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We demonstrate that the evolution of wall-like inhomogeneities in runaway potentials, characteristic of

dynamical supersymmetry breaking and moduli stabilization, is very similar to the evolution of domain-

wall networks associated with double-well potentials. Instabilities that would lead to a rapid decay of

domain walls can be significantly ameliorated by compensation effects between a nondegeneracy of the

vacua and a biased initial distribution, which can be naturally expected in a wide class or particle physics

models that lead to out-of-equilibrium phase transitions. Within this framework, it is possible to obtain

domain walls that live long enough to be relevant for the cosmic power spectrum and galaxy clustering,

while being compatible with the observed cosmic microwave background anisotropies.
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I. INTRODUCTION

The well-known measurements of the anisotropies of the
cosmic microwave background radiation (CMBR) by the
Wilkinson Microwave Anisotropy Probe (WMAP) [1], in
combination with the supernovae type Ia observations [2],
imply that the evolution of the Universe is dominated by
dark energy and a state parameter that is strongly con-
strained. Among the most popular scenarios to explain the
data is to assume the existence of an inflationary universe
with a very small cosmological constant �. In principle,
possible contributions to dark energy can also be provided
from topological defects which are produced at phase
transitions in the Universe [3]. An interesting possibility,
for instance, would have been that such contributions are
provided by domain walls [4] associated with the breaking
of discrete symmetries (which arise commonly in a wide
class of particle physics models).

Yet another possibility is that there is no discrete sym-
metry at all. Even then, there could be nearby minima
separated by a potential barrier, with initial conditions
that result in both minima getting populated with nonzero
probabilities. In this case we do not have an exact domain-
wall configuration, but (as will become more obvious later)
it still makes sense to talk about approximate domain walls
that interpolate, in a broader sense, between basins of
attraction of nearby local minima. And, in fact, we will
show that the dynamics and evolution of the network of
inhomogeneities is very similar in both situations—with
exact and approximate domain walls. As a specific ex-
ample of the behavior of the second type we take runaway
potentials which appear in models of dynamical supersym-
metry breaking, and play an important role in modern
attempts at nonperturbative supersymmetry breaking and
moduli stabilization. In fact, it has been pointed out by
Dine [5], that spatially inhomogeneous field configurations
may evolve differently in the expanding Robertson-Walker
background than the homogeneous mode. The inhomoge-

neities may help to stabilize the moduli (such as the dilaton
or radion) at shallow but finite minima, thus avoiding the
Steinhardt-Brustein [6] and Buchmüller [7] effects. At the
same time, the energy density inhomogeneities of such
configurations may contribute to the shape of the power
spectrum of CMBR. In the case of TeV scale supersym-
metry breaking this contribution would be unobservable,
but the issue of finding the right vacuum remains a valid
question independently of the mass scale associated with a
runaway potential.

II. COSMOLOGICAL PROBLEMS WITH WALL
NETWORKS AND THEIR POSSIBLE

RESOLUTION

There are three main problems in cosmological scenar-
ios that involve a significant abundance of domain walls:
(i) Domain walls that could potentially contribute to

dark energy, generally predict an equation of state
with�2=3<wX <�1=3, which would be ruled out
from the commonly quoted upper bound wX <
�0:78 at 95% C.L.

(ii) Domain walls that could enhance the cold dark
matter spectrum are in general associated with un-
acceptably large fluctuations of the CMBR, for the
range of parameters that would have been relevant
for the formation of structure. For a horizon-size
bubble at a redshift za, with surface energy �, the
generated anisotropies are given by

�T=T �GN�RHðzaÞ: (1)

(iii) Domain walls in the simplest class of models that
evade problem (ii), do not stay around sufficiently, in
order to produce density fluctuations that can suffi-
ciently grow to the observed structures [8–10].

The first problem has in fact been addressed in a very
convincing way in [11], where the assumptions made in the
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choice of priors of the data analysis have been questioned.
In fact, it has been shown that, for lower values of the
Hubble parameter (h < 0:65, as indicated by Sunyaev-
Zeldovich and time delays for gravitational lensing obser-
vations), and for higher values of the matter density (�m >
0:35, in agreement with measurements of the temperature-
luminosity relation of distant clusters observed with the
XMM-Newton satellite), domain walls in an inflationary
universe can provide a good fit to the WMAP data.

In previous papers [12,13], we have proposed and tested
two main frameworks that may naturally arise in standard
model extensions for which domain walls can lead to the
formation of structure, enhancing the standard cold dark
matter spectrum in an inflationary universe, while still be
compatible with CMBR. These are the following:

(a) Schemes where the walls are unstable, due to a
nondegeneracy of the minima of the potential (as
appears naturally in a wide class of superstring
models [12]). For a large range of possible parame-
ters, the walls are expected to annihilate before
recombination. In this way, although structure can
be generated and subsequently grow in consistency
with the observations, no unacceptable distortions to
the cosmic microwave background radiation are
produced.

(b) A second possibility is that, if one of the minima of
the potential of the scalar field is favored, then a
biased phase transition occurs. As a first step, we
showed why such a bias may be expected in post-
inflationary, out-of-equilibrium phase transitions
[13]. The idea is that, if the interactions of a field
are very weak, this will not be confined at the top of
its potential, but will in fact be centered around a
classical value that will be closer to one of the
minima of the potential. Quantum fluctuations will
move it, but, nevertheless, the bias (offset) will
remain. Then, percolation theory indicates that there
is a range of natural initial conditions for which
walls of finite size (and not of horizon size) are
produced inside a sea of the dominant vacuum.
While not very accurate, percolation theory allowed
us to formulate a qualitative picture of the spatial
distribution of the wall-driven overdensities in a
postinflationary universe, and to account for the
whole range of large scale structure observations.
In addition, by studying wall-driven fluctuations at
small scales, it has been possible to reproduce the
observed distribution of quasars [14].

Subsequently, elaborate numerical simulations seemed
to indicate that despite the biasing of the minima, the walls
either disappear too fast or stay around for too long [10],
implying that they have to be very soft if they are not to
lead to unacceptable distortions of the microwave back-
ground radiation. In this work, we will give specific ex-
amples where this need not be the case, first in biased

double-well potentials with nondegenerate minima and
second, for the runaway potentials that can be expected
in a wide class of supersymmetry breaking models, based
on gaugino condensates. This complements the literature
on the subject and raises additional possibilities to those
that have been considered in the recent years [15–18].

III. BASIC FRAMEWORK FOR OUT-OF-
EQUILIBRIUM, BIASED PHASE TRANSITIONS

An elaborate numerical study of the dynamics of
domain-wall networks in the case of a scalar field whose
potential has two degenerate minima that occur with the
same probability, has been provided by Press, Ryden and
Spergel [8]; they showed that such networks would rapidly
evolve into long domain walls stretching across the
Universe whose surface area, and, hence, energy density,
persisted for a long time. This resulted to a rapid domina-
tion of the energy density of the Universe by these walls
and to unacceptably large distortion in the CMBR. Such an
initial distribution on a lattice can be described statistically
using percolation theory. On a three-dimensional square
lattice, there is a critical probability pc ¼ 0:311, above
which the associated vacuum will percolate across the
entire lattice [19]. It is easy to see that, by initializing
both vacua with a probability p ¼ 1=2, both vacua propa-
gate across the lattice. Since domain walls lie on the inter-
face between the two different vacua, this implies the
formation of domain walls which extend across the entire
Universe. This gives a clear mathematical explanation for
the Press, Ryden and Spergel result. However, if for one
vacuum p < pc, then this vacuum would form finite clus-
ters in the percolating sea of the other one. The domain
walls would then be small, finite bags which would dis-
appear relatively rapidly. Similar effects would hold in the
case of potentials with nondegenerate minima [12]. Here,
the true minimum will be at some stage energetically
favored, and domain walls will disappear.
If a phase transition is triggered by fluctuations in a

system in thermal equilibrium, and the vacua are truly
degenerate, one expects the population probabilities of
each vacuum to be equal. However, nonequilibrium phase
transitions, which can occur in realistic models of the early
Universe, generically lead to a biased choice of vacuum
state. Indeed, an out-of-equilibrium scalar field� living on
an inflating de Sitter space, observed over a physical
volume ‘3, breaks into a classical and a quantum piece

� ¼ �c þ�q; (2)

where �c satisfies the classical equation of motion and �q

represents de Sitter space quantum fluctuations. This is
illustrated in Fig. 1.
During inflation, and long afterwards, the Hubble term is

very large compared to the curvature of the potential and,
thus, to a very good approximation,�c ¼ #, where # is an
arbitrary constant (to next order, there is a tiny damped
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velocity _�c � V
H� ). On the other hand,�q represents quan-

tum fluctuations of the scalar field in de Sitter space. These
fluctuations result in the formation of a weakly inhomoge-
neous quasiclassical random field. After inflation ends, the
Friedmann-Robertson-Walker horizon ‘c ¼ 1=H grows
and fluctuations with scales less than the horizon are
smoothed out. Thus ‘c acts as an UV cutoff in the momen-
tum distribution of this random field. In a spatial region of
length l, the distribution of the fluctuations around # can
be calculated and is given by

Pð�Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
�‘

exp

�
�ð�� #Þ2

2�2
‘

�
; (3)

where

�2
‘ ¼

H2
i

4�2
ln

�
‘

‘c

�
(4)

(and, as has been discussed in [13], for fields produced
towards the end of inflation, one can ensure that the long-
wavelength components in the Fourier decomposition of
the random field �q do not introduce unacceptable for our

discussion correlations between the values of the random
field at distant points).

Clearly, such transitions can only occur in a system that
is too weakly coupled to achieve thermal equilibrium. A
number of such biased transitions have been investigated,
including those occurring in very light scalar fields in
de Sitter space [19].

The two disconnected minima are denoted by (þ ) and
(� ), respectively. At the phase transition, the field has
some finite correlation length (like the inverse Ginzburg
temperature in the case of a transition triggered by thermal
fluctuations) over which the post-transition vacuum is
chosen coherently, denoted by �. One can approximate
the initial spatial structure of the vacuum produced during
the transition by first dividing space into cells of volume
�d, where d is the dimension, and second, by assuming

that choices of the new vacua are made independently in
each cell, giving the (þ ) vacuum with probability p and
the (� ) vacuum with probability 1� p, where 0 � p �
1=2. Whenever the vacua in neighboring cells are different,
a domain wall will form which interpolates between them,
and so, typically, a complicated spatial network of domain
walls will form.
Of course, an arbitrary spatial superposition of domain

walls, such as that produced by the mechanism described
above, is not a solution of the equations of motion and
cannot be stable. However, such a superposition represents
physical initial conditions, the subsequent evolution of
which is governed by the dynamics of the theory. Subject
to this dynamics, the initially static domain walls acquire
nonzero velocities, oscillate under their surface tension,
and interact with each other. This will be discussed in
subsequent sections, where we will summarize the main
ingredients, but also motivation and naturalness of out-of-
equilibrium, biased phase transitions, where the bias can
come from:
(i) small differences in the energy of the minima of the

potential, and
(ii) different probabilities to reach these minima.

IV. DYNAMICS OF THE SCALAR FIELD AND
WALL NETWORK

How do we study the behavior of a ‘‘biased network’’?
The scalar field is initialized by randomly setting it equal to
��0 orþ�0 at each lattice site, with bias probability p for
þ�0 and 1� p for ��0, with 0 � p � 1=2. The lattice
resolution corresponds to the initial field correlation
length, and on physical scales above the resolution cutoff
the field will have a white noise power spectrum (yielding
results similar to percolation theory).
In this section, we follow the study presented in [8] and

subsequently extended in [10]. The dynamics of the scalar
field � are determined by the equation of motion. This has
the form

@2�

@t2
þ 3

a

@a

@t

@�

@t
� 1

a2
r2� ¼ � @V

@�
; (5)

and, introducing the conformal time � (with d� ¼ dt
aðtÞ ), it

becomes

@2�

@�2
þ 2

@a

@t

@�

@�
�r2� ¼ �a2

@V

@�
: (6)

In the above, a is the scale factor of the Universe (a� �
in the radiation era, and a� �2 in the matter era), V is the
scalar potential and the spatial gradients are with respect to
comoving coordinates. Then

� ¼ 1

2

@2�

@t2
þ 1

2a2
jr�j2 þ Vð�Þ; (7)

FIG. 1 (color online). Schematic illustration of biased, out-of-
equilibrium phase transitions. The initial mean value of the field
is shifted towards one of the minima, which occurs with a higher
probability.
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p ¼ 1

2

@2�

@t2
� 1

6a2
jr�j2 � Vð�Þ: (8)

The scalar potential determines the topology of the
vacuum manifold. A typical choice is a �4 potential

Vð�Þ ¼ V0

�
�2

�2
0

� 1

�
2

(9)

with the two degenerate vacua � ¼ ��0 separated by a
potential barrier V0.

One can define a physical domain-wall thickness w0

given by

w0 � �
�0ffiffiffiffiffiffiffiffi
2V0

p : (10)

The ratio of the wall thickness to the horizon size [H�1 ¼
ð1a @a

@�Þ�1] at the time of the phase transition

W0 � w0

að�0Þ
1

�0

d lna

d ln�

���������0

(11)

then sets �0, the conformal time of the phase transition and
the time at which we begin the simulation (one needs the
walls to be thinner than the horizon in order to study their
dynamics, namely, w0 � H�1).

Here we assume that the expansion is dominated by
some smooth component, filling the Universe. The equa-
tion of state of this component is p ¼ ��. This gives

aðtÞ ¼ a0t
2=3ð�þ1Þ, and d� ¼ dt

aðtÞ , � ¼ t3�þ1=3ð�þ1Þ. Also,

að�Þ � �2=ð3�þ1Þ � �!:

The equation of motion for static domain walls is [8]

� ¼ �0 tanh

� ffiffiffiffiffiffiffiffi
2V0

p
�0

aðz� z0Þ
�
� �0 tanh

�
aðz� z0Þ

w0

�

(12)

and for nonstatic (boosted with a velocity v0)

� ¼ �0 tanh

�
	0

w0

aðz� z0 � v0tÞ
�
; (13)

where 	0 � ð1� a2v2
0Þ�ð1=2Þ.

The energy and surface density of the walls are

�ðzÞ ¼ 	2
0V0

2
sech4

�
	0

w0

aðz� z0 � v0tÞ
�
; (14)

� ¼ a
Z þ1

�1
�ðzÞdz ¼ 2	0V0w0

3
: (15)

Finally, during the expansion, the velocity of the wall
changes according to

	ðtÞvðtÞ � aðtÞ�4: (16)

Let us now pass to runaway potentials, of the form

VðsÞ ¼ 1

2s
ðAð2sþ N1Þe�ðs=N1Þ � Bð2sþ N2Þe�ðs=N2ÞÞ2:

In this case we do not have an analytic solution of the
domain-wall type, interpolating between finite and run-
away minima. However, we may still use the domain-
wall language to describe the distribution of energy and
topology of the vacuum. We shall call ‘‘domain walls’’ the
nonequilibrium configurations which appear on the lattice
as joining field values in neighboring lattice sites; then, we
can identify the position of these generalized walls as the
link between the lattice sites occupied by different vacua.
In the case of the runaway vacuum, we shall simply
determine whether a field value at a given site belongs to
the classical domain of attraction of that vacuum.
To further develop an intuitive feeling about the evolu-

tion of the system, we shall define a domain-wall width,
demanding that it should correspond to a distance in con-
figuration space over which the field gradient is of the order
of the potential energy of the local maximum that separates
the vacua. In other words,

� ¼ j�max ��minjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð�maxÞ � Vð�minÞ

p ;

where �max denotes the position of the maximum separat-
ing the domains of attraction of the finite minimum �min

and of the runaway minimum (� ! 1).

V. NUMERICAL PROCEDURE: DESCRIPTION
AND TESTING

The numerical implementation of the equation of mo-
tion (6) is nontrivial. It involves discretization of the equa-
tion of motion (Appendix A), which allows treating the
domain-wall network numerically. Moreover, the calcula-
tions are very time-consuming, unless an optimization of
the time step is applied. We propose in Appendix B such a
technique, which very significantly improves the efficiency
of the code and allows us to go to larger lattices and higher
accuracies. The role of the size of the lattice is discussed in
Appendix C.
There are additional considerations to be made: To start

with, the factor a2 on the right-hand side of the equation of
motion makes the effective potential barrier grow with the
expansion. The result is that, in comoving coordinates, the
width of the walls decreases like a�1, which is ��1 for a
radiation-dominated and ��2 for a matter-dominated uni-
verse. This implies that, on any reasonably sized grid, it is
impossible to ensure that the walls would be visible on the
lattice to the end of a calculation, when the horizon size is
roughly the grid size. To appropriately represent walls,
their width should be of the order of a few lattice sites
during the whole simulation (in our case, we require the
walls to be about five lattice sites wide since, if they
become too wide, we lose the resolution).
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However, we know that the dynamics of the walls do not
depend on their width once they get created and separated
from each other [8], and the same is true for the total
surface energy and surface tension. As a result, one can
consider a generalization of the equation of motion, which
may force the walls to maintain a constant comoving
thickness while otherwise not altering their dynamics.
This modified equation is

@2�

@�2
þ �

�

�
d lna

d ln�

�
@�

@�
�r2� ¼ �a


@V

@�
; (17)

and, for � ¼ 
 ¼ 2, we recover the initial equation of
motion.

If 
 ¼ 0, the walls will have constant comoving width.
This choice does alter the scaling of the adiabatic effects of
the Hubble expansion (
 ¼ 0), but this effect can be
compensated by a proper choice of �. It turns out that [8]

h���0irms � a�ð�=2Þ�ð
=4Þ: (18)

Thus, for 
 ¼ 0, we have to set � ¼ 3 to have the same
scaling of the deviation of � and �0. In addition,

	v� a���ð
=2Þ: (19)

Having obtained a consistent set of equations, the next
step is to understand the relevant range of initial conditions
and parameters. As in previous works, we will set �0 ¼ 1.
The scalar field initial conditions are then chosen using the
prescription described above for various bias probabilities
p. That is, in the following we will use percolation theory
with allowed field values of �1 at any lattice site. It is of
interest to compare the evolution of the network initialized
with two-point initial conditions with those initialized with
various continuous distributions. We have done this for a
uniform distribution which gives probability 1� p of
choosing � between�1 and 0 and probability p of choos-
ing between 0 and 1, and with a Gaussian distribution Pð�Þ
such that

Rþ1
0 d�Pð�Þ ¼ p. In general, the surface area of

the initial network, measured at � ¼ �0, is larger in the
case of the two-point, percolative distribution. However,
after a few steps of dynamical evolution the network
stabilizes, and its important characteristics, such as surface
energy or kinetic energy and their time evolution, become
indistinguishable for a fixed bias p. Hence, the sharp initial
conditions of percolation theory also give a good approxi-
mation to initial conditions softened by smooth distribution
functions. This justifies the use of the pure two-point
percolation theory initial conditions in this paper.

We will set the initial field ‘‘velocity’’ _� to be zero
everywhere on the lattice (in previous work the results
were found to be insensitive to small initial velocities
with respect to the energy of the barrier [10]; this was

done by repeated simulations with _� chosen from a uni-
form distribution of velocities between �1 and þ1 [�
Oð�0=�0Þ]).

Simulations are run in the radiation-dominated epoch,
with an initial time �0 ¼ 1, unless stated otherwise. We
chose a wall thickness w0 ¼ 5 and a ratio W0 ¼ 5 [see
(11)]. This value is used to ensure that the wall thickness is
well above the lattice resolution scale (recall �x ¼ 1),
while also ensuring that for most of the dynamical range
of the simulation, the wall-wall separation exceeds the wall
thickness.
We tested our code with the simplest case one can study,

namely, the double-well potential, for which

Vð�Þ ¼ V0

��
�

�0

�
2 � 1

�
2

[Vð�Þ ¼ m�2 þ ��4, m ¼ �2V0�
2
0, � ¼ V0].

Looking at the potential and the first derivative (Fig. 2)
we see that, while the potential is symmetric (even), the
first derivative is asymmetric (odd):
This is a special situation, and this symmetry is violated

in the case of the exponential potential discussed later on.
For the numerical part, we followed [8,10], setting the

values of the parameters � and 
 to reproduce the original
equation of motion, Eq. (6). In the runs the domain walls
maintained a constant physical rather than comoving thick-
ness, and so problems of available dynamic range become
important. The prescription used is as follows: The simu-
lation is run on a 512� 512 lattice, with our standard field
initial conditions and p ¼ 0:5. Using a wall thickness of
w0 ¼ 25, the initial conditions were evolved with the
standard parameter values of � ¼ 3 and 
 ¼ 0, until a
time when the wall-wall separation exceeded the wall
thickness, that is, a time � ¼ 2w0. The equation of motion
was then changed, to set � ¼ 
 ¼ 2 until a time � ¼ 250.
The comoving thickness of the walls at the end of the
simulation was then 5 lattice sites. To compare, the run
was repeated, this time leaving the standard parameter
values fixed throughout the simulation.
Looking at the evolution of the energy density of the

network of domain walls in three dimensions (in a
radiation-dominated epoch), we confirm the following re-
sults [10].

V ′ V

FIG. 2 (color online). Shape and first derivative of the double-
well potential.
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(i) For p < 0:311, the critical threshold of percolation
theory, only one vacuum percolates the lattice, and
isolated bags of one vacuum are to be found in a
percolating sea of the more dominant vacuum. These
bags rapidly decay under their surface tension.

(ii) For 0:5> p> 0:311, both vacua percolate, leading
to an initial network of infinite (lattice-sized) domain
walls. However, these also rapidly decompose into
vacuum bags which then decay.

(iii) Only in the exact p ¼ 0:5 case, long-term scaling
that dominates the energy density of the Universe is
found.

What is thus seen is that a network of domain walls
forming well before matter-radiation equality can be suffi-
ciently massive to contribute significantly to large scale
structure formation on comoving scales less than
�20 Mpc. However, such a network will decay before
photon decoupling.

An immediate question is whether superhorizon fluctu-
ations can be of any relevance. In principle, such a possi-
bility can arise, particularly in a universe with a significant
hot dark matter component, and scale-invariant primordial
perturbations induced by an earlier inflationary epoch.
However, similarly to [10], we found that, for much of
the range of biases, wall networks turned out to be cosmo-
logically innocuous, as their energy density exponentially
decays with a characteristic time of only a few expansion
times. Simulations were made in both 3-dim and 2-dim; in
the latter case walls stay around longer, but still, for any
significant scaling of the network before the ultimate ex-
ponential decay, fine-tuning of p close to 1=2 is required.

In principle, one has to also consider the possibility of
having bias in the initial velocities. However, for the
double-well potentials, modifications from such effects
are negligible. The reason is that in this case the field is
perfectly reflected to the minima by the external barriers;
this however is not what happens for the runaway poten-
tials that we will proceed to discuss, as well as for periodic
potentials.

VI. BIASED POTENTIALS WITH
NONDEGENERATE MINIMA

In the previous section, we summarized the expectations
for potentials with degenerate minima. However, the be-
havior of domain walls can change radically in the case
that the minima of the potential are unstable. Before study-
ing the domain-wall dynamics that are to be expected, we
would first like to discuss the naturalness of such solutions.

This problem has been studied extensively in [12],
where specific realizations of such scenarios have been
proposed: In realistic standard model extensions, and par-
ticularly in superstrings, there are usually several discrete
groups ZN . The fields in the theory then transform as �r,
r ¼ 0; 1; . . . ; N � 1, where � is the Nth root of unity, and
the effective potential is constructed from ZN invariant

combinations of the fields. In nonsupersymmetric models,
for example, the Lagrangian of a complex scalar field �
transforming as � has the form:

L ¼ @��@��� þ�2 j � j2

� � j � j4
4

þ �0
�

�N

MN�4
þ ��N

MN�4

�
þ 	 	 	 ; (20)

where the coupling � is made real by absorbing its phase in
the field �. The coupling �0 is of order unity. The non-
renormalizable terms of dimension >4 arise because we
have an effective field theory generated by physics at some
(high) scale M.
If �2 is positive, the effective potential for � has a

minimum for the nonvanishing value of the modulus and
leads to spontaneous symmetry breaking of the discrete ZN

group. In this case it is convenient to reparametrize � as

� ¼ ð�þ �Þei=�þ�; (21)

where �ei� is the VEV (vacuum expectation value) of �,
while � and  are real scalar fields. The potential of the
field  is then [12]

VðÞ ¼ 2�0�N

MN�4
cos

�
N

�
þ N�

�
(22)

and the value of the pseudo-Goldstone mass is given by

m2 ¼ N2V0

�2
cosðN�Þ; V0 � �0 2�N

MN�4
: (23)

The potential of Eq. (22) has an N-fold degeneracy corre-
sponding to =v ! =vþ 2�=N.1

How can this degeneracy be lifted? So far we have
discussed domain walls which are expected to arise from
the potential of a single scalar field �. However additional
scalar fields are also present. Then, if, as is likely, the
interactions between the fields cause more than one field
transforming nontrivially under the discrete symmetry
group to acquire a VEV, it is possible to generate a situ-
ation in which the vacuum degeneracy is apparently lifted:
If one of these fields acquires its VEV before or during
inflation, the observable universe will have a unique value
for its VEV. After inflation the effective potential describ-
ing the remaining fields may still have an approximate
discrete symmetry, but the vacua will not be exactly
degenerate.
To illustrate this, for instance in nonsupersymmetric

models, consider adding to the above theories a second
field �0. If � transforms as �m and �0 as �n under the
symmetry group and assuming that n 
 m and N=n is
integer in order to simplify the analysis, the potential is
[12]

1Pseudo-Goldstone bosons, due to their very light mass and
negligible interactions, may very naturally give rise to late phase
transitions [20].
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VðÞ ¼ XN=n

r¼0

�
2

�ðN�nrÞ=m�0r

MðN�ðn�mÞrÞ=m�4

� cos

�
r0

�0 þ
ðN � nrÞ

m
�þ r


��
: (24)

Clearly there will be a dominant term; however, the
subdominant ones will slightly split the degeneracy of the
potential.

Having summarized the model building aspects, the next
question is whether the domain walls to be expected in
these theories can be of any relevance for structure
formation.

In the case of nondegenerate minima, we expect that
there is a critical scale at which the loss in surface energy
from collapsing horizon-size bubbles becomes similar to
the gain in volume energy by passing to the true minimum.
At some stage, the true minimum will be favored at all
horizons, and walls will disappear. In this case, for sub-
horizon fluctuations, we will have a maximum scale, cor-
responding to the size of the horizon R at the time that the
walls disappear (which today would correspond to R0 ¼
RH0

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ za

p
). These could in principle generate structure

for the smaller angular scales of WMAP. The question of
course is what the situation is regarding superhorizon
fluctuations, and whether these can give any structure at
the largest scales (Cosmic Background Explorer and the
largest scales of WMAP).

The time when walls disappear is specified by a redshift
za, which is a calculable quantity, even before passing to
any numerical simulation. For nondegenerate vacua there
is always a critical bubble radius above which it is ener-
getically favorable for the bubble of true vacua to expand
gaining more volume energy than is lost in surface energy.
Once the horizon exceeds this critical radius, bubbles of the
true vacuumwill expand everywhere at the speed of light to
fill the whole universe and this occurs at the same time in
all horizon volumes [21]. Then, the nondegeneracy of the
potential is measured by a factor �� � �

R . For instance, if

walls decay during matter dominance, this determines the
redshift za to be

za ¼
�
��RHo

�

�
2=3 � 1: (25)

In what follows, we combine biasing with nondegener-
acy of minima, a situation that, according to the above, can
arise for effective potentials generated by several weakly
interacting scalar fields. Then, if the minimum with the
highest probability has a higher energy than the second
one, we have two competing effects, which can allow
modifications from previous results in the literature. This
is illustrated in Fig. 3.

To understand these effects, we perform a numerical
simulation. A simple and generic parametrization of the
nondegeneracy of the potential is obtained by adding to

Vð�Þ a term linear in �, namely,

Vð�Þ ! Vð�Þ � �V0�:

The monitoring of the extrema of the potential is shown
in Appendix D. During the evolution, the field ‘‘feels’’ only
the derivative of the potential and the gradient of the field,
and thus it has the tendency to evolve towards the place
where the magnitude of the derivative is larger. This may in
principle compensate the biasing of the initial distribution;
in fact, the two effects can be combined in a way that one
produces a quasistable network, which is shown in Fig. 4.
In the upper panel of Fig. 4, we present the evolution of

the surface energy of the walls as a function of the confor-
mal time �, for three different cases with the bias in the
initial distribution corresponding to p� ¼ 0:47:
(i) The upper curve (a) corresponds to the case where

the effect of the nondegeneracy of the minima, pa-
rametrized by � ¼ �0:012, is partially cancelled by
the bias in the initial field distribution.

(ii) The middle curve (b) stands for the case of degen-
erate minima.

(iii) The lower curve (c) denotes the case with a higher
nondegeneracy of the minima, parametrized by � ¼
�0:02. As expected, this choice leads to a rapid
disappearance of the walls.

The middle picture shows the behavior of the surface
energy of the network for different initial distributions and
a fixed value of the nondegeneracy of the minima (� ¼
�0:012).
(i) Curve (a) is the same as above, with a bias given by

p� ¼ 0:47.
(ii) Curve (d) corresponds to a bias p� ¼ 0:39, that is a

probability to occupy the left (lower) vacuum equal
to 0.39.

In curves (b) and (c) the initial bias of the distribution is
given by p� ¼ 0:46 and p� ¼ 0:44, respectively. In these
cases the offset has been tuned in such a way that it
compensates the effect of nondegeneracy. One should
note that the necessary tuning is of the order of a few

FIG. 3 (color online). Schematic illustration of biased, out-of-
equilibrium phase transition, in a potential with nondegenerate
minima. The field is shifted towards the false vacuum.
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percent, enhancing the a priori probability of occupying
the right vacuum by about 5%.

The lower panel shows the evolution of the mean value
of the scalar field during the decay of the wall network, for
the same choice of parameters as in the middle panel.
Curves (a)–(d) correspond to the respective ones in the
middle panel.

To capture quantitatively the scaling or no-scaling be-
havior of the networks, we have performed in each case the
numerical fit of the surface area of the network as a
function of the conformal time, according to the formula

A� � ��10�= ��: (26)

Each curve has been fitted over the time intervals after the
initial period of numerical ‘‘unequilibrium,’’ which ends
approximately at the position of the characteristic peak
located near log10ð�eqÞ ¼ 1:3.

In Table I, we give the values of �� and �� corresponding
to the upper panel of Fig. 4. In Table II, we give the values
corresponding to the curves from the middle panel of
Fig. 4. The cases with a large magnitude of �� correspond
to quasiscaling networks, with powers of the slow, power-
like, decay given by the respective values of ��. The net-
works showing such a behavior are represented by
curve (a) in Table I and curves (b) and (c) in Table II. In
the remaining cases the predominant behavior is that of the
exponential decay with relatively small decay constants
(i.e. lifetimes). The values of ��, being related to small
corrections to the exponential behavior, are only indicative,
and are given for the sake of comparison.
The outcome is that we were able to realize a quasistable

wall network by combining two competing effects.

VII. RUNAWAY POTENTIALS

A. Theoretical motivation and description
of the potential

Runaway potentials arise commonly in theories of dy-
namical supersymmetry breaking, and hence their collec-
tive dynamical properties deserve a careful study. For the
purpose of this paper we assume the potential in the form

TABLE I. Fit of the wall surface area as a function of the
conformal time �-�0, for different values of the nondegeneracy
of the minima � and for p ¼ 0:47 (upper panel of Fig. 4).

Curve Split � �� ��

(a) �0:012 �0:367 �35:81
(b) 0 �0:2 �13:37
(c) �0:02 0.06 �9:79

FIG. 4 (color online). Domain-wall evolution in potentials
with nondegenerate minima and a bias in the initial mean field
distribution.

TABLE II. Fit of the wall surface area as a function of the
conformal time �-�0, for different values of the probability p
and for a fixed nondegeneracy of the minima � ¼ �0:012
(middle panel of Fig. 4).

Curve p �� ��

(a) 0.47 �0:367 �35:81
(b) 0.46 �0:626 �93:80
(c) 0.44 �0:72 �115
(d) 0.39 �1:86 �19:96
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VðsÞ ¼ 1

2s
ðAð2sþ N1Þe�ðs=N1Þ � Bð2sþ N2Þe�ðs=N2ÞÞ2:

Its shape and first derivative are plotted in Fig. 5.
If we would like to identify the field s with a stringy

modulus, say, a dilaton, then we would have to define s ¼
e
ffiffi
2

p
�, so that � is canonically normalized. This makes the

above potential a doubly exponential function of �.
However, in what follows we shall simply assume that
the Kähler potential for s is canonical; this simplification
does not introduce qualitatively new features in the simu-
lations. In general, one can see that the doubly exponential
steepness of the potential makes the evolution more sensi-
tive to the changes of the offset and the width of the
distribution.

The degeneracy of this potential can be lifted by adding
a term of the form �

s2
. The position of the extrema of the

potential and the way they are monitored in our simulations
are discussed in Appendix D.

We have studied runaway potentials for the parameter
set of Table III, which corresponds to a weakly coupled
vacuum. The expectation value of s (hsi � 10) corresponds
to the inverse square of a gauge coupling in a supersym-
metric Yang-Mills theory.

In Table III, min and max denote the minimum and
maximum, respectively, of the potential, and w0 gives the
width of the (approximate) domain wall. The initial con-
ditions are controlled by the position of the mean value of
the initial distribution h�i ¼ maxþw0	 and by the initial
width of distribution �� ¼ w0	

0, where 	; 	0 are real

numbers.

B. Numerical simulations for runaway potentials

Runaway potentials are in principle more complicated to
study than the double-well ones, since they have more
intrinsic instabilities. This implies that several of the as-
sumptions made for the simplest potentials have to be
reconsidered. This by itself is an interesting problem and
will allow us to understand the level of validity of the
results in potentials that are to be expected in theoretically
motivated models.

1. Modification of equation of motion

The first step is to analyze what the effect is of the
modification of the equations of motion (by taking � ¼ 3
and 
 ¼ 0), in order to maintain a constant comoving
thickness for the walls, while maintaining the condition
for conservation of the wall momentum, namely, 
 ¼ 6�
2�.
To do so, we perform simulations for intermediate val-

ues of � and 
 to see how this modification changes the
evolution of the wall network. The results are shown in
Fig. 6.
In general, the larger 
 is, the slower is the rate of

disappearance of the false vacuum. When 
> 1:2, the
bubbles of the vacua become stable. This is because the
effective potential barrier grows with time with respect to
the gradients, so they cannot overcome the potential. When

< 1:2, the pressure of the dominant vacuum takes over.

2. Study of the equation of state

As discussed in previous sections, we assume that the
expansion of the Universe is dominated by some smooth
component, filling the Universe. Then, if we go smoothly

V ′

V

10 20 30 40 50

10

20

30

FIG. 5 (color online). Shape and first derivative for the run-
away potential.

TABLE III. Runaway potential parameter set used in our
simulations.

A B N1 N2 min max w0

1.0330 1.1950 10.0 9.0 10.075 21.729 3.567 FIG. 6 (color online). log10ðVolðLÞÞ as a function of �� �start,
for four different combinations of � and 
.
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between dust (� ¼ 0) and radiation (� ¼ 1=3), the pa-
rameter ! changes from 2 to 1. We made simulations for
various values of !, to see whether this influences the
evolution. The results are shown in Fig. 7.

We see that all the measured observables change
smoothly with ! and are not influenced very much. In
general, the faster the scale factor að�Þ grows, the slower
the walls disappear.

3. Role of the horizon at the time of network creation

If the scale factor behaves like �ð�Þ � �!, the horizon

(inverse Hubble constant) grows with time as H�1 ¼ �!þ1

! .

Hence, different values of �start give different values of the
horizon at the point of the phase transition. The results
should be sensitive to that, and, to test how the evolution of
the field changes with the change of the initial horizon, we
performed several simulations for �start changing between
10�4 and 10 (in almost all published simulations this
parameter was taken to be 1). The results are given in
Fig. 8.

FIG. 7 (color online). log10ðVolðLÞÞ versus �� �start for different values of !.

FIG. 8 (color online). log10ðVolðLÞÞ versus �� �start for dif-
ferent values of �0.
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Figure 8 indicates the existence of two competing ef-
fects:

(i) For very small values of �start, the horizon is much
smaller than the wall width. Then, the friction term
in the equation of motion is large and temporarily
freezes the evolution of the network. One can see
that for�start ¼ 0:8 the network is less stable than for
�start ¼ 10�4—in the first case the wall width-to-
horizon ratio is smaller than in the second, and walls
evolve faster under the influence of the potential;
consequently the surface of walls decays faster.

(ii) However, for large values of �start, corresponding to
curves (a) and (b), many walls fit within the horizon
and interactions between walls, of the joining and
splitting type, become important and tend to stabilize
the network. This is illustrated by the fact that the
network corresponding to �start ¼ 10 is more stable
than the one for �start ¼ 5, as in the first case there
are more walls inside the horizon.

One should note that, at the initial stage of the evolution,
in the cases where the horizon is large, there is a period
when the domain-wall surface grows with time.

C. Nearly scaling solutions for runaway potentials

The dynamics of the walls are determined by several
parameters: the distance to the horizon at the time the
evolution starts H�1 ¼ �!þ1=!, the width of the wall �,
the width of the initial distribution � and the offset of the
initial distribution with respect to the maximum of the
potential �� ¼ �mean ��max. Independently of the abso-
lute positions of the extrema and of the absolute height of
the maximum of the potential, the relations between these
parameters shall determine the behavior of the system.

1. Width of the walls

The domain-wall width is defined as

w0 ¼ width of barrierffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
height of barrier

p :

In our simulations, the width of the barrier is numerically
constant and the width of the walls will change by chang-
ing the height of the barrier. We have performed simula-
tions, to check how the width of the walls influences their
evolution, for a range of w0 between 0.05 and 20.0 lattice
sites.

These indicate that, if the walls are thin, their evolution
is dominated by the potential energy, and field gradients
are almost unimportant (in each site of the lattice the field
evolves independently of the other site, so, effectively, the
walls become frozen in). In this case the overall behavior
of the field, as measured by the time dependence of the
mean value, is rather classical. The wider the walls, the
milder the influence of the potential; gradients contribute
significantly to the dynamics, and the evolution of the
mean value of the field becomes nonclassical. If the walls

are wide, between 2 and 20 lattice sites, the evolution is
insensitive to the domain-wall width.

2. Initial width of the distribution

In the runs presented in this paper the field has been
initialized randomly, according to a Gaussian distribution.
The larger the width of the distribution, the larger the
probability to create many walls. Hence, if we initialize
according to a wider distribution the network lasts longer,
meaning that for wider distribution, it matters less where
the center of the distribution is (the biasing becomes less
important, since the field can climb over the barrier with a
higher probability). This is particularly significant for the
runaway potential, which is asymmetric, since the potential
force (derivative) to the left of the barrier is larger than the
one to the right. As a result, at some stage the false vacuum
(the finite one) starts growing, because the force towards
the left vacuum is somewhat larger.

3. Initial mean value of the field

We have performed simulations for various positions of
the center of the distribution for the runaway potential. If
the field starts to the left of the maximum, even high above
the barrier, then, very often, the whole space finishes in the
false vacuum. The reason is the asymmetry of the force in
this potential, together with the damping due to the Hubble
expansion (and the fact that the friction term is propor-
tional to the time derivative of the field, which may be large
in such situations). Most interesting effects are seen when
the initial value of the field is close to the maximum—then
we get plenty of walls which disappear rather slowly. If we
want to obtain a stable network, then we have to start
slightly to the right of the maximum, again because of
the asymmetry of the force. In these cases the networks
exhibit nearly scaling behavior.

4. Examples of nearly scaling networks

The advertised behavior has been illustrated in Fig. 9.
No splitting term has been switched on in this case.

(i) Here, curves (a) and (b) correspond to initial distri-
butions positioned at the top of the barrier and differ-
ent widths [1.5 domain-wall width for curve (a) and a
single domain-wall width for (b)]. In both cases the
field evolves towards the left vacuum, with the dif-
ference in the widths playing a minor role.

(ii) Curves (c) and (d) correspond to the initial mean
value of the distribution, shifted by one-twentieth of
the wall width to the right of the top of the potential
and width of the distribution equal to 1.5 domain-
wall width for (c), and to the domain-wall width for
(d).

Again, to capture quantitatively the scaling behavior of
the networks, we have performed the numerical fits of the
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surface area of the networks as functions of the conformal

time, according to the formula A� � ��10�= ��. Each curve
has been fitted over the time intervals after the initial
period of numerical unequilibrium, which ends approxi-
mately at the position of the characteristic peak located
near log10ð�eqÞ ¼ 1:4. The results are shown in Table IV.

The values of �� and �� given in this table correspond to the
upper panel of Fig. 9. The cases (c) and (d) with the large
magnitude of �� correspond to scaling networks, with
powers of the slow, powerlike, decay given by the respec-
tive values of ��. In the remaining cases (a) and (b) the
predominant behavior is that of the exponential decay with

relatively small decay constants (i.e. lifetimes). As in the
case of the double-well potential, the values of �� for (a) and
(b) (related to small corrections to the exponential behav-
ior) are only indicative and are given for the sake of
comparison.
In both cases one observes a scaling behavior of the

network surface; however, in the case of a wider initial
distribution, the mean field behaves nonclassically and
returns to the left vacuum, so eventually the left vacuum
prevails over the runaway behavior.
To summarize, the asymmetry of the potential and its

derivatives with respect to its maximum makes the evolu-
tion of broad and biased distributions nonclassical. In the
limit of vanishing width of the distribution the classical
behavior is recovered, which is a good check of the nu-
merical routine. Awide class of initial distributions leads to
a relatively short period with domain-wall networks, which
however disappear rather quickly, leaving behind a system
rolling towards infinity. This is a version of the Steinhardt-
Brustein effect. However, a larger width of the distributions
slows down the decay of the islands of ‘‘finite’’ vacua. As
in the case of the symmetric double-well potential, the less
favored vacuum assumes the topology of compact clusters
submerged in the sea of the runaway vacuum. The forma-
tion of a pseudoinfinite cluster requires a higher degree of
fine-tuning than in the case of the double-well potential.
An important factor is the ratio of the distance to the
horizon and the domain-wall width at the time when the
initial conditions are imposed; if this ratio is truly small,
the disappearance of the walls becomes slower. This is
more or less expected, as in this case the cosmic friction
term is able to compete efficiently with the potential force.
In the simulations shown in the figures, we were assuming
the initial horizon to beH�1

i ¼ 10�4, which corresponds to
walls much wider than the initial horizon. The small ratio
discussed above can be obtained by making the phase
transition occur shortly before the end of inflation, as
discussed earlier in this paper.

VIII. CONCLUSIONS

The formation of large scale structure in the Universe is
at present one of the most important areas where particle
physics meets cosmology. In particular, important contri-
butions to structure formation may come from phase tran-
sitions, especially when the mass order parameter is so
small that the characteristic scale 1=m corresponds to the
range of scales relevant for cosmological observations. It is
also possible that the mass of the order parameters lies in
the electroweak range, but the phase transition could be
seen via its indirect effects. This is the case for the tran-
sition associated to supersymmetry breaking.
In the present work, using numerical and analytical

methods, we studied the physics of the domain walls that
appear during such phase transitions. In particular, we have
investigated domain-wall networks and their evolution, for

TABLE IV. Fit of the wall surface area as a function of the
conformal time �-�0, for runaway potentials, for the initial
mean values of the distribution of the upper panel of Fig. 9.

Curve �� ��

(a) �0:172 �31:45
(b) �0:33 �48:42
(c) �0:66 �242:10
(d) �0:659 �231:61

FIG. 9 (color online). Wall network evolution in runaway
potentials.
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two types of potential, and twoways of modeling the initial
conditions after the phase transition. One of the potentials
is the well-known double-well potential, and the second is
the exponential potential, characteristic of supersymmetry
breaking via gaugino condensation. In both cases, we
checked the evolution of domain walls as a function of
the parameters of the potential, in particular: (i) as a
function of the nondegeneracy of the available vacua and
(ii) as a function of a difference of probabilities of filling
these vacua. To this end, we have constructed a Cþþ
computing code, which we used to confirm earlier results
and to extend our considerations to the new cases.

The program has been optimized, and we have found a
theoretical estimate for the accuracy of the integration
procedure. The latter is constantly monitored in order to
enable the use of an adaptive time step that greatly in-
creases the speed of the code while maintaining high
sensitivity. Moreover, we investigated the role of the mod-
ifications of the equation of motion used to model the
evolution on the grid.

The simulations show compensation effects between the
nondegeneracy of the vacua and the asymmetry of the
probability distribution: These competing effects may can-
cel each other, resulting in the creation of slowly disap-
pearing metastable domain-wall networks, in very general
and physically interesting situations.

Extensions to other types of potentials, as well as a
detailed study of structure formation within this frame-
work, shall be addressed in a separate publication.
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APPENDIX A: DISCRETIZATION OF EQUATION
OF MOTION

In order to treat the equations of motion of the scalar
field and the domain-wall network numerically, we divide
the Universe into balls of radius ‘ much larger than H�1,
thus covering many Hubble horizons. We will then simu-
late the evolution of the network in a single ball of radius L.
The lattice site at the beginning of the simulation corre-
sponds to a single Hubble horizon. Moreover, we introduce
multitorus topology of the grid (namely, periodic boundary
conditions). To discretize the relevant equations, we use
the ‘‘staggered leapfrog’’ method for the second-order time
derivatives and the Crank-Nicholson scheme for spacelike
derivatives. This means that we have second-order accu-

racy in differentials with respect to time and space. The
discretized equations are as follows:

� ¼ 1

2
�
��

�

d lna

d ln�
;

ðr2�Þi;j;k � �i�1;j;k þ�iþ1;j;k þ�i;j�1;k þ�i;jþ1;k

þ�i;j;k�1 þ�i;j;kþ1 � 6�i;j;k;

_�nþð1=2Þ
i;j;k ¼

ð1� �Þ _�n�ð1=2Þ
i;j;k þ ��ðr2�n

i;j;k � a
 @V
@�n

i;j;k
Þ

1þ �
;

�nþ1
i;j;k ¼ �n

i;j;k þ �� _�nþð1=2Þ
i;j;k ; (A1)

where � ¼ �0 þm�� (in the above, upper indices denote
time steps and lower ones coordinates x, y and z). For
clarity

�n
i;j;k � �ð�0; x0; y0; z0Þ; _�nþð1=2Þ

i;j;k � @�

@�
ð�00; x0; y0; z0Þ;

@V

@�n
i;j;k

� @V

@�
ð�n

i;j;kÞ; x0 ¼ x0 þ i; y0 ¼ y0 þ j;

z0 ¼ z0 þ k; �0 ¼ �0 þ n��;

�00 ¼ �0 þ ðnþ 1
2Þ��:

Here, _� � @�
@� and x0 ¼ y0 ¼ z0 ¼ 0.

For the mean value and the dispersion of the field, we
have the following equations:

VOL ¼ Nx 	 Ny 	 Nz;

h�i ¼ X
i;j;k

�ði; j; kÞ
NxNyNz

¼
P

�

VOL
;

�2
� ¼ hð�� h�iÞ2i ¼ h�2i � h�i2;

��

h�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
�2

VOL � h�i2
r

h�i ; h�2i ¼
P

�ði; j; kÞ2
VOL

:

The kinetic energy is given by

Ekin ¼
P _�2

VOL
:

In all simulations we assume that the field was initially at
rest ð�0 ¼ 0Þ, while for the surface energy we have

A ¼
Z

~n 	 ~dA ¼ �A
X
links

��

j cosxj þ j cosyj þ j coszj
(A2)

¼ �A
X
links

��

jnxj þ jnyj þ jnzj (A3)
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¼ �A
X
links

jr�j
j @�@x j þ j @�@y j þ j @�@z j

; (A4)

�� ¼
�
1 if a link crosses a wall;
0 if it does not.

(A5)

Esurf ¼ �A, where � is the tension and A the surface. In
what follows, we take � ¼ 1 and

Esurf ¼ A

VOL
:

The kinetic energy of the walls is given by

Ekw ¼ X
links

1

2
½ _�ð ~xÞ2 þ _�ð ~xþ ~nÞ2�

(with _� computed at the position of the wall). To calculate
the volume of the vacuum, we normalize to the total
volume, namely, take the number of left vacua and right
vacua over the total number of vacua.

In our code, instead of looking for the extrema of the
potential analytically, we use numerical methods which are
simpler (particularly for runaway potentials):

dV

d�
ð�Þ ¼ Vð�þ �Þ � Vð�� �Þ

2�
;

and we take � ¼ 10�4. The accuracy is �2 d2V
d�2 .

APPENDIX B: TECHNICAL DISCUSSION ABOUT
OPTIMIZATION OF SIZE OF TIME STEP

The basic parameter that determines the accuracy of the
simulation is the time step, which must be small, so that the
discretized equation must well represent the continuous
one. However, the time step cannot be too small, because
there are many steps in the integration and numerical
mistakes accumulate (each step introduces an error).

We have seen that the field changes rapidly at the
beginning of the simulation, which is due to the random,
nonequilibium initialization and somewhat later by the fact
that domain walls get created rapidly and then interact very
often (since there are many of them). After some time, the
field changes at a slower rate, and its configuration be-
comes more regular and more stable. Consequently, we
should change at some point the time step of the simulation
(smaller one at the beginning, when the evolution is rapid,
and larger, at later times).

The change of the field depends on the time step, and on
the value of the time derivative in the next integration step

�� ¼ �� _�:

Now, let us look at the evolution of the time derivative. The
change of the time derivative over the time �� is

� _� � _�� ð1� �Þ _�þ ��ðr2�� a
 @V
@�Þ

1þ �
;

which gives

� _� ¼ 1

1þ �
½�2� _�þ��ðr2�� a
V0Þ�:

The parameter � is given by

� ¼ 1

2
�
��

�

d lna

d ln�
:

Since �� 2, and d lna
d ln� � 1;

�� ��

�
; so

1

1þ �
� 1� ��

�
:

Substituting, we get

� _�� ��

�
�2

_�

�
þr2�� a
V0

��
1���

�

�
:

The expression in the square brackets can be estimated
from above, by its largest value, taken anywhere in the
lattice:

j� _�j � ��

��2j _�jmax

�
þ jr2�jmax þ ja
V 0jmax

�
: (B1)

Now, we can follow several strategies:
(i) demand that the change to the field is as small as

possible

��

�
� 1;

(ii) demand that the average change of the field on the
whole lattice should be smaller than 1�

��

�

	
� 1;

(iii) request that the maximal change of the field with
respect to the wall width is much smaller than 1

��

w0

� 1:

In our simulation, we have followed the last path, and
thus

��

w0

� �;

where � is the requested accuracy. From this inequality, it
turns out that

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�w0

�2j _�jmax

� þ jr2�jmax þ ja
V 0jmax

vuut :

This is the estimated optimal time step.
To fix the optimal accuracy, we have performed several

simulations, looking for the change of the results with
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respect to changes of �. We used a 2D lattice with a size of
248� 248, for w0 ¼ 356. We also made a simulation on a
larger lattice, 3072� 3072, to understand the dependence
on the lattice size. The results appear in Table V below.

It turns out that the kinetic energy, mean value of field
and dispersion of the field are not sensitive to the time step;
however, the surface energy, surface of walls and volume
of different vacua are much more dependent on it (in fact,
the most sensitive statistical observable is the ratio of the
surface of the walls over the volume of the subdominant
vacuum—namely, the rate of change of the volume of the
walls).

In the simulations described so far in the literature, there
is no analysis of the accuracy of the results, and the time
step is usually not given. Instead, large series of simula-
tions are performed and the results are averaged. However,
it may be that the numerical noise is being averaged as
well. The new element arising from our simulation is that,
with an appropriately chosen time step, the plots of the
parameters are similar for different runs, which makes
them more reliable.

In our procedure, we first chose the optimal time step for
a given accuracy �, and then we make a small series of
simulations (requiring among others less computing
power).

The size of the lattice we use is large, about 4 million
horizons, and thus, with the optimal time step, the observ-
ables are computed very precisely. The point of time when
the graphs stop being smooth (have discontinuities) is
interpreted as the point where the accuracy is lost. From
then onwards, the predictions for the observables can be
treated only qualitatively. After careful analysis, we have
fixed � to be 10�4 which gives us the time step in the range
0.005 and 0.02.

APPENDIX C: SIZE OF THE LATTICE

Representing the field on a large lattice requires a lot of
memory. A single simulation in 2D on a lattice of 2048�

2048 with � ¼ 10�4 requires more than 10 hours of com-
puting time to reach �stop � 100.

The resolution � (precision) that we previously dis-
cussed is the smallest visible relative change of the field
statistics—we estimated this by looking at the plots of
surface energy of the walls comparing them to the simu-
lation performed on the largest possible lattice. The results
are given in Table VI, for 2D and 3D.
We have found that the logarithm of the resolution � is

linear in the lattice size, and the best fit for 2D is given by

log 10� ¼ �3:237� 1:88� 103 � n3=2x ;

�� 10�3:237 � 10�ðn3=2x =1526Þ:

For 3D the logarithm of the resolution is proportional to
the power of n:

log 10� ¼ �3–6:55� 10�4 � nx;

�� 10�3 � 10�ðnx=1526Þ:

In our simulation, we need these formulas to judge when
the number of domain walls is too small to trust the
numerical results. Technically, because we are using peri-
odic boundary conditions, after a finite time (which is of
the order of the lattice size over the velocity of the wall), a
wall that leaves the horizon could return, since it comes to
the lattice from the other side. This sets the limit of the
simulations. Thus, looking at the simulations, we can see
that the average velocity of the walls is 0.5, which means
that the return time is approximately twice the lattice size.
Thus, this is the absolute upper limit on the useful range of
�’s.
We have verified that for the lattices we have used, the

role of the periodic boundary conditions is negligible.

APPENDIX D: MONITORING OF THE POSITION
OF THE MINIMA OF DIFFERENT POTENTIALS

The position of the extrema of the potential is monitored
both analytically and numerically.

1. Double-well potential

For the potential

Vð�Þ ! Vð�Þ � �V0�

with

Vð�Þ ¼ V0

��
�

�0

�
2 � 1

�
2
;

TABLE V. ð��Þmin versus �.

� 10�1 10�2 10�3 10�4 10�5 10�6

ð��Þmin 1:85� 10�1 5:89� 10�2 1:79� 10�2 5:72� 10�3 1:85� 10�3 5:87� 10�4

ð��Þmax 6:16� 10�1 2:03� 10�1 6:41� 10�2 2:02� 10�2 6:45� 10�3 2:09� 10�3

TABLE VI. Resolution versus lattice size in 2D (upper panel)
and in 3D simulations.

nx 786 1024 1536 2048 3072 4096

� 10�3 2� 10�4 10�4 5� 10�5 1� 10�5 2� 10�6

nx 80 100 128 160 200 256

� 7� 10�5 4� 10�5 10�5 5� 10�5 2:5� 10�6 6:2� 10�7
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the Taylor expansion of the potential is

Vð�Þ ¼ V0 þ 1

2

�
V0

v2

�
�2 þ 1

4!

�
V0

v4

�
�4 þ 	 	 	 :

For a small nondegeneracy parameter � we can easily
find the position for the extrema of the potential (maxi-
mum)

� ¼ � 1

4�2
0

�� 1

64�8
0

�3 � 3

1024�1
04

�5 � 3

4096�2
00

�7 . . .

(minimum)

� ¼ ��0 þ 1

8�2
0

�� 1

128�5
0

�2 þ 1

128�8
0

�3

� 105

32 768�11
0

�4 þ 3

2048�14
0

�5 � 3003

4 194 304�17
0

�6

þ 3

8192�20
0

�7 . . . ;

� ¼ �0 þ 1

8�2
0

�þ 1

128�5
0

�2 þ 1

128�8
0

�3

þ 105

32 768�11
0

�4 þ 3

2048�14
0

�5 þ 3003

4 194 304�17
0

�6

þ 3

8192�20
0

�7 . . . :

The important thing is the position of the maximum,
which we use as the border between the left and right
vacuums. One can always find numerically the position

of the extrema, via the Newton-Raphson method: xiþ1 ¼
xi � fðxiÞ

f0ðxiÞ .

2. Runaway potential

For

VðsÞ ¼ 1

2s
ðAð2sþ N1Þe�ðs=N1Þ � Bð2sþ N2Þe�ðs=N2ÞÞ2

(where s is canonically normalized), we find the extrema as
follows:

dV

ds
¼ � 1

2N1N2s
2
e�2ðsðN1þN2Þ=N1N2Þ½Að2sþ N1Þes=N2

� Bð2sþ N2Þes=N1�½AN2ðN2
1 þ 4s2Þes=N2

� BN1ðN2
2 þ 4s2Þes=N1�:

Here, we have two brackets and either the first or the
second vanishes. This gives the following conditions:

esðN1�N2=N1N2Þ ¼ BðN2 þ 2sÞ
AðN1 þ 2sÞ ;

esðN1�N2=N1N2Þ ¼ BN1ðN2
2 þ 4s2Þ

AN2ðN2
1 þ 4s2Þ :

These two conditions are nonlinear and cannot be solved
algebraically, but can be solved iteratively, step by step:

sðiþ1Þ ¼ N1N2

N1 � N2

ln

�
BðN2 þ 2sðiÞÞ
AðN1 þ 2sðiÞÞ

�
;

sðiþ1Þ ¼ N1N2

N1 � N2

ln

�BN1ðN2
2 þ 4s2ðiÞÞ

AN2ðN2
1 þ 4s2ðiÞÞ

�
;

sð0Þ ¼ N1N2

N1 � N2

:

To remove the degeneracy of the vacua, we add a term
that looks like � �

s2
.
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