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In this paper we consider the transition from the Kadanoff-Baym equations to the quantum kinetic

equations and then to the Boltzmann equation in curved space-time. As one expects from general

considerations, the derived equations appear to be covariant generalizations of the corresponding

equations in Minkowski space-time. The formalism will be applied to test approximations commonly

made in the computation of the baryon asymmetry in the leptogenesis scenario.
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I. INTRODUCTION

As has been shown by Sakharov [1], the observed
baryon asymmetry of the Universe can be generated dy-
namically, provided that the following three conditions are
fulfilled: violation of baryon (or baryon minus lepton)
number; violation of C and CP; and deviation from ther-
mal equilibrium.

The third Sakharov condition raises the question of how
to describe a quantum system out of thermal equilibrium.
The usual choice is the Boltzmann equation [2–5].
However, it is known to have several shortcomings. In
particular classical Boltzmann equations neglect off-shell
effects, introduce irreversibility, and feature spurious con-
stants of motion. A quantum mechanical generalization of
the Boltzmann equation, free of the mentioned problems,
has been developed by Kadanoff and Baym [6]. Direct
numerical computations demonstrate that already for sim-
ple systems far from thermal equilibrium the Kadanoff-
Baym and Boltzmann equations do lead to quantitatively,
and in some cases even qualitatively, different results [7–
12]. Studying processes responsible for the generation of
the asymmetry in the framework of the Kadanoff-Baym
formalism is therefore of considerable scientific interest.

The application of the Kadanoff-Baym equations to the
computation of the lepton and baryon asymmetries in the
so-called leptogenesis scenario [13] has been studied at
different levels of approximation by several authors
[14,15] and lead to qualitatively new and interesting re-
sults. However, issues related to the rapid expansion of the
Universe, which drives the required deviation from thermal
equilibrium, have not been addressed there.

The modification of the Kadanoff-Baym formalism in
curved space-time has been considered in [16–19], where it
was applied to a model with quartic self-interactions and a
OðNÞ model, though the dynamics of quantum field theo-
retical models with CP violation remained uninvestigated.

Our goal is to develop a consistent description of lepto-
genesis in the Kadanoff-Baym and Boltzmann approaches
and to test approximations commonly made in the compu-
tation of the lepton and baryon asymmetries. In particular,
we want to find out how the dense background plasma
affects the collision terms of processes contributing to the
generation and washout of the asymmetry, check the ap-
plicability of the real intermediate state subtraction proce-
dure in the case of resonant leptogenesis [20,21], and
investigate the time dependence of the CP-violating pa-
rameter in the expanding Universe [15]. Mostly, the phe-
nomenological study of leptogenesis relies on the
Boltzmann approach. Testing the underlying approxima-
tions and procedures is therefore of substantial practical
importance.
Since this is a rather ambitious goal, we first study a

simple toy model of leptogenesis containing two real and
one complex scalar fields, which mimic the heavy right-
handed Majorana neutrinos and leptons respectively [22].
The starting point of our analysis is the generating func-
tional for the (connected) Green’s functions. Performing a
Legendre transformation we obtain the effective action,
which we use to derive the Schwinger-Dyson equations.
The latter ones are equivalent to a system of Kadanoff-
Baym equations for the spectral function and the statistical
propagator. Employing a first-order gradient expansion and
a Wigner transformation leads to a system of quantum
kinetic equations. Finally, neglecting the Poisson brackets
and making use of the quasiparticle approximation, we
obtain the Boltzmann equations. Our derivation is mani-
festly covariant in every step.
The peculiarities of the calculation, related to the pres-

ence of a gravitational field, are determined only by trans-
formation properties of the quantum fields—scalar fields in
this case. For this reason, in the present paper, we use a
model of a single real scalar field with quartic self-
interactions, minimally coupled to gravity, to illustrate
the main points. That is, we use the Lagrangian

L ¼ 1

2
@�’@�’� 1

2
M2’2 � �

4!
’4; (1)
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which does also have the advantage, that one can compare
the derived equations with their Minkowski space-time
counterparts [9] and with the results obtained in [16–19].
The formalism presented here will be used to analyze the
toy model of leptogenesis [22].

The outline of the paper is as follows. In Sec. II we
consider the two point irreducible (2PI) effective action in
curved space-time and derive the system of Schwinger-
Dyson equations. The explicit form of the 2PI effective
action, corresponding to the two-, three-, and four-loop
contributions, is given in Sec. III. In Sec. IV we derive
the system of the Kadanoff-Baym equations from the
Schwinger-Dyson equations. Introducing center and rela-
tive coordinates and performing a Taylor expansion we
derive the quantum kinetic equations in Sec. V. Some
further approximations lead to the system of Boltzmann
equations, which are considered in Sec. VI. We summarize
our results and draw the conclusions in Sec. VII.

II. SCHWINGER-DYSON EQUATIONS

In the derivation of the Schwinger-Dyson equations we
employ results from [18,23,24]. Our starting point is the
generating functional for Green’s functions with local and
bilocal external scalar sources JðxÞ and Kðx; yÞ,

Z ½J; K� ¼
Z

D’ exp

�
i

�
Sþ J’þ 1

2
’K’

��
; (2)

where the action S is given by the integral of the Lagrange
density over space. The Minkowski space-time volume
element d4x is replaced in curved space-time by the in-
variant volume element

ffiffiffiffiffiffiffi�g
p

d4x, where
ffiffiffiffiffiffiffi�g

p
is the square

root of the determinant of the metric:

S ¼
Z ffiffiffiffiffiffiffi�g

p
d4xL:

In the Friedmann-Robertson-Walker (FRW) universe we
have

ffiffiffiffiffiffiffi�g
p ¼ a4ð�Þ, where a is the cosmic scale factor and

� denotes conformal time. The invariant volume element
enters also in the scalar products of the sources and the
scalar field

J’ �
Z ffiffiffiffiffiffiffi�g

p
d4xJðxÞ’ðxÞ; (3a)

’K’ �
ZZ ffiffiffiffiffiffiffi�g

p
d4x

ffiffiffiffiffiffiffi�g
p

d4y’ðxÞKðx; yÞ’ðyÞ: (3b)

The functional integral measure is modified in curved
space-time as well. For scalar densities of zero weight it
reads

D’ ¼ Y
x

d½ð�gÞ1=4’ðxÞ�:

The evolution of the quantum system out of thermal
equilibrium is performed in the Schwinger-Keldysh for-
malism [25,26]. In this approach the field and the external
sources are defined on the positive and negative branches

of a closed real-time contour, see Fig. 1, the functions1 on
the positive branch being independent2 of the functions on
the negative branch. This applies also to the metric tensor,
i.e. gþ�� � g��� in general.

In realistic models of leptogenesis the contribution of
the heavy right-handed neutrinos to the energy density of
the Universe is less than 5% and can safely be neglected. In
other words, leptogenesis takes place in a space-timewith a
metric, whose time development is (in this approximation)
independent of the decays of the right-handed neutrinos
and determined by the contributions of the ultrarelativistic
standard model species. Correspondingly, in our analysis
of the toy model of leptogenesis, we will also neglect the
impact of the scalar fields on the expansion of the
Universe.3 This implies, in particular, that the metric tensor
on the positive and negative branches is determined only
by the external processes, and one can set gþ�� ¼ g��� ¼
g��. To shorten the notation we will also suppress the

branch indices of the scalar field and the sources.
The existence of the two branches also affects the defi-

nition of the delta function: �ðx; yÞ is always zero if its
arguments lie on different branches [28]. In curved space-
time it is further generalized to fulfill the relation

Z
d4y

ffiffiffiffiffiffiffi�g
p

fðyÞ�gðx; yÞ ¼ fðxÞ; (4)

where the integration is performed over the closed contour.
The solution to this equation is given by [23]

�gðx; yÞ ¼ ð�gxÞ�ð1=4Þ�ðx; yÞð�gyÞ�ð1=4Þ: (5)

The generalized delta function is used to define functional
differentiation in curved space-time [29]

�F ½��
��ðyÞ � lim

"!0

F ½�ðxÞ þ "�gðx; yÞ� �F ½�ðxÞ�
"

: (6)

From the definition (6) it follows immediately that

FIG. 1. Closed real-time path C.

1In particular there are two local (Jþ and J�) and four bilocal
(Kþþ, Kþ�, K�þ, and K��) sources. Analogously, the field
value on the two branches is denoted by ’þ and ’� respectively,
whereas the two-point function components are denoted by
Gþþ, Gþ�, G�þ, and G�� [27].

2This is not true for the point t ¼ tmax.
3A theoretical analysis of the backreaction of the fields on the

gravitational field has been performed in [16]. An analysis, with
very interesting numerical results, of a model with quartic self-
interactions in the Friedmann-Robertson-Walker universe has
been carried out in [19].
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�JðxÞ
�JðyÞ ¼ �gðx; yÞ; �Kðx; yÞ

�Kðu; vÞ ¼ �gðx; uÞ�gðy; vÞ: (7)

The functional derivatives of the generating functional
for connected Green’s functions

W ½J; K� ¼ �i lnZ½J; K� (8)

with respect to the external sources read

@W ½J; K�
@JðxÞ ¼ �ðxÞ; (9a)

@W ½J; K�
@Kðx; yÞ ¼ 1

2
½Gðy; xÞ þ�ðxÞ�ðyÞ�; (9b)

where� denotes expectation value of the field andG is the
propagator. The effective action is the Legendre transform
of the generating functional for connected Green’s func-
tions,

�½�; G� � W ½J; K� � J�� 1
2 tr½KG� � 1

2�K�: (10)

Its functional derivatives with respect to the expectation
value and the propagator reproduce the external sources:

��½G;��
��ðxÞ ¼ �JðxÞ �

Z ffiffiffiffiffiffiffi�g
p

d4zKðx; zÞ�ðzÞ; (11a)

��½G;��
�Gðx; yÞ ¼ � 1

2
Kðy; xÞ: (11b)

Next, we shift the field by its expectation value

’ ! ’þ�:

The action can then be written as a sum of two terms

S½’� ! Scl½�� þ S½’;��: (12)

Scl denotes the classical action, which depends only on �,
whereas S½’;�� ¼ S0½’� þ Sint½’;�� contains terms
quadratic, cubic, and quartic in the shifted field ’. The
free field action can be written in the form

S0 ¼ 1

2

ZZ ffiffiffiffiffiffiffiffiffi�gx
p

d4x
ffiffiffiffiffiffiffiffiffi�gy

p
d4y’ðiG�1Þ’; (13)

where G�1 is the zero-order inverse propagator

G �1ðx; yÞ ¼ iðhx þM2Þ�gðx; yÞ; hx � g��r�
x r�

x :

(14)

Since the integration measure in the path integral is trans-
lationally invariant, the effective action can be rewritten in
the form

�½�; G� ¼ �i ln
Z

D’ exp

�
i

�
Sþ J’þ 1

2
’K’

��

þ Scl½�� � 1

2
tr½KG�: (15)

Now we tentatively write the effective action in the form

�½�; G� � Scl½�� þ i

2
ln det½G�1� þ i

2
tr½G�1G�

þ �2½�; G�; (16)

defining the functional �2. The third term on the right-hand
side is defined by

tr ½G�1G� �
ZZ ffiffiffiffiffiffiffiffiffi�gx

p
d4x

ffiffiffiffiffiffiffiffiffi�gy
p

d4yG�1ðx; yÞGðy; xÞ;

whereas the second term on the right-hand side is defined
by the path integral

det

�
G�1

2�

�
�

Z
D’ expð’G�1’Þ:

Using (11) we can find the functional derivatives of �.
Differentiation of tr½G�1G� with respect to G is straight-
forward and gives

�

�Gðx; yÞ tr½G
�1G� ¼ G�1ðy; xÞ: (17)

To calculate the functional derivative of ln det½G�1� we
take into account that in curved space-time

Z ffiffiffiffiffiffiffi�g
p

d4zG�1ðu; zÞGðz; vÞ ¼ �gðu; vÞ: (18)

After some algebra and use of (18) we obtain a result
analogous to that in Minkowski space-time

�

�Gðx; yÞ ln det½G�1� ¼ �G�1ðy; xÞ: (19)

The functional derivative of (16) with respect to G then
reads

��½G;��
�Gðx; yÞ ¼ � i

2
G�1ðy; xÞ þ i

2
G�1ðy; xÞ þ ��2½G;��

�Gðx; yÞ
¼ � 1

2
Kðy; xÞ: (20)

Solving (20) with respect to K and substituting it into (16),
we can rewrite the effective action in the form
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�2½G;�� ¼ �i ln
Z

D’ exp

�
i

�
Sþ J’� ’

��2

�G
’

��

þ tr

�
��2

�G
G

�
� i

2
ln det½G�1� þ const;

(21)

where again S ¼ S0 þ Sint, but now with S0 given by

S0 ¼ 1

2

ZZ ffiffiffiffiffiffiffiffiffi�gx
p

d4x
ffiffiffiffiffiffiffiffiffi�gy

p
d4y’ðiG�1Þ’: (22)

This implies that i�2 is the sum of all 2PI vacuum diagrams
with vertices as given by Lint and internal lines represent-
ing the complete connected propagators G [30].

Physical situations correspond to vanishing sources.
Introducing the self-energy

�ðx; yÞ � 2i
��2½G;��
�Gðy; xÞ ; (23)

we can then rewrite (20) in the form

G�1ðx; yÞ ¼ G�1ðx; yÞ ��ðx; yÞ: (24)

Thus the above calculation yields the Schwinger-Dyson
(SD) equation. Because the (inverse) propagators and the
self-energy are scalars, the derived equation has exactly the
same form as in Minkowski space-time.

III. 2PI EFFECTIVE ACTION

The structure of the Schwinger-Dyson equation is de-
termined only by the particle content of the model (here a
single real scalar field) and completely independent of the
particular form of the interaction Lagrangian. The latter
determines the form of the 2PI effective action. The lowest
order contribution is due to the two-loop diagram in Fig. 2,
which only takes into account local effects and cannot
describe thermalization. Thus one usually also considers
the three-loop diagram, which describes 2 $ 2 scattering.
In addition we take into account the four-loop contribution.
As is demonstrated below, in the Boltzmann approximation
it describes the one-loop correction for 2 $ 2 scattering.
The resulting expression for the effective action is similar
to that given in [8,9,18,31]:

i�2½G� ¼ X
n

i�ðnÞ
2 ½G�;

i�ð2Þ
2 ½G� ¼ � i�

8

Z ffiffiffiffiffiffiffiffiffi�gx
p

d4xG2ðx; xÞ;

i�ð3Þ
2 ½G� ¼ ��2

48

Z ffiffiffiffiffiffiffiffiffi�gx
p

d4x
ffiffiffiffiffiffiffiffiffi�gy

p
d4yG2ðx; yÞG2ðy; xÞ;

i�ð4Þ
2 ½G� ¼ i�3

48

Z ffiffiffiffiffiffiffiffiffi�gx
p

d4x
ffiffiffiffiffiffiffiffiffi�gy

p
d4y

ffiffiffiffiffiffiffiffiffi�gz
p

d4z

�G2ðy; xÞG2ðx; zÞG2ðz; yÞ: (25)

Note, however, the presence of the
ffiffiffiffiffiffiffi�g

p
factors which

ensure invariance of the effective action under coordinate
transformations.
Using the definition of the self-energy (23) and the

functional differentiation rule in curved space-time we
obtain

�ðx; yÞ ¼ X
n

�ðnÞðx; yÞ;

�ð2Þðx; yÞ ¼ �i�gðx; yÞ�
2
Gðx; xÞ;

�ð3Þðx; yÞ ¼ ��2

6
Gðy; xÞGðx; yÞGðx; yÞ;

�ð4Þðx; yÞ ¼ i�3

4
Gðy; xÞ

Z ffiffiffiffiffiffiffiffiffi�gz
p

d4zG2ðx; zÞG2ðz; yÞ:

(26)

It is worth mentioning that the appearance of the general-
ized delta function in the first local term is a consequence
of the form of the effective action and the functional
differentiation rule (6). For each vertex in the loop dia-
grams there is a corresponding integral in the effective
action. Because of the appearance of the generalized �
functions two of the integrals can be carried out trivially
after functional differentiation. Further integrals persist in
the self-energy. That is, four- and higher-loop contributions
to �ðx; yÞ contain integrations over space-time with the
corresponding number of

ffiffiffiffiffiffiffi�g
p

factors to ensure the in-

variance of the self-energy.

IV. KADANOFF-BAYM EQUATIONS

Convolving the Schwinger-Dyson equations (24) withG
from the right and using (18) we obtain

i½hx þM2�Gðx; yÞ ¼ �gðx; yÞ
þ

Z ffiffiffiffiffiffiffi�g
p

d4z�ðx; zÞGðz; yÞ: (27)

Next, we define the spectral function

G�ðx; yÞ ¼ ih½’ðxÞ; ’ðyÞ��i; (28)

and the statistical propagator

GFðx; yÞ ¼ 1
2h½’ðxÞ; ’ðyÞ�þi: (29)

As is clear from the definitions, the statistical propagator of
FIG. 2. Two-, three-, and four-loop contributions to the 2PI
effective action.
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real scalar field is symmetric whereas the spectral function
is antisymmetric with respect to permutation of its argu-
ments. For a real scalar fieldGFðx; yÞ andG�ðx; yÞ are real-
valued functions [7]. The full Feynman propagator can be
decomposed into a statistical and a spectral part

Gðx; yÞ ¼ GFðx; yÞ � i

2
signðx0 � y0ÞG�ðx; yÞ: (30)

Upon use of the sign- and �-function differentiation rules,
the action of the hx operator on the second term on the
right-hand side of (30) gives a product of g00�ðx0; y0Þ and
rx

0G�ðx; yÞ. Using the definition (28) and the canonical

commutation relations in curved space-time [32]

lim
y0!x0

½’ðx0; ~xÞ; �ðx0; ~yÞ�� ¼ i�ð ~x; ~yÞ; (31)

where4 � ¼ g00
ffiffiffiffiffiffiffi�g

p r0’, we find for the derivative of the
spectral function

rx
0G�ðx; yÞ ¼ �ð ~x; ~yÞ

g00
ffiffiffiffiffiffiffi�g

p : (32)

Multiplication of (32) by g00�ðx0; y0Þ then gives the gen-
eralized delta function �gðx; yÞ, which cancels the delta
function on the right-hand side of (27).
The local term of the self-energy (26), proportional to

the delta function, can be absorbed in the effective mass

M2ðxÞ � M2 þ �

2
Gðx; xÞ: (33)

The remaining part of the self-energy can also be split into
a spectral part ��ðx; yÞ and a statistical part �Fðx; yÞ in
complete analogy to (30).
Integrating along the closed time path in the direction

indicated in Fig. 2, and taking into account that any point of
the negative branch is considered as a later instant than any
point of the positive branch, we finally obtain the system of
Kadanoff-Baym equations:

½hx þM2ðxÞ�GFðx; yÞ ¼
Z y0

0

ffiffiffiffiffiffiffi�g
p

d4z�Fðx; zÞG�ðz; yÞ �
Z x0

0

ffiffiffiffiffiffiffi�g
p

d4z��ðx; zÞGFðz; yÞ; (34a)

½hx þM2ðxÞ�G�ðx; yÞ ¼ �
Z x0

y0

ffiffiffiffiffiffiffi�g
p

d4z��ðx; zÞG�ðz; yÞ: (34b)

Comparing with the Kadanoff-Baym equations presented in [7,9], we conclude that (34) appear to be the covariant
generalization of the Kadanoff-Baym equations in Minkowski space-time.

Equations (34) are exact equations for the quantum dynamical evolution of the statistical propagator and spectral
function. It is important that, due to the characteristic memory integrals on the right-hand sides, the dynamics of the system
depends on the history of its evolution [34].

To complete this section we derive explicit expressions for the spectral and statistical self-energies. Using symmetry
(antisymmetry) of the spectral and statistical propagators with respect to permutation of the arguments, we obtain for the
three-loop contribution to the self-energy components

�ð3Þ
F ðx; yÞ ¼ ��2

6

�
GFðx; yÞGFðx; yÞGFðx; yÞ � 3

4
GFðx; yÞG�ðx; yÞG�ðx; yÞ

�
; (35a)

�ð3Þ
� ðx; yÞ ¼ ��2

6

�
3GFðx; yÞGFðx; yÞG�ðx; yÞ � 1

4
G�ðx; yÞG�ðx; yÞG�ðx; yÞ

�
: (35b)

Four- and higher-loop contributions to the self-energy components contain integrations over space-time with x0 and y0 as
the integration limits. Introducing

G4Fðx; yÞ ¼
Z x0

0

ffiffiffiffiffiffiffi�g
p

d4zGFðx; zÞG�ðx; zÞ
�
G2

Fðz; yÞ �
1

4
G2

�ðz; yÞ
�
þ fx $ yg; (36a)

G4�ðx; yÞ ¼
Z x0

0

ffiffiffiffiffiffiffi�g
p

d4zGFðx; zÞG�ðx; zÞ½2GFðz; yÞG�ðz; yÞ� � fx $ yg; (36b)

we can write the four-loop contribution to the statistical and spectral components of the self-energy as

4To simplify the calculation we set g0i ¼ 0. The off-diagonal components of the metric tensor can always be set to zero by an
appropriate choice of the coordinate system [33]. Examples are the longitudinal and synchronous gauges.
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�ð4Þ
F ðx; yÞ ¼ �3

2

�
GFðx; yÞG4Fðx; yÞ � 1

4
G�ðx; yÞG4�ðx; yÞ

�
; (37a)

�ð4Þ
� ðx; yÞ ¼ �3

2
½GFðx; yÞG4�ðx; yÞ þG�ðx; yÞG4Fðx; yÞ�: (37b)

Of course, all quantities entering the Kadanoff-Baym
equations must be renormalized. A consistent renormal-
ization procedure in Minkowski space-time has been de-
veloped in [35–38]. A renormalization procedure at the
tadpole order in the Gaussian scheme has been applied to
the analysis of the Kadanoff-Baym equations in [19].

V. QUANTUM KINETICS

Introducing the retarded and advanced propagators

GRðx; yÞ � 	ðx0 � y0ÞG�ðx; yÞ; (38a)

GAðx; yÞ � �	ðy0 � x0ÞG�ðx; yÞ; (38b)

and the corresponding definitions for the self-energies, one
can rewrite the system of Kadanoff-Baym equations in the
form

½hx þM2ðxÞ�GFðx; yÞ ¼ �
Z ffiffiffiffiffiffiffi�g

p
d4z	ðz0Þ½�Fðx; zÞGAðz; yÞ þ�Rðx; zÞGFðz; yÞ�; (39a)

½hx þM2ðxÞ�G�ðx; yÞ ¼ �
Z ffiffiffiffiffiffiffi�g

p
d4z	ðz0Þ½��ðx; zÞGAðz; yÞ þ�Rðx; zÞG�ðz; yÞ�: (39b)

The system (39) should be supplemented by the analogous equations for the retarded (advanced) propagators; they can be
derived from (34b) upon use of (32)

½hx þM2ðxÞ�GRðAÞðx; yÞ ¼ �gðx; yÞ �
Z ffiffiffiffiffiffiffi�g

p
d4z�RðAÞðx; zÞGRðAÞðz; yÞ: (40)

Let us now interchange x and y on both sides of the Kadanoff-Baym equations (39). Using the relation GRðx; yÞ ¼
GAðy; xÞ and symmetry (antisymmetry) of the statistical (spectral) propagators with respect to interchange of the argu-
ments, we obtain the following expressions for the differences of the original and resulting equations:

½hx �hy þM2ðxÞ �M2ðyÞ�GFðx; yÞ ¼ �
Z ffiffiffiffiffiffiffi�g

p
d4z	ðz0Þ½�Fðx; zÞGAðz; yÞ �GRðx; zÞ�Fðz; yÞ þ�Rðx; zÞGFðz; yÞ

�GFðx; zÞ�Aðz; yÞ�; (41a)

½hx �hy þM2ðxÞ �M2ðyÞ�G�ðx; yÞ ¼ �
Z ffiffiffiffiffiffiffi�g

p
d4z	ðz0Þ½��ðx; zÞGAðz; yÞ �GRðx; zÞ��ðz; yÞ þ�Rðx; zÞG�ðz; yÞ

�G�ðx; zÞ�Aðz; yÞ�: (41b)

Interchanging x and y on both sides of the equation for the
advanced propagator, and adding it to the equation for the
retarded propagator, we obtain

½hx þhy þM2ðxÞ þM2ðyÞ�GRðx; yÞ
¼ 2�gðx; yÞ �

Z ffiffiffiffiffiffiffi�g
p

d4z½�Rðx; zÞGRðz; yÞ
þGRðx; zÞ�Rðz; yÞ�: (42)

Next, we introduce center and relative coordinates. In
Minkowski space-time they are given by half of the sum
and by the difference of x and y, respectively [9]. In other
words the center coordinate lies in the middle of the
geodesic connecting x and y, whereas the relative coordi-

nate gives the length of the ‘‘curve’’5 connecting the two
points.
Consider now curved space-time. Let & be the affine

parameter of the geodesic connecting x and y (see Fig. 3)
and 
ð&Þ a function mapping & onto the points of the
geodesic, with

x� ¼ 
ð&0Þ; y� ¼ 
ð&00Þ: (43)

The center coordinate lies in the middle of the geodesic,
i.e. it corresponds to &X � 1

2 ð&0 þ &00Þ. The relative coor-

dinate is given by the sum of the infinitesimal distance

5In Minkowski space-time geodesics are straight lines.
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vectors d
� along the geodesic, all of which must have
been submitted to parallel transfer to &X from the integra-
tion point on the curve.6 According to [40] this implies

X� � X�
xy ¼ 
�ð&XÞ; s� � s�xy ¼ ð&0 � &00Þu�ð&XÞ:

(44)

All quantities in equations (41) are now recast in terms
of X� and s�. Up to higher order, proportional to the
curvature tensor terms, the Laplace-Beltrami operator is
given by [40]

hx;y � 1

4
D�D� þ @2

@s�@s�
�D� @

@s�
; (45)

where D� is the covariant derivative

D� � @

@X� � ��
�s

@

@s�
: (46)

Note that in (45) we have neglected the corrections pro-
portional to the Riemann and Ricci tensors. Next, we
Taylor expand the effective masses to first order around
the center coordinate X

M2 � M2ðXÞ � 1
2s

�D�M
2ðXÞ; (47)

where the minus sign corresponds to y whereas the plus
sign corresponds to x. The propagators on the left-hand
side of (41) can also be reparametrized in terms of the

center and relative coordinates: GFðx; yÞ � ~GFðX; sÞ and
G�ðx; yÞ � ~G�ðX; sÞ.

On the right-hand sides we have convolutions of func-
tions of x and z and functions of z and y. That is, we have to
introduce the corresponding center and relative coordinates
and perform the integration. Making use of the identity

ð&0 þ &�Þ ¼ ð&0 þ &00Þ þ ð&� � &00Þ ¼ 2&X þ ð&� � &00Þ
and Taylor expanding around &X, we obtain to first order

�Fðx; zÞ � ~�FðXxz; sxzÞ

� ~�FðX; sxzÞ þ
�
@ ~�F

@
�

d
�

d&
þ @ ~�F

@u�
du�

d&

�

� &� � &00

2
: (48)

Using furthermore the definition of the four-velocity and
the geodesic equation

d
�

d&
¼ u�;

du�

d&
¼ ���

�u
�u; (49)

we can rewrite (48) in the form

�Fðx; zÞ � ~�FðX; sxzÞ þ 1
2s

�
zyD�

~�FðX; sxzÞ; (50)

where s�zy � ð&� � &00Þu�ð&XÞ. Making use of the identity

ð&00 þ &�Þ ¼ ð&0 þ &00Þ � ð&0 � &�Þ ¼ 2&X � ð&0 � &�Þ;
we get a similar expression for the functions of z and y

GAðz; yÞ � ~GAðX; szyÞ � 1
2s

�
xzD�

~GAðX; szyÞ: (51)

To perform the integration of the product of (50) and (51),
we shift the coordinate center to &X and replace the inte-
gration with respect to z by integration with respect to
distance sXz from X to z along the geodesic. Moreover,
we approximate7

ffiffiffiffiffiffiffiffiffi�gz
p

by its value at the origin
ffiffiffiffiffiffiffiffiffiffi�gX

p
.

The Kadanoff-Baym equations describe the dynamics of
a system in terms of the spectral function and statistical
propagator. The latter ones are functions of two coordi-
nates in the four-dimensional space-time. By introducing
center and relative coordinates we have traded one set of
coordinates for another one. Performing the so-called
Wigner transformation, one can also trade one of the argu-
ments defined in the coordinate space for an argument
defined in the momentum space. In curved space-time [40]

~GFðX; pÞ ¼ ffiffiffiffiffiffiffiffiffiffi�gX
p Z

d4seips ~GFðX; sÞ; (52a)

~GFðX; sÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi�gX
p

Z d4p

ð2�Þ4 e
�ips ~GFðX; pÞ: (52b)

Note that in (52) and in the rest of the paper we use
contravariant components of the space-time coordinates
and covariant components of the momenta. Let us also
note that

d�4
p � 1ffiffiffiffiffiffiffiffiffiffi�gX

p d4p

ð2�Þ4

FIG. 3. Arrangement of the points along the geodesic.

6Calzetta and Hu [17,39] have employed a different method
based on the use of Riemann normal coordinates and the
momentum representation of the propagators. Their approach
has some advantages for the study of the quantum kinetics
equations. Here we are mainly interested in the Kadanoff-
Baym and Boltzmann equations and consider the derivation of
the quantum kinetic equations as an intermediate step connecting
both of them. For this reason, we adopt the covariant definitions
of the midpoint and distance vectors introduced by Winter [40],
which allow us to keep the analysis manifestly covariant in every
step.

7The next-to-leading term of the Taylor expansion is propor-
tional to the convolution of the Christoffel symbol [33],

ffiffiffiffiffiffiffiffiffi�gz
p �ffiffiffiffiffiffiffiffiffiffi�gX

p ð1þ ��
��s

�Þ. This correction can in principle be taken into
account and would induce additional terms proportional to
i@=@p� on the right-hand side of the quantum kinetic equation.
Since such terms are neglected in the Boltzmann approximation,
the collision terms do not receive any corrections.
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is the invariant volume element in momentum space. The

definition of the Wigner transform of ~G�ðX; sÞ differs from
(52a) by a factor of �i so that ~G�ðX; pÞ is again real

valued.
As follows from (52b), differentiation with respect to s�

is replaced after the Wigner transformation by p�

@

@s�
! �ip�: (53)

Upon integration by parts we also see that s� is then
replaced by differentiation with respect to p�:

s� ! �i
@

@p� : (54)

Consequently, the Wigner-transformed covariant deriva-
tive reads

D� ! D� ¼ @

@X� þ ��
�p�

@

@p

: (55)

Correlations between earlier and later times are expo-
nentially suppressed, which leads to a gradual loss of the
dependence on the initial conditions [9,34]. Exploiting this
fact, one can drop the 	 function from the integrals in the
difference equations (41). Furthermore we let the relative-
time coordinate s0 range from�1 to1 in order to perform
the Wigner transformation, see [34,41] for a detailed dis-
cussion of these approximations. Then using (54) and (55)
we obtain for the Wigner transform of the first term on the
right-hand side of (41a):

Z ffiffiffiffiffiffiffiffiffi�gz
p

d4z�Fðx; zÞGAðz; yÞ

! ~�FðX; pÞ ~GAðX; pÞ þ i

2
f ~�FðX; pÞ; ~GAðX; pÞgPB;

(56)

where the Poisson brackets are defined by

f ~AðX; pÞ; ~BðX; pÞgPB � @

@p�

~AðX; pÞD�
~BðX; pÞ

�D�
~AðX; pÞ @

@p�

~BðX; pÞ: (57)

Comparing (57) to its Minkowski-space counterpart we see
that the derivatives with respect to X are replaced by the
covariant derivatives, just as one would expect.

Wigner transforming the rest of the terms, we obtain a
rather lengthy expression which can be substantially sim-

plified with the help of the relations between ~GRðX; pÞ,
~GAðX; pÞ, and ~G�ðX; pÞ. Recalling the Fourier transform of

the 	 function

Z
ds0 expðiws0Þ	ð�s0Þ ¼ lim

�!0

�i

!� i�
;

we find that

~GRðX; pÞ ¼ �
Z d!

2�

~G�ðX; ~p;!Þ
p0 �!þ i�

; (58a)

~GAðX; pÞ ¼ �
Z d!

2�

~G�ðX; ~p;!Þ
p0 �!� i�

: (58b)

From comparison of (58a) and (58b) it follows that

~GAðX; pÞ ¼ ~G�
RðX; pÞ: (59)

Recalling furthermore that the � function can be approxi-
mated by

�ð!Þ ¼ lim
�!0

�

�ð!2 þ �2Þ ;

we also find that

~GRðX; pÞ � ~GAðX; pÞ ¼ i ~G�ðX; pÞ: (60)

Analogous relations also hold for the retarded and ad-
vanced components of the self-energy.
As can be inferred from (45) and (47), the Wigner

transform of the left-hand side of (41) reads8

hx �hy þM2ðxÞ�M2ðyÞ !�i

�
2p�D� þD�M

2 @

@p�

�
:

(61)

Introducing the quantity

~�ðX; pÞ � p�p� �M2ðXÞ � <½ ~�RðX; pÞ� (62)

and collecting the terms on the right-hand side of the
difference equation, one can write the kinetic equation
for the Wigner transform of the statistical propagator in
the compact form:

f ~�ðX; pÞ; ~GFðX; pÞgPB ¼ ~GFðX; pÞ ~��ðX; pÞ
� ~�FðX; pÞ ~G�ðX; pÞ
þ f ~�FðX; pÞ;<½ ~GRðX; pÞ�gPB:

(63)

The same procedure leads also to a kinetic equation for the
Wigner transform of the spectral function

f ~�ðX; pÞ; ~G�ðX; pÞgPB ¼ f ~��ðX; pÞ;<½ ~GRðX; pÞ�gPB:
(64)

As has been mentioned in the previous section, the exact
quantum dynamical evolution of the system depends on its
whole evolution history. Mathematically, this manifests
itself in the memory integrals on the right-hand sides of

8Additional contributions arising from the decomposition of
the Laplace-Beltrami operator are proportional to Riemann and
Ricci tensors and to the curvature [see Eq. (4.40) in [40] ] and
may be relevant in strong gravitational fields. Since all these
terms contain at least one i@=@p� derivative, they do not
contribute in the Boltzmann approximation.
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(34). In fact, performing the linear order Taylor expansion
around X, we take into account only a very short part of the
history of the evolution. Since the expansion coefficients
are defined at X, after the integration we obtain equations
which are local in time.

Next we consider the Wigner transform of (42). On the
left-hand side we have hx þhy ¼ 2@s�@s� , to first order

in the covariant derivative, whereas M2ðxÞ þM2ðyÞ �
M2ðXÞ. On the right-hand side the Poisson brackets cancel

out and only the product of ~�RðX; pÞ and ~GRðX; pÞ re-
mains. Finally, the Wigner transform of the generalized �
function is just unity. Therefore, we get an algebraic
equation for the Wigner transform of the retarded propa-
gator

½p�p� �M2ðXÞ � ~�RðX; pÞ� ~GRðX; pÞ ¼ �1: (65)

Taking the real part of its solution, we obtain for the real
part of the retarded propagator:

<½ ~GRðX; pÞ� ¼ � ~�ðX; pÞ
~�2ðX; pÞ þ 1

4
~�2

�ðX; pÞ
: (66)

As follows from (59) and (60), the Wigner transform of the
spectral function is twice the imaginary part of the retarded
propagator,

~G�ðX; pÞ ¼
� ~��ðX; pÞ

~�2ðX; pÞ þ 1
4
~�2

�ðX; pÞ
: (67)

To complete this section, we have to express the Wigner
transforms of the spectral and statistical self-energies in
terms of the Wigner transforms of the spectral function and
statistical propagator. Using the definitions of the Wigner
transformation and its inverse we find for the Wigner trans-
form of a product of functions of the same arguments:

f1ðx; yÞ . . . fnðx; yÞ ! gf1 . . . fnðX; pÞ
�

Z
d�4

p1
. . . d�4

pn
ð2�Þ4 ffiffiffiffiffiffiffiffiffiffi�gX

p
�4

� ð�pþ p1 þ . . .pnÞ
� ~fðX; p1Þ . . . ~fðX; pnÞ: (68)

Note that �gðqÞ � ffiffiffiffiffiffiffiffiffiffi�gX
p

�ðqÞ represents the momentum-

space generalization of the � function, invariant under
coordinate transformations (this can be checked with
help of the scaling property of the � function). Keeping

in mind that the definition of ~G�ðX; pÞ contains an addi-

tional factor of�iwe can then write theWigner transforms
of (35) in the form

~�ð3Þ
F ðX; pÞ ¼ ��2

6

�
~G3
FðX; pÞ þ

3

4
gGFG

2
�ðX; pÞ

�
; (69a)

~�ð3Þ
� ðX; pÞ ¼ ��2

6

�
3 gG2

FG�ðX; pÞ þ 1

4
~G3
�ðX; pÞ

�
: (69b)

The expression for the Wigner transform of the three-loop
retarded self-energy can be obtained from (69) by replac-

ing one of the ~G� by ~GR. The Wigner transforms of the

four-loop contributions (35) can be written in a similar way

~�ð4Þ
F ðX; pÞ ¼ �3

2

� gGFG4FðX; pÞ þ 1

4
gG�G4�ðX; pÞ

�
; (70a)

~�ð4Þ
� ðX; pÞ ¼ �3

2

� gGFG4�ðX; pÞ þ gG�G4FðX; pÞ
�
: (70b)

Note, however, that ~G4F and ~G4� are Wigner transforms of

convolutions of four two-point functions,

G4Fðx;yÞ ¼
Z ffiffiffiffiffiffiffi�g

p
d4zGFðx; zÞGRðx; zÞ

�
�
G2

Fðz; yÞ�
1

4
G2

�ðz; yÞ
�
þfx$ yg; (71a)

G4�ðx;yÞ ¼
Z ffiffiffiffiffiffiffi�g

p
d4zGFðx; zÞGRðx; zÞ½2GFðz;yÞG�ðz; yÞ�

� fx$ yg; (71b)

where we have used the definitions of the retarded and
advanced propagators and dropped again the 	ðz0Þ factor.
Proceeding as in Eq. (56) and making use of the relations
(59) and (60), we obtain for the Wigner transforms of G4F

and G4�

~G4FðX; pÞ ¼ 2½ ~G2
FðX; pÞ þ 1

4
~G2
�ðX; pÞ� gGF<½GR�ðX; pÞ

þ 1
2f ~G2

FðX; pÞ þ 1
4
~G2
�ðX; pÞ; gGFG�ðX; pÞgP:B:;

(72a)

~G4�ðX; pÞ ¼ 4 gGFG�ðX; pÞ gGF<½GR�ðX; pÞ: (72b)

Finally, the expression for the Wigner transform of the
four-loop retarded self-energy can be obtained from

(70b) by replacing ~G� with ~GR and ~G4� with ~G4R. The

latter one is related to ~G4� by Eq. (58a).

VI. BOLTZMANN KINETICS

In order to derive the Boltzmann equation from the
quantum kinetic equations, one has to discard the
Poisson brackets on the right-hand sides of (63) and (64)
and set the effective mass M to constant. Effectively, we
take into account only the first term of the Taylor expansion
around X and completely neglect the previous evolution of
the system, i.e. the memory effects. Physically this corre-
sponds to the Stosszahlansatz of Boltzmann.
In this approximation, Eq. (64) for the spectral function

simplifies to

p�D�
~G�ðX; pÞ ¼ 0 (73)

and admits a quasiparticle solution (on-shell form with
zero width, see [6] for a detailed discussion of this ansatz
in the nonrelativistic case):
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~G�ðX; pÞ ¼ 2�signðp0Þ�ðg��p
�p� �M2Þ: (74)

Note that Eqs. (73) and (74) state that the effective massM
of the field quanta does not change as they move along the
geodesic, just like it is the case for particles. The quasi-
particle approximation for the statistical propagator, which
is usually referred to as the Kadanoff-Baym ansatz, reads
[6,31]

~GFðX; pÞ ¼ ½nðX; pÞ þ 1
2� ~G�ðX; pÞ: (75)

Symmetry (antisymmetry) of the statistical (spectral)
propagator with respect to permutation of its arguments
and the definition of the Wigner transformation imply that

~GFðX; pÞ ¼ ~GFðX;�pÞ; ~G�ðX; pÞ ¼ � ~G�ðX;�pÞ:
(76)

Therefore, for a single real scalar field, we have

nðX;�pÞ ¼ �½nðX; pÞ þ 1�: (77)

It is also convenient to introduce

~G_ðX; pÞ � ~GFðX; pÞ � 1
2
~G�ðX; pÞ (78)

and their self-energy analogs�_. From Eqs. (63) and (73)
it then follows that

½p�D�nðX; pÞ� ~G�ðX; pÞ ¼ 1
2½ ~�>ðX; pÞ ~G<ðX; pÞ
� ~G>ðX; pÞ ~�<ðX; pÞ�: (79)

Explicit expressions for ~�_ðX; pÞ can be obtained after
some algebra from Eqs. (69) and (70). It is however more
convenient to first derive �_ðx; yÞ and then perform the
Wigner transformation. Using the decomposition

Gðx; yÞ ¼ 	ðx0 � y0ÞG>ðx; yÞ þ 	ðy0 � x0ÞG<ðx; yÞ;
(80)

we obtain for the three-loop contribution

�ð3Þ
_ ðx; yÞ ¼ ��2

6
G_ðx; yÞG_ðx; yÞG_ðx; yÞ: (81)

Its Wigner transform reads

~�ð3Þ
_ ðX; pÞ ¼ ��2

6

Z
d�4

kd�
4
qd�

4
t ð2�Þ4

� �gð�p� tþ kþ qÞ ~G+ðX; tÞ
� ~G_ðX; kÞ ~G_ðX; qÞ; (82)

where we have used the relation ~G_ðX; tÞ ¼ ~G+ðX;�tÞ,
which follows from Eqs. (76) and (78). It describes 2 $ 2
scattering and corresponds to the tree-level Feynman dia-
gram in Fig. 4.

Expression for the four-loop contribution contains inte-
gration over the contour

~�
ð4Þ
_ ðx; yÞ ¼ �3

2
G_ðx; yÞ

Z ffiffiffiffiffiffiffiffiffi�gz
p

d4z	ðz0Þ
� ½GFðx; zÞGRðx; zÞG2

_ðz; yÞ
þG2

_ðx; zÞGAðz; yÞGFðz; yÞ�: (83)

After some algebra we obtain for the Wigner transform of
(83) in the Boltzmann approximation (that is, with the
Poisson brackets neglected)

~�ð4Þ
_ ðX;pÞ ¼ �3

2

Z
d�4

kd�
4
qd�

4
t ð2�Þ4�gð�p� tþ kþqÞ

� ~G+ðX; tÞ ~G_ðX;kÞ ~G_ðX;qÞLðX;kþqÞ;
(84)

where

LðX; pÞ �
Z

d�4
kd�

4
qð2�Þ4�gð�pþ kþ qÞ ~GFðX; kÞ

� ½ ~GRðX; qÞ þ ~GAðX; qÞ�: (85)

From (84) it follows that LðpÞ is the same for the forward
and inverse processes. As is demonstrated in Appendix A it
corresponds to the integrals of the one-loop Feynman
diagrams in Fig. 4. Let us note at this point that the
contribution of a particular term of the 2PI effective action
to the Boltzmann equation can be deduced by removing
one of the vertices in the 2PI diagrams. Removing one of
the vertices in the three-loop contribution, we obtain the
diagram of 2 $ 2 scattering at tree level, whereas remov-
ing one of the vertices in the four-loop contribution we
obtain the one-loop correction for this process.

The quasiparticle approximation (74) for ~GFðX; kÞ in
(85) forces one of the intermediate states in the loop to
be on the mass shell. Combining relation (58a) with the
quasiparticle ansatz, we obtain the familiar expression for
the retarded propagator

~GRðX; pÞ ¼ 1

p2 �M2 þ 2i"p0

: (86)

The expression for the advanced propagator differs from

(86) by complex conjugation. The sum of ~GR and ~GA,
which describes the second intermediate state in the loop,

FIG. 4. Feynman diagrams of 2 $ 2 scattering at tree and one-
loop levels.
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vanishes on the mass shell. That is, the real intermediate
state contributions (2 ! 2 scattering into two on-shell
states followed by another 2 ! 2 scattering) are automati-
cally subtracted from the four-loop self-energies.
Performing the integration and taking into account that
one of the intermediate states is on-shell, we obtain the
following expression for the loop integral:

LðX; pÞ ¼ lim
�!0

Z dk

ð2�Þ3
2nðX;kÞ þ 1

2Ek

�
p2 � 2pk

ðp2 � 2pkÞ2 þ �2

þ p2 þ 2pk

ðp2 þ 2pkÞ2 þ �2

�
; (87)

where k ¼ ðEk;kÞ is the on-shell four-momentum ex-
pressed in terms of the ‘‘physical’’ components. In (87)
the background plasma ‘‘affects’’ only one of the internal
lines; the other one is off-shell and we cannot associate the
particle number density with it.

Next, we integrate the left- and right-hand side of (79)
over p0 and choose the positive energy solution of (74) on
the left-hand side. On the right-hand side both, the positive
and the negative energy, solutions contribute. For positive
p0 momentum-energy conservation allows the following
three combinations:

ðaÞ k0 > 0; q0 > 0; t0 > 0;

ðbÞ k0 > 0; q0 < 0; t0 < 0;

ðcÞ k0 < 0; q0 > 0; t0 < 0:

As far as the three-loop self-energy (82) is concerned, each
combination leads to the same result, i.e. an overall factor
of 3 appears. For the four-loop self-energy the arising
terms are not equal due to the presence of the loop integral
L in (84). After some algebra, use of (77) and redefinition
of the momenta we finally arrive at the Boltzmann equation
for the distribution function,

p�D�nðX;pÞ ¼ � �

16

Z dk

ð2�Þ3
dq

ð2�Þ3
dt

EkEqEt

�ðEp þ Et � Eq � EkÞ�ðpþ t� q� kÞ�2ðX;k;q; tÞfnðX;pÞnðX; tÞ

� ½nðX;kÞ þ 1�½nðX;qÞ þ 1� � ½nðX;pÞ þ 1�½nðX; tÞ þ 1�nðX;kÞnðX;qÞg; (88)

where, for instance, Ep � p0=
ffiffiffiffiffiffiffi
g00

p
denotes the ‘‘physi-

cal’’ energy, and p the ‘‘physical’’ momentum.
The effective coupling in the external gravitational

background field at nonzero particle number density at
one-loop level reads9

�2ðX;k;q; tÞ � �2ð1� �½LðX; kþ qÞ þ LðX; k� tÞ
þ LðX; q� tÞ�Þ: (89)

Note that the only remnant of the curved structure of
space-time is the covariant derivative on the left-hand side.
All the

ffiffiffiffiffiffiffiffiffiffi�gX
p

factors have disappeared due to the intro-

duction of the ‘‘physical’’ momenta and energies. Let us
also mention that in the FRWuniverse the left-hand side of
(88) takes the form

p�D�n ¼ E

a

�
@

@�
� p2

E
H

@

@E

�
n; H � a0

a
: (90)

As for the right-hand side, it is remarkable that if only
pointlike interactions (i.e. only the three-loop contribution
to the 2PI effective action in the considered case) are taken
into account, Eq. (88) coincides with the classical
Boltzmann equation with the collision term calculated in
vacuum. The inclusion of four- (and higher-loop) correc-
tions to the effective potential induces further terms in the
Boltzmann equation. These terms correspond to the rem-

nant space-time integrals in the self-energy and involve
additional momentum integrals over the distribution
functions.

VII. SUMMARYAND CONCLUSIONS

In this paper we have considered the dynamics of an out-
of-equilibrium quantum system in a background gravita-
tional field. As one would expect, the resulting equations
turned out to be covariant generalizations of their
Minkowski-space counterparts.
As starting point we have used the generating functional

for the (connected) Green’s functions with invariantly
defined space-time and field integration measures.
Performing the Legendre transform we have defined the
effective action. The latter one has been used to obtain the
Schwinger-Dyson equations. Since the propagator and the
self-energy are scalars, the SD equations has exactly the
same form as in the Minkowski space-time.
From the SD equations we have derived the system of

Kadanoff-Baym equations for the statistical propagator
and the spectral function. As one would expect, it differs
from its Minkowski space-time equivalent by the invari-
antly defined space-time integrals and the d’Alembert
operator replaced by the Laplace-Beltrami operator.
Using the covariant definition of the center and relative

coordinates X and s, Taylor expanding the propagators and
self-energies around X and performing the Wigner trans-
formation we obtained the quantum kinetic equations. In
curved space-time the derivative with respect to the space-
time coordinates is replaced by the covariant derivative.

9Note, however, that a self-consistently dressed description of
the vertex in �’4 theory requires use of the 4PI effective action.
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Introducing the quasiparticle approximation and making
use of the Kadanoff-Baym ansatz, we finally arrived at the
Boltzmann equation. Remarkably, the only remnant of the
curved structure of the space-time is the covariant deriva-
tive on its left-hand side. Furthermore, if only the tree-level
processes are taken into account, then the resulting equa-
tion coincides with the Boltzmann equation with the col-
lision term calculated in vacuum. Our result for the
Boltzmann equation is analogous to the ones describing
the evolution of the right-handed neutrino distribution
functions in leptogenesis. Consequently, we have shown
that, as long as the decays and inverse decays are consid-
ered at tree level, the usual vacuum approximation for the
collision term is justified. Processes described by loop
diagrams, which induce corrections to the self-coupling,
involve additional momentum integrals over the distribu-
tion functions, so that the resulting collision terms no
longer coincide with those calculated in vacuum.
Interestingly, in used formalism loop corrections (i.e. pro-
cesses with off-shell states) can be taken into account even
if the quasiparticle ansatz is applied. It is also important
that contributions of the real intermediate states to the loop
diagrams are automatically subtracted.

Since the peculiarities of the calculation, related to the
presence of a background gravitational field, are deter-
mined only by transformation properties of the fields—
scalar fields in the present case—the developed formalism
can be applied to arbitrary systems of scalar fields without
any modifications. In [22] we study further implications of
the formalism for leptogenesis and address the remaining
two approximations in the framework of a toy model,
which, by satisfying the Sakharov conditions for Uð1Þ
charges assigned to the scalar fields and interpreted as
lepton number, qualitatively reproduces the features of
popular leptogenesis models.
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APPENDIX A: 2 $ 2 SCATTERING

The tree-level amplitude of 2 $ 2 scattering (see Fig. 4)
in Minkowski space-time is given by

Mtree
fi ¼ �i�: (A1)

There are also three one-loop diagrams which contribute to
the scattering amplitude; their contribution reads

M
loop
fi ¼ ��2

2ð2�Þ4
Z d4
d4��ð��þ 
þ �Þ

½
2 �M2 þ i��½�2 �M2 þ i�� ;
(A2)

where � is equal to kþ q, to k� t, or q� t (see Fig. 4).
Because of the presence of the � function one of the
integrations (for instance, over �) can be performed trivi-
ally. Calculating residues of the integrand we can perform
the integration over d
0. The result of the integration reads

Mloop
fi ¼ i�2

2ð2�Þ3
Z d
3

2E


�
1


2 þ 2
�
þ 1


2 � 2
�

�
: (A3)

The quantity which enters the right-hand side of the
Boltzmann equation is the amplitude modulo squared. To
leading order in small � it is given by

jMfij2 ¼ �2ð1� �½Lvacðkþ qÞ þ Lvacðk� tÞ
þ Lvacðq� tÞ�Þ; (A4)

where Lvacð�Þ coincides with (87) if nðX;kÞ and � are set
to zero. The former condition arises from the fact that in
this Appendix we calculate the scattering amplitudes in
vacuum, whereas the latter one is related to the fact that we
have not subtracted the contributions of real intermediate
states to the one-loop amplitude. Comparing (A4) with
(89) we conclude that LðX; pÞ indeed describes the inte-
grals of the one-loop diagrams. Note also that, as can be
inferred from comparison of (A3) and (87), one can easily
generalize results of the calculation in vacuum to the case
of nonzero particle densities.
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