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We analytically calculate the low-lying gravitational quasinormal modes of a topological AdS black

hole of arbitrary dimension in the high temperature limit. We show that they are in agreement with

corresponding results from the hydrodynamics of the gauge theory plasma on the boundary, as required by

the AdS/CFT (anti–de Sitter/conformal field theories) correspondence. For some of these modes, we

obtain a lifetime which is comparable to or longer than the longest lifetime of perturbations of spherical

black holes. These modes might play a significant role in the late-time behavior of the gauge theory

plasma.
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I. INTRODUCTION

The anti–de Sitter/conformal field theories (AdS/CFT)
correspondence [1,2] has provided a path for understand-
ing a gauge theory in terms of a dual gravitational descrip-
tion in one higher dimension. The gauge field in four
dimensions is an N ¼ 4 super-Yang-Mills (SYM) the-
ory, which is not QCD as there is no confinement among
other aspects. However, once the limit of confinement
is breached, N ¼ 4 SYM results seem to be relevant to
QCD. Moreover, the plasma seen at the Relativistic Heavy
Ion Collider (RHIC) is thought to be strongly interacting
[3] and progress with QCD is difficult to achieve, but AdS/
CFT does not rely on the same techniques and is therefore
not hampered by the strength of the coupling. This has
cultivated interest in the string theory–RHIC scenarios and
progress is rapidly developing [4–7].

Via the AdS/CFT correspondence, information for the
plasma in the strong coupling regime is gained by studying
the dual theory of a supergravity solution in AdS space.
From the AdS metric one may calculate the stress-energy
tensor of the CFT using various techniques [8]. The sim-
plest AdS solution to study is the Schwarzschild metric,
which has a dual static CFT on the boundary. This may
be extended by looking at small deformations of the
Schwarzschild metric, i.e., quasinormal modes which dic-
tate the late-time behavior of the black hole [9]. Calcu-
lating these modes has been held in high importance and
thereby studied in vast detail (see [10] and references
therein). According to the AdS/CFT correspondence, the
lowest frequency modes govern the hydrodynamic behav-
ior of the conformal field theory on the boundary [11].
However, these modes are difficult to find and may be
missed by some quasinormal mode techniques [12].

In [9,13] the lowest-lying gravitational quasinormal
modes for an AdS Schwarzschild solution were numeri-

cally calculated in four and five dimensions and were
shown to be in agreement with hydrodynamic perturba-
tions of the gauge theory plasma on the AdS boundary. For
AdS5 this was understood as a finite ‘‘conformal soliton
flow’’ after the spherical AdS5 boundary one obtains in
global coordinates was conformally mapped to the physi-
cally relevant flat Minkowski spacetime. The perturbations
also allowed for calculations of the elliptic flow of the
plasma and its thermalization time—two of the observ-
ables at RHIC. While there is still work to be done, the
calculations compared well with what has been found
experimentally.
An alternative to a spherical AdS black hole would be

to choose one with a hyperbolic horizon [14–18]. They
are usually referred to as topological AdS black holes
because they possess topologically nontrivial horizons.
Our aim is to elucidate their effect on the gauge theory
plasma on the AdS boundary. By studying gravitational
perturbations, we shall show that they possess quasi-
normal modes whose lifetime is comparable to or longer
than their counterparts in the case of horizons with positive
curvature (spherical black holes). These results are in
agreement with those obtained by studying the hydrody-
namics of the gauge theory plasma on the boundary.
Therefore, topological AdS black holes might have a sig-
nificant effect on the behavior of the quark-gluon plasma in
heavy ion collisions at RHIC and the LHC via the AdS/
CFT correspondence.
In Sec. II we discuss the scalar, vector, and tensor

gravitational perturbations of a topological AdS black
hole in d dimensions. We calculate analytically the
lowest-lying quasinormal modes using the procedure of
Ref. [12]. In Sec. III we study the hydrodynamics of a
gauge theory plasma on a hyperbolic space in d� 1 di-
mensions extending the results of Ref. [13]. We show that
the frequencies obtained from hydrodynamics are in agree-
ment with their counterparts obtained from black hole
perturbations in Sec. II. We summarize our conclusions
in Sec. IV.
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II. TOPOLOGICAL ADS BLACK HOLES

The Einstein equations for vacuum anti–de Sitter space
allows for three separate maximally symmetric solutions
parameterized with a single parameter K taking the values
0, �1. For K ¼ 0 we have a flat horizon whereas for K ¼
þ1 the horizon is a compact sphere. The case K ¼ �1
yields a horizon which is a hyperbolic space and has been
much less studied. Nevertheless, in the context of the AdS/
CFT correspondence all solutions to the Einstein equations
should be taken into account. Here we concentrate on the
case of black holes with a hyperbolic horizon (K ¼ �1)
aiming at elucidating their effect on the gauge theory
plasma on the AdS boundary.

The metric of an AdS black hole with K ¼ �1 in d
spacetime dimensions takes the form

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�2
d�2;

fðrÞ ¼ r2 � 1� 2�

rd�3
;

(1)

where we have chosen units in which the AdS radius is
R ¼ 1. The horizon radius is found from

2� ¼ rd�1
H

�
1� 1

r2H

�
: (2)

The Hawking temperature is

TH ¼ ðd� 1Þr2H � ðd� 3Þ
4�rH

: (3)

The area of the horizon is rendered finite by introducing
identifications in the hyperbolic space which make the
horizon topologically nontrivial. Thus �d�2 ¼ Hd�2=�
where � is a discrete group of isometries of the hyperbolic
space Hd�2. Various choices of � were eagerly studied in
the late nineties in preparation for the Wilkinson Micro-
wave Anisotropy Probe as it was thought to possibly de-
scribe the type of universe we live in [19]. For example, in
d ¼ 4 the boundary may be compactified with periodic
boundaries around an octagon specified by �; in higher
dimensions the fundamental domain becomes a general-
ization of the octagon.

The mass and entropy of the hole are given, respectively,
by [17]

M ¼ ðd� 2Þðr2H � 1Þ rd�3
H

16�G
Vd�2; S ¼ rd�2

H

4G
Vd�2;

(4)

where Vd�2 is the volume of the hyperbolic space �d�2.

Through the AdS/CFT correspondence, the black hole is
mapped onto a gauge theory fluid on the boundary of AdS
which in this case is the open Einstein static universe,
�d�2 � R. On the other hand, the quark-gluon plasma
created in heavy ion collisions lives in Minkowski space
(Rd�2;1 for d ¼ 5). To understand experimental results, we
need to choose a different foliation near the boundary of
AdS consisting of hypersurfaces which become asymp-
totically flat. This is achieved through an appropriate co-
ordinate transformation in the bulk which amounts to a
conformal transformation between part of the open Ein-
stein static universe, �d�2 � R, and the Minkowski space,
Rd�2;1. This transforms the static plasma on �d�2 � R to a
flow of finite extend (soliton) on Rd�2;1. In the case of a
spherical horizon, this flowwas dubbed ‘‘conformal soliton
flow’’ [9]. Understanding the behavior of plasma in our
case would entail numerical techniques due to the com-
plexity of �d�2 � R. We shall leave such a detailed cal-
culation for future work.
Here we concentrate on perturbations of the conformal

soliton whose characteristic frequencies and lifetimes are
determined by the quasinormal modes of the black hole
(real and imaginary parts, respectively).
For the study of perturbations, we need to understand

the behavior of harmonic functions on �d�2. In general,
they obey

ðr2 þ k2ÞT ¼ 0: (5)

Without identifications (i.e., in Hd�2), the spectrum is
continuous. We obtain [20]

k2 ¼ �2 þ
�
d� 3

2

�
2 þ �; (6)

where � is arbitrary and � ¼ 0, 1, 2 for scalar, vector, and
tensor perturbations, respectively. When a compactifica-
tion scheme is chosen, the spectrum becomes discrete.
Depending on the choice of �, the discretized eigenvalues
� may be made as small as desired, i.e., zero is an accu-
mulation point of the spectrum of � [19]. As � ! 0, the
complexity of the set of isometries � increases and the
volume Vd�2 of the hyperbolic space�d�2 diverges (hence
also the mass and entropy of the hole). This ought to be
studied numerically for a detailed comparison with experi-
mental data in heavy ion collisions at the RHIC through a
generalization of the approach of [9].
Having understood the harmonics on �d�2, we may

write the wave equation for gravitational perturbations in
the general Schrödinger-like form [21]

� d2�

dr2�
þ V½rðr�Þ�� ¼ !2� (7)

in terms of the tortoise coordinate r� defined by

JAMES ALSUP AND GEORGE SIOPSIS PHYSICAL REVIEW D 78, 086001 (2008)

086001-2



dr�
dr

¼ 1

fðrÞ (8)

where fðrÞ is defined in (1). The potential takes different
forms for different types of perturbation. We shall study
each case separately.

A. Vector perturbations

The vector potential is given by

VV ¼ fðrÞ
r2

�
k2V � 1þ ðd� 2Þðd� 4Þ

4
ðr2 � 1Þ

� 3ðd� 2Þ2�
rd�3

�
; (9)

where k2V is an eigenvalue of a vector harmonic [Eq. (6)
with � ¼ 1].

It is convenient to introduce the variable

u ¼
�
rH
r

�
d�3

: (10)

The wave Eq. (7) takes the form

�ðd� 3Þ2uðd�4Þ=ðd�3Þf̂ðuÞ@uðuðd�4Þ=ðd�3Þf̂ðuÞ@u�Þ
þ V̂VðuÞ� ¼ !̂2�; (11)

where

V̂VðuÞ ¼ f̂ðuÞ
�
k̂2V þ ðd� 2Þðd� 4Þ

4
u2=ð3�dÞ � 3ðd� 2Þ2

4
u

� 1

r2H

�
1þ ðd� 2Þðd� 4Þ

4
� 3ðd� 2Þ2

4
u

��

f̂ðuÞ ¼ fðrÞ
r2

¼ 1� u2=ðd�3Þ
�
uþ 1� u

r2H

�
;

!̂2 ¼ !2

r2H
; k̂2V ¼ k2V

r2H
: (12)

With !̂ and k̂V fixed, to leading order in 1=rH this is the
same equation as the case of a flat horizon studied in [11]
and also coincides with the leading order equation in the
case of the spherical horizon studied in [12]. The curvature
of the horizon only comes into play at Oð1=r2HÞ, as ex-
pected, since the horizon becomes flat in the limit rH ! 1.
Following the perturbative analysis performed in [12], we
shall solve the wave equation in the rH ! 1 limit and add
the Oð1=r2HÞ contributions as perturbative corrections

[treating !̂, k̂2V �Oð1=r2HÞ].
Factoring out the behavior of � as it approaches the

horizon (u ¼ 1),

�ðuÞ ¼ ð1� uÞ�iðŵ=ðd�1ÞÞFðuÞ (13)

so that the wave equation in the large rH limit [including
Oð1=r2HÞ contributions] becomes

HF � AF00 þBF0 þ CF ¼ 0; (14)

where

A ¼ �ðd� 3Þ2uð2d�8Þ=ðd�3Þð1� uðd�1Þ=ðd�3ÞÞ þ 2ðd� 3Þ2
r2H

u2ð1� uÞ;

B ¼ �ðd� 3Þ½d� 4� ð2d� 5Þuðd�1Þ=ðd�3Þ�uðd�5Þ=ðd�3Þ � 2ðd� 3Þ2 i!̂

d� 1

uð2d�8Þ=ðd�3Þð1� uðd�1Þ=ðd�3ÞÞ
1� u

þ d� 3

r2H
u

�
ðd� 3Þð2� 3uÞ � ðd� 1Þ 1� u

1� uðd�1Þ=ðd�3Þ u
ðd�1Þ=ðd�3Þ

�
;

C ¼ k̂2V þ ðd� 2Þ½d� 4� 3ðd� 2Þuðd�1Þ=ðd�3Þ�
4

u�2=ðd�3Þ � ðd� 3Þ i!̂

d� 1

½d� 4� ð2d� 5Þuðd�1Þ=ðd�3Þ�uðd�5Þ=ðd�3Þ

1� u

� ðd� 3Þ2 i!̂

d� 1

uð2d�8Þ=ðd�3Þð1� uðd�1Þ=ðd�3ÞÞ
ð1� uÞ2 � d� 2

2r2H

�
d� 4� ð2d� 5Þu� ðd� 1Þ

� 1� u

1� uðd�1Þ=ðd�3Þ u
ðd�1Þ=ðd�3Þ

�
: (15)

Expanding the wave function,

F ¼ F0 þ F1 þ . . . (16)

we may solve the wave equation (14) perturbatively.
The zeroth order wave equation

H0F0 ¼ 0 (17)

is obtained in the limit !̂, k̂v, 1=r
2
H ! 0. Explicitly,

H0F0 ¼ A0F
00
0 þB0F

0
0 þ C0F0; (18)

where
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A0¼�ðd�3Þ2uð2d�8Þ=ðd�3Þð1�uðd�1Þ=ðd�3ÞÞ;
B0¼�ðd�3Þ½d�4�ð2d�5Þuðd�1Þ=ðd�3Þ�uðd�5Þ=ðd�3Þ;

C0¼ðd�2Þ½d�4�3ðd�2Þuðd�1Þ=ðd�3Þ�
4

u�2=ðd�3Þ: (19)

The zeroth order wave equation (17) has the two exact
solutions

F0 ¼ uðd�2Þ=ð2ðd�3ÞÞ;

�F0 ¼ u�ðd�4Þ=ð2ðd�3ÞÞ
2F1

�
1;�d� 3

d� 1
;

2

d� 1
;uðd�1Þ=ðd�3Þ

�
:

(20)

The former is well behaved at both the horizon (u ! 1) and
the boundary (u ! 0) but the latter diverges at both ends;
therefore, it is unacceptable.

The constraint for !̂ comes from the first order equation
which accounts for the Oð1=r2HÞ terms in (14)

H0F1 þH1F0 ¼ 0 (21)

solved by

F1 ¼ �F0

Z �F0H1F0

A0W 0

þ �F0

Z F0H1F0

A0W 0

; (22)

where W 0 is the zeroth order Wronskian

W 0 ¼ 1

uðd�4Þ=ðd�3Þð1� uðd�1Þ=ðd�3ÞÞ : (23)

The second term in the expression for F1 is ill-behaved at
both the boundary and the horizon. If we choose one of the
limits of integration at the boundary (u ¼ 0), then the
second term becomes regular there. However, at the hori-

zon it diverges due to the behavior of �F0. This is avoided if

the coefficient of �F0 vanishes as u ! 1. This requirement
yields the constraintZ 1

0

F0H 1F0

A0W 0

¼ 0; (24)

which is a linear equation in !̂ whose solution is

!̂ ¼ �i
k̂2V þ d�3

r2H

d� 1
: (25)

This is the frequency of the lowest-lying vector quasinor-

mal mode. It can be written as

! ¼ �i
�2 þ ðd�1

2 Þ2
ðd� 1ÞrH : (26)

This mode is inversely proportional to the radius of the
horizon and will dictate the hydrodynamics of the dual
gauge theory. We obtain an upper bound for the lifetime of
this modewhich may bewritten in terms of the temperature
TH � d�1

4� rH [Eq. (3) in the large rH limit and in units in

which the AdS radius is R ¼ 1],

� ¼ 1

j!j<
16�

ðd� 1Þ2 TH: (27)

In the physically interesting case of d ¼ 5, this reads � <
�TH. To compare this with the case of a spherical horizon,
note that the frequency is given by [12]

!Sd�2 ¼ �i
ðlþ d� 2Þðl� 1Þ

ðd� 1ÞrH ; (28)

which yields a maximum lifetime

�S
d�2

max ¼ 4�

d
TH (29)

and in the case d ¼ 5, we obtain an upper bound of
4�
5 TH which is lower than the upper bound in the hyper-

bolic case (�TH).
To assess the relevance of this result to heavy ion colli-

sions, one ought to relate the lifetime (27) to the thermal-
ization time of the plasma which lives on flat Minkowski
space Rd�2;1. For spherical horizons, the latter is roughly
half the former [9]. In our case, the relationship will be
determined once the conformal map from part of the open
Einstein static universe�d�2 � R onto Rd�2;1 is found. As
discussed earlier, this will require the use of numerical
techniques and is deferred to future work. Nevertheless,
the large value of the lifetime (27) indicates that these
modes may play a role in determining the behavior of the
quark-gluon plasma.

B. Scalar perturbations

We now turn our attention to scalar perturbations for
which the master equation can be cast into the same form
as (11) but with a new potential,

V̂SðuÞ ¼
u�2=ðd�3Þ � u� 1

r2H
ð1� uÞ

4ðm̂þ uÞ2
�
ð�6þ dÞð�4þ dÞm̂2 � 6ð�4þ dÞð�2þ dÞm̂uþ ð�2þ dÞdu2 � 3ð�6þ dÞ

� ð�2þ dÞm̂2uðd�1Þ=ðd�3Þ þ 2ð18þ dð�11þ 2dÞÞm̂uð2ðd�2ÞÞ=ðd�3Þ þ ð�2þ dÞ2uð3d�7Þ=ðd�3Þ þ 2ð�2þ dÞ

� ð�1þ dÞm̂3u2=ð�3þdÞ � u2=ðd�3Þ

r2H
½ð�2þ dÞm̂2ðdþ 2ð�1þ dÞm̂Þ � 3ð�2þ dÞm̂ð�8� 6m̂þ dð2þ m̂ÞÞu

þ ð24þ 36m̂þ dð�10þ d� 22m̂þ 4dm̂ÞÞu2 þ ð�2þ dÞ2u3�
�
; (30)
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where

m̂ ¼ 2
k2S þ d� 2

ðd� 1Þðd� 2Þðr2H � 1Þ (31)

and k2S is an eigenvalue of a scalar harmonic [Eq. (6) with
� ¼ 0].

A new singularity at u ¼ �m̂ arises in the scalar poten-
tial. It is best to factor out the behavior at this point in
addition to the behavior at the horizon and boundary. We
see again that the effect of the curvature enters at Oð1=r2HÞ
and the wave equation matches the spherical case [12] at
leading order first in 1=rH.

Defining

�ðuÞ ¼ ð1� uÞ�iðŵ=ðd�1ÞÞ u
ðd�4Þ=ð2ðd�3ÞÞ

m̂þ u
FðuÞ (32)

as in the vector case we obtain a wave equation for F which
may be solved perturbatively. In the vector case, we had !̂,

k̂2V �Oð1=r2HÞ, so keeping terms toOð1=r2HÞwe could drop
terms which were quadratic in !̂. In the scalar case, the
frequency has a real part which is related to the speed of
sound in the gauge theory fluid [11]. In a conformal fluid,
the speed of sound is 1ffiffiffiffiffiffiffi

d�2
p . Therefore, in the limit rH ! 1

we expect !�Oð1Þ, consequently terms which are qua-
dratic in !̂ ¼ !

rH
must be kept and will contribute at first

order in 1=r2H.
The zeroth order wave equation ought to coincide with

the case of a spherical horizon, because the curvature plays
no role at leading order. Following [12], we choose

H 0F0 ¼ A0F
00
0 þB0F

0
0 þ C0F0 ¼ 0; (33)

where

A0 ¼ �ðd� 3Þ2uð2d�8Þ=ðd�3Þð1� uðd�1Þ=ðd�3ÞÞ;
B0 ¼ �ðd� 3Þuð2d�8Þ=ðd�3Þð1� uðd�1Þ=ðd�3ÞÞ

�
�
d� 4

u
� 2ðd� 3Þ

m̂þ u

�
� ðd� 3Þ

� ½d� 4� ð2d� 5Þuðd�1Þ=ðd�3Þ�uðd�5Þ=ðd�3Þ;

C0 ¼ 0; (34)

This zeroth order wave equation has two linearly indepen-
dent solutions,

F0 ¼ 1; (35)

which is well behaved at all points and a singular one
which can be written in terms of the Wronskian,

�F 0 ¼
Z

W 0; W 0 ¼ ðm̂þ uÞ2
uð2d�8Þ=ðd�3Þð1� uðd�1Þ=ðd�3ÞÞ :

(36)

Care must be exercised in the case d ¼ 4 where �F0 does
not lead to a singularity at the boundary; however, the

boundary conditions ought to be altered to Robin boundary
conditions [12,13].
Proceeding as with vector perturbations, a constraint

similar to (24) is found by including terms up to Oð1=r2HÞ
which also account for the contributions of m̂�Oð1=r2HÞ
and !̂�Oð1=rHÞ. After some tedious algebra, we arrive at
a quadratic equation for !̂,

d� 1

2

1þ ðd� 2Þm̂
ð1þ m̂Þ2 � 1

r2H

�
1

m̂
þOð1Þ

�

� i!̂
d� 3

ð1þ m̂Þ2 � !̂2

�
1

m̂
þOð1Þ

�
¼ 0:

(37)

The two solutions for small m̂ are

!̂ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d� 1

2
m̂� 1

r2H

s
� i

d� 3

2
m̂; (38)

which may also be written as

!0 ¼ � kSffiffiffiffiffiffiffiffiffiffiffiffi
d� 2

p � i
d� 3

ðd� 1Þðd� 2ÞrH ½k2S þ d� 2�:
(39)

The real part gives the correct speed of sound ( 1ffiffiffiffiffiffiffi
d�2

p )

whereas the imaginary part yields the lifetime

� ¼ 1

j=!j ¼
4�ðd� 2Þ

ðd� 3Þð�2 þ ðd�1
2 Þ2ÞTH: (40)

This is bounded by

� <
16�ðd� 2Þ

ðd� 3Þðd� 1Þ2 TH (41)

to be compared with the maximum lifetime of a scalar
mode in the spherical horizon case [12]

�S
d�2

max ¼ 4ðd� 2Þ�
ðd� 3Þd TH: (42)

In the physically interesting case d ¼ 5, the bound for a
hyperbolic horizon is 3�

2 TH which is higher than the maxi-

mum lifetime for a spherical horizon, 6�5 TH, as well as the

upper bounds of vector modes.
These modes may be important in understanding the

quark-gluon plasma, but again, as with vector modes, their
significance will be determined after one computes their
relationship to the thermalization time of the quark-gluon
plasma. These modes correspond to perturbations of a
static fluid on the open Einstein universe �d�2 � R and
need to be transformed to the Minkowski space (Rd�2;1,
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where d ¼ 5 for comparison with experimental data) in
which the quark-gluon plasma lives.

C. Tensor perturbations

The remaining quasinormal modes come from tensor
perturbations. Following [21], the wave equation may be
cast in the same form as (11) with the potential in the large
rH limit,

V̂TðuÞ ¼ d� 2

4

�
du�2=ðd�3Þ � ðd� 2Þuð2ðd�2ÞÞ=ðd�3Þ � 2u

�
þ k̂2Tð1� uðd�1Þ=ðd�3ÞÞ; (43)

where k̂T ¼ kT=rH and kT is the tensor harmonic eigen-
value given by Eq. (6) with � ¼ 2.

The zeroth order wave equation can be solved as in the
spherical case [12] to find the two independent solutions

�0 ¼ u�ðd�2Þ=ð2ðd�3ÞÞ;

�̂0 ¼ u�ðd�2Þ=ð2ðd�3ÞÞ lnð1� uðd�1Þ=ðd�3ÞÞ:
(44)

Both can be seen to diverge at the boundary (u ! 0) and
the horizon (u ! 1). Therefore, there are no low frequency
tensor modes. The lowest modes are expected to have
frequencies !�OðrHÞ and cannot be found using the
same perturbative technique as with vector and scalar
modes. We are not interested in finding the tensor modes
in this case because they do not contribute to the hydro-
dynamic behavior of the gauge theory plasma.

III. HYDRODYNAMICS

In the previous section we calculated the lowest-lying
quasinormal modes whose imaginary part was inversely
proportional to the radius of the horizon (and therefore
their lifetime was proportional to the Hawking temperature
of the black hole). Based on the analysis in [10], the over-
tones do not exhibit this behavior; their frequencies are all
proportional to the radius of the horizon for large black
holes. This leads to the interpretation of the lowest-lying
modes corresponding to the hydrodynamics on the dual
gauge theory plasma [11], and the subsequent overtones to
its microscopic behavior. In this section, we study the
hydrodynamics in the linearized regime of a d� 1 dimen-
sional fluid with dissipative effects taken into account. The
fluid lives on the boundary with topology R��d�2 where
�d�2 ¼ Hd�2=�, i.e., the quotient of the hyperbolic space
Hd�2 with the discrete group of isometries �. We thus
extend earlier results for a spherical boundary [13].

Using �, � running over the boundary with metric

ds2boundary ¼ �dt2 þ d�2
d�2 (45)

and i, j over only the hyperbolic space �d�2, the hydro-
dynamic equations for the conformal fluid follow in a
standard manner,

T��¼ð�þpÞu�u�þpg��

�	

�
4�
r
u

�þ4�
r
u
�� 2

d�2
4��r
u




�
��4��r
u


;

r�T
��¼ 0; T�

� ¼ 0; (46)

where4�� ¼ g�� þ u�u� and �, p, 	, and � represent the

energy density, pressure, shear viscosity, and bulk viscos-
ity, respectively, of the conformal field theory. Two con-
straints on the parameters immediately follow,

� ¼ ðd� 2Þp; � ¼ 0; (47)

u� is the velocity field of the conformal fluid. The refer-
ence frame is chosen so that u�u� ¼ �1. In the rest frame

of the fluid, u� ¼ ð1; 0; 0; 0Þ. Perturbations introduce small
disturbances,

u� ¼ ð1; uiÞ; (48)

where ui is small and also allow for small corrections to the
pressure so that

p ¼ p0 þ �p: (49)

Applying (46), we obtain the set of hydrodynamic
equations

0 ¼ r�T
�t ¼ ðd� 2Þ@t�pþ ðd� 1Þp0riu

i;

0 ¼ r�T
�i

¼ ðd� 1Þp0@tu
i þ @i�p

� 	

�
rjrju

i � ðd� 3Þui þ d� 4

d� 2
@iðrju

jÞ
�
; (50)

where we used Rij ¼ �ðd� 3Þgij.
Looking first at vector perturbations of the fluid, the

appropriate ansatz is [13]

�p ¼ 0; ui ¼ AVe
�i�tVi; (51)

where Vi is a vector harmonic.
The first hydrodynamic equation is trivially satisfied and

the second becomes

� i�ðd� 1Þp0 þ 	½k2V þ d� 3� ¼ 0: (52)

This can be solved for the frequency � characterizing the
deviation from a perfect fluid. The solution may be written
in terms of the parameters of the dual black hole. Using
Eqs. (4) and (47), we obtain

	

p0
¼ 4�	

s

rH
r2H � 1

; (53)

where s is the entropy density. With 	
s ¼ 1

4� [11] and for

large rH we arrive at the expression for the frequency of
vector perturbations

� ¼ �i
k2V þ d� 3

ðd� 1ÞrH : (54)
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This is in agreement with the frequency of vector modes of
the black hole, Eq. (26), on account of the definition (6).

Turning now to scalar hydrodynamic perturbations, we
should allow for deviations in pressure as well as the
velocity field. The appropriate ansatz is [13]

ui ¼ ASe
�i�t@iS; �p ¼ BSe

�i�tS; (55)

whereS is a scalar harmonic. The hydrodynamic equations
become

ðd� 2Þi�BS þ ðd� 1Þp0k
2
SAS ¼ 0;

BS þAS

�
�i�ðd� 1Þp0 þ 2ðd� 3Þ	þ 2	k2S

d� 3

d� 2

�
¼ 0: (56)

This is a linear system of homogeneous equations. To be
compatible, their determinant must vanish,

det
ðd� 2Þi� ðd� 1Þp0k

2
S

1 �i�ðd� 1Þp0 þ 2ðd� 3Þ	þ 2	k2S
d�3
d�2

 !

¼ 0; (57)

which imposes a constraint on the frequency �. Working
along the same lines as for the vector perturbation, we
arrive at the expression for �,

� ¼ � kSffiffiffiffiffiffiffiffiffiffiffiffi
d� 2

p � i
d� 3

ðd� 1Þðd� 2ÞrH ½k2S þ d� 2�; (58)

which is in exact agreement with the quasinormal fre-
quency of scalar gravitational perturbations (39).

Finally, an ansatz cannot be built to describe tensor
perturbations with the associated harmonics because of
the tracelessness and zero divergence of tensor spherical
harmonics. This is consistent with the negative conclusion
reached in Sec. II on tensor modes of gravitational pertur-
bations of the black hole.

IV. CONCLUSION

We analytically calculated the low-lying quasinormal
modes of topological AdS black holes in arbitrary dimen-
sion in the high temperature limit. These are black holes
with hyperbolic horizons of nontrivial topology. We con-
sidered all three different types of perturbations (scalar,
vector, and tensor) and solved the wave equation [21] in
each case by applying the method of Ref. [12]. We ob-
tained quasinormal frequencies which were in agreement
with the frequencies obtained by considering perturbations
of the gauge theory fluid on the boundary, thus extending
results obtained in the case of black holes with spherical
horizons [13].
In the physically interesting case of five dimensions, we

showed that the lifetimes of some of these modes exceed
the longest lifetime of the modes of a black hole with
spherical horizon [9,12]. Therefore, they play an important
role in the late-time behavior of the gauge theory fluid and
may contribute to the properties of the quark-gluon plasma
produced in heavy ion collisions. Further work is required
for a detailed comparison with experimental data which
will determine how a topological AdS black hole scenario
may be applicable to the RHIC and the LHC. Following the
analysis of [9], one needs to map the hyperbolic boundary
of the topological black holes onto flat Minkowski space
via a conformal map and study the resulting flow of the
gauge theory fluid. Unlike in the case of a spherical bound-
ary, this procedure cannot be carried out analytically for
topological AdS black holes owing to the complexity of
the (topologically nontrivial) boundary [19]. Instead, one
needs to resort to numerical techniques. Work in this
direction is in progress.
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