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We pursue the possibility of using subcritical string theory in 4 spacetime dimensions to establish a

string dual for large N QCD. In particular we study the even G-parity sector of the 4 dimensional Neveu-

Schwarz dual resonance model as the natural candidate for this string theory. Our point of view is that the

open string dynamics given by this model will determine the appropriate subcritical closed string theory, a

tree level background of which should describe the sum of planar multiloop open string diagrams. We

examine the one-loop open string diagram, which contains information about the closed string spectrum at

weak coupling. Higher loop open string diagrams will be needed to determine closed string interactions.

We also analyze the field theory limit of the one-loop open string diagram and recover the correct running

coupling behavior of the limiting gauge theory.
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I. INTRODUCTION

The underlying logic for field/string duality does not
strictly involve supersymmetry, although that symmetry
plays a very important practical role in the tractability of
Maldacena’s original N ¼ 4 Yang-Mills/IIB String on
AdS5 � S5 equivalence [1]. This logic involves three basic
facts about string theory:

(1) The low energy limit (�0 ! 0) of open string dual
resonance models (DRM) is generically the tree
approximation of some flat space matrix quantum
field theory (QFT) [with SUðNÞ Chan-Paton factors,
this QFT is, more specifically, a non-Abelian gauge
theory with gauge group SUðNÞ].

(2) The sum of planar open string multiloop diagrams
has the low energy limit of the sum of planar dia-
grams in the QFT, which gives its large N limit [2].

(3) A planar open string loop can be interpreted as a tree
emission of a closed string which is absorbed into
the vacuum.

Notice that, from the closed string point of view, the sum of
planar diagrams is just a tree level shift of the vacuum. If
we tried to describe the low energy closed string dynamics
by an effective quantum field theory, this vacuum shift
could be accomplished by solving classical field equations.
In the case of N ¼ 4 such an effective field theory de-
scription is valid in the large ’t Hooft coupling limit, which
is the regime that has been most systematically studied
over the last decade.

However, it is not meaningful to make a strong coupling
approximation in QCD, because it is asymptotically free.
Thus any attempt to apply an effective field theory analysis
to a string dual of QCD should be taken with a grain of salt.
It might reflect some qualitative feature of QCD, but it

could just as probably be completely misleading. Thus we
expect that even after finding the dual string theory for
QCD, we will have to deal with the vacuum shift represent-
ing the sum of planar diagrams as a true string theory, not
an effective field theory.
There has been a huge effort to adapt the AdS/CFT

paradigm to construct a string dual to QCD. The main-
stream approach to this problem has been to introduce
schemes that break the symmetries of the N ¼ 4 theory
down to those of QCD. This approach was first proposed
by Witten [3], who found a way to break the supersymme-
tries by replacing the AdS space on the string side with an
Einstein manifold that was a black hole embedded in AdS.
Here we follow another path, which is to base the dual

QCD string construction on the original Neveu-Schwarz
(NS) dual resonance model in four spacetime dimensions
[4], with all odd G-parity states projected out. For brevity
we shall call this modelNSþ in this article.1 It describes an
open string theory whose low energy limit has long been
known to be precisely Yang-Mills theory in four spacetime
dimensions [8], essentially because the lowest state of the
open NSþ string is a massless gauge particle. There is no
open string tachyon in the even G-parity sector. The appli-
cation of this model to the construction of a string formu-
lation of QCD was first explicitly suggested by Polyakov
[9]. Note that N ! 1 suppresses the coupling of fields in
the fundamental representation of SUðNÞ so that infinite N
QCD is the same as infinite N pure Yang-Mills theory. In
the following when we refer to QCD, we mean this infinite
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1The internal consistency of this NSþ model at the level of
open strings has been appreciated at least since May 1971: just
after Halpern and I discovered a 5 dimensional modification of
the NS model with no tachyons [5], Mandelstam pointed out to
us that this NSþ model is a much simpler (indeed the simplest)
tachyon free dual resonance model [6]. Later I tried to
stimulate interest in this model for its own sake at the Santa Fe
meeting [7].

PHYSICAL REVIEW D 78, 085022 (2008)

1550-7998=2008=78(8)=085022(14) 085022-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.085022


N QCD, which involves only the purely gluonic sector
of QCD.

TheD ¼ 10 version of this model has come to be known
as the type-0 string model because it has no supersymmetry
[7,10,11]. Since it is formulated in the critical dimension
its consistent coupling to closed strings is known. With the
introduction of D3-branes, one can engineer its low energy
limit to be Yang-Mills coupled to 6 adjoint scalar fields
[12].

For our purposes, though, we take D ¼ 4< 10, so we
work directly with the subcritical string, rather than try to
embed QCD in a 10 dimensional critical string theory.
Subcritical string theory is not well understood. It is be-
lieved that its consistent realization will involve a new
scalar (Liouville) world sheet field which can be designed
to cancel the conformal anomaly [13–15]. However, we
still lack a completely satisfactory formulation of such
theories. Recall that the unresolved issues are associated
with our imperfect understanding of the closed string
sector in subcritical theories. On the other hand the sub-
critical open string dual models are not only self-consistent
and well understood, but they are also known to imply the
existence and dynamics of closed strings via unitarity. We
therefore adopt the working hypothesis that the appropriate
closed string theory we seek can eventually be extracted
from the open string multiloop diagrams [16,17].

Incidentally, although this is not usually done, we could
put the N ¼ 4=AdS5 � S5 correspondence in this same
setting. We would first ‘‘lift’’ the N ¼ 4 theory to its
simplest open string parent, in this case the Neveu-
Schwarz-Ramond open superstring [4,18–20], vibrating
in 10 dimensions but with ends fixed to a stack of D3-
branes. Then we would ‘‘discover’’ the closed strings and
their dynamics in the nonplanar diagrams, and finally we
would interpret the sum of multiloop planar open string
diagrams as a closed string background sourced by the D3-
branes. Of course, one would still need to further recognize
that the strong ’t Hooft coupling limit coupled with �0 ! 0
would validate an effective field theory determination of
this background to be AdS5 � S5.

This article initiates a program to find the subcritical
closed string theory that consistently couples to the four
dimensional even G-parity NS open string, by analyzing
the open string multiloop diagrams.We take the first step in
this direction by reinterpreting the 1 loop diagrams in terms
of closed strings. As observed in [16] the so-called ‘‘uni-
tarity violating’’ pomeron cut that arises in these diagrams
can be interpreted as a continuous mass spectrum for the
closed strings. Alternatively one can associate this continu-
ous mass spectrum with a holographic fifth dimension,
suggesting that the closed string theory we seek is best
formulated in at least five spacetime dimensions. The
interactions between closed strings will only be revealed
in diagrams with two or more loops.

The rest of the paper is organized as follows. In Sec. II
we briefly review the construction of NS tree amplitudes

for the scattering of any number of gluons. Section III is
devoted to a study of the 1 loop gluon amplitudes in
general. We begin by quoting the general formula for the
M gluon 1 loop amplitude in the NSþ model, with enough
derivation details to clearly establish the notation and
meaning of the formula. We also include in this section a
brief description of a very useful regularization of these
formally divergent expressions due to Goddard, Neveu,
and Scherk. Finally, we discuss the closed string interpre-
tation including an explanation of the proper way to under-
stand the ‘‘Pomeron cut.’’ In Sec. IV we analyze the field
theory limit of the one-loop diagram in enough detail to
extract the renormalization group one-loop beta function
coefficient. Though the coefficient for the NSþ model is
the same as the one obtained earlier for the bosonic string
by Metsaev and Tseytlin, the details of the calculation are
sufficiently different to merit a complete treatment. We
close the paper with Sec. V which contains further dis-
cussion of our results.

II. BRIEF REVIEW OF NS GLUON TREE
AMPLITUDES

For our purposes in this article, we shall only need the
old operator formalism of the dual resonance models. The
Neveu-Schwarz model [4,21] makes use of integer moded

bosonic oscillators a�n ¼ ða��nÞy, with a�0 ¼ ffiffiffiffiffiffiffiffi
2�0p

p�, and

half integer moded fermionic oscillators b�r ¼ ðb��rÞy

½a�n ; a�m� ¼ ���n�n;�m; fb�r ; b�s g ¼ ����r;�s: (1)

Here and in the following, r, swill always be understood to
be half odd integers and m, n to be integers. The string
mass spectrum is given in terms of the Virasoro generator

L0 ¼
X1
n¼1

a�n � an þ
X1

r¼1=2

rb�r � br þ �0p2 � Rþ �0p2:

(2)

The physical string eigenstates satisfy

ðL0 � 1=2ÞjPhysi ¼ LnjPhysi ¼ GrjPhysi ¼ 0;

n; r > 0; (3)

in the picture 2 Fock space [21]. We do not need the
explicit forms for Ln, Gr in this paper. G-parity in picture
2 is just G ¼ �ð�Þ2R. Thus the even G-parity states have
the spectrum �0m2

e ¼ ��0p2 ¼ 0; 1; . . . , and the odd
G-parity states the spectrum �0m2

o ¼ ��0p2 ¼
�1=2; 1=2; 3=2; . . . . The lowest mass even G-parity state
is � � b�1=2j0; ki with k2 ¼ 0 and k � � ¼ 0. This massless

gauge particle state will be called the gluon in this article.
Vertex operators are constructed from the following

world sheet fields, defined on the upper half complex plane
z ¼ xþ iy, y > 0:
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P ðzÞ ¼ X
n

anz
�n; HðzÞ ¼ X

r

brz
�r;

V0ðk; zÞ ¼ z�
0p2
:e

ik�ðqþi
ffiffiffiffiffiffi
2�0p P

n�0

anz
�n=nÞ

:z��0p2
:

(4)

The gluon vertex operator is

V� ¼: ½� � P ð1Þ þ
ffiffiffiffiffiffiffiffi
2�0p

k �Hð1Þ� �Hð1Þ�V0ðk; 1Þ: (5)

and the M gluon tree amplitude is then (in picture 2)

TM ¼ h0;�k1j�1 � b1=2V�2

1

L0 � 1=2
V�3 � � �

1

L0 � 1=2

� V�M�1
�M � b�1=2j0; kMi: (6)

Note that because k2 ¼ k � � ¼ 0, the normal ordering of
V� in the definition is not really necessary. Also notice that

because the vertex operator commutes with G-parity, the
poles in TM only reveal even G-parity states: the odd G-
parity states automatically decouple in these trees.

III. ONE-LOOP MULTIGLUON AMPLITUDES IN
THE NSþ MODEL

The one-loop amplitudes for the Neveu-Schwarz model
were first constructed by Goddard and Waltz [22], who
evaluated the planar and nonplanar 1 loop diagrams for any
number of odd G-parity tachyons, with vertex operator ik �
HV0ðk; 1Þ. The calculation is easily adapted to the gluon
case by (1) using the gluon vertex operator and (2) project-
ing the trace onto even G-parity states by inserting the
projector P ¼ ð1þGÞ=2. We do this for the planar case in
some detail.

M P ¼
Z 1

0
du1 � � �duM

Z dDp

ð2�ÞD TrV1u
Rþ�0p2

0
�3=2

1 � � �VMu
Rþ�0p2

0
�3=2

M

1� ð�Þ2R
2

(7)

¼
Z

dw
Z dDp

ð2�ÞD w�0p2�3=2
YM
i¼2

dyi
yi

Y
i

y2�
0p�ki

i

Y
i<j

y
�2�0ki�kj
j TrV1ðy1Þ � � �VMðyMÞwR 1� ð�Þ2R

2
: (8)

Recall that here all external particles are massless. The
even G-parity projection is easily handled by doing the
calculation without the projection and then subtracting
from it the expression obtained by reversing the signs of
all the wr with r half integral, and dividing the difference
by 2. In the following we complete the calculation without
the projector.

The integral over p is easily performed:

Z dDp

ð2�ÞD exp

�
�0p2 lnwþ 2�0p �X

i

ki lnyi

�

¼
� �1

4��0 lnw

�
D=2

exp

�
��0 ð

P
i ki lnyiÞ2
lnw

�
: (9)

We also need

Z dDp

ð2�ÞD expf�0p2 lnwgp�1 � � �p�k

�
� �1

4��0 lnw

�
D=2hp�1 � � �p�ki; (10)

where hp�1 � � �p�ki can be evaluated with a Wick expan-
sion with contractions

hp�p�i ¼ ����

2�0 lnw
: (11)

Because k2i ¼ 0, we have

�X
i

ki lnyi

�
2 ¼ 1

2

X
i�j

ki � kj
�
�ln2

yi
yj

þ ln2yi þ ln2yj

�

¼ �X
i<j

ki � kjln2 yiyj ; (12)

so

MP ¼
Z dw

w

YM
i¼2

dyi
yi

w�1=2

� �1

4��0 lnw

�
D=2

� exp

�
�0X

i<j

ki � kj
ln2yi=yj
lnw

�Y
i<j

y
�2�0ki�kj
j

� hTrV1ðy1Þ � � �VMðyMÞwRi: (13)

The variables yi are given by

y1 ¼ 1; yi ¼ u1u2 � � � ui�1; w ¼ u1u2 � � �uM
(14)

0<w< yM < yM�1 < � � �< y2 < y1 ¼ 1 (15)

du1 � � � duM ¼ dy2
y2

� � � dyM
yM

dw: (16)

The gluon vertex operator is V ¼ eik�xð� � P þ ffiffiffiffiffiffiffiffi
2�0p

k �
H� �HÞ � eik�xP̂ . Then
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hTrV1ðy1Þ � � �VMðyMÞwRi ¼ hP̂ ðy1Þ � � � P̂ ðyMÞi
Q

rð1þ wrÞDQ
nð1� wnÞD

Y
i<j

��
1� yj

yi

�Y
n

ð1� wn yi
yj
Þð1� wn yj

yi
Þ

ð1� wnÞ2
�
2�0ki�kj

¼ hP̂ ðy1Þ � � � P̂ ðyMÞi
Q

rð1þ wrÞDQ
nð1� wnÞD

Y
i<j

y
2�0ki�kj
j

Y
i<j

�
2i
�1ð 12i lnyiyj ;

ffiffiffiffi
w

p Þ
�01ð0;

ffiffiffiffi
w

p Þ
�
2�0ki�kj

: (17)

Here the h� � �i is a correlator of a finite number of P and H world sheet fields determined by its Wick expansion with the
following contraction rules

hP ðylÞi ¼
ffiffiffiffiffiffiffiffi
2�0p X

i

ki

�
� lnðyi=ylÞ

lnw
þ 1

2

yi þ yl
yl � yi

þ X1
n¼1

�
yiw

n

yl � yiw
n �

ylw
n

yi � ylw
n

��

hP�ðyiÞP �ðylÞi ¼ hP�ðyiÞihP �ðylÞi þ ���

�
� 1

lnw
þ yiyl

ðyi � ylÞ2
þ X1

n¼1

�
yiylw

n

ðyl � yiw
nÞ2 þ

yiylw
n

ðyi � ylw
nÞ2

��

hH�ðyiÞH�ðyjÞiþ ¼ ���
X
r

ðyj=yiÞr þ ðwyi=yjÞr
1þ wr

hH�ðyiÞH�ðyjÞi� ¼ ���
X
r

ðyj=yiÞr � ðwyi=yjÞr
1� wr :

(18)

The � superscript on the H contractions distinguishes the
two types of traces over the br oscillators: for þ odd and
even G-parity states contribute with the same sign, whereas
for � they contribute with opposite signs. In picture 2, the
difference of the two traces projects out the odd G-parity
states.

The Jacobi function �1 has the expansions

�1ðz; qÞ ¼ �i
X1

n¼�1
qðnþ1=2Þ2eð2nþ1Þizð�Þn (19)

¼ 2q1=4 sinz
Y1
n¼1

ð1� q2nÞY1
n¼1

ð1� q2ne2izÞð1� q2ne�2izÞ

(20)

�1ðz; qÞ
�01ð0; qÞ

¼ sinz
Y1
n¼1

ð1� q2ne2izÞð1� q2ne�2izÞ
ð1� q2nÞ2 : (21)

Putting q ¼ ei�	, �1ðzj	Þ � �1ðz; qÞ, the imaginary trans-
form reads

�1ðzj	Þ ¼ ið�i	Þ�1=2ez
2=�i	�1

�
z

	

��������� 1

	

�
: (22)

We apply this formula with w ¼ e2i�	

2i exp

�
1

2 lnw
ln2

yi
yj

� �1ð 12i lnyiyj j	Þ
�01ð0j	Þ

¼ lnw

�

�1ð �
lnw lnyiyj j � 1

	Þ
�01ð0j � 1=	Þ

(23)

�1ð �
lnw lnyiyj j � 1

	Þ
�01ð0j � 1=	Þ ¼ sin

�ij
2

� Y1
n¼1

ð1� q2nei�ijÞð1� q2ne�i�ijÞ
ð1� q2nÞ2 ;

(24)

where �i � 2� lnyi= lnw, �ij ¼ �i � �j, and q ¼ e��i=	.

Then dyi=yi ¼ lnw
2� d�i and dw=w ¼ �ln2wdq=2�2q.

Thus

dw

w

dy2
y2

� � � dyM
yM

¼ � lnw

�

�
� lnw

2�

�
M dq

q
d�2 � � �d�M:

(25)

Because all external legs are massless, we have 2
P

i<jki �
kj ¼ ðPikiÞ2 ¼ 0 by momentum conservation. This means

that constant factors raised to this power can be dropped:
the factor lnw=� in the above formula can therefore be
dropped when it is inserted into the amplitude integrand.

hP ðylÞi ¼ 2�

� lnw

ffiffiffiffiffiffiffiffi
2�0p X

i

ki

�
1

2
cot

�il
2
þ X1

n¼1

2q2n sin�il
1� 2q2n cos�il þ q4n

�

¼ 2�

� lnw

ffiffiffiffiffiffiffiffi
2�0p X

i

ki

�
1

2
cot

�il
2
þ X1

n¼1

2q2n

1� q2n
sinn�il

�

¼ 2�

� lnw

ffiffiffiffiffiffiffiffi
2�0p X

i

ki

�X1
n¼1

1þ q2n

1� q2n
sinn�il

�
(26)
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hP ðyiÞP ðylÞi � hP ðyiÞihP ðylÞi ¼ 4�2

ln2w

�
1

4
csc2

�il
2
þ X1

n¼1

2q2nð2q2n � ½1þ q4n� cos�ilÞ
ð1� 2q2n cos�il þ q4nÞ2

�

¼ 4�2

ln2w

�
1

4
csc2

�il
2
� X1

n¼1

n
2q2n

1� q2n
cosn�il

�
¼ 4�2

ln2w

�
� X1

n¼1

n
1þ q2n

1� q2n
cosn�il

�
(27)

hHðyiÞHðyjÞiþ ¼ � 2�

lnw

�
1

2 sinð�ji=2Þ þ 2 sin
�ji
2

X1
n¼1

ð�Þn qnð1þ q2nÞ
1� 2q2n cos�ji þ q4n

�

¼ � 2�

lnw

�
1

2 sinð�ji=2Þ � 2
X
r

q2r sinr�ji

1þ q2r

�
¼ 2�i

lnw

X
r

eir�ji þ q2re�ir�ji

1þ q2r
¼ � 2�

lnw

X
r

1� q2r

1þ q2r
sinr�ji (28)

hHðyiÞHðyjÞi� ¼ � 2�

lnw

�
cosð�ji=2Þ
2 sinð�ji=2Þ � 2

X
n

q2n sinn�ji

1þ q2n

�
: (29)

In these expressions we have suppressed the spacetime
indices carried by the operators on the left as well as the
��� factors on the right. Note that the first forms of each
contraction show a singularity at � ¼ 0, whereas this sin-
gular behavior is hidden in the second forms. Since these
singularities correspond to poles in the invariants of the
process, it is tempting to associate them with one particle
reducible diagrams and drop their contributions when ex-
tracting the 1PIR contributions. This procedure actually
seems to work in the case of the bosonic string. However,
for the Neveu-Schwarz model we are considering here,
some of these apparently ‘‘reducible’’ contributions must
be included in the ‘‘1PIR’’ answer. This is because in
constructing the one-loop diagrams in the picture 2 formal-
ism, one has implicitly carried out some integrations by
parts, and rearranged what one calls reducible and
irreducible.

Notice that after the Jacobi transform the correlators all
acquire factors of �2�= lnw in such a way that each
contribution to h� � �i acquires the same factor
ð�2�= lnwÞM, where M is the number of external legs in
the loop diagram. These factors compensate factors from
the Jacobian of the change of integration variables. Thus

h� � �iy;w dw

w

dy2
y2

� � � dyM
yM

¼ � lnw

�
h� � �i�;q dqq d�2 � � � d�M;

(30)

where h� � �i�;q is computed without the �2�= lnw factors.

The various partition functions have the following trans-
formation properties:

w1=24
Y
n

ð1� wnÞ ¼
�
� lnw

2�

��1=2
q1=12

Y
n

ð1� q2nÞ (31)

w�1=48
Y
r

ð1þ wrÞ ¼ q�1=24
Y
r

ð1þ q2rÞ (32)

w1=24
Y
n

ð1þ wnÞ ¼ 1ffiffiffi
2

p q�1=24
Y
r

ð1� q2rÞ (33)

w�1=48
Y
r

ð1� wrÞ ¼ ffiffiffi
2

p
q1=12

Y
n

ð1þ q2nÞ; (34)

where n ¼ 1; 2; � � � , r ¼ 1=2; 3=2; � � � . The partition func-
tion factor in the loop integrand isQ

rð1þ wrÞD�2Q
nð1� wnÞD�2

¼ wðD�2Þ=16q�ðD�2Þ=8
�
� lnw

2�

�ðD�2Þ=2

�
Q

rð1þ q2rÞD�2Q
nð1� q2nÞD�2

(35)

in the critical dimension (here D ¼ 10) after removal of
spurious states. In projecting out the odd G-parity states we
also need the partition function with wr ! �wr:Q

rð1� wrÞD�2Q
nð1� wnÞD�2

¼ wðD�2Þ=162ðD�2Þ=2
�
� lnw

2�

�ðD�2Þ=2

�
Q

nð1þ q2nÞD�2Q
nð1� q2nÞD�2

; (36)

also in the critical dimension (here D ¼ 10).
ForD< 10 the physical state conditions eliminate fewer

states than in the critical dimension, though all the physical
states still have positive norm [23]. In this case the meth-
odology for removing spurious states from loops is that of
Brower and Thorn [24], adapted to the Neveu-Schwarz
case in [22]. In the subcritical case the null spurious states
are all of the form G�1=2jPhys; L0 ¼ 0i. Consequently, as
in [24] the partition function power is reduced from D to
D� 1 and, because of this restricted form of the null states,

there is a further factor of 1� w1=2 ¼ ð1� wÞ=ð1þ w1=2Þ.
Roughly speaking, we may say that only one component of
a�n and one component of b�n�1=2 are removed when n > 1,

but two components of both a�1 and b�1=2 are removed:
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ð1� w1=2Þ
Q

rð1þ wrÞD�1Q
nð1� wnÞD�1

¼ ð1� w1=2ÞwðD�1Þ=16q�ðD�1Þ=8
�
� lnw

2�

�ðD�1Þ=2 Q
rð1þ q2rÞD�1Q
nð1� q2nÞD�1

; (37)

and for wr ! �wr

ð1þ w1=2Þ
Q

rð1� wrÞD�1Q
nð1� wnÞD�1

¼ ð1þ w1=2ÞwðD�1Þ=162ðD�1Þ=2
�
� lnw

2�

�ðD�1Þ=2 Q
nð1þ q2nÞD�1Q
nð1� q2nÞD�1

: (38)

After the change of integration variables to q, �, the left
over factors of w and lnw from Eqs. (13), (37), and (38) are
as follows for D< 10:

w�1=2ð1� w1=2ÞwðD�1Þ=16 ¼ ð1� w1=2ÞwðD�9Þ=16 (39)

� �1

4��0 lnw

�
D=2

�
� lnw

2�

�ðD�1Þ=2 � lnw

�

¼ 2

�
1

8�2�0

�
D=2

�
� lnw

2�

�
1=2

¼ 2

�
1

8�2�0

�
D=2

�
� �

lnq

�
1=2

: (40)

In contrast for the critical dimension all the w dependence
of these factors cancels:

w�1=2wðD�2Þ=16 ¼ wðD�10Þ=16 ! 1 (41)

� �1

4��0 lnw

�
D=2

�
� lnw

2�

�ðD�2Þ=2 � lnw

�

¼ 2

�
1

8�2�0

�
D=2 ! 2

�
1

8�2�0

�
5
: (42)

Incidentally, for the subcritical bosonic string (D< 26)
these extra factors are

w�1ð1� wÞwðD�1Þ=24 ¼ ð1� wÞwðD�25Þ=24 (43)

� �1

4��0 lnw

�
D=2

�
� lnw

2�

�ðD�1Þ=2 � lnw

�

¼ 2

�
1

8�2�0

�
D=2

�
� lnw

2�

�
1=2

¼ 2

�
1

8�2�0

�
D=2

�
� �

lnq

�
1=2

: (44)

In particular, the factors of lnw work out in exactly the
same way. Of course, for D ¼ 26 the extra factors cancel
but now 5 ! 13.

Our expressions for the one-loop amplitude are formal
since the integrals diverge in various regions. To give them
meaning, a regularization must be found, and one should
then be able to show that divergences can be absorbed in
renormalization of parameters. Neveu and Scherk [25],
following an earlier suggestion of Goddard [26], showed
that the divergence for q ! 1 can be regulated by tempo-
rarily suspending energy momentum conservation by an
amount p:

P
iki þ p ¼ 0. This works because essentially

one is injecting momentum p into the boundary of the
planar loop with no particles attached: it can be interpreted
as the momentum of a closed string spurion. In the follow-
ing we shall refer to this procedure as the GNS regulari-
zation. It has a very interesting feature that is illustrated by
a simple example in field theory in the appendix. With p �
0 the two legs of an off shell propagator with a self energy
insertion would have poles in different variables, say p2

1

and p2
2 ¼ ðpþ p1Þ2. When the mass shift is zero, as is the

case with a gauge particle, they coalesce to a single pole as
p ! 0, say ðZ� 1Þ=p2

1. But then when p � 0, the residues
of the poles in p2

1 and p2
2 are each ðZ� 1Þ=2. If the self

energy insertion is on an external leg of an S-matrix
element, one of these legs say p1 is amputated and put
on shell. If p � 0 this produces a wave function renormal-
ization factor ðZ� 1Þ=2, not the (Z� 1) that would arise if
p ¼ 0 from the start. This factor of 1=2 is precisely what is
needed to end up with a properly normalized scattering
amplitude. Thus the GNS regulation is particularly apt for
string theory amplitudes which are of necessity always on
shell. Using it, one-loop on-shell diagram calculations
will automatically be correctly normalized, without the

customary
ffiffiffiffi
Z

p
adjustments that are required in usual

Feynman diagram evaluations!
In summary, we quote the one-loop planar M gluon

NSþ amplitude for D< 10:

M P ¼ 1
2ðMþ

P �M�
P Þ (45)

where, in cylinder variables, lnq ¼ 2�2= lnw,

Mþ
P ¼

�
1

8�2�0

�
D=2 Z YM

k¼2

d�k
Z 1

0

dq

q

ffiffiffiffiffiffiffiffi��

lnq

s
q�ðD�1Þ=8ðwðD�9Þ=16 � wðD�1Þ=16Þ

Q
rð1þ q2rÞD�1Q
nð1� q2nÞD�1

� Y
l<m

½c ð�m � �l; qÞ�2�0kl�kmhP̂ 1P̂ 2 � � � P̂Miþ (46)
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M�
P ¼

�
1

8�2�0

�
D=2 Z YM

k¼2

d�k
Z 1

0

dq

q

ffiffiffiffiffiffiffiffi��

lnq

s
2ðD�1Þ=2ðwðD�9Þ=16 þ wðD�1Þ=16Þ

Q
nð1þ q2nÞD�1Q
nð1� q2nÞD�1

� Y
l<m

½c ð�m � �l; qÞ�2�0kl�kmhP̂ 1P̂ 2 � � � P̂Mi� (47)

c ð�; qÞ ¼ sin
�

2

Y
n

ð1� q2nei�Þð1� q2ne�i�Þ
ð1� q2nÞ2 ; P̂ ¼ � � P þ

ffiffiffiffiffiffiffiffi
2�0p

k �H� �H; (48)

where the average h� � �i is evaluated with contractions:

hP li ¼
ffiffiffiffiffiffiffiffi
2�0p X

i

ki

�
1

2
cot

�il
2
þ X1

n¼1

2q2n

1� q2n
sinn�il

�
(49)

hP iP li � hP iihP li ¼ 1

4
csc2

�il
2
� X1

n¼1

n
2q2n

1� q2n
cosn�il

(50)

hHiHjiþ ¼ 1

2 sinð�ji=2Þ � 2
X
r

q2r sinr�ji

1þ q2r
(51)

hHiHji� ¼ cosð�ji=2Þ
2 sinð�ji=2Þ � 2

X
n

q2n sinn�ji

1þ q2n
; (52)

and we have again suppressed spacetime indices. Finally,
the range of integration is

0 ¼ �1 < �2 < � � �< �N < 2�: (53)

In these formulas r ranges over positive half odd integers, n
over positive integers, and l, m 2 ½1; � � � ;M�.

It is useful to visualize the planar loop diagram we have
just quoted as in Fig. 1. It shows that the divergence
encountered as q ! 0 can be interpreted as a closed string
emission into the vacuum. It also shows graphically the
physical appropriateness of the GNS regularization
scheme! To discover the closed string spectrum one can
examine the 1 loop nonplanar diagram shown in Fig. 2 This
diagram allows the closed string to propagate with nonzero
momentum K. The big qualitative difference with the
planar 1-loop amplitude [22] is that K2 now enters the
exponent of q [see (46)]:

q�ðD�1Þ=8 ! q�ðD�1Þ=8þ�0K2=2 (54)

so that Mþ
NP has a closed string cut starting at �0K2 ¼

ðD� 1Þ=4. Interestingly, the closed string cut inM�
NP [see

(47)] starts instead at K2 ¼ 0.
As shown in [16] we can interpret the ‘‘unitarity violat-

ing’’ closed string cut in nonplanar diagrams as simply
reflecting a continuous mass spectrum. To see this let us
rewrite the new factors in the D< 10 nonplanar integrand
not present for critical dimension D ¼ 10:

ffiffiffiffiffiffiffiffi��

lnq

s
ðwðD�9Þ=16 � wðD�1Þ=16Þ ¼

Z d�

2
q�

2=4

�
cosh�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9�D

16

s
� cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 1

16

s �
¼

Z
d�q�

2=4

�
sinh�
þ

2 sinh�
�
2

cosh�
þ
2 cosh�
�

2

(55)


� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9�D

16

s
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 1

16

s
: (56)

Thus we can think of the integral over� as an integral over
a ‘‘momentum’’ in a (Dþ 1)th dimension. Then the sinh
(cosh) factors can be interpreted as momentum space wave

functions. Each is a linear combination of two eigenstates
of the ‘‘position’’ operator q � i@=@� with eigenvalues
q ¼ �i
þ=2 at one end of the cylinder and q ¼ �i
�=2
at the other end. Let us represent (Dþ 1)th dimension by a
world sheet scalar field �, whose zero mode is q. Then we
see that the one-loop diagram is a sum of terms on which
Dirichlet conditions on � are imposed: Open strings end

FIG. 1. World sheet of the planar loop represented as a cylin-
der. The length of the cylinder is proportional to � lnq. FIG. 2. World sheet for a nonplanar open string loop diagram.
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on ‘‘Dp-branes’’ in Dþ 1 dimensional closed string the-
ory, with p ¼ D� 1. We should therefore think of the
closed strings as propagating in the Dþ 1 dimensional
bulk, and we have a holographic interpretation. Then there
is a tachyon pole at �0ðK2 þ�2Þ=2 ¼ ðD� 1Þ=8 inMþ

NP,
but no massless graviton poles. However, there are mass-
less RR closed string poles inM�

NP. Specializing toD ¼ 4,
so that the bulk is 5 dimensional, the RR tensor structures
correspond to scalar, vector, and antisymmetric tensor
fields ðS; A�; A��Þ. We should expect that the planar dia-
gram sum should resolve the IR issues connected to the
tachyon and the RR massless states in an interesting way.

IV. THE FIELD THEORY LIMIT: ASYMPTOTIC
FREEDOM

For the bosonic string the field theory limit of the uv
divergence structure of the one-loop diagrams has been
carefully analyzed by Metsaev and Tseytlin [27], and we
follow their logic closely. We shall specialize to the planar
case, not only for simplicity, but also because our main
interest is the relationship to large N QCD, which only
includes planar graphs. It is enough to examine the 2 and 3
gluon scattering amplitudes to extract the one-loop renor-
malization group coefficient.

A. The two gluon function

The two point function controls the perturbative mass
shifts, so that the two gluon function should vanish on mass
shell, because gauge particles must remain massless in
perturbation theory. Let us examine the � integration at
fixed q. First for the bosonic string, we consider the coef-
ficient of �1 � �2:

MBose
2 ¼

Z 2�

0
d�

�
sin

�

2

Y1
n¼1

ð1�q2nei�Þð1�q2ne�i�Þ
ð1�q2nÞ2

�
2�0k1�k2

�
�
1

4
csc2

�

2
�X1

n¼1

n
2q2n

1�q2n
cosn�

�
: (57)

With no regularization, k2 ¼ �k1, k
2
1 ¼ 0, k1 � �1 ¼ k1 �

�2 ¼ 0, k1 � k2 ¼ �k21 ¼ 0, this expression reduces to

Z 2�

0
d�

1

4
csc2

�

2
;

which is decidedly not zero. However, with the Goddard-
Neveu-Scherk (GNS) regularization, k2 ¼ �k1 � p, so
2k1 � k2 ¼ ðk1 þ k2Þ2 ¼ p2, and we have instead [25]

1

4

Z 2�

0
d�

�
sin

�

2

�
�0p2�2 ¼ 1

2

�ð1=2Þ�ð�1=2þ �0p2=2Þ
�ð�0p2=2Þ

� ���0p2

2
! 0 (58)

as p ! 0. Thus in the GNS regularization the gluon mass
shift is zero as it should be. Anticipating integrals done in
the next section we quote the p ! 0 behavior of

M Bose
2 � ��0p2

�
� 1

2
þ 4

X1
n¼1

q2n

ð1� q2nÞ2
�
: (59)

We see from this calculation that the original divergence at
� ¼ 0, 2� was just due to the integral representation of a
pole at �0p2 ¼ 1. Since there is no pole at p2 ¼ 0 the
analytic continuation to p2 ¼ 0 should be finite. The fact
that it is actually 0 is very welcome here, and is very much
due to the stringy pole structure of the gamma functions.
The 2 gluon function in the NSþ model is a similar

story. Since its vanishing follows from the integration over
� the fact that the q dependent factors are different plays no
role. One gets a PP correlator whose integral over � gives
0 just as in the bosonic string. The new feature is the
correlator,

2�0hk1 �H�1 �Hk2 �H�2 �Hi� � 2�0ðk2 � �1k1 � �2 � k1 � k2�1 � �2ÞC� ¼ 2�0
�
p � �1p � �2 � p2

2
�1 � �2

�
C�

Cþ ¼
�

1

2 sinð�=2Þ � 2
X
r

q2r sinr�

1þ q2r

�
2 ¼

�
1

4sin2ð�=2Þ �
2

sinð�=2Þ
X
r

q2r sinr�

1þ q2r
þ 4

X
r;s

q2ðrþsÞ sinr� sins�
ð1þ q2rÞð1þ q2sÞ

� (60)

C� ¼
�
cosð�=2Þ
2 sinð�=2Þ � 2

X
n

q2n sinn�

1þ q2n

�
2 ¼

�
1

4sin2ð�=2Þ �
1

4
� 2 cosð�=2Þ

sinð�=2Þ
X
n

q2r sinn�

1þ q2n
þ 4

X
m;n

q2ðmþnÞ sinm� sinm�

ð1þ q2mÞð1þ q2nÞ
�
: (61)

This expression nominally vanishes as p2 for p ! 0. When
it is inserted in the integrand of the two point function, the
integral over � of the first term in square brackets vanishes
just as in hPP i, and the integral of the remaining terms
gives a finite contribution. Thus the Oðp2Þ estimate for the

integrand applies also for the integral over �. Thus the new
contribution in the NSþ case vanishes as Oðp2Þ as p ! 0.
Since the coefficient of �1 � �2 already has an explicit p2,
the p ! 0 behavior is obtained by setting all ki � kj in the
exponents to zero and using the integrals,

CHARLES B. THORN PHYSICAL REVIEW D 78, 085022 (2008)

085022-8



Z 2�

0
d�

sinr�

sin�=2
¼ 2�;

Z 2�

0
d� sinr� sins� ¼ ��rs;

Z 2�

0
d� cotð�=2Þ sinn� ¼ 2�; (62)

to obtain for the new contribution to the coefficient of �1 � �2

���0p2

�
�X

r

4q2r

1þ q2r
þX

r

4q4r

ð1þ q2rÞ2
�
¼ ���0p2

�
�4

X
r

q2r

ð1þ q2rÞ2
�

���0p2

�
� 1

2
�X

n

4q2n

1þ q2n
þX

n

4q4n

ð1þ q2nÞ2
�
¼ ���0p2

�
� 1

2
� 4

X
n

q2n

ð1þ q2nÞ2
�
: (63)

Combining with the bose contribution gives for the Neveu-Schwarz 2 gluon function

MNS;þ
2 � ��0p2

�
� 1

2
þ 4

X1
n¼1

q2n

ð1� q2nÞ2 þ 4
X
r

q2r

ð1þ q2rÞ2
�
; MNS;�

2 � ��0p2

�
4
X1
n¼1

q2n

ð1� q2nÞ2 þ 4
X
n

q2n

ð1þ q2nÞ2
�
:

(64)

B. Three gluon function

We focus here on the polarization structure �1 � �2
ffiffiffiffiffiffiffiffi
2�0p

k1 � �3, which is one cyclic ordering of the polarization structure
of the 3 gluon vertex in Yang-Mills theory. For the bosonic string 1 loop 3 gluon function the coefficient of this structure is

M3 ¼
Z
½dq�

Z 2�

0
d�3

Z �3

0
d�2

�
1

4
csc2

�2
2
� X1

n¼1

n
2q2n

1� q2n
cosn�2

�

�
�

sinð�2=2Þ
2 sinð�3=2Þ sinð�32=2Þ þ

X1
n¼1

2q2n

1� q2n
ðsinn�32 � sinn�3Þ

��
sin

�2
2

Y1
n¼1

ð1� q2nei�2Þð1� q2ne�i�2Þ
ð1� q2nÞ2

�
2�0k1�k2

�
�
sin

�3
2

Y1
n¼1

ð1� q2nei�3Þð1� q2ne�i�3Þ
ð1� q2nÞ2

�
2�0k1�k3�

sin
�32
2

Y1
n¼1

ð1� q2nei�32Þð1� q2ne�i�32Þ
ð1� q2nÞ2

�
2�0k2�k3

; (65)

where we include all momentum independent factors in
½dq�. Metsaev and Tseytlin [27] extract the uv divergences
in the field theory limit by first managing the � integrals.
They identify the 1PIR contribution by setting the expo-
nents to zero and replacing the singular terms in the
remaining factors by their formal expansions

1

4
csc2

�

2
! �X

n¼1

n cosn�;
1

2
cot

�

2
! X1

n¼1

sinn�: (66)

Then the � integrals are elementary with the result

2�
X1
n¼1

�
1þ q2n

1� q2n

�
2 ! 2�

�
� 1

2
þ 4

X1
n¼1

q2n

ð1� q2nÞ2
�
; (67)

where the formal sum
P

n1 has been interpreted as �ð0Þ ¼
�1=2.

To complete the calculation we need to extract the
reducible contributions, which we do by employing the
GNS regularization of the string loop integral. So we
introduce a spurion momentum p and take pþ k1 þ k2 þ
k3 ¼ 0. We send p ! 0 at the end of the calculation. With
p � 0 the on-shell condition on the k’s allows ki � kj � 0.

Let us first extract the pole at k1 � k2 ¼ 0, which comes

from the region �2 	 0. Doing the integral over the region
0< �2 < � leads, for the � integration, to

1

2�0k1 � k2
Z 2�

0
d�3

�
1

4
csc2

�3
2
� X1

n¼1

n
2q2n

1� q2n
cosn�3

�

�
�
sin

�3
2

Y1
n¼1

ð1� q2nei�3Þð1� q2ne�i�3Þ
ð1� q2nÞ2

�
2�0ðk1þk2Þ�k3

Defining

fðzÞ ¼
Z 2�

0
d�

�
1

4
csc2

�

2
� X1

n¼1

n
2q2n

1� q2n
cosn�

�

�
�
sin

�

2

Y1
n¼1

ð1� q2nei�Þð1� q2ne�i�Þ
ð1� q2nÞ2

�
z
; (68)

we are interested in its small z behavior. We can expand the
infinite product factors
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�Y1
n¼1

ð1� q2nei�Þð1� q2ne�i�Þ
ð1� q2nÞ2

�
z

¼ 1þ z
X1
n¼1

ln
ð1� q2nei�Þð1� q2ne�i�Þ

ð1� q2nÞ2 þOðz2Þ

¼ 1þ z
X1
m¼1

1

m

2q2m

1� q2m
ð1� cosm�Þ þOðz2Þ: (69)

Working first with the contributions to the 1 term, we find

Z 2�

0
d�

1

4
csc2

�

2

�
sin

�

2

�
z ¼ 1

2

�ððz� 1Þ=2Þ�ð1=2Þ
�ðz=2Þ

¼ ��

2
zþOðz2Þ (70)

Z 2�

0
d� cosn�

�
sin

�

2

�
z ¼ � z

2n

Z 2�

0
d�

sinn�

sinð�=2Þ
� cos

�

2

�
sin

�

2

�
z ���

n
z: (71)

Thus the 1-term contribution is

1� term� �z

�
� 1

2
þ X1

n¼1

2q2n

1� q2n

�
þOðz2Þ: (72)

To find the remaining terms we use

Z 2�

0
d�

1

4
ð1� cosm�Þcsc2 �

2
¼ �m (73)

Z 2�

0
d�ð1� cosm�Þ cosn� ¼ ���mn; (74)

to get

Remaining terms ¼ �z

�X1
n¼1

2q2n

1� q2n
þ X1

n¼1

4q4n

ð1� q2nÞ2
�

þOðz2Þ; (75)

so, all together,

fðzÞ ¼ �z

�
� 1

2
þ X1

n¼1

4q2n

1� q2n
þ X1

n¼1

4q4n

ð1� q2nÞ2
�
þOðz2Þ

¼ �z

�
� 1

2
þ 4

X1
n¼1

q2n

ð1� q2nÞ2
�
þOðz2Þ: (76)

Now for this contribution z ¼ 2�0k3 � ðk1 þ k2Þ ¼
�2�0k3 � ðpþ k3Þ ¼ �2�0p � k3, whereas 2k1 � k2 ¼
ðk1 þ k2Þ2 ¼ ðpþ k3Þ2 ¼ p2 þ 2p � k3. Thus the reduc-
ible contribution with pole in k1 � k2 is

� �
p � k3

p � k3 þ p2=2

�
� 1

2
þ 4

X1
n¼1

q2n

ð1� q2nÞ2
�

! ��

�
� 1

2
þ 4

X1
n¼1

q2n

ð1� q2nÞ2
�
: (77)

Notice that this is just �1=2 times the 1PIR contribution
found in [27], as expected for usual schemes for wave
function renormalization factors. There are two other re-
ducible contributions to the three gluon amplitude associ-
ated with poles in k1 � k3 (�3 � �2 	 0) and k2 � k3
(�3 	 2�). But inspection of the integrand of the 1 loop
three gluon amplitude in these regions shows that these
contributions will be identical to the first. Thus the net
renormalization for the three gluon scattering amplitude
will be ð1� 3=2Þ ¼ �1=2 times the 1PIR result (ðD�
26Þ=24) found in [27]:�

1� 3

2

�
D� 26

24
¼ �D� 26

48
: (78)

Notice that forD ¼ 4 this goes to 11=24: the factor of 11 is
just the well-known 11 that occurs in the one-loop Yang-
Mills running coupling.
We should obtain this same result in theNSþmodel, but

the details of the calculation are different in a very inter-
esting way. The measure factors are different of course, but
in the field theory limit w� 0 the difference is that the
factor ð1� wÞ�Dþ2=w� ðD� 2Þ þ 1=w in the bosonic
string measure is replaced by ð1þ ffiffiffiffi

w
p ÞD�2=

ffiffiffiffi
w

p � ðD�
2Þ þ 1=

ffiffiffiffi
w

p
in the Neveu-Schwarz measure. In addition,

the NS loop integrand involves a more complicated corre-
lator

hð�1 � P þ
ffiffiffiffiffiffiffiffi
2�0p

k1 �H�1 �HÞð�2 � P þ
ffiffiffiffiffiffiffiffi
2�0p

k2 �H�2 �HÞð�3 � P þ
ffiffiffiffiffiffiffiffi
2�0p

k3 �H�3 �HÞi
¼ �1 � �2½hP 1P 2i�3 � hP 3i � 2�0k1 � k2hH1H2i2�3 � hP 3i � ð2�0Þ3=2k2 � k3k1 � �3hH1H2ihH1H3ihH2H3i

þ ð2�0Þ3=2k1 � k3k2 � �3hH1H2ihH1H3ihH2H3i� þ � � � (79)

where � � � represents all the other polarization structures.
The first term in square brackets is identical to the corre-
lator encountered in the bosonic string. The remaining
terms, because of the explicit factors of ki � kj are nomi-
nally a factor of p smaller than this first term. However,

these factors can be canceled by poles arising from the �
integrals in the respective regions �2 	 0, �3 	 0, or �3 	
�2. Thus these contributions look like 1 particle reducible
contributions. We examine these contributions, after mak-
ing some simplifications valid as p ! 0.
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The poles under consideration are at mostOðp�1Þ, so we can neglect terms in the square bracket ofOðp2Þ or smaller. So
we can replace k2 � �3 ¼ �ðk1 þ pÞ � �3 ! �k1 � �3. Furthermore we can write k1 � k2 ¼ ðk1 þ k2Þ2=2 ¼ ðpþ k3Þ2=2 ¼
p2=2þ k3 � p ! k3 � p. Similarly k1 � k3 ! k2 � p and k2 � k3 ! k1 � p. Finally, we can replace

�3 � hP 3i !
ffiffiffiffiffiffiffiffi
2�0p

k1 � �3
�
1

2
cot

�3 � �2
2

� 1

2
cot

�3
2
þ X1

n¼1

2q2nðsinnð�3 � �2Þ � sinn�3Þ
1� q2n

�
: (80)

With these simplifications we see that the H terms in the square bracket combine into a common factor 2�0k3 � p�1 �
�2

ffiffiffiffiffiffiffiffi
2�0p

k1 � �3 times

�
�
1

2
cot

�3 � �2
2

� 1

2
cot

�3
2
þ X1

n¼1

2q2nðsinnð�3 � �2Þ � sinn�3Þ
1� q2n

��
1

2
csc

�2
2
� 2

X
r

q2r sinr�2
1þ q2r

�
2 þ

�
1

2
csc

�2
2

� 2
X
r

q2r sinr�2
1þ q2r

��
1

2
csc

�3
2
� 2

X
r

q2r sinr�3
1þ q2r

��
1

2
csc

�3 � �2
2

� 2
X
r

q2r sinrð�3 � �2Þ
1þ q2r

�
: (81)

By inspection we see that this combination of terms is not
singular as either as �3 ! 0 or as �3 ! �2, so these regions
of integration will not produce poles. Moreover the �2 ! 0
behavior of the first line is identical to the corresponding
limit for the bosonic string, producing a pole whose residue
is OðpÞ and so will not compensate the explicit p � k3
factor. So the only contribution that will survive the p !
0 limit is the �2 	 0 region of the �2 integration of the
second line:

2�0k3 � p
Z �

0
d�2�

2�0k3�p�1
2

�
1

2
csc

�3
2
� 2

X
r

q2r sinr�3
1þ q2r

�
2

�
�
1

2
csc

�3
2
� 2

X
r

q2r sinr�3
1þ q2r

�
2
: (82)

Inserting this last result into the loop integrand, we en-
counter the same integral as the two gluon amplitude al-
ready evaluated, the result being

� 4�
X
r

q2r

ð1þ q2rÞ2 ; for þ; (83)

which is the result for þ correlators of H fields. Retracing
the derivation for � correlators leads to the result

� �

2
� 4�

X
n

q2n

ð1þ q2nÞ2 ; for � : (84)

To summarize, we have identified three contributions to the
q integrand of the 1 loop 3 gluon scattering amplitude in
the NS model. The hP 3i correlator produces a 1PIR con-
tribution

I1PIRP ¼ 2�

�
� 1

2
þ 4

X
n

q2n

ð1� q2nÞ2
�
; (85)

and a reducible contribution which is�3=2 times the 1PIR
piece piece:

I1PRP ¼ �3�

�
� 1

2
þ 4

X
n

q2n

ð1� q2nÞ2
�
: (86)

Finally, there are the contributions involving H correlators
which are also reducible

I1PRþH ¼ �4�
X
r

q2r

ð1þ q2rÞ2 ;

I1PR�H ¼ ��

2
� 4�

X
n

q2n

ð1þ q2nÞ2 :
(87)

Combining all the contributions together gives the simple
result

Iþ ¼ I1PIRP þ I1PRP þ I1PRþH

¼ ��

�
� 1

2
þ 4

X
n

q2n

ð1� q2nÞ2 þ 4
X
r

q2r

ð1þ q2rÞ2
�

I� ¼ I1PIRP þ I1PRP þ I1PR�H

¼ ��

�
4
X
n

q2n

ð1� q2nÞ2 þ 4
X
n

q2n

ð1þ q2nÞ2
�
: (88)

As discussed in [27] the field theory limit is controlled by
w� 0 and there it is shown that

4
X
n

q2n

ð1� q2nÞ2 ¼ �2q
d

dq

X
n

lnð1� q2nÞ

¼ 1

6
þ lnw

2�2
þ ln2w

24�2
þ ln2w

�2

X
n

lnð1� wnÞ

� 1

6
þ lnw

2�2
þ ln2w

24�2
þOðwÞ: (89)

In a similar manner it is easily seen that
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4
X
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q2r

ð1þ q2rÞ2 ¼ �2q
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dq
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1� q2r

1þ q2r

�

¼ � lnw

2�2
þ ln2w

�2
w

d

dw

�
�X

n

ln
1þ wn

1� wn þ
X
r

ln
1� wr

1þ wr

�

�� lnw

2�2
� w1=2 ln

2w

�2
þOðwÞ

4
X
n

q2n

ð1þ q2nÞ2 ¼ �2q
d

dq
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� lnw
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þ ln2w
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3
� lnw

2�2
þ w1=2 ln

2w

�2
þOðwÞ:

(90)

When considering the field theory limit in the NSþmodel,
the details are different from the bosonic string. Recall that
in the w ! 0 limit the factor D� 2þ 1=w in the bosonic
measure changes to D� 2þ 1=

ffiffiffiffi
w

p
in the þ amplitude

and to �Dþ 2þ 1=
ffiffiffiffi
w

p
in the � amplitude of the NSþ

model. The 1=w in the bosonic string case compensates
OðwÞ contributions in the limit of IP . However, in the NS
cases we only have a 1=

ffiffiffiffi
w

p
and these OðwÞ contributions

will vanish. Thus instead of ðD� 26Þ=24, the IP contribute
only ðD� 2Þ=24 to the irreducible part and �3ðD�
2Þ=48 ¼ �ðD� 2Þ=16 to the reducible part. Finally, the
I�H contributes 1=2 to the reducible part. Recall that for the
NSþ amplitude we need the combination

1

2

�
D� 2þ 1ffiffiffiffi

w
p

�
Iþ � 1

2

�
�Dþ 2þ 1ffiffiffiffi

w
p

�
I�; (91)

so the ‘‘tachyon’’ singularity 1=
ffiffiffiffi
w

p
cancels and the Oðw0Þ

terms from the þ and � contributions add. Thus the total
reducible part is �ðD� 10Þ=16. Of course the total con-
tribution is

D� 2

24
�D� 10

16
¼ �D� 26

48
: (92)

just as for the bosonic string model. This had to be the case
because both the bosonic string and the NSþ string go to
the same gauge theory as �0 ! 0. It is mildly amusing that
the reducible contribution to charge renormalization van-
ishes in the critical dimension for the NS model (D ¼ 10).
To the extent that we can associate the reducible contribu-
tion to wave function renormalization, this would mean
that there is none in the critical dimension. However, the
fact remains that there is no physically meaningful dis-
tinction between reducible and irreducible contributions to

on-shell scattering amplitudes. Physics sees only the com-
plete package.

V. DISCUSSION AND CONCLUSION

This article is only the beginning of a substantial pro-
gram. We have studied the one-loop NSþ diagram in
enough detail to confirm that it shows the correct renor-
malization group properties in the field theory limit as well
as the mass spectrum of the closed string that couples to it.
Along the way we have appreciated the great utility of the
GNS regularization of string loop diagrams.
We take a few lines here to describe how the properties

of the closed string revealed so far can be consistently
described by a new (Liouville) world sheet field �. First
recall the modification of the Virasoro generators discov-
ered by David Fairlie and me independently in 1971 (see
[28]). Here we include the easy extension to the NS super
Virasoro generators:

Ln ¼ i�na5n þ L̂n; Gr ¼ 2i�rb5r þ Ĝr;

L0 ¼ �2

2
þ L̂0;

(93)

where a5n, b
5
r are the bose and fermi oscillators associated

with a ‘‘fifth’’ [really (Dþ 1)th] dimension. The hatted
generators are the usual flat space generators in Dþ 1
dimensions. These modified operators satisfy the super
Virasoro algebra with c ¼ Dþ 1þ 8�2. Of course, the
algebra is doubled to describe closed strings. Vanishing of
the conformal anomaly requires c ¼ 10 which then deter-
mines �2 ¼ ð9�DÞ=8. Applying the on-shell condition
L0 ¼ 1=2 then determines the ‘‘D dimensional’’ mass as

�0M2
D

4
¼ �2

2
� 1

2
þ �0p2

5

4
þ R ¼ �D� 1

16
þ �0p2

5

4
þ R:

(94)

This shows a continuous mass spectrum starting at M2 ¼
�ðD� 1Þ=4 just as revealed in the one-loop calculation
studied here. We also see that the holographic 5 dimen-
sional mass spectrum is discrete. It is tempting to identify
� with the free field incarnation of the Liouville field
obtained via the Bäcklund transformation. One further
piece of information from the one-loop analysis in favor
of this interpretation is the fact that the eigenfunctions
sinh
�, cosh
� are eigenstates of the zero mode parity
operation � ! ��. This restriction was essential to the
success of the quantum Bäcklund transformation con-
structed in [29]. However, it would be a bit hyperbolic to
claim that these coincidences establish the validity of the
Liouville interpretation.
In our study of the field theory limit of the one-loop

amplitude, we found the Goddard-Neveu-Scherk regulari-
zation indispensable, since it respects the proper normal-
ization of scattering amplitudes in on-shell perturbation
theory. At a more fundamental level as applied to the sum

CHARLES B. THORN PHYSICAL REVIEW D 78, 085022 (2008)

085022-12



of planar diagrams, it simply reflects the validity of inter-
preting that sum as tree emission of closed strings into the
vacuum.We think this is an interesting and valuable insight
that string theory brings to quantum field theory.

There is clearly much work that remains to be done. We
have just scratched the surface in determining the subcrit-
ical closed string dynamics implied by the even G-parity
4D Neveu-Schwarz model. Multiloop diagrams have yet to
be determined, let alone analyzed for their closed string
content. This is a major challenge for the immediate future.
Even at the one-loop level there is more to be understood.
We have only analyzed the field theory limit of two and
three gluon amplitudes, which serve to determine a single
renormalization group coefficient. It would be instructive
to extend the analysis, at the very least, to four gluon
amplitudes.

We already know from the one-loop analysis that the
closed string spectrum includes tachyonic and massless
states, which signal a breakdown of the perturbative vac-
uum. Could the resolution of this instability explain
confinement in large N QCD? We must await the determi-

nation of the closed string effective field theory to address
this question.
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APPENDIX: QFT MODEL OF GNS
REGULARIZATION

Introduce a neutral scalar field � with interaction term

� 1
4 TrF��F

���: (A1)

Then the vertex Feynman rules are

� ig½��1�2
ðp1 � p2Þ�3 þ ��3�1

ðp3 � p1Þ�2 þ ��2�3
ðp2 � p3Þ�1�; 3G

i½��1�2
p1 � p2 � p1�2

p2�1
�; 2G��

� ig½��1�2
ðp1 � p2Þ�3 þ ��3�1

ðp3 � p1Þ�2 þ ��2�3
ðp2 � p3Þ�1�; 3G��:

(A2)

A � insertion models a loop insertion in a string tree
diagram. So the regularized 1 loop 2 gluon function is
given by the p ! 0 limit of the 1� two gluon vertex (p1 þ
p2 þ p ¼ 0):

iðp1 � p2�1�2 � p1 � �2p2 � �1Þ ð�iÞ2
p2
1p

2
2

: (A3)

We can take p ! 0 by first setting pþ, p to 0, and at the
same time take the light-cone gauge �þi ¼ 0, so that p2 ¼
0 and p � �i ¼ 0. Then we have

i

2

p2
1 þ p2

2

p2
1p

2
2

�1�2 ! i

p2
1

�1�2; for p2 ! p1: (A4)

This shows that the gluon wave function renormalization is
Z ¼ 1� . Notice that the finite momentum p has sepa-
rated the poles on the two legs of the two point function, in
such a way that if one of them is put on shell first, as would
be the case for an on-shell external leg the wave function
renormalization correction is reduced by a factor of 1=2.
This is in fact precisely what is required by the proper
application of the reduction formalism: a factor of

ffiffiffiffi
Z

p
should be associated with each external leg!
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