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Effects of vacuum polarization by hadronic and heavy-fermion insertions were the last unknown

two-loop QED corrections to high-energy Bhabha scattering and have been announced in [S. Actis,

M. Czakon, J. Gluza, and T. Riemann, Phys. Rev. Lett. 100, 131602 (2008).]. Here we describe the

corrections in detail and explore their numerical influence. The hadronic contributions to the virtualOð�2Þ
QED corrections to the Bhabha-scattering cross section are evaluated using dispersion relations and

computing the convolution of hadronic data with perturbatively calculated kernel functions. The technique

of dispersion integrals is also employed to derive the virtual Oð�2Þ corrections generated by muon-, tau-,

and top-quark loops in the small electron-mass limit for arbitrary values of the internal-fermion masses. At

a meson factory with 1 GeV center-of-mass energy the complete effect of hadronic and heavy-fermion

corrections amounts to less than 0.5 per mille and reaches, at 10 GeV, up to about 2 per mille. At the Z

resonance it amounts to 2.3 per mille at 3 degrees; overall, hadronic corrections are less than 4 per mille.

For ILC energies (500 GeVor above), the combined effect of hadrons and heavy fermions becomes 6 per

mille at 3 degrees; hadrons contribute less than 20 per mille in the whole angular region.

DOI: 10.1103/PhysRevD.78.085019 PACS numbers: 11.15.Bt, 12.20.Ds

I. INTRODUCTION

Elastic eþe� scattering, or Bhabha scattering,

e�ðp1Þ þ eþðp2Þ ! e�ðp3Þ þ eþðp4Þ; (1)

was one of the first scattering processes that were observed
and predicted in quantum mechanics [1]. It has a unique
and clean experimental signature. The accuracy of theo-
retical predictions profits from its purely leptonic external
particle content and from the extremely small electron
mass. The first complete one-loop prediction in the stan-
dard model was [2], the first Oð�Þ predictions in the
standard model with account of hard bremsstrahlung
were determined in [3–8], the effects from hadronic vac-
uum polarization were first studied in [9], and the leading
NNLO corrections from the top quark in [10]. The com-
plete electroweak two-loop corrections are available in
form of few form factors [11,12], but they are not imple-
mented for Bhabha scattering so far. During the years, a
rich literature on the subject arose, both concerning QED
Monte Carlo results and virtual electroweak corrections;
see [13–86], and also the references therein.

Quite recently, an experimental precision at the per mille
level or beyond seems feasible both at meson factories and
in the ILC (and GigaZ) project [87–92]. As a reaction to
that, a program of systematic evaluation of the complete

next-to-next-to leading order (NNLO) contributions was
emerging [93–118].
In this article, we extensively describe the evaluation of

the last building block of QED two-loop corrections,
namely, the corrections from heavy fermions and hadronic
vacuum polarization. Note that the latter result has been
confirmed very recently in [119] (upon using the same
parametrization of the vacuum polarization, the agreement
between the two studies is perfect, 5 digits for the Oð�4Þ
NNLO terms). Both for reasons of completeness and in
order to ensure easy comparisons, we will also include in
the discussion the Nf ¼ 1 corrections which consist of

purely photonic corrections and electron-loop insertions,
the soft bremsstrahlung and soft electron pair emission
corrections. Concerning genuine two-loop effects, we
take the results from the original computations of [100]
(electron-loop corrections) and [104] (photonic corrections
beyond logarithmic accuracy); soft electron pair emission
is taken from the work of [44] (with logarithmic accuracy).
All the two-loop contributions are calculated in our nu-
merical Fortran package BHBHNNLOHF.F and will be made
available at the webpage [120].
The organization of the paper is as follows. In Sec. II we

introduce notations and the Born cross section. Section III
collects the known facts on pure vacuum-polarization cor-
rections as they will be used, and Sec. IV the pure self-
energy corrections to the cross section. Section V contains
the irreducible vertex corrections and Sec. VI the various
infrared divergent corrections, including reducible correc-
tions, soft-photon emission and the most complicated ones
from the irreducible two-loop box diagrams. The three
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kernel functions for the latter have been evaluated for the
first time. Section VII contains a discussion of numerical
effects at a variety of energies, typical of meson factories,
LEP, ILC. In the summary we will also point to potential
further research. Appendices A to F are devoted to techni-
cal details of fermionic vacuum polarization, one-loop
master integrals, soft real bremsstrahlung, real pair emis-
sion, the evaluation of the hadronic cross-section ratio
Rhad, and on our evaluation of complex polylogarithms.
Some Mathematica files of potential public interest and the
Fortran package are available at the webpage [120].

II. THE BORN CROSS SECTION

The QED tree-level differential Bhabha-scattering cross
section with respect to the solid angle �, in the kinematic
region m2

e � s, jtj, juj, is:
d�0

d�
¼ �2

2s

�
v1ðs; tÞ

s2
þ 2

v2ðs; tÞ
st

þ v1ðt; sÞ
t2

�

¼ �2

s

�
s

t
þ 1þ t

s

�
2
: (2)

Here, � is the fine-structure constant [121],

� ¼ 1=137:035 999 679ð94Þ; (3)

and

v1ðx; yÞ ¼ x2 þ 2y2 þ 2xy; (4)

v2ðx; yÞ ¼ ðxþ yÞ2: (5)

The cross section depends on the Mandelstam invariants s,
t and u, which are related to E, the incoming-particle
energy in the center-of-mass frame, and �, the scattering
angle:

s ¼ ðp1 þ p2Þ2 ¼ 4E2;

t ¼ ðp1 � p3Þ2 ¼ �4E2sin2
�
�

2

�
;

u ¼ ðp1 � p4Þ2 ¼ �4E2cos2
�
�

2

�
;

(6)

where

sþ tþ u ¼ 0: (7)

For the numerical estimates at higher energies, it is
reasonable to normalize the higher order corrections to
the complete electroweak effective Born cross section:

d�ew

d�
¼ �2

4s
ðTs þ Tst þ TtÞ; (8)

with

Ts ¼ ð1þ cos2�Þ½1þ 2Re�ðsÞðv2Þ þ j�ðsÞj2ð1þ v2Þ2�
þ 2 cos�½2Re�ðsÞ þ j�ðsÞj2ð4v2Þ�; (9)

Tst ¼ �2
ð1þ cos�Þ2
ð1� cos�Þ f1þ ½�ðtÞ þ Re�ðsÞ�ð1þ v2Þ

þ �ðtÞRe�ðsÞ½ð1þ v2Þ2 þ 4v2�g; (10)

Tt ¼ 2
ð1þ cos�Þ2
ð1� cos�Þ2 f1þ 2�ðtÞð1þ v2Þ

þ �ðtÞ2½ð1þ v2Þ2 þ 4v2�g
þ 8

ð1� cos�Þ2 ½1� �ðtÞð1� v2Þ�2: (11)

We choose the following conventions:

v ¼ 1� 4s2w; (12)

�ðsÞ ¼ GFffiffiffi
2

p M2
Z

8��

s

s�M2
Z þ iMZ�Z

; (13)

�ðtÞ ¼ GFffiffiffi
2

p M2
Z

8��

t

t�M2
Z

: (14)

Among the quantities �, GF, s
2
w, MZ there are only three

independent, and �Z is predicted by the theory as well. The
phrasing effective Born cross section means here that we
use, besides � [introduced in (3)], the following input
variables:

s2w ¼ 0:23; (15)

MZ ¼ 91:188 GeV; (16)

�Z ¼ 2:495 GeV; (17)

GF ¼ 1:166 37� 10�5 GeV�2: (18)

The values are, in a strict sense, related in the standard
model, and may be determined e.g. by using the package
ZFITTER [62,81]. Here, we took them from [121].

We may now estimate the relevance of the Z-boson
exchange to Bhabha scattering in different kinematic re-
gions of interest. It is minor at smallest energies where s,
jtj � M2

Z, because there �ðxÞ � x=M2
Z � 1, x ¼ s, t. The

strength of the Z exchange amplitude, relative to the pho-
ton exchange, becomes at large s, jtj asymptotically:

GFffiffiffi
2

p M2
Z

8��
¼ 0:3739: (19)

The other scale of relevance here is the ratio of photon
propagators in the s- and t-channels:

s

t
¼ � 2

1� cos�
: (20)

In fact, at meson factory energies, the electroweak Born
cross section agrees with the QED prediction within few
per mille, and at LEP2 or the ILC within better than 50%,
while at LEP1 or at GigaZ the ratio may become bigger
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than 25; this happens of course only for large scattering
angles. At small angles, the corrections may safely be
normalized to the QED Born cross section everywhere.
The gross features are illustrated in Fig. 1 for large and
small angle Bhabha scattering. For large angles, we show
the cross-section ratio separately for LEP1/GigaZ and the
ILC in Fig. 2. We conclude that only for large angles at
LEP 1 energies it is better to relate the corrections from
higher order contributions to the weak Born prediction,
while for all other kinematics one may use the simple QED
Born cross section.

III. THE VACUUM POLARIZATION

Higher-order fermionic corrections to the Bhabha-
scattering cross section can be obtained inserting the re-
normalized irreducible photon vacuum-polarization func-
tion, �, in the appropriate virtual-photon propagator,

g��

q2 þ i�
! g��

q2 þ i�
ðq2g�	 � q�q	Þ�ðq2Þ g	�

q2 þ i�
:

(21)

Here q is the momentum carried by the virtual photon, � !
0þ. The vacuum polarization � can be represented by the
once-subtracted dispersion integral [122]:

�ðq2Þ ¼ �q2

�

Z 1

4M2
dz

Im�ðzÞ
z

1

q2 � zþ i�
; (22)

where the appropriate production threshold for the inter-
mediate state in � is located at q2 ¼ 4M2. We leave as
understood the subtraction at q2 ¼ 0 for the renormalized
photon self-energy.
Contributions to � arising from leptons and the top

quark can be computed directly in perturbation theory,
setting M ¼ mf in Eq. (22), where mf is the mass of the

fermion appearing in the loop, and inserting the imaginary
part of the analytic result for �.
We have at one-loop accuracy:

Im�fðzÞ ¼ �
�
�

�

�
F


�
m2

e

m2
f

�


Q2

fCf�ðz� 4m2
fÞ
�

3

�
�
	fðzÞ
2

½3� 	2
fðzÞ� þ 
	fðzÞ

�
3þ 3

2
L	f

ðzÞ

� 4

3
	2

fðzÞ �
	2

fðzÞ
2

L	f
ðzÞ

��
þOð�2Þ; (23)

where Qf is the electric charge, Qf ¼ �1 for leptons,

Qf ¼ 2=3 for up-type quarks and Qf ¼ �1=3 for down-

type quarks, and Cf is the color factor, Cf ¼ 1 for leptons
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FIG. 1 (color online). Ratio of electroweak to QED Bhabha
scattering cross section at large angles (up) and small angles
(down) as a function of
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FIG. 2 (color online). Ratio of electroweak to QED Bhabha
scattering cross section at large angles in the energy ranges of
LEP1/GigaZ (up) and ILC (down).
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and Cf ¼ 3 for quarks. In addition, we have introduced the

� function, �ðxÞ ¼ 1 for x � 0 and �ðxÞ ¼ 0 for x < 0, and
the threshold factor,

	fðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

m2
f

z

s
; (24)

L	f
ðzÞ ¼ ln

�1� 	2
fðzÞ

4	2
fðzÞ

�
: (25)

The overall regularization-dependent factor reads as

F
 ¼
�
m2

e�e
�E

�2

��

; (26)

where � is the ’t Hooft mass unit and �E is the Euler-
Mascheroni constant.

The inclusion of the Oð
Þ terms in Eq. (23) deserves a
comment. These terms might play a role when combining
Im�f with a pole term of another one-loop insertion in a

reducible two-loop Feynman diagram. The Bhabha-
scattering cross section we are going to consider is an
infrared-finite quantity, provided one takes into account
the real emission of soft photons. Therefore, when sum-
ming up all contributions, the result does not show any pole
in the 
 plane and all radiative corrections, including the
one-loop photon self-energy, can be evaluated at Oð
0Þ.
However, we retain the higher 
 order in Eq. (23) for
comparing partial results with those of [113].

In contrast to leptons and the top quark, light-quark
contributions get modified by low-energy strong-
interaction effects, which cannot be computed using per-
turbative QCD. However, these contributions can be eval-
uated using the optical theorem [123]. After relating
Im�had to the hadronic cross-section ratio Rhad [122],

Im�hadðzÞ ¼ ��

3
RhadðzÞ; (27)

RhadðzÞ ¼ �ðfeþe� ! �? ! hadronsg; zÞ
ð4��2Þð3zÞ ; (28)

Im�had can be obtained from the experimental data for
Rhad in the low-energy region and around hadronic reso-
nances, and the perturbative-QCD prediction in the re-
maining regions. The lower integration boundary is given
by M ¼ m�, where m� is the pion mass. For self-energy
corrections to Bhabha scattering at one-loop order this was
first employed in [13]. Two-loop applications, similar to
our study, are the evaluation of the hadronic vertex correc-
tion [124] and of two-loop hadronic corrections to the
lifetime of the muon [125]. The latter study faces quite
similar technical problems to those met here, like the
infrared divergency of single contributions and the exis-
tence of several scales.
For the fermionic and hadronic corrections to Bhabha

scattering at one-loop accuracy, there is only the self-
energy diagram shown in Fig. 3(c). The two-loop irreduc-
ible self-energy contributions have the topology shown in
Fig. 3(c). One has additionally the four classes of two-loop
diagrams shown in Fig. 4 The reducible self-energy [Fig. 4
(a)] and vertex [Fig. 4(b)] topologies are much easier to
evaluate than the irreducible vertex [Fig. 4(c)] and box
[Fig. 4(d)] topologies. In fact, only the two-loop boxes
were unknown until quite recently.
The two-loop corrections have to be added with the

loop-by-loop contributions (the interferences of the top-
ologies of Fig. 3) and with the soft-photon corrections. All
these terms will be discussed in the following sections.
To summarize this section, the hadronic and heavy-

fermion corrections to the Bhabha-scattering cross section
can be obtained by replacing appropriately the photon

(a () b () c)

FIG. 3. The one-loop topologies for Bhabha scattering. The gray circle in (c) denotes the vacuum polarization under consideration,
which may be understood to include fermionic and hadronic one- and two-loop irreducible self-energy corrections.

(a) (b) (c) (d)

FIG. 4. Two-loop topologies for Bhabha scattering with vacuum polarization insertions: reducible self-energy (a) and vertex (b)
corrections as well as irreducible vertex (c) and box (d) corrections; for the irreducible self-energy corrections see Fig. 3(c).
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propagator by a massive propagator, whose effective mass
z is subsequently integrated over. Inserting (22) and (27) in
(21) we get:

g��

q2 þ i�
! �

3�

Z 1

4M2
dz

RðzÞ
z

1

q2 � zþ i�

�
g�� �

q�q�

q2 þ i�

�
:

(29)

In the following, we will call the massive propagator
function in (29) the self-energy kernel function:

KSEðq2; zÞ ¼ 1

q2 � zþ i�
: (30)

The weight function RðzÞ is given by the sum of the non-
perturbative light-quark component of Eq. (28) and the
perturbative result of Eq. (23), valid for leptons, f ¼ e,
�, �, and the top quark, f ¼ t:

RðzÞ ¼ Rð5Þ
hadðzÞ �

3

�

X
f¼e;�;�;t

Im�fðzÞ

¼ Rð5Þ
hadðzÞ þ

X
f¼e;�;�;t

Rfðz;mfÞ; (31)

Rfðz;mfÞ ¼ Q2
fCf

�
1þ 2

m2
f

z

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

m2
f

z

s
: (32)

Compared to (23), we omit here the terms of order Oð
Þ.
The function Rð5Þ

hadðzÞ will be discussed in Appendix E.

Corrections related to electron insertions (f ¼ e) will be
discussed separately. For pure self-energy insertions (see
Appendix A), we may consider the electron mass as being
small and neglect terms of order Oðm2

e=xÞ, x ¼ s, jtj, juj.
At the expense of that, even the three-loop corrections are
known [126]. For two-loop irreducible vertex and box
corrections, we may either consider me being finite and
treat a two-scale problem (s=m2

e, t=m
2
e), or we may assume

also here m2
e � s, jtj, juj. Instead, for the diagrams with

self-energy insertions of other fermions f, we will assume

m2
e � m2

f, s, jtj, juj, but we will make no additional

assumption on m2
f.

IV. PURE SELF-ENERGY CORRECTIONS

The pure vacuum-polarization contributions to Bhabha
scattering form a gauge-invariant subset of diagrams. So,
their numerics may be discussed separately. They can be
readily obtained from the tree-level result (2) by introduc-
ing appropriately a running fine-structure constant �ðxÞ,
where x ¼ s, t,

d��run

d�
¼ 1

2s

�
j�ðsÞj2 v1ðs; tÞ

s2
þ 2�ðtÞRe�ðsÞv2ðs; tÞ

st

þ �2ðtÞv1ðt; sÞ
t2

�
þOðm2

eÞ; (33)

and where the running of � is defined as

�ðxÞ ¼ �

1� ��ðxÞ : (34)

Here �� is given by the sum of the nonperturbative light-

quark contribution ��ð5Þ
had [127] (see Refs. [128–130] and

references therein for recent developments), a perturbative
electron-loop component evaluated in the small electron-
mass limit,�e, and a fermion-loop term computed exactly,
�f, with f ¼ �, �, t,

��ðxÞ ¼ ��ð5Þ
hadðxÞ þ�eðxÞ þ

X
f¼�;�;t

�fðxÞ; (35)

��ð5Þ
hadðxÞ ¼

�

�

x

3

Z 1

4m2
�

dz
Rð5Þ
hadðzÞ
z

KSEðx; zÞ; (36)

with the self-energy kernel function KSEðx; zÞ (30).
For x < 4m2

�, Eq. (36) is well defined. For x > 4m2
�, the

real and imaginary parts are after a subtraction:

TABLE I. Contributions to�� in units of 10�4 in the s-channel [see Eq. (35)]. The real part of the hadronic contributions is obtained
with help of the subroutine hadr5.f [132], the imaginary part follows from the Burkhardt parametrization [133].ffiffiffi
s

p
[GeV] 1 10 MZ 500

1 loop e 104.462–24.3245i 140.119–24.3245i 174.347–24.3245i 200.698–24.3245i

� 21.352–24.3060i 57.551–24.3245i 91.784–24.3245i 118.136–24.3245i

� �0:508 12.194–24.1724i 48.060–24.3245i 74.429–24.3245i

t <10�3 �0:007 �0:595 �5:180–29:0633i
2 loops e 0.258–0.0424i 0.320–0.0424i 0.380–0.0424i 0.426–0.0424i

� 0.123–0.0487i 0.177–0.0424i 0.236–0.0424i 0.282–0.0424i

� �0:005 0.118–0.0626i 0.160–0.0426i 0.206–0.0424i

t <10�3 <10�3 �0:002 0.061–0.0876i

3 loops e 0.001–0.0005i 0.002–0.0006i 0.003–0.0008i 0.004–0.0009i

hadrons �74:420–37:9089i 138.850–97.4106i 276.213–97.2980i 370.744–97.2980i

SUM 51.263–86.6310i 349.324–170.3800i 590.586–170.3997i 759.806–199.5505i
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Re ½��ð5Þ
hadðxÞ� ¼

�

�

x

3

Z 1

4m2
�

dz
½Rð5Þ

hadðzÞ � Rð5Þ
hadðxÞ�

zðx� zÞ
þ �

3�
Rð5Þ
hadðxÞ log

�
x

4m2
�

� 1

�
; (37)

Im ½��ð5Þ
hadðxÞ� ¼ ��

3
Rð5Þ
hadðxÞ: (38)

The Im½��ð5Þ
hadðxÞ� coincides with Eq. (27). Expressions for

the perturbative contributions to the photon vacuum-
polarization function, �f and �e, are available in QED

exactly up to two loops [131] and in the small electron-
mass limit up to three loops [126]. For convenience, their
explicit expressions are collected in Appendix A. For our
analysis, we use the exact results of Eqs. (A3) and (A4) for

fermion loops (f � e), and the high-energy expressions of
Eqs. (A8)–(A10) for electron loops.
In Tables I and II we show numerical values for the

various components of �� of Eq. (35) for spacelike and
timelike values of x (t- and s-channel). Note that ��
develops an imaginary part in the s-channel above the
two-particle production threshold (see Table I). Besides
the Fortran package HADR5.F for hadronic contributions
[132], we employed the Mathematica package HPL

[134,135] and, as a cross check, our Fortran routines (see
Appendices A and F).

V. IRREDUCIBLE VERTEX CORRECTIONS

Hadronic and heavy-fermion irreducible vertex correc-
tions are obtained through the interference of the diagrams
of Fig. 5 with the tree-level amplitude. The contributions

TABLE II. Contributions to �� in units of 10�4 in the t-channel for three values of the
scattering angle, � ¼ 3�, � ¼ 20� and � ¼ 90�, t ¼ �ssin2ð�=2Þ. See the caption of Table I for
further details.

�½��j ffiffiffi
s

p
[GeV] � ¼ 20j1 � ¼ 20j1 � ¼ 3jMZ � ¼ 3j500

1 loop e 77.3512 113.008 117.935 144.286

� 3.3069 30.614 35.463 61.727

� 0.0148 1.346 2.365 18.804

t <10�4 <10�3 <10�3 0.012

2 loops e 0.2109 0.273 0.282 0.327

� 0.0260 0.126 0.136 0.184

� 0.0001 0.011 0.019 0.097

t <10�4 <10�3 <10�3 <10�3

3 loops e 0.0006 0.001 0.001 0.002

hadrons 2.6072 57.830 71.643 162.280

SUM 83.5177 203.209 227.844 387.719

� ¼ 90�j ffiffiffi
s

p
[GeV] 1 10 MZ 500

1 loop e 99.0951 134.752 168.980 195.331

� 17.4725 52.200 86.418 112.769

� 0.2412 10.841 42.746 69.064

t <10�4 0.003 0.284 6.208

2 loops e 0.2487 0.311 0.370 0.416

� 0.0924 0.167 0.227 0.273

� 0.0021 0.068 0.150 0.196

t <10�4 <10�3 0.001 0.021

3 loops e 0.0009 0.002 0.003 0.003

hadrons 25.0834 127.219 256.279 362.375

SUM 142.2363 492.396 555.458 746.656

FIG. 5. Hadronic and fermionic irreducible vertex diagrams. The gray circles mark the corresponding one-loop insertions.
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from the irreducible vertices are gauge invariant by them-
selves. Their contribution to the Oð�2Þ differential cross
section is given by

d�vert

d�
¼ 4

�
�

�

�
2
�
�2

2s

��
v1ðs; tÞ
s2

ReV2ðsÞ þ v1ðt; sÞ
t2

V2ðtÞ

þ v2ðs; tÞ
st

½ReV2ðsÞ þ V2ðtÞ�
�
þOðm2

eÞ: (39)

Here V2 summarizes all two-loop fermionic corrections to
the QED Dirac form factor, whose computation can be
traced back to the seminal work of Refs. [136,137]. The
full result can be organized as

V2ðxÞ ¼ V2eðxÞ þ V2restðxÞ; (40)

where V2e denotes the electron-loop component. Closed
analytical expressions in the case of electron loops at finite
me can be found in Ref. [97]. In the high-energy limit,
compact expressions are available thanks to Ref. [138]:

V2eðxÞ ¼ 1

36
ln3

�
�m2

e

x

�
þ 19

72
ln2

�
�m2

e

x

�

þ 1

6

�
265

36
þ 2

�
ln

�
�m2

e

x

�
þ 1

4

�
383

27
� 2

�
þOðm2

eÞ: (41)

After a combination with soft real electron pair emission
contributions (D1), the leading logarithmic contributions
ln3ðs=m2

eÞ get canceled in (39).
Heavy-fermion and hadronic contributions, instead, can

be evaluated as in Ref. [124] through the dispersion inte-
gral

V2restðxÞ ¼
Z 1

4M2
dz

RðzÞ
z

KVðxþ i�; zÞ; (42)

where R is given in Eq. (31) and the two-loop irreducible
vertex kernel function KV , in the limit of a vanishing
electron mass, reads as

KVðx; zÞ ¼ 1

3

�
� 7

8
� z

2x
þ

�
3

4
þ z

2x

�
ln

�
� x

z

�

� 1

2

�
1þ z

x

�
2
�
2 � Li2

�
1þ x

z

���
: (43)

Here Li2ðxÞ is the usual dilogarithm and 2 ¼ Li2ð1Þ ¼
�26. The kernel is at the upper integration boundary of the
order Oð1=zÞ, the integrand of order Oð1=z2Þ so that the
dispersion integral is finite there:

KVðx; zÞ � 1
3f1136u� 1

6u lnð�uÞ þ ð� 13
288 þ 1

24 lnð�uÞÞu2

þ ð 47
3600 � 1

60 lnð�uÞÞu3g for u ¼ x

z
! 0: (44)

At the lower integration bound, the integrand becomes for
small z=x:

KVðx; zÞ � 1

3

�
� 7

8
� ð2Þ þ 3

4
lnð�uÞ � 1

4
ln2ð�uÞ

�
�
1þ 2ð2Þ þ 1

2
ln2ð�uÞ

�
1

u

�
for u ¼ x

z
! 1: (45)

This asymptotic behavior yields at most terms of the order
of ln3ðx=M2Þ if M2 � x.
An interesting question is the identification of mass

logarithms in case of fermion insertions. Let us rewrite:

V2restðxÞ ¼ Vð5Þ
2hadðxÞ þ

X
f¼�;�;t

Q2
fCfV2fðxÞ; (46)

where Vð5Þ
2had denotes the nonperturbative light-quark term

and V2f the perturbative contribution of a fermion of flavor

f � e. Potentially large logarithms arise from parts of the
integrand for the z integration which are singular at the
lower integration bound, z ! 4M2, when allowing thereby
M2 to become small. For fermions, one has to analyze
RfðzÞKVðx; zÞ=z in that limit.

The corresponding analytical integrations may be per-
formed easily after applying the transformation

z ¼ 4m2
f

1� u2
; (47)

thereby getting rid of the square root function in RfðzÞ:
RfðzÞ ¼ CfQ

2
f

u

2
ð3� u2Þ: (48)

After that transformation, the dispersion integral becomes:

V2fðxÞ ¼
Z 1

0
du

�
�2þ u2 þ 1

1� u
þ 1

1þ u

�

� KV

�
xþ i�;

4m2
f

1� u2

�
: (49)

From the vertex kernel function KVðx; zÞ, we have addi-
tionally dependences on lnð�x=zÞ and on Li2ð1þ x=zÞ.
Although after the variable change (47) the arguments of
logarithm and dilogarithm become nonlinear, all the inte-
grals may be taken trivially, and we will not go into further
details. The result contains Li3 and powers of logarithms
lnnðx=m2

fÞ with n 	 3. In fact, one will rediscover in the

kinematically interesting ultrarelativistic case the formula
known from [138] and e.g. also from [113]:

V2fðxÞ ¼ 1

36
ln3

�
�m2

f

x

�
þ 19

72
ln2

�
�m2

f

x

�

þ 1

6

�
265

36
þ 2

�
ln

�
�m2

f

x

�

þ 1

6

�
3355

216
þ 19

6
2 � 23

�
þOðm2

fÞ: (50)

The same soft- real pair cancellation mechanism as de-
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scribed for electrons works also for heavy fermions, and
the leading logarithmic powers ln3ðs=m2

fÞwill get canceled
in the cross section. This is of physical relevance if the soft
pair emissions remain unobserved. In our numerical stud-
ies, we will, conventionally, include the soft electron pair
emission cross section, but not that for heavy fermions or
hadrons. For further details see Section D, and some nu-
merical results were presented in [139], where we used the
parametrization [133] with flag setting IPAR ¼ 1.

We just mention that the transformation (47), when
applied to the simple one-loop self-energy kernel (30),

KSEðx; zÞ ¼ 1

x� z
¼ 1

x

�
1þ 4m2

f=x

1� u2 � 4m2
f=x

�
; (51)

gives a rational integrand for the u-integration, and one
gets as a result a function at most linear in lnðs=m2

fÞ. For
the explicit expressions see Eqs. (A3) (constant term in 
)
and (A8).

VI. INFRARED-DIVERGENT CORRECTIONS

There are various origins of heavy-fermion or hadronic
infrared divergent cross-section contributions of order
Oð�4Þ:

(i) Factorizable diagrams with one-loop vertex or box
insertions

(ii) Irreducible two-loop box diagrams
(iii) soft real photon corrections

The sum of these corrections is gauge-invariant and infra-
red finite.

We will consider five classes of contributions:
(a) Interference of Born diagrams with reducible

[vertex+self-energy] corrections of Fig. 6;
(b) Interference of one-loop vertex and self-energy dia-

grams, both of Fig. 3;
(c) Interference of one-loop box and self-energy dia-

grams, both of Fig. 3;
(d) Interference of real soft-photon emission diagrams,

one of them with a self-energy insertion;

(box) Interference of Born diagrams with two-loop box
diagrams of Fig. 7.
For ease of notation, in the following we collect the

overall dependence on � and rewrite the factorizing con-
tributions of class i, i ¼ a; . . . ; d:

d�i
fact

d�
¼

�
�

�

�
2 �2

s

d ��i
fact

d�
; (52)

and analogously for the two-loop boxes. In addition, we
define

ŝ ¼ s

m2
e

; (53)

r ¼ � t

s
; (54)

and introduce shorthand notations for those kinematic
factors which appear more than once in the following
formulas:

FIG. 6. Hadronic and fermionic reducible vertex diagrams. The gray circles mark the corresponding one-loop insertions.

(3a)

(3b 4b)

(1a) (2a

) (

() 4a)

(2b)(1b)

FIG. 7. Irreducible box diagrams. The gray circle denotes the hadronic or fermionic insertions.
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Ar ¼�v1ðs; tÞ
s2

�v2ðs; tÞ
st

¼ 1

r
½ð1� rÞ3 � r3�;

Br ¼ v1ðt; sÞ
t2

þv2ðs; tÞ
st

¼ 1

r2
½2ð1� rÞ2 þ rð1þ r� r2Þ�;

Cr ¼ v1ðs; tÞ
s2

¼ ð1� rÞ2 þ r2;

Dr ¼�v2ðs; tÞ
st

¼ 1

r
ð1� rÞ2;

Er ¼ 3
v1ðt; sÞ

t2
þv2ðs; tÞ

st
¼ 1

r2
½6ð1� rÞ2 þ rð5� r� r2Þ�;

Fr ¼ 1

2

v1ðt; sÞ
t2

þ 1

4

v2ðs; tÞ
st

¼ 1

4r2
½4ð1� rÞ2 þ rð3� r2Þ�;

Gr ¼ v1ðt; sÞ
t2

¼ 1

r2
ð1þð1� rÞ2Þ: (55)

A. Factorizable corrections with vertex
or box insertions

The infrared-divergent factorizable heavy fermion and
hadronic corrections form2

e � M2, s, jtj, juj can be readily
obtained from Ref. [113] by replacing the photon vacuum-
polarization function in the s- or t-channel with the dis-
persion integral

�ðxÞ ¼ ��ðxÞ ¼ �

�
IðxÞ; (56)

IðxÞ ¼ x

3

Z 1

4M2

dz

z

RðzÞ
x� zþ i�

; x ¼ s; t; (57)

where ��ðxÞ is given in (35) and R in (31).
We begin with the reducible vertex corrections (a). From

Eq. (3.8) of Ref. [113] we derive:

d ��a
fact

d�
¼ F




fAr½ð1� lnðŝÞÞReIðsÞ � �ImIðsÞ� þ Br½lnðŝÞ þ lnðrÞ � 1�IðtÞg þ 1

2
fAr½ln2ðŝÞ � 82� � ðAr � 2CrÞ lnðŝÞ

þ 2ðAr � CrÞgReIðsÞ þ 1

2
½2Ar lnðŝÞ � Ar þ 2Cr��ImIðsÞ � 1

2
fBr½ln2ðŝÞ þ ln2ðrÞ� � ½Er � 2Br lnðrÞ� lnðŝÞ

� Er lnðrÞ � 2Br2 þ 8FrgIðtÞ; (58)

where the normalization factor F
 is given in Eq. (26). It appears here in the combination

F




¼ 1



� ln

�
m2

e

�2

�
� lnð�Þ � �E þOð
Þ: (59)

In strict analogy, the interference of the one-loop vertex diagrams of Fig. 3(a), with the vacuum-polarization diagrams of
Fig. 3(c) can be extracted from Eq. (3.26) of Ref. [113]:

d ��b
fact

d�
¼ F




f½Arð1� lnðŝÞÞ �Dr lnðrÞ�ReIðsÞ � Cr�ImIðsÞ þ ½BrðlnðŝÞ � 1Þ þGr lnðrÞ�IðtÞg

þ 1

2
fArln

2ðŝÞ � 2½ð1� 4rÞDr � 4r2�2 � ½Ar � 2Cr � 2Dr lnðrÞ� lnðŝÞ þDrln
2ðrÞ � ðDr � 2Þ lnðrÞ

þ 2½ð1� 2rÞDr � 2r2�gReIðsÞ þ 1

2
f2Cr lnðŝÞ � ½Cr � 4rð1� rÞ�g�ImIðsÞ

� 1

2

�
Brln

2ðŝÞ �
�
Er � 2

r2
ð1þ rDrÞ lnðrÞ

�
lnðŝÞ þ 1

r2
ð1þ rDrÞln2ðrÞ � 1

r2
½6ð1� rÞ þ r2� lnðrÞ

� 2

r2
½rð1� 4rÞDr þ 1�2 þ 8Fr

�
IðtÞ: (60)

Finally, the contributions from the one-loop box diagrams of Fig. 3(b) may be derived from Eq. (3.28) of Ref. [113]:

d ��c
fact

d�
¼ F




f½Cr lnðrÞ þ Ar lnð1� rÞ�ReIðsÞ þDr�ImIðsÞ � ½Dr lnðrÞ þ Br lnð1� rÞ�IðtÞg

�
�
½Cr lnðrÞ þ Ar lnð1� rÞ� lnðŝÞ þ lnðrÞ þ 1

2
ð2Dr þ rÞ lnð1� rÞ þ 3

4
ð1� rÞln2ðrÞ þ 1

4
ð1� 2rÞln2ð1� rÞ

þDr lnðrÞ lnð1� rÞ
�
ReIðsÞ �

�
Dr lnðŝÞ þ 1

2r
½Drrð1� rÞ þ 1� 3r3� lnðrÞ þ 1

2
½3ð1� 2rÞ þ 4r2� lnð1� rÞ

þ 1

2r
ðrDr þ 1þ 2r2Þ

�
�ImIðsÞ þ

�
½Dr lnðrÞ þ Br lnð1� rÞ� lnðŝÞ þ 1

2r
ðCr þ 2Þ lnðrÞ

� 1

2r
½rDr þ 2ð1� rÞ þ r2� lnð1� rÞ þ 1

4r
ð5� 4rÞln2ðrÞ þ 1

4r
ð2� rÞln2ð1� rÞ

þ 1

2r2
½2rDr þ 2ð1� rÞ þ r2� lnðrÞ lnð1� rÞ þ 3

2r
ð2� rÞ2

�
IðtÞ: (61)
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All three types of corrections are infrared divergent. The
vertex diagrams contribute leading electron-mass singular-
ities of the order ln2ðs=m2

eÞ, while for the factorizable box
diagrams the leading order is lnðs=m2

eÞ. In addition, the
self-energy insertions IðxÞ yield a dependence on lnðs=m2

fÞ,
in casem2

f is small compared to s. This may be most easily
seen from the 
-independent terms in (A3). So, we collect
here at most terms of the order ln2ðs=m2

eÞ lnðs=m2
fÞ.

B. Soft real photon emission

In order to obtain an infrared-finite quantity, we take into
account the interferences of diagrams with real emission of
soft photons from the external legs, where one of the

diagram has a vacuum-polarization insertion. The anatomy
of these real corrections is exemplified in Appendix C,
where the soft photon factor is shown both for nonvanish-
ing electron mass me and in the ultrarelativistic approxi-
mation. The result may be also read off from Eq. (4.4) of
Ref. [113] and reads as

d ��d
fact

d�
¼ d ��d;1

fact

d�
þ ln

�
2!ffiffiffi
s

p
�
d ��d;2

fact

d�
; (62)

where! is the maximum energy carried by a soft photon in
the final state. We obtain

d ��d;1
fact

d�
¼ F




2½lnðŝÞ þ lnðrÞ � lnð1� rÞ � 1�½ArReIðsÞ � BrIðtÞ�

� 2

��
1

2
ln2ðŝÞ þ lnðŝÞðlnðrÞ � lnð1� rÞÞ þ 1

2
ln2ðrÞ � 1

2
ln2ð1� rÞ � lnðrÞ lnð1� rÞ � 2Li2ðrÞ � 2

�

� ½ArReIðsÞ � BrIðtÞ� þDr½lnðŝÞ þ lnðrÞ � lnð1� rÞ � 1�½ReIðsÞ þ IðtÞ�
�
; (63)

d ��d;2
fact

d�
¼ �4½lnðŝÞ þ lnðrÞ � lnð1� rÞ � 1�½ArReIðsÞ � BrIðtÞ�: (64)

Again, the infrared divergency is contained in the factor
F
=
, and the mass singularities are at most of the orders
lnðx=m2

fÞ, x ¼ s, t, and ln2ðx=m2
eÞ for the !-independent

part and lnðx=m2
eÞ for the !-dependent part.

C. Two-loop irreducible box corrections

From the technical point of view, the two-loop irreduc-
ible box corrections of this section, represented by the
three box kernel functions, are the main result of the
article. Their contributions to the Bhabha-scattering cross
section arise from the interference of the diagrams of Fig. 7
with the tree-level amplitude and can be written as

d�box

d�
¼

�
�

�

�
2 �2

s

d ��box

d�
¼

�
�

�

�
2 �2

4s
2

�
ReAs

s
þ ReAt

t

�
:

(65)

Here the functions As and At contain the interferences of
box diagrams with the s-channel and t-channel tree-level
diagrams and can be represented through three indepen-
dent form factors, evaluated with different kinematic argu-
ments:

As ¼ BAðs; tÞ þ BBðt; sÞ þ BCðu; tÞ � BBðu; sÞ; (66)

At ¼ BBðs; tÞ þ BAðt; sÞ � BBðu; tÞ þ BCðu; sÞ: (67)

In addition, note that in Eq. (65) we have collected an
overall factor 1=4, coming from the sum over the spins, and
a factor 2, taking into account the fact that the contribu-
tions generated by the diagrams (1a), (2a), (3a) and (4a) are
equivalent to those of diagrams (1b), (2b), (3b) and (4b) of
Fig. 7. Finally, the correspondence among the form factors
of Eq. (66) and the diagrams of Fig. 7 reads as follows:

diag1� trees ) BAðs; tÞ; diag1� treet ) BBðs; tÞ;
diag2� trees ) BBðt; sÞ; diag2� treet ) BAðt; sÞ;
diag3� trees ) BCðu; tÞ; diag3� treet ) �BBðu; tÞ;
diag4� trees ) �BBðu; sÞ; diag4� treet ) BCðu; sÞ:

(68)

We evaluate the three form factors Bi using dispersion
relations and computing thereby the convolution of the
hadronic or fermionic cross-section ratio R with three
kernel functions Ki,

Biðx; yÞ ¼
Z 1

4M2
dz

RðzÞ
z

Kiðx; y; zÞ; (69)
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where R has been introduced in Eq. (31), and the kernel
function are to be calculated. For positive x or y, one has to
replace x ! xþ i� or y ! yþ i�.

The self-energy insertion is represented by a dispersion
relation, thus replacing the one-loop photon propagator by
a massive effective propagator as in Eq. (29). This proce-
dure reduces the evaluation of the two-loop diagrams to
one-loop complexity with a subsequent dispersion integra-
tion. Employing standard techniques, together with the
Mathematica packages AMBRE [140] and MB [141], for a
reduction of one-loop integrals to scalar master integrals,
the kernel functions have been finally expressed by eight

one-loop master integrals MðjÞðx; y; zÞ,

Kiðx; y; zÞ ¼ F


X8
j¼1

CðjÞ
i ðx; y; zÞMðjÞðx; y; zÞ; (70)

where F
 is the usual normalization factor of Eq. (26), and

CðjÞ
i are rational functions of the kinematic invariants, of

the space-time dimension d, and of the two masses me, z.

The master integralsMðjÞ are shown in Fig. 8 and analytical
expressions for them can be found in Appendix B. Because

of their length, we do not reproduce here the explicit (exact
in me and d dimensions) right-hand side of (70), but refer
for them to the Mathematica file at the webpage [120].
In the small electron-mass limit we obtain the two-loop

box kernel functions:

KAðx; y; zÞ ¼ 1

3ðy� zÞ
�
�2

F




ðxþ yÞ2 ln

�
�m2

e

x

�
þ 42

�
z2 � z

�
x2

y
þ y

�
þ 2xðxþ yÞ þ y2

�

þ 2½zðxþ yÞ þ x2� ln
�
�m2

e

x

�
þ ½z2 þ 2zx� yð2xþ yÞ�ln2

�
�m2

e

x

�

þ
�
2z2

�
x

y
þ 1

�
� z

�
x2

y
þ 6xþ 5y

�
þ xðxþ 4yÞ þ 3y2

�
ln

�
�m2

e

y

�

þ
�
z2 � 2z

�
x2

y
þ xþ y

�
þ 2xðxþ yÞ þ y2

�
ln2

�
�m2

e

y

�
� 2½z2 þ 2zxþ 2xðxþ yÞ þ y2� ln

�
�m2

e

x

�

� ln

�
�m2

e

y

�
þ

�
2z2

�
x

y
þ 1

�
� z

�
x2

y
þ 4xþ 3y

�
þ ðxþ yÞ2

�
ln

�
z

m2
e

�
þ

�
2z

�
x2

y
þ 2xþ y

�
� ðxþ yÞ2

�

� ln2
�
z

m2
e

�
� 2ðxþ yÞ2 ln

�
z

m2
e

�
ln

�
�m2

e

x

�
þ 2

�
z2 � 2z

�
x2

y
þ xþ y

�
þ 2xðxþ yÞ þ y2

�
ln

�
z

m2
e

�
ln

�
1� z

y

�

�
�
2z2

�
x

y
þ 1

�
� z

�
x2

y
þ 6xþ 5y

�
� y

z
ðxþ yÞ2 þ 2xðxþ 3yÞ þ 4y2

�
ln

�
1� z

y

�

þ 2½z2 þ 2zxþ 2xðxþ yÞ þ y2� ln
�
1� z

y

�
ln

�
�m2

e

x

�
þ 4

�
z2

2
� z

�
x2

y
þ xþ y

�
þ xðxþ yÞ þ y2

2

�
Li2

�
z

y

�

þ 2ðxþ zÞ2Li2
�
1þ z

x

��
; (71)

FIG. 8. The one-loop master integrals with an additional mass
scale M ¼ ffiffiffi

z
p

for the dispersive two-loop box evaluation.
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KBðx; y; zÞ ¼ 1

3ðy� zÞ
�
�4

F





�
xðxþ yÞ þ y2

2

�
ln

�
�m2

e

x

�
þ 42

�
z2 � 2z

�
x2

y
þ y

2

�
þ 2xð2xþ yÞ þ y2

�

þ 2½zðxþ yÞ � xy� ln
�
�m2

e

x

�
þ ½z2 þ 2zx� yð2xþ yÞ�ln2

�
�m2

e

x

�

þ
�
2z2

�
x

y
þ 1

�
� z

�
2
x2

y
þ 6xþ 5y

�
þ yð4xþ 3yÞ þ 2x2

�
ln

�
�m2

e

y

�

þ
�
z2 � 2z

�
2
x2

y
þ xþ y

�
þ 2xð2xþ yÞ þ y2

�
ln2

�
�m2

e

y

�
� 2½z2 þ 2zxþ 2xð2xþ yÞ þ y2�

� ln

�
�m2

e

x

�
ln

�
�m2

e

y

�
þ

�
2z2

�
x

y
þ 1

�
� z

�
2
x2

y
þ 4xþ 3y

�
þ 2xðxþ yÞ þ y2

�
ln

�
z

m2
e

�

þ 4

�
z

�
x2

y
þ xþ y

2

�
� x

2
ðxþ yÞ � y2

4

�
ln2

�
z

m2
e

�
� 4

�
xðxþ yÞ þ y2

2

�
ln

�
z
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e

�
ln

�
�m2

e
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KCðx; y; zÞ ¼ 1
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These kernel functions are reproduced in Mathematica files at the webpage [120] as functions KA, KB, KC and KA exp,
KB exp, KC exp.

The two-loop box kernel masters (71) to (73) are evaluated in the Feynman gauge; they are infrared divergent and
contain collinear singularities in me.

After inserting Eq. (71)–(73) in Eq. (69), we derive the total contribution to the cross section generated by box diagrams.
Collecting powers of �, we write
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I3ðzÞ; (74)

where the integrand functions are given by
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I2ðzÞ ¼ 1
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I3ðzÞ ¼ 1
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The functions I1ðzÞ to I3ðzÞ are reproduced as functions I1,
I2, I3 in a Mathematica file at the webpage [120].

Note that, after assembling all irreducible box diagrams,
their total contribution is free of collinear divergencies in
me because lnðm2

eÞ vanishes in the combination

F




� ln

�
s

m2
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�
¼ 1



� �E � lnð�Þ � ln

�
s

�2

�
þ 0ð
Þ:

(78)

This fact might be observed already for any sum of single
pairs of direct and their related crossed box diagrams,
which is gauge-independent and free of collinear singular-
ities [142]; from (68) and Fig. 7 one selects e.g. the
following ones:

KBðt; s; zÞ � KBðu; s; zÞ; KAðs; t; zÞ þ KCðu; t; zÞ:
(79)

In the limitm2
f � s, jtj, juj, the z-integration over the IiðzÞ,

i ¼ 1, 2, develops mass singularities from the lower inte-
gration bound:Z 1

4M2
dz

RðzÞ
z

KSEðy; zÞ
�
Aðx; y; zÞ þ Bðx; yÞ ln

�
z

s

��
(80)

where A, B are regular for z ! 0. It follows immediately
that the irreducible box diagrams yield terms of the order
of at most ln2ðs=m2

fÞ, because A joins, after integration,

terms with a behavior like a one-loop self-energy, and B
joins terms with one order more in the logarithmic struc-
ture. This has been discussed already in [113].
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The residual infrared-singular part of the box cross
section is:
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�
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�
: (81)

The function IðtÞ [see Eq. (57)] stems from diagrams with a
vacuum-polarization insertion in the t-channel, and IðsÞ
from insertions in the s-channel. One may wonder which of
the other infrared divergent parts are needed to compensate
the double-box divergency (in the gauge chosen here). This
may be exemplified by collecting all the IR-divergencies of
the diagrams with a vacuum polarization insertion IðtÞ in
the t-channel; for the others, quite analogous arguments
hold. From Secs. VIA and VIB wemay extract such terms.
There are the following divergencies due to vertex dia-
grams:
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The reducible box diagrams are (in the curly brackets) free
of electron mass singularities, also in the terms not shown
here. They depend also on u:
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For the soft real terms, we refer to Appendix C and may
distinguish between initial and final state corrections
(which are equal) and the initial-final state interference:
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(86)

It is now easy to see that the IR-divergency of the double
box diagrams, being proportional to lnð�u=sÞ, gets com-
pletely canceled by the sum of the reducible box diagrams
and the interference part of soft bremsstrahlung. Although,
the latter introduce to the sum an IR-divergency with
lnð�t=sÞ, and this gets canceled the reducible vertex dia-
grams, thus introducing an IR-divergency with lnðs=m2

eÞ,
which will be canceled finally by the initial and final state
soft corrections. The lesson is: a sensible, infrared safe
cross section contains the complete sum of all the single
IR-divergent diagrams, or no one of them.
Despite that, an isolated treatment of the pure self en-

ergies or of the irreducible vertex corrections is possible.
Finally, we just mention that the analytical integrations

over z may be performed following the hints in Sec. V.

D. Kernel functions for the infrared safe sum

We are now in a state to evaluate the net cross-section
contribution from the various infrared divergent terms of
Secs. VIA and VIC. We have seen that they have to be
treated together. The sum of the box contributions of
Eq. (74) with all infrared-divergent factorizable correc-
tions, given in Eqs. (58) and (60)–(62), is infrared-finite
and can be cast in the following form:
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The lower bound is 4M2 ¼ 4m2
� for hadrons and 4M2 ¼ 4m2

f for fermions f. The auxiliary functions FiðzÞ are given by
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F2ðzÞ ¼ 1
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F3ðzÞ ¼ I3ðzÞ; (90)
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The I3ðzÞ is defined in (77). For 0< s < 4M2 we can write

d ��rest

d�
¼

Z 1

4M2
dz

RðzÞ
z

�
1

t� z
F1ðzÞ

þ 1

s� z

�
F2ðzÞ þ F3ðzÞ ln

�
z

s
� 1

���
: (92)

For s > 4M2, we have to perform some subtractions in
order to make the formulas explicitly stable around z ¼ s,
and at the time retain the sufficiently fast vanishing of the
integrand at z ! 1:

d ��rest

d�
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Z 1
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1� s
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���
: (93)

In the limit m2
f � s, jtj, juj, the z-integration over the

FiðzÞ, i ¼ 1, 2, develops mass singularities from the lower
integration bound:Z

4M2
dz

RðzÞ
z

KSEðy; zÞ
�
Aðx; y; zÞ þ Bðx; yÞ ln

�
z

s

�

þ Cðx; yÞ ln
�
s

m2
e

��
(94)

where A, B,C are regular for z ! 0. It follows immediately
that the sum of all infrared divergent diagrams yield terms
of the order of at most ln2ðs=m2

fÞ and lnðs=m2
eÞ lnðs=m2

fÞ,
because A joins, after integration, terms with a behavior
like a one-loop self-energy, B joins terms with one order
more in lnðs=m2

fÞ and C goes together with at most
lnðs=m2

eÞ lnðs=m2
fÞ; there are no cubic logarithms here.

This has been discussed already in [113].
Further, for the numerical evaluation, the functions F1,

F2, and F3 are replaced for z ! 1 by their asymptotic
values:
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FsðzÞ ¼ F2ðzÞ þ F3ðzÞ ln
�
z

s
� 1

�
; (96)
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VII. NUMERICAL RESULTS AT MESON
FACTORIES, LEP/GIGAZ, ILC

We begin with numerical results for Eq. (87), multiplied
by the overall factor ð�=�Þ2 �2=s. The expressions contain
the contribution of irreducible two-loop boxes, summed up
with reducible two-loop vertex and loop-by-loop diagrams,
and combined with soft-photon emission. They are called
here ‘‘rest’’ from electrons, muons, tau-leptons, and from
hadrons. The top influence was also considered but comes
out so marginal that we do not discuss it. The results are
summarized in Tables III and IV for small- and large-angle
scattering and a variety of energy scales. We do not discuss
the isolated irreducible two-loop boxes because this would
become more convention-dependent. Note further that in
these tables the dependence on the maximal energy of the
soft photons is switched off by setting ! ¼ ffiffiffi

s
p

=2 (an
analogous consideration holds for the soft pairs eþe�).

For comparison, the tables also contain entries with pure
QED Born, QED Born with running coupling, and effec-
tive weak Born cross sections, as well as contributions
from: electron vertex insertions and soft eþe� pairs (with
a quite small sum of them); the sum of heavy fermion
irreducible vertices. The hadronic results have been ob-
tained using the parametrization [133] with flag setting
IPAR ¼ 0 and implementing narrow resonances as de-
scribed in Appendix E.
We see that the two-loop corrections from electron in-

sertions (the so-called Nf ¼ 1 corrections) are the largest,

and the second-largest ones are the hadronic corrections.
The tables also demonstrate that the approximation m2

f �
s, jtj, juj as applied in e.g. [113] works well in the regions
where this is expected.
A more detailed picture of the relevance of the fermionic

and hadronic two-loop corrections may be got from

TABLE III. Numerical values for the differential cross section in nanobarns at scattering angles � ¼ 20� and � ¼ 3�, in units of 102.
Concerning the finite remainder, containing irreducible box diagrams, we show for each fermion flavor the result obtained through the
dispersion-based approach (first line) and the one coming from the analytical expansion (second line), neglecting Oðm2

f=xÞ, where
x ¼ s, jtj, juj. When m2

f > x, the entry is suppressed.

�½��j ffiffiffi
s

p
[GeV] � ¼ 20j1 � ¼ 20j10 � ¼ 3jMZ � ¼ 3j500

QED Born 214.903 2.149 03 53.0348 1.763 98

weak Born 214.903 2.149 30 53.0376 1.763 90

QED Born, running 218.559 2.238 14 55.5353 1.909 10

vertices [�þ �þ hadr] �0:001 086 �0:000 225 13 �0:007 982 �0:001 292 96
vertices [e] �0:102 787 �0:003 254 49 �0:092 546 �0:005 745 77
soft pairs eþe� 0.130 264 0.004 037 72 0.112 763 0.006 858 90

rest: e 0.235 562 0.004 978 34 0.135 650 0.006 726 52

� 0.009 518 0.001 350 40 0.040 792 0.002 878 09

�0:017 214 0.001 342 82 0.040 688 0.002 877 95

� 0.000 074 0.000 053 85 0.002 706–0.009 610 0.000 876 39

� � 0.000 839 69

hadr 0.008 642 0.002 694 90 0.087 618 0.008 107 81

TABLE IV. Numerical values for the differential cross section in nanobarns at a scattering angle � ¼ 90�, in units of 10�4. See the
caption of Table III for further details.ffiffiffi
s

p
[GeV] 1 10 MZ 500

QED Born 466 537 4665.37 56.1067 1.866 15

weak Born 466 526 4654.16 1238.7500 0.928 90

QED Born, running 480 106 4984.83 62.9027 2.179 57

vertices [�þ �þ hadr] �16:351 �2:0437 �0:125 208 �0:010 427 5
vertices [e] �477:620 �12:3010 �0:298 589 �0:015 575 1
soft pairs eþe� 648.275 16.0690 0.376 531 0.019 199 0

rest: e 807.476 14.5277 0.270 575 0.011 928 5

� 160.197 6.0819 0.147 046 0.007 257 9

152.890 6.0809 0.147 046 0.007 257 9

� 2.383 1.3335 0.075 268 0.004 571 3

� 1.0739 0.075 214 0.004 571 2

hadr 232.674 16.0670 0.469 944 0.024 603 5
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Figs. 9–14, where we show the cross-section ratios

10 3 d�NNLO

d�0

; (98)

where d�0 is the effective weak Born cross section at
ffiffiffi
s

p ¼
MZ, 500 and 800 GeV, and the QED Born cross section
elsewhere. So, the figures show just the relative size of the
corrections in per mille. For a comparison, we show also
the pure photonic corrections. The d�NNLO is here the net
sum of all the terms discussed arising from a fermion flavor
(e or �) or from the hadrons. In case of electrons, we add
also the real pair correction. The total nonphotonic term
includes also the � and top-quark contributions. For had-
rons, we decided to use the parametrization Rhad;I as given

in [133] with parameter IPAR ¼ 1. We applied also nu-
merics with a combination Rhad;II of several adjusted pieces

valid at different scales, as explained in Appendix E. In
Figs. 9 and 11 it is seen that the predictions with Rhad;I and

Rhad;II are quite close to each other. Because we did not get

a stable numerics over all the parameter space with Rhad;II,

we decided not to use it for the final determination of the

physical results until we have a better understanding of its
behavior.
We conclude this section showing a set of plots based on

our work (hadronic and heavy-fermion corrections), on the
photonic result obtained by A.A. Penin in [104] and on the
electron-loop result of R. Bonciani et al. [100]. Concerning
the latter case, we incorporate also the contribution of real
soft electron-positron pairs with logarithmic accuracy eval-
uated by A. B. Arbuzov et al. in [44].
At a meson factory with

ffiffiffi
s

p � 1 GeV (Fig. 9) the heavy-
fermion effects are below 0.5 per mille and are thus cer-
tainly negligible. At

ffiffiffi
s

p � 10 GeV (Fig. 10), electron and
hadron corrections amount to 2 to 5 per mille and might
play some relevance. At the higher energies, we have to
consider small angles and large ones separately. The had-
ronic corrections amount to up to 4 per mille at LEP1/
GigaZ and 20 per mille at ILC energies at large angles,
while at small angles they stay well below 5 per mille. Forffiffiffi
s

p ¼ 500 GeV this is exemplified in Fig. 13, and from the
tables one may read exact values at � ¼ 3 deg : for the

20 40 60 80 100 120 140 160
 θ

0

2

4

6

10
3 

 *
 d

σ 2/d
σ 0

photonic
muon
electron
total non-photonic
hadronic I and II

s = 1 GeV
2

FIG. 9. Two-loop corrections to Bhabha scattering at
ffiffiffi
s

p ¼
1 GeV, normalized to the QED tree-level cross section.
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FIG. 10. Two-loop corrections to Bhabha scattering at
ffiffiffi
s

p ¼
10 GeV, normalized to the QED tree-level cross section.
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FIG. 11. Two-loop corrections to Bhabha scattering at
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p ¼
MZ, normalized to the effective weak Born cross section.
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p ¼
500 GeV, normalized to the effective weak Born cross section.
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infrared-finite remainder containing box diagrams, at LEP/

GigaZ it is
d�had

2

d�weak
0

¼ 1:65 per mille, and at
ffiffiffi
s

p ¼ 500 GeV

the corresponding value becomes 4.6 per mille.
Everywhere, the pure photonic corrections are the largest
one, followed by theNf ¼ 1 corrections. This is, of course,

due to the small electron-mass producing large logarithmic
mass effects and is extensively discussed in the literature.

VIII. SUMMARY

The NNLO effects of heavy fermions and hadrons on the
Bhabha cross sections are accurately known now and the
determination of QED two-loop corrections is completed.
For each of the corrections there exist several independent
calculations. Quite recently, a second determination of the
hadronic corrections in [119] fully confirmed our results as
presented in [93,114,139] and at our webpage [120]. We
indeed checked, when preparing this longer write-up of our
results, that, when using the same parametrization [133],
all the digits shown in our tables agree with those shown in

[119] (see Tables III and IV). The numerical differences
which were mentioned in [119] were due to a different
choice of the parameter IPAR in [114,119].
Summarizing the numerical discussion, it is quite ob-

vious that for measurements aiming at an accuracy at the
per mille level it is crucial to take the heavy-fermion and
hadron contributions into account. A detailed conclusion
for a specific experiment evidently depends on the experi-
mental setups and will deserve the use of a precise Monte-
Carlo program.
Finally, we would like to mention that, in pure QED, not

all of the contributions have been determined so far. It
would be quite interesting to know also the influence
from the so-called radiative loops. This problem was
treated in [143], but so far without account of the radiative
loop diagram, which include e.g. radiative boxes with the
need of knowledge of five-point functions. Also here, final
conclusion will be made only with a precise Monte-Carlo
program.
As a third field of future improvement we like to men-

tion the complete treatment of electroweak two-loop cor-
rections to Bhabha scattering. As already said there exists
some literature on that subject. The leading NNLO weak
corrections due to top quarks have been determined long
ago in [10]. This was considered as a satisfactory approxi-
mation for LEP 1 and implemented e.g. in the packages
ZFITTER [81] and in the program family KORALZ [65],

KKMC [73,144], BHLUMI [52], BHWIDE [41]; see also the

workshop report [145]. An improvement of that might
become necessary for large angle scattering at the ILC.
This might be done similarly to the recent implementation
of weak two-loop corrections for muon pair production in
ZFITTER v.6.42 [81], based on original work described in

[11,12] and references therein.
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APPENDIX A: ANALYTIC RESULTS FOR THE
FERMIONIC VACUUM POLARIZATION

The contribution of a fermion of flavour f to the irre-
ducible renormalized photon vacuum-polarization function
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FIG. 13. Same as in Fig. 12, for small angles.
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800 GeV, normalized to the effective weak Born cross section.
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�, introduced in Eq. (21), can be written in pure QED as

�fðq2Þ ¼
X2
n¼1

�
�

�

�
n
Fn



�
m2

e

m2
f

�
n

Q2n

f Cf�
ðnÞ
f ðq2Þ þOð�3Þ;

(A1)

where Qf is the electric-charge quantum number, Cf is the

color factor and the normalization factor F
 is defined in
Eq. (26).

For our purposes we need both the n ¼ 1 and n ¼ 2
terms up toOð
0Þ. However, since some components of the
infrared-finite differential cross section show single poles
in the 
 plane, we find useful to consider also theOð
Þ part

of the one-loop photon self-energy for intermediate checks
of the results.
Both expressions can be written in a compact form

introducing the variable

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q2 þ 4m2

f

q
� ffiffiffiffiffiffiffiffiffiffi�q2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q2 þ 4m2

f

q
þ ffiffiffiffiffiffiffiffiffiffi�q2

p : (A2)

The results can be found in Appendix A of Ref. [146] and
at the webpage [120]. In the spacelike region �1< q2 <
0, it is 0< x < 1, and one gets a real vacuum polarization:

�ð1Þ
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For the timelike region, we have to perform an analytical
continuation to q2 > 4m2

f by setting q2 ! q2 þ i� in
Eq. (A2). Now, the conformal variable x develops a small
positive imaginary part and it is�1< Rex < 0. In order to
derive Im� of Eq. (23), we may introduce an auxiliary
variable y:

y ¼
ffiffiffiffiffi
q2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q2 � 4m2

f

q
ffiffiffiffiffi
q2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4m2

f

q (A5)

and observe that x ¼ �yþ i�, with y ¼ 0 for q2 ! 1 and
y ¼ 1 for q2 ¼ 4m2

f. With these conventions, it becomes
evident for Eqs. (A3) and (A4) that Li2ð
xÞ, Li3ð
xÞ, and
lnð1þ xÞ, and lnð1þ xÞ stay well defined, and one has to
take care about lnðxÞ:

lnðxÞ ! lnð�yþ i�Þ ¼ lnðyÞ þ i�: (A6)

Of course, one may perform the evaluations with complex
variables either.

The contribution of electron loops to the irreducible
renormalized photon vacuum-polarization function � of
Eq. (21) in the small electron-mass limit is available in
pure QED up to three loops,

�eðq2Þ ¼
X3
n¼1

�
�

�

�
n
�ðnÞ

e ðq2Þ þOð�4Þ: (A7)

The one- and two-loop contributions can be obtained by
expanding Eqs. (A3) and (A4) and neglecting terms sup-
pressed by positive powers of the electron mass. The three-
loop component, (we do not include double-bubble dia-
grams with two different flavors), can be found in Eqs. (7)
and (9) of Ref. [126]. The results for q2 < 0 are:
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double electron bubble

þOðm2
eÞ: (A10)

The continuation to q2 > 0 is again obtained by the re-
placement q2 ! q2 þ i�.

APPENDIX B: MASTER INTEGRALS FOR THE
BOX KERNEL FUNCTIONS

The three kernel functions for irreducible box diagrams
of Fig. 7 may be found at webpage [120] with their exact
dependences on me and on 
. They are expressed by eight
master integrals, which were evaluated in the limit m2

e �
z, s, jtj, juj. The master integrals of Eq. (70), for x ¼ s and
y ¼ t, are evaluated to the power in 
 needed here:

Mð1Þ ¼ N
Z dDk

ðk2 �m2
eÞ

¼ m2
e

�
1



þ 1þ 


�
1þ 2

2

��
;

(B1)

Mð2Þ ¼ N
Z dDk

ðk2 �m2
eÞ½ðk� p1 � p2Þ2 �m2

e�
¼ 1



þ 2þ ln

�
�m2

e

s

�

þ 


�
4� 2

2
þ 2 ln

�
�m2

e

s

�
þ 1

2
ln2

�
�m2

e

s

��
þOðm2

eÞ; (B2)

Mð3Þ ¼ N
Z dDk

k2ðk� p1 þ p3Þ2
¼ 1



þ 2þ ln

�
�m2

e

t

�
;

(B3)

Mð4Þ ¼ N
Z dDk

ðk2 �m2
eÞ½ðk� p3Þ2 � z� ;¼ Oðm0

eÞ; (B4)

Mð5Þ ¼ N
Z dDk

ðk2 � zÞðk� p1 þ p3Þ2
(B5)
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; (B6)

Mð6Þ ¼ N
Z dDk

ðk2 � zÞ½ðkþ p3Þ2 �m2
e�½ðkþ p3 � p1 � p2Þ2 �m2

e�
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�
2 þ 1

2
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�
� z
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s
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þOðm2

eÞ;
(B7)

Mð7Þ ¼ N
Z dDk
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�
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eÞ; (B8)
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Z dDk
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where D ¼ 4� 2
 and

N ¼ m2

e

e�E


i�2�

: (B10)

For Mð1Þ and Mð2Þ, results are needed up to Oð
Þ, since,
after the reduction procedure, both coefficients cð1Þi and
cð2Þi , for i ¼ A, B, C, include terms Oð
�1Þ. For all other
basis integrals, Oð
0Þ results suffice. Note that for Mð1Þ
(tadpole),Mð3Þ andMð5Þ (no dependence on me, apart from
the normalization factor N) results are exact. In other
cases, the order of the expansion in me depends on the
coefficients cðjÞi . For example, we have cð2Þi ¼ Oðm�2

e Þ, and
we computeMð2Þ up toOðm0

eÞ (note the overall factorm2
e in

Eq. (65)). In contrast, we have cð4Þi ¼ Oðm0
eÞ and we do not

need Mð4Þ up to Oðm0
eÞ.

APPENDIX C: SOFT REAL PHOTON EMISSION

The leading order contributions to the soft real photon
corrections

e�ðp1Þ þ eþðp2Þ ! e�ðp3Þ þ eþðp4Þ þ �ðkÞ (C1)

to the Bhabha cross section (2) are contained in the factor
Fsoft:

d�LO

d�
¼ d�0

d�

�

�
Fsoftð!;s;t;m2

eÞ; (C2)

with ! being the upper limit of the energy of the non-
observed soft photons:

E� 2 ½0; !�: (C3)

The ! has to be chosen as small as to guaranty that the
emitted photon does not change the kinematics of the
process (1). The NLO radiative cross section with Oð�Þ
vacuum polarization insertions is:

d�NLO
�

d�
¼ �2

s

�
v1ðs; tÞ
s2

Re�ð1ÞðsÞ

þ v2ðs; tÞ
st

Re½�ð1ÞðsÞ þ�ð1ÞðtÞ�

þ v1ðt; sÞ
t2

Re�ð1ÞðtÞ
��
�

�

�
Fsoftð!; s; t; m2

eÞ: (C4)

The result for the soft photon factor is split into initial and
final state radiation and their interference:

Fsoftð!; s; t; m2
eÞ ¼ �ini þ �int þ �fin; (C5)

where

�ini ¼ ðQ2
1 þQ2

2ÞF11 þQ1Q2F12 ¼ 2F11 þ F12; (C6)

�int ¼ ðQ1Q3 þQ2Q4ÞF13 þ ðQ1Q4 þQ2Q3ÞF14

¼ 2F13 þ 2F14: (C7)

�fin ¼ ðQ2
3 þQ2

4ÞF33 þQ3Q4F34 ¼ 2F33 þ F34: (C8)

Each of the terms in Eqs. (C6)–(C8) exhibits the radiating
particles—a factorQiQj marks the emission of the photons

from particles with momenta pi and pj; Of course, it is

QiQj ¼ 1 here. Since the initial and final state particles

have equal masses, it is additionally:

F33 ¼ F11: (C9)

F34 ¼ F12: (C10)

So, it will be:

Fsoftð!; s; t; m2
eÞ ¼ 4F11 þ 2F12 þ 2F13 þ 2F14: (C11)

The evaluation of Fsoft follows standard textbook methods
(see e.g. for details in Sec. (4.3) of [147]). The exact result
for the soft radiation functions is, for d ¼ 4� 2
:

F11 ¼ �
 þ 1

2	
log

�
1þ 	

1� 	

�
; (C12)

F12 ¼�


�
�2ðs� 2m2Þ

s	
log

�
1þ	

1�	

��

þ 2ðs� 2m2Þ
s	

�
Li2

�
2	

	� 1

�
�Li2

�
2	

	þ 1

��
; (C13)

F13 ¼ �


�
� Tffiffiffiffiffiffi

�T

p
�
ln

�
T þ ffiffiffiffiffiffi

�T

p
T � ffiffiffiffiffiffi

�T

p
�
þ Ffin

13 ; (C14)

F14 ¼ �F13 with ðt $ uÞ; (C15)

and

Ffin
13 ¼ ðt� 2m2Þ

t	t

�
Li2

�
	� 1=	t

1þ 	

�
� Li2

�
	þ 1=	t

1þ 	

�

� Li2

�
�	� 1=	t

1� 	

�
þ Li2

�
	þ 1

1� 	

�

þ Li2

�
�	þ 1=	t

1� 	

��
: (C16)

We use the abbreviations:

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=s

q
; (C17)

	t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=t

q
; (C18)

T ¼ 2m2 � t; (C19)

ffiffiffiffiffiffi
�T

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 � 4m4

p
; (C20)

	u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=u

q
; (C21)

U ¼ 2m2 � u; (C22)
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ffiffiffiffiffiffiffi
�U

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 � 4m4

p
: (C23)

Our kinematics fulfills here sþ tþ u ¼ 4m2, and it is T,
U > 0. If necessary, the logarithms and dilogarithms may
be analytically continued with the replacement

s ! sþ i
; (C24)

e.g.

Li 2

�
2	

	� 1

�
¼ �Li2

�
	� 1

2	

�
� Li2ð1Þ � 1

2
ln2

�
2	

1� 	

�
:

(C25)

In the limit of small electron mass me, this simplifies
considerably (ŝ ¼ s=m2

e):

F11 ¼ �
 þ 1
2 lnðŝÞ; (C26)

F12 ¼ �2�
 lnðŝÞ � 1
2 lnðŝÞ2 � 22; (C27)

F13 ¼ �2�
 ln

�
� t

m2
e

�
� 1

2
lnðŝÞ2 � 22 � Li2

�
�u

t

�
;

(C28)

F14 ¼ 2�
 ln

�
� u

m2
e

�
þ 1

2
lnðŝÞ2 þ 22 þ Li2

�
� t

u

�
:

(C29)

Finally, the divergent part is:

�
 ¼ 1

2

�
F




� lnðŝÞ

�
� ln

�
2!ffiffiffi
s

p
�
: (C30)

Taking all the terms together, we obtain:

Fsoftð!; s; t; m2
eÞ ¼

�
F




� lnðŝÞ � 2 ln

�
2!ffiffiffi
s

p
��

�
�
�2 lnðŝÞ þ 2� 2 ln

�
t

u

��
� lnðŝÞ2

� 42 þ 2 lnðŝÞ þ 2Li2

�
�u

t

�
: (C31)

This expression agrees, of course, with e.g. Eq. (4.5) of
[113].

APPENDIX D: REAL FERMION PAIROR HADRON
EMISSION

The numerical influence of the virtual corrections gets
modified by the nonobserved emission of real pairs of
electrons or other fermions, or of hadrons:

d�real

d�
¼ d�0

d�

�2

�2
½�e þ �f þ �had�: (D1)

The real pairs or hadrons give nonsingular contributions
and depend, in the simplest configuration, on an energetic
cutoff D on the invariant mass of the nonobserved pair or

hadrons Ereal, and of course also on the production thresh-
old 2M.
There are two basically different situations. In case

4M2 � s, jtj, juj, one may additionally choose 2M<
Ereal <DEbeam � Ebeam (remember Ebeam ¼ ffiffiffi

s
p

=2), and
observes a logarithmic dependence of the cross sections
on the two parameters M, D. In the other case, assuming
M � me but otherwise arbitrary, as it is done in the present
study if not stated differently, the concept of soft pairs
becomes senseless and one has to evaluate the pair and
hadron emission cross section numerically with MC
methods.
For completeness and because of the numerical impor-

tance, we will include the soft pair emission contributions
for electrons, which is by far the biggest one. For this case,
analytical expressions with logarithmic accuracy are
known from [44]:

�e
soft ¼ 1

3½13L3
s þ L2

sð2 lnðDÞ � 5
3Þ þ Lsð4ln2ðDÞ � 20

3 lnðDÞ
þ AsÞ þ 1

3L
3
t þ L2

t ð2 lnðDÞ � 5
3Þ þ Ltð4ln2ðDÞ

� 20
3 lnðDÞ þ AtÞ � 1

3L
3
u � L2

uð2 lnðDÞ � 5
3Þ

� Luð4ln2ðDÞ � 20
3 lnðDÞ þ AuÞ�; (D2)

where

Ls ¼ ln

�
s

m2
s

�
; (D3)

Lv ¼ ln

�
� v

m2
e

�
; v ¼ t; u; (D4)

As ¼ 56
9 � 42: (D5)

Av ¼ As þ 2Li2

�
1
 cos�

2

�
; v ¼ t; u: (D6)

The parameter D has to fulfill:

2me � DEbeam � Ebeam: (D7)

From the sum of (39) and (D1), the compensation of the
leading mass singularities (contained here in the L3

s , L
3
t , L

3
u

terms) in the cross section becomes evident.

APPENDIX E: THE CROSS-SECTION RATIO Rhad

The numerical values of the irreducible two-loop cor-
rections depend crucially on RhadðsÞ as defined in (28),
while the reducible corrections may be evaluated with
one of the publicly available parametrizations of �ðq2Þ
[see (22)]. Unfortunately, we did not find an actual, pub-
licly available code for RhadðsÞ that covers the complete
integration region from the threshold at s ¼ 4M2

� to infin-
ity. In our short communication [93], we used the Fortran
routine of H. Burkhardt [133]. This parameterization dates
back to 1986 and was used for the numerics in [124], and it
was available by contacting the author [133]. The Fortran
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file is made available at our website [120]. It is to be
expected that current hadronic data would not induce
changes compared to the parametrization of [133] of
more than about 10%. This would be tolerable in view of
the smallness of the irreducible two-loop contributions in
our analysis. For the numerically much more sensitive
reducible contributions, the running coupling �em is
needed, and implementations of that are publicly available,
e.g. the Fortran package HADR5.F at [132].

For the present study, we improved our numerical basis
for the evaluation of the irreducible vertex and box con-
tributions by combining packages for the evaluation of
RhadðsÞ in different kinematical regions:

(A) From threshold at s ¼ 4m2
� to s ¼ 0:03 GeV2: We

follow Sec. 8.1 of [148]:

RhadðsÞ ¼ R�þ��ðsÞ ¼ 1

4

�
1� 4m2

�

s

�
3=2jF�ðsÞj2;

(E1)

F�ðsÞ ¼ 1þ 1:879

�
s

GeV2

�
þ 3:3

�
s

GeV2

�
2

� 0:7

�
s

GeV2

�
3
: (E2)

The above is based on a fit to eþe� data whose
results are shown in Table 3 of [148]; spacelike data
[149] are also taken into account.

(B) From s ¼ 0:03 GeV2 to s ¼ 10 000 GeV2: Use of
subroutine [150].

(C) Above s ¼ 10 000 GeV2: Use of subroutine
RHAD.FV.1.00, published in [152].

In Fig. 15 we show the Rhad resulting from our Fortran
implementation for the regions (A) to (C) as described
above.

In Fig. 16 we compare the implementation of RhadðsÞ
taken from Burkhardt [133] (Rhad;I) and our parametriza-

tion based on [148,150,152] (Rhad;II). As already stated, the

deviations are evidently much smaller than one might
expect and may be considered to be irrelevant here.
We close this section with a brief discussion of narrow

resonances. Narrow resonances are implemented replacing
the rapidly varying cross-section ratio with the parametri-
zation

RresðzÞ ¼ 9�

�2
Mres�

eþe��ðz�M2
resÞ: (E3)

The integration over z is then carried on analytically lead-
ing to the following result for the IR-finite remainder
(including the irreducible box diagrams) of Eq. (87):

FIG. 15. The implementation of Rhad used for the numerical
evaluation of irreducible two-loop corrections.

1 100

s [GeV
2
]

1

10

100

R
ha

d(s
)

R
had

, Burkhardt
R

had
, update

FIG. 16. A comparison of the parametrizations from
[133,150].

TABLE V. Numerical values for the treatment of narrow reso-
nances, taken directly from [133].

resonance Mres [GeV] �eþe�
res [keV]

!ð782Þ 0.7826 0.66

�ð1020Þ 1.0195 1.31

J=c ð1SÞ 3.0969 4.7

c ð2SÞ 3.6860 2.1

c ð3770Þ 3.7699 0.26

c ð4040Þ 4.0300 0.75

c ð4160Þ 4.1590 0.77

c ð4415Þ 4.4150 0.47

�ð1SÞ 9.4600 1.22

�ð2SÞ 10.0234 0.54

�ð3SÞ 10.3555 0.40

�ð4SÞ 10.577 0.24

�ð10860Þ 10.865 0.31

�ð11020Þ 11.019 0.13
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d ��rest

d�
¼ 9�

�2

�eþe�
res

Mres

�
F1ðM2

resÞ
t�M2

res

þ 1

s�M2
res

�
�
F2ðM2

resÞ þ F3ðM2
resÞ ln

��������1�M2
res

s

��������
��
: (E4)

For the numerical evaluation of the contribution due to the
narrow resonances, we use the values listed in the
Burkhardt’s routine [133], collected in Table V.

APPENDIX F: EVALUATION OF
POLYLOGARITHMS

At several instances, dilogarithms Li2ðzÞ and trilogar-
ithms Li3ðzÞ of complex argument are needed. A definition
of polylogarithms is:

Li nðzÞ ¼ Sn�1;1ðzÞ ¼ ð�1Þn
ðn� 2Þ!

Z 1

0

dt

t
lnn�2ðtÞ lnð1� ztÞ:

(F1)

They have the special values Linð0Þ ¼ 0 and Linð1Þ ¼
ðnÞ, where ðsÞ is the Riemann -function, ð2Þ ¼
�2=6, ð3Þ ¼ 1:202 056 903 159 594 285 4 . . . . An effi-
cient evaluation transforms the arguments to the region
where modulus and real part are bound: jzj 	 1 and
ReðzÞ< 1

2 , using:

Li 2ðzÞ ¼ �Li2

�
1

z

�
� 1

2
ln2ð�zÞ � ð2Þ; (F2)

Li 2ðzÞ ¼ �Li2ð1� zÞ þ ð2Þ � lnðzÞ lnð1� zÞ; (F3)

and

Li 3ðzÞ ¼ Li3

�
1

z

�
� 1

6
ln3ð�zÞ � ð2Þ lnð�zÞ; (F4)

Li3ðzÞ ¼ �Li3

�
1� 1

z

�
� Li3ð1� zÞ þ ð3Þ þ 1

6
ln3ðzÞ

þ ð2Þ lnðzÞ � 1

2
ln2ðzÞ lnð1� zÞ: (F5)

Then, series expansions with Bernoulli numbers ensure
rapid convergence. For Li2ðzÞ we follow Appendix A of
[153]:

Li2ðzÞ ¼
X1
j¼0

Bj

ðjþ 1Þ! ½� lnð1� zÞ�jþ1

¼ � lnð1� zÞ � 1

4
ln2ð1� zÞ

þ 4�
X1
j¼1

ð2jÞ ð�1Þj
2jþ 1

�
lnð1� zÞ

2�

�
2jþ1

: (F6)

The Bj are Bernoulli numbers, B0 ¼ 1, etc. Useful series

expansions for LinðzÞ are given in Eqs. (48) and (49) of
[154], which we reproduce here for the special case n ¼ 3:

Li 3ðzÞ ¼
X1
j¼0

C3ðjÞ
ðjþ 1Þ! ½� lnð1� zÞ�jþ1; (F7)

C3ðjÞ ¼
Xj
k¼0

j
k

� �
Bj�kBk

1þ k
; (F8)

with C3ð0Þ ¼ 1 etc. For Li2ðzÞ and Li3ðzÞ we observe
typically that n summation terms give an n
 1 digits
accuracy. We just mention that we do not allow to evaluate
the logarithms and polylogarithms at their cuts (negative
real axis beginning at z ¼ 0 and positive real axis begin-
ning at z ¼ 1, respectively). For other conventions we refer
to the corresponding remark at p. 19 of [154]. Our Fortran
code is available as file cpolylog.f at the website [120].
An alternative, efficient algorithm for the evaluation of

polylogarithms is described in [155,156].
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Ustroń, Poland, 2007, http://prac.us.edu.pl/~us2007/talks.
htm.

[116] R. Bonciani, A. Ferroglia, and A.A. Penin, Phys. Rev.
Lett. 100, 131601 (2008).

[117] J. Fleischer et al., Acta Phys. Pol. B 38, 3529 (2007).
[118] R. Bonciani, A. Ferroglia, and A.A. Penin, J. High Energy

Phys. 02 (2008) 080.
[119] J. H. Kuhn and S. Uccirati, arXiv:0807.1284.
[120] DESY, webpage http://www-zeuthen.desy.de/theory/

research/bhabha/bhabha.html.
[121] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1

(2006).
[122] N. Cabibbo and R. Gatto, Phys. Rev. 124, 1577 (1961).
[123] R. E. Cutkosky, J. Math. Phys. (N.Y.) 1, 429 (1960).
[124] B. Kniehl et al., Phys. Lett. B 209, 337 (1988).

[125] T. van Ritbergen and R.G. Stuart, Phys. Lett. B 437, 201
(1998).

[126] M. Steinhauser, Phys. Lett. B 429, 158 (1998).
[127] S. Eidelman and F. Jegerlehner, Z. Phys. C 67, 585 (1995).
[128] H. Burkhardt and B. Pietrzyk, Phys. Rev. D 72, 057501

(2005).
[129] F. Jegerlehner, Nucl. Phys. B, Proc. Suppl. 162, 22 (2006).
[130] K. Hagiwara et al., Phys. Lett. B 649, 173 (2007).
[131] G. Kallen and A. Sabry, Kong. Dan. Vid. Sel. Mat. Fys.

Med. 29N17, 1 (1955).
[132] F. Jegerlehner, Fortran program hadr5.f (version 02 Nov

2003), available at http://www-com.physik.hu-berlin.de/
fjeger.

[133] H. Burkhardt, Report No. TASSO-NOTE-192 (1981), and
Fortran program repi.f (1986).

[134] D. Maitre, Comput. Phys. Commun. 174, 222 (2006).
[135] D. Maitre, arXiv:hep-ph/0703052.
[136] R. Barbieri, J. A. Mignaco, and E. Remiddi, Nuovo

Cimento Soc. Ital. Fis. A 11, 824 (1972).
[137] R. Barbieri, J. A. Mignaco, and E. Remiddi, Nuovo

Cimento Soc. Ital. Fis. A 11, 865 (1972).
[138] G. Burgers, Phys. Lett. 164B, 167 (1985).
[139] S. Actis, J. Gluza, and T. Riemann, arXiv:0807.0174.
[140] J. Gluza, K. Kajda, and T. Riemann, Comput. Phys.

Commun. 177, 879 (2007).
[141] M. Czakon, Comput. Phys. Commun. 175, 559 (2006).
[142] J. Frenkel and J. C. Taylor, Nucl. Phys. B116, 185 (1976).
[143] M. Melles, Acta Phys. Pol. B 28, 1159 (1997).
[144] S. Jadach, B. F. L. Ward, and Z. Was, Comput. Phys.

Commun. 130, 260 (2000).
[145] M. Kobel et al. (Two Fermion Working Group), arXiv:

hep-ph/0007180.
[146] R. Bonciani et al., Nucl. Phys. B701, 121 (2004).
[147] J. Fleischer et al., Eur. Phys. J. C 31, 37 (2003).
[148] M. Davier et al., Eur. Phys. J. C 27, 497 (2003).
[149] S. R. Amendolia et al. (NA7), Nucl. Phys. B277, 168

(1986).
[150] Fortran routine, private communications with T. Teubner.

The Fortran program is based on the data compilation
performed for [130,151]. The publication is in preparation.
The routine is available upon request from the authors,
Emails: dnomura@post.kek.jp, thomas.teubner@
liverpool.ac.uk. We used version of 2008-04-26.

[151] K. Hagiwara, A.D. Martin, D. Nomura, and T. Teubner,
Phys. Rev. D 69, 093003 (2004).

[152] R. V. Harlander and M. Steinhauser, Comput. Phys.
Commun. 153, 244 (2003).

[153] G. ’t Hooft and M. Veltman, Nucl. Phys. B153, 365
(1979).

[154] J. Vollinga and S. Weinzierl, Comput. Phys. Commun.
167, 177 (2005).

[155] R. Crandall, Note on fast polylogarithm computation,
2006, http://people.reed.edu/~crandall/papers/Polylog.
pdf.

[156] U. Langenfeld (private communication).
[157] J. A.M. Vermaseren, Comput. Phys. Commun. 83, 45

(1994).
[158] D. Binosi and L. Theussl, Comput. Phys. Commun. 161,

76 (2004).

VIRTUAL HADRONIC AND HEAVY-FERMION . . . PHYSICAL REVIEW D 78, 085019 (2008)

085019-27


