ ’
cffiffiffiffiffiffiffiffiffiffi

d2�c2
p 1

z ,

f3
z4

ð ~!2f1 � ~q2Þ ’ ~q2ðd2 � c2Þ
d2

1

d2z6

�
~!2

~q2
d2z6 � 1

�
;

(B2)

and if we additionally assume that z � d�1=3ð ~q~!Þ1=3,
Eq. (A23) reduces to (A21).

€Eþ 2

z
_Eþ�2E ¼ 0; €X þ 2

z
_Xþ�2X ¼ 0; (B3)

with � defined to be �2 � ~!2 d2�c2

d2
. The solution of (B3)

is given by

EðzÞ � ei�z

z
; XðzÞ � ei�z

z
: (B4)

When furthermore z � 1
� , the solution becomes

EðzÞ ¼ Ai�þ A

z
; EðzÞ ¼ Bi�þ B

z
; (B5)

with A, B overall multiplicative constants. In summary,
(B5) consistently describes the behavior of the solution of

Eq. (A23) as long as z lies within the annulus Max½ðd2 �
c2Þ�1=6; d�1=3ð ~q~!Þ1=3	 � z � 1

� . This in turn implies that

we are effectively exploring the region of parameter space
in which

Max

�
ðd2 � c2Þ�1=6; d�1=3

�
~q

~!

�
1=3

�
� 1

�
: (B6)

Now let us investigate the behavior of (A23) in the
regime �z � 1 first. Note that terms without derivatives

always appear with the prefactor f3
z4
ð ~!2f1 � ~q2Þ as com-

pared to the two derivative terms. Moreover, this prefactor
is given by the difference of two monotonic functions. Its
absolute value is therefore bounded above by the absolute
value of their sum. The latter is a monotonic function
which tends to a constant for both large and small z. In
particular,

hðzÞ �
��������
f3
z4

ð ~!2f1 þ ~q2Þ
��������¼

�
�2 z � Max½ðd2 � c2Þ�1=6; ð ~q~!Þ1=3d�1=3	
j ~!2 þ ~q2j z � Min½1~m ; ðd2 � c2Þ�1=6; ð ~q~!Þ1=3d�1=3	: (B7)

It follows that terms without derivatives can be neglected
as long as they are small compared to the two derivative
terms. This means that for z � Min½ 1� ; 1~! j1þ ~q2

~!2 j�1=2	
Eq. (A23) consistently reduces to

_Zþ
�
2

z
þ 1

hf5

~q2 _f1
~q2 � ~!2f1

�
Z�

� _f7
hf5

~q2 � ~!2

~q2 � ~!2f1

�
Y ¼ 0;

_Y þ
�
2

z
þ

_f5
hf5

~q2 � ~!2

~q2 � ~!2f1

�
Y þ

� _f7
hf5

~q2

~q2 � ~!2f1

�
Z ¼ 0;

(B8)

with Z ¼ gðzÞ _EðzÞ and Y ¼ gðzÞ _XðzÞ.

As previously explained, we would like (A24) and (B3)
to be simultaneously valid. This implies that we can inves-
tigate (A13) in the following region of parameter space

Max

�
ðd2 � c2Þ�1=6; d�1=3

�
~q

~!

�
1=3

�

� Min

�
1

�
;
1

~!

��������1þ
~q2

~!2

��������
�1=2

�
: (B9)

It is manifest from (B9) that the analysis of Sec. V covers
the region of small ~!, ~q.
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