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Virtual hadronic and heavy-fermion O(a?) corrections to Bhabha scattering
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Effects of vacuum polarization by hadronic and heavy-fermion insertions were the last unknown
two-loop QED corrections to high-energy Bhabha scattering and have been announced in [S. Actis,
M. Czakon, J. Gluza, and T. Riemann, Phys. Rev. Lett. 100, 131602 (2008).]. Here we describe the
corrections in detail and explore their numerical influence. The hadronic contributions to the virtual O(a?)
QED corrections to the Bhabha-scattering cross section are evaluated using dispersion relations and
computing the convolution of hadronic data with perturbatively calculated kernel functions. The technique
of dispersion integrals is also employed to derive the virtual @(a?) corrections generated by muon-, tau-,
and top-quark loops in the small electron-mass limit for arbitrary values of the internal-fermion masses. At
a meson factory with 1 GeV center-of-mass energy the complete effect of hadronic and heavy-fermion
corrections amounts to less than 0.5 per mille and reaches, at 10 GeV, up to about 2 per mille. At the Z
resonance it amounts to 2.3 per mille at 3 degrees; overall, hadronic corrections are less than 4 per mille.
For ILC energies (500 GeV or above), the combined effect of hadrons and heavy fermions becomes 6 per

mille at 3 degrees; hadrons contribute less than 20 per mille in the whole angular region.
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I. INTRODUCTION

Elastic e e scattering, or Bhabha scattering,

e (p1) + et (py) — e (p3) + et (pa) (D

was one of the first scattering processes that were observed
and predicted in quantum mechanics [1]. It has a unique
and clean experimental signature. The accuracy of theo-
retical predictions profits from its purely leptonic external
particle content and from the extremely small electron
mass. The first complete one-loop prediction in the stan-
dard model was [2], the first O(«) predictions in the
standard model with account of hard bremsstrahlung
were determined in [3-8], the effects from hadronic vac-
uum polarization were first studied in [9], and the leading
NNLO corrections from the top quark in [10]. The com-
plete electroweak two-loop corrections are available in
form of few form factors [11,12], but they are not imple-
mented for Bhabha scattering so far. During the years, a
rich literature on the subject arose, both concerning QED
Monte Carlo results and virtual electroweak corrections;
see [13-86], and also the references therein.

Quite recently, an experimental precision at the per mille
level or beyond seems feasible both at meson factories and
in the ILC (and GigaZ) project [87-92]. As a reaction to
that, a program of systematic evaluation of the complete
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next-to-next-to leading order (NNLO) contributions was
emerging [93-118].

In this article, we extensively describe the evaluation of
the last building block of QED two-loop corrections,
namely, the corrections from heavy fermions and hadronic
vacuum polarization. Note that the latter result has been
confirmed very recently in [119] (upon using the same
parametrization of the vacuum polarization, the agreement
between the two studies is perfect, 5 digits for the O(a*)
NNLO terms). Both for reasons of completeness and in
order to ensure easy comparisons, we will also include in
the discussion the Ny = 1 corrections which consist of
purely photonic corrections and electron-loop insertions,
the soft bremsstrahlung and soft electron pair emission
corrections. Concerning genuine two-loop effects, we
take the results from the original computations of [100]
(electron-loop corrections) and [104] (photonic corrections
beyond logarithmic accuracy); soft electron pair emission
is taken from the work of [44] (with logarithmic accuracy).
All the two-loop contributions are calculated in our nu-
merical Fortran package BHBHNNLOHEF and will be made
available at the webpage [120].

The organization of the paper is as follows. In Sec. II we
introduce notations and the Born cross section. Section III
collects the known facts on pure vacuum-polarization cor-
rections as they will be used, and Sec. IV the pure self-
energy corrections to the cross section. Section V contains
the irreducible vertex corrections and Sec. VI the various
infrared divergent corrections, including reducible correc-
tions, soft-photon emission and the most complicated ones
from the irreducible two-loop box diagrams. The three
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kernel functions for the latter have been evaluated for the
first time. Section VII contains a discussion of numerical
effects at a variety of energies, typical of meson factories,
LEP, ILC. In the summary we will also point to potential
further research. Appendices A to F are devoted to techni-
cal details of fermionic vacuum polarization, one-loop
master integrals, soft real bremsstrahlung, real pair emis-
sion, the evaluation of the hadronic cross-section ratio
Ry.4, and on our evaluation of complex polylogarithms.
Some Mathematica files of potential public interest and the
Fortran package are available at the webpage [120].

II. THE BORN CROSS SECTION

The QED tree-level differential Bhabha-scattering cross
section with respect to the solid angle (2, in the kinematic
region m2 < s, |t], |ul, is:

2
a” [vq(s,t
doy { 1(s, 1) n

2

vo(s, 1) (s s)}
+

o  2s| §? st 12
2 £\2
=“—<f+1+—). )
s\t s
Here, « is the fine-structure constant [121],
a = 1/137.035999 679(94), 3)
and
vi(x, y) = x* + 2y* + 2xy, 4)
vy(x, y) = (x + )2 (5)

The cross section depends on the Mandelstam invariants s,
t and u, which are related to E, the incoming-particle
energy in the center-of-mass frame, and 6, the scattering
angle:

s =(p1 + p2)* = 4E7,
. (0
t=(p; — p3)* = _4EZSIHZ(E>, (6)
_ 2 _ 2 off
u = (p; — ps)* = —4E°cos 5)

where
s+t+u=0. @)

For the numerical estimates at higher energies, it is
reasonable to normalize the higher order corrections to
the complete electroweak effective Born cross section:

do o’
d(;w = E(TS + T, +1T,), (8)
with
T, = (1 + cos’0)[1 + 2Rex(s)(v?) + | x(s)[*(1 + v?)?]
+ 2 cosf[2Rex(s) + |x(s)|>(4v?)], 9)
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2
_2%“ + [x(1) + Rex(s)1(1 + v?)

+ x(ORex(s)[(1 + v?)? + 4v2]}, (10)

T, =

(1 + cosh)?
(1 — cosh)?
+ xO(1 + v?)? + 477}

8
* (1 — cosh)? [1

T, {1 +2x()(1 + v?)

—x(O1 —v)P. AD

We choose the following conventions:

v=1—4s2, (12)
(s) = O Mz : (13)
5) = — ,
XMV T 2 8ma s — M2 + iM,T,
Gr M2 ¢
X)) =—7%—*%= (14)

V2 8mat— M3

Among the quantities @, G, s2,, M, there are only three
independent, and I'; is predicted by the theory as well. The
phrasing effective Born cross section means here that we
use, besides «a [introduced in (3)], the following input
variables:

2 =023 (15)
M, = 91.188 GeV, (16)
I', = 2.495 GeV, (17
Gr = 1.16637 X 107> GeV~2, (18)

The values are, in a strict sense, related in the standard
model, and may be determined e.g. by using the package
ZFITTER [62,81]. Here, we took them from [121].

We may now estimate the relevance of the Z-boson
exchange to Bhabha scattering in different kinematic re-
gions of interest. It is minor at smallest energies where s,
|f] < M2, because there y(x) ~x/M% < 1, x = s, t. The
strength of the Z exchange amplitude, relative to the pho-
ton exchange, becomes at large s, |¢| asymptotically:

2
Gr My = 0.3739. (19)
2 87a
The other scale of relevance here is the ratio of photon
propagators in the s- and t-channels:
s 2
t 1 —cosf’ 20)
In fact, at meson factory energies, the electroweak Born
cross section agrees with the QED prediction within few
per mille, and at LEP2 or the ILC within better than 50%,
while at LEP1 or at GigaZ the ratio may become bigger
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FIG. 1 (color online). Ratio of electroweak to QED Bhabha
scattering cross section at large angles (up) and small angles
(down) as a function of ./s.

than 25; this happens of course only for large scattering
angles. At small angles, the corrections may safely be
normalized to the QED Born cross section everywhere.
The gross features are illustrated in Fig. 1 for large and
small angle Bhabha scattering. For large angles, we show
the cross-section ratio separately for LEP1/GigaZ and the
ILC in Fig. 2. We conclude that only for large angles at
LEP 1 energies it is better to relate the corrections from
higher order contributions to the weak Born prediction,
while for all other kinematics one may use the simple QED
Born cross section.

III. THE VACUUM POLARIZATION

Higher-order fermionic corrections to the Bhabha-
scattering cross section can be obtained inserting the re-
normalized irreducible photon vacuum-polarization func-
tion, I, in the appropriate virtual-photon propagator,

ng/
afl _ B 2
(4*g qq)H(q)2+5

2D

g,U«V gua
q2 + i5 q +id

Here ¢ is the momentum carried by the virtual photon, § —
0. The vacuum polarization II can be represented by the
once-subtracted dispersion integral [122]:
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FIG. 2 (color online). Ratio of electroweak to QED Bhabha
scattering cross section at large angles in the energy ranges of
LEP1/GigaZ (up) and ILC (down).

ImII(z) 1

2
__q9 [™
H(‘f)‘_?[wzdz o @

where the appropriate production threshold for the inter-
mediate state in IT is located at g> = 4M?. We leave as
understood the subtraction at g> = 0 for the renormalized
photon self-energy.

Contributions to II arising from leptons and the top
quark can be computed directly in perturbation theory,
setting M = my in Eq. (22), where my is the mass of the
fermion appearing in the loop, and inserting the imaginary
part of the analytic result for II.

We have at one-loop accuracy:

a m2\e T
_(;>F5<m—j2£> Q}Cfo(z - 4m})§

% {/sz(Z)

Imll(z) =

(3= B3] + B, 3 + 31,

- B() Bf(Z)LBf( )]}+(9(a2), (23)

where Qy is the electric charge, Oy = —1 for leptons,
Q = 2/3 for up-type quarks and Q, = —1/3 for down-
type quarks, and Cy is the color factor, C; = 1 for leptons
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and Cy = 3 for quarks. In addition, we have introduced the
0 function, #(x) = 1 for x = 0 and 6(x) = 0 for x < 0, and
the threshold factor,

2.
Bs(z) = ‘/1 — 4%, (24)

1 - B3
Lg (2) = 1n(7f). (25)
A 4B2(2)
The overall regularization-dependent factor reads as
2 YE\ —€
Fo= (") (26)
M

where w is the 't Hooft mass unit and yg is the Euler-
Mascheroni constant.

The inclusion of the @O(e) terms in Eq. (23) deserves a
comment. These terms might play a role when combining
ImII; with a pole term of another one-loop insertion in a
reducible two-loop Feynman diagram. The Bhabha-
scattering cross section we are going to consider is an
infrared-finite quantity, provided one takes into account
the real emission of soft photons. Therefore, when sum-
ming up all contributions, the result does not show any pole
in the € plane and all radiative corrections, including the
one-loop photon self-energy, can be evaluated at O(e).
However, we retain the higher € order in Eq. (23) for
comparing partial results with those of [113].

In contrast to leptons and the top quark, light-quark
contributions get modified by low-energy strong-
interaction effects, which cannot be computed using per-
turbative QCD. However, these contributions can be eval-
uated using the optical theorem [123]. After relating
ImlI,,4 to the hadronic cross-section ratio Ry,q [122],
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Im I 4(z) = — %Rhad(z), 27)

o({ete”™ — y* — hadrons}; z)
(47a?)(3z) '

Rpaa(z) = (28)

ImlIl;,q can be obtained from the experimental data for
Ry.q in the low-energy region and around hadronic reso-
nances, and the perturbative-QCD prediction in the re-
maining regions. The lower integration boundary is given
by M = m,, where m . is the pion mass. For self-energy
corrections to Bhabha scattering at one-loop order this was
first employed in [13]. Two-loop applications, similar to
our study, are the evaluation of the hadronic vertex correc-
tion [124] and of two-loop hadronic corrections to the
lifetime of the muon [125]. The latter study faces quite
similar technical problems to those met here, like the
infrared divergency of single contributions and the exis-
tence of several scales.

For the fermionic and hadronic corrections to Bhabha
scattering at one-loop accuracy, there is only the self-
energy diagram shown in Fig. 3(c). The two-loop irreduc-
ible self-energy contributions have the topology shown in
Fig. 3(c). One has additionally the four classes of two-loop
diagrams shown in Fig. 4 The reducible self-energy [Fig. 4
(a)] and vertex [Fig. 4(b)] topologies are much easier to
evaluate than the irreducible vertex [Fig. 4(c)] and box
[Fig. 4(d)] topologies. In fact, only the two-loop boxes
were unknown until quite recently.

The two-loop corrections have to be added with the
loop-by-loop contributions (the interferences of the top-
ologies of Fig. 3) and with the soft-photon corrections. All
these terms will be discussed in the following sections.

To summarize this section, the hadronic and heavy-
fermion corrections to the Bhabha-scattering cross section
can be obtained by replacing appropriately the photon

— VNN ———
(©)]

(a) (b)

FIG. 3. The one-loop topologies for Bhabha scattering. The gray circle in (c) denotes the vacuum polarization under consideration,
which may be understood to include fermionic and hadronic one- and two-loop irreducible self-energy corrections.

ool et L

FIG. 4. Two-loop topologies for Bhabha scattering with vacuum polarization insertions: reducible self-energy (a) and vertex (b)
corrections as well as irreducible vertex (c) and box (d) corrections; for the irreducible self-energy corrections see Fig. 3(c).
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propagator by a massive propagator, whose effective mass
z is subsequently integrated over. Inserting (22) and (27) in
(21) we get:

8uv _)i/w PRGN (g _ q,LqV)
q*>+id 3w J)ur z ¢*—z+is\°"" ¢*+i8)

(29)

In the following, we will call the massive propagator
function in (29) the self-energy kernel function:

1
Kse(q*:2) = 6]2_— (30)

z+id
The weight function R(z) is given by the sum of the non-
perturbative light-quark component of Eq. (28) and the
perturbative result of Eq. (23), valid for leptons, f = e
7, and the top quark, f = t:

R(z) = ROL(2) — Z ImIT ,(2)
f—e M, Tt
=R+ S Rizmy) 31)
f=e,u,7,t
L
Ry(zimy) = chf(l + 27-) P-4t (32)

Compared to (23), we omit here the terms of order O(e).

The function Rgd(z) will be discussed in Appendix E.
Corrections related to electron insertions (f = e) will be
discussed separately. For pure self-energy insertions (see
Appendix A), we may consider the electron mass as being
small and neglect terms of order O(m2/x), x = s, |t|, |ul.
At the expense of that, even the three-loop corrections are
known [126]. For two-loop irreducible vertex and box
corrections, we may either consider m, being finite and
treat a two-scale problem (s/m?2, t/m2), or we may assume
also here m2 < s, |t|, |ul. Instead, for the diagrams with
self-energy insertions of other fermions f, we will assume

PHYSICAL REVIEW D 78, 085019 (2008)

m2 << m%, s, |tl, |ul, but we will make no additional

assumption on ms.

IV. PURE SELF-ENERGY CORRECTIONS

The pure vacuum-polarization contributions to Bhabha
scattering form a gauge-invariant subset of diagrams. So,
their numerics may be discussed separately. They can be
readily obtained from the tree-level result (2) by introduc-
ing appropriately a running fine-structure constant a/(x),
where x = s, 1,

do—arun _ 2U1(S t) UQ(S t)
T 2s[| (s)| + 2a(r)Rea(s) ————=
o2 Uy (t S) 2
() —5— ] + O(my), (33)
and where the running of « is defined as
o
a(x) = 1= Aal)’ (34)

Here A« is given by the sum of the nonperturbative light-

quark contribution Aaﬁsa)d [127] (see Refs. [128-130] and
references therein for recent developments), a perturbative
electron-loop component evaluated in the small electron-
mass limit, IT,, and a fermion-loop term computed exactly,
Iy, with f = u, 7, 1,

Aa(x) = Aaflsa)d(x) + I1,(x) + Z I (), (35)

f=pmt

3 —— Ksg(x; 2), (36)
4m2

with the self-energy kernel function Kgg(x;z) (30).
For x < 4mZ, Eq. (36) is well defined. For x > 4m?Z, the
real and imaginary parts are after a subtraction:

TABLE 1. Contributions to A in units of 10™* in the s-channel [see Eq. (35)]. The real part of the hadronic contributions is obtained
with help of the subroutine hadr5.f [132], the imaginary part follows from the Burkhardt parametrization [133].

s [GeV] 1 10 M 500

1 loop e 104.462-24.32451 140.119-24.32451 174.347-24.3245i 200.698-24.3245i
M 21.352-24.30601 57.551-24.3245i 91.784-24.3245i1 118.136-24.3245i1
T —0.508 12.194-24.1724i 48.060-24.3245i 74.429-24.3245i1
t <1073 —0.007 —0.595 —5.180-29.06331
2 loops e 0.258-0.0424i 0.320-0.0424i 0.380-0.0424i 0.426-0.04241
M 0.123-0.04871 0.177-0.0424i 0.236-0.0424i 0.282-0.0424i

T —0.005 0.118-0.0626i 0.160-0.0426i 0.206-0.0424i

t <1073 <1073 —0.002 0.061-0.08761
3 loops e 0.001-0.00051 0.002-0.00061 0.003-0.0008i1 0.004-0.00091
hadrons —74.420-37.9089i 138.850-97.41061 276.213-97.2980i 370.744-97.2980i
SUM 51.263-86.63101 349.324-170.38001 590.586-170.39971 759.806-199.55051
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TABLE II.

PHYSICAL REVIEW D 78, 085019 (2008)

Contributions to Ae in units of 10™* in the 7-channel for three values of the

scattering angle, # = 3°, & = 20° and # = 90°, t = —ssin?(6/2). See the caption of Table I for

further details.

6[°11+/s [GeV] 0 =20|1 0 =20|1 = 3|M, 6 = 3]500
1 loop e 77.3512 113.008 117.935 144.286
n 3.3069 30.614 35.463 61.727
T 0.0148 1.346 2.365 18.804
t <1074 <1073 <1073 0.012
2 loops e 0.2109 0.273 0.282 0.327
n 0.0260 0.126 0.136 0.184
T 0.0001 0.011 0.019 0.097
t <10~* <1073 <1073 <1073
3 loops e 0.0006 0.001 0.001 0.002
hadrons 2.6072 57.830 71.643 162.280
SUM 83.5177 203.209 227.844 387.719
6 = 90°|/s [GeV] 1 10 M, 500

1 loop e 99.0951 134.752 168.980 195.331
n 17.4725 52.200 86.418 112.769
T 0.2412 10.841 42.746 69.064
t <10~* 0.003 0.284 6.208
2 loops e 0.2487 0.311 0.370 0.416
n 0.0924 0.167 0.227 0.273
T 0.0021 0.068 0.150 0.196
t <1074 <1073 0.001 0.021
3 loops e 0.0009 0.002 0.003 0.003
hadrons 25.0834 127.219 256.279 362.375
SUM 142.2363 492.396 555.458 746.656

) _ p®
Re[Aa®, ()] = L5 [7 gz PRuua® = Rigg(0]

73 Jam 72(x — z)
o 5) X
+ thad(x) 10g[4]n%7 - 1], (37)
o
Im[Aal) (0)] = — g1!3}15;4(36). (38)

The Im[A al(lsa)d(x)] coincides with Eq. (27). Expressions for
the perturbative contributions to the photon vacuum-
polarization function, IT, and II,, are available in QED
exactly up to two loops [131] and in the small electron-
mass limit up to three loops [126]. For convenience, their
explicit expressions are collected in Appendix A. For our
analysis, we use the exact results of Egs. (A3) and (A4) for

fermion loops (f # e), and the high-energy expressions of
Egs. (A8)-(A10) for electron loops.

In Tables I and II we show numerical values for the
various components of A« of Eq. (35) for spacelike and
timelike values of x (¢- and s-channel). Note that A«
develops an imaginary part in the s-channel above the
two-particle production threshold (see Table I). Besides
the Fortran package HADRS.F for hadronic contributions
[132], we employed the Mathematica package HPL
[134,135] and, as a cross check, our Fortran routines (see
Appendices A and F).

V. IRREDUCIBLE VERTEX CORRECTIONS

Hadronic and heavy-fermion irreducible vertex correc-
tions are obtained through the interference of the diagrams
of Fig. 5 with the tree-level amplitude. The contributions

O T

FIG. 5.

Hadronic and fermionic irreducible vertex diagrams. The gray circles mark the corresponding one-loop insertions.
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from the irreducible vertices are gauge invariant by them-
selves. Their contribution to the O(«?) differential cross
section is given by

d;rgn _ 4(3)2(;){1;,? 1) ReV,(s) + vl(t s) V,(0)
LS ”2(s L [ReV,(s) + Vz(t)]} +Omd). (39

Here V, summarizes all two-loop fermionic corrections to
the QED Dirac form factor, whose computation can be
traced back to the seminal work of Refs. [136,137]. The
full result can be organized as

VZ(x) = V2e(x) + V2rest(x)r (40)

where V,, denotes the electron-loop component. Closed
analytical expressions in the case of electron loops at finite
m, can be found in Ref. [97]. In the high-energy limit,
compact expressions are available thanks to Ref. [138]:

m2 19 m2
Vo (x) = —1 ) 4 2"
2:(%) 36n< x) 72“( x)

AR () 1)
+ O(m}). (41)

After a combination with soft real electron pair emission
contributions (D1), the leading logarithmic contributions
In3(s/m?2) get canceled in (39).

Heavy-fermion and hadronic contributions, instead, can
be evaluated as in Ref. [124] through the dispersion inte-
gral

V2re§t(x) [ dZ R(Z) KV(x + 16 Z) (42)

where R is given in Eq. (31) and the two-loop irreducible
vertex kernel function Ky, in the limit of a vanishing
electron mass, reads as

1 7 z 3 z X
Ky(x;z2) = {—=— =+ (>+==)In[—=
v(x:2) 3{ 8 2x (4 2x)ln( z)

() Te-w(+]} @

Here Li,(x) is the usual dilogarithm and ¢, = Liy(1) =
7°6. The kernel is at the upper integration boundary of the
order O(1/z), the integrand of order O(1/z%) so that the
dispersion integral is finite there:

A3 4 1ln( u))u?

Ky(x;z) = 288

= Luln(—u) + (=
+ (3600 &In(—u)u’}  for u = E — 0. (44)

At the lower integration bound, the integrand becomes for
small z/x:

PHYSICAL REVIEW D 78, 085019 (2008)
1 7 )
Ky(x:2) = g{—g @ +2 1n( u) — —1n (—u)

—[1+2am+%m%—m]ﬂ

for u == — oo, (45)
Z
This asymptotic behavior yields at most terms of the order
of In®(x/M?) if M*> < x.
An interesting question is the identification of mass
logarithms in case of fermion insertions. Let us rewrite:

Varest®) = Ving (@) + 3 03C,Vip(x),  (46)

f=nmt

where Vglld denotes the nonperturbative light-quark term
and V, the perturbative contribution of a fermion of flavor
f # e. Potentially large logarithms arise from parts of the
integrand for the z integration which are singular at the
lower integration bound, z — 4M?, when allowing thereby
M? to become small. For fermions, one has to analyze
R (2)Ky(x; z)/z in that limit.

The corresponding analytical integrations may be per-
formed easily after applying the transformation

2
4mf

2=—1 (@7)

thereby getting rid of the square root function in R /(z):

Ry(2) = CfQ}g(s — ). (48)
After that transformation, the dispersion integral becomes:
1 1
sz(x)=-[) du[—2+u2+1_u+l+u]
) 4m}2c
X Kv<x + 15;ﬁ). (49)

From the vertex kernel function Ky (x;z), we have addi-
tionally dependences on In(—x/z) and on Li,(1 + x/z).
Although after the variable change (47) the arguments of
logarithm and dilogarithm become nonlinear, all the inte-
grals may be taken trivially, and we will not go into further
details. The result contains Li; and powers of logarithms
In"(x/ m]%) with n = 3. In fact, one will rediscover in the
kinematically interesting ultrarelativistic case the formula
known from [138] and e.g. also from [113]:

m2 19 mZ
/ 2 /
= A J’_ I __J
sz(x) 361n ( X ) 721[1 ( X )

w4 v e)(-1)

3355 19
+ 6(76 +— < OH— 2§3> + O(m3).  (50)

The same soft- real pair cancellation mechanism as de-
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scribed for electrons works also for heavy fermions, and
the leading logarithmic powers In3(s/ m%) will get canceled
in the cross section. This is of physical relevance if the soft
pair emissions remain unobserved. In our numerical stud-
ies, we will, conventionally, include the soft electron pair
emission cross section, but not that for heavy fermions or
hadrons. For further details see Section D, and some nu-
merical results were presented in [139], where we used the
parametrization [133] with flag setting IPAR = 1.

We just mention that the transformation (47), when
applied to the simple one-loop self-energy kernel (30),

4mJ2f/x
1—u*— 4m]2c/x

1 1
Kepri) ==+ [1+
X — 2 X

] e
gives a rational integrand for the u-integration, and one
gets as a result a function at most linear in In(s/ mjzc) For
the explicit expressions see Eqs. (A3) (constant term in €)
and (AS8).

VI. INFRARED-DIVERGENT CORRECTIONS

There are various origins of heavy-fermion or hadronic
infrared divergent cross-section contributions of order
o(a*):

(i) Factorizable diagrams with one-loop vertex or box

insertions

(i1) Irreducible two-loop box diagrams

(iii) soft real photon corrections

The sum of these corrections is gauge-invariant and infra-
red finite.

Pas 9 and

PHYSICAL REVIEW D 78, 085019 (2008)

We will consider five classes of contributions:

(a) Interference of Born diagrams with reducible
[vertex+self-energy] corrections of Fig. 6;

(b) Interference of one-loop vertex and self-energy dia-
grams, both of Fig. 3;

(c) Interference of one-loop box and self-energy dia-
grams, both of Fig. 3;

(d) Interference of real soft-photon emission diagrams,
one of them with a self-energy insertion;

(box) Interference of Born diagrams with two-loop box
diagrams of Fig. 7.

For ease of notation, in the following we collect the
overall dependence on « and rewrite the factorizing con-
tributions of class i, i = a, ..., d:

i
d O fact

52
10 (52)

_ (0‘)2 @ Ay
w) s dQ

and analogously for the two-loop boxes. In addition, we
define

N

§=—,
e

(53)

3

(54)

and introduce shorthand notations for those kinematic
factors which appear more than once in the following
formulas:

N
AN

FIG. 6. Hadronic and fermionic reducible vertex diagrams. The gray circles mark the corresponding one-loop insertions.

(1a) (2a)

I

//(3a> (4a)

(1b) (2b)

FIG. 7.

] LK

— Gy

(4Db)

Irreducible box diagrams. The gray circle denotes the hadronic or fermionic insertions.
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_ou(s ) wv(sn 1 3 3 A. Factorizable corrections with vertex
Ar=- 2 st ;[(1 - =r] or box insertions

_vi(ts) | vals,n) 1 ) 5 The infrared-divergent factorizable heavy fermion and
B, = 2 + = ﬁ[z(l =)ttt r—ri] hadronic corrections for m2 << M?, s, |t|, |u| can be readily

_vy(s, 1) obtained from Ref. [113] by replacing the photon vacuum-

C,=——>—=>10- r?+r?, polarization function in the s- or f-channel with the dis-
s persion integral

UQ(S,I) 1 2
D,=——2""=_(1-r7
T o () = Aa() = 1) (56)
: )1 4
E,.= 3v1(§ s) + va(s 1) =61 =1+ r(5—r—1r)]
Lv(ts) 1 . (s, 1) ' 1 == [ d__R@ _ x=st (57)
_1ugs vy(s, 1) ) ) =3 , 15 =451,
=_ += = — )2+ - am* Z X —zt+1
Fo=s =t = =gl =+ rG -]

vits) 1 where Aa(x) is given in (35) and R in (31).
G, =— s—=—0+0- r)?). (55) We begin with the reducible vertex corrections (a). From
! r | Eq. (3.8) of Ref. [113] we derive:

s F 1
% = —<{4[(1 ~ n@)Rel(s) ~ wImI()] + B,[In(3) + In(r) — 1)} + {A,[I0°(8) — 85] ~ (4, = 2C,) In(§)
€
1 1
+2(A, — C,)JRel(s) + 5[2A,1n(§) — A, 4+ 2C,]mImi(s) — E{Br[ln2(§) + In%(r)] — [E, — 2B, In(r)]1In(3)
- Er ln(r) - 2Br§2 + 8Fr}1(t)’ (58)
where the normalization factor F, is given in Eq. (26). It appears here in the combination
1 2
Fe _21_ 1n<m—§) — In(7) — v + O(e). (59)
€ € )

In strict analogy, the interference of the one-loop vertex diagrams of Fig. 3(a), with the vacuum-polarization diagrams of
Fig. 3(c) can be extracted from Eq. (3.26) of Ref. [113]:

=b
do-fact

0 %{[Ar(l — In(8)) — D, In(r)]Rel(s) — C,arIml(s) + [B,(In(3) — 1) + G, In(r)]1(1)}

+ %{A,lnz(ﬁ) —2[(1 — 49D, — 42]4, — [A, — 2C, — 2D, In(A]In(§) + D,In2(r) — (D, — 2) In(r)
+ 2[(1 — 2r)D, — 2r*]}Rel(s) + %{2C, In(3) — [C, — 4r(1 — r)]}wImi(s)
- %{Brlnz(ﬁ) - [E - %(1 + D) 1n(r)]1n(§) + %(1 + 1D )In%(r) — r—12[6(1 — )+ 2]

- %[m — 49D, + 115 + 8F,}I(t). (60)

Finally, the contributions from the one-loop box diagrams of Fig. 3(b) may be derived from Eq. (3.28) of Ref. [113]:
do_-fc:aC[

0 %{[C, In(r) + A, In(1 — r)JRel(s) + D,7wImI(s) — [D,In(r) + B, In(1 — r)]I(2)}

- {[c, In(r) + A, In(1 — £)]1n(s) + In(r) + %(21), + I =) + %(1 N }1(1 —29I2(1 = 1)
+ D, In(r) In(l — r)}Rez(s) - {D, In(s) + %[D,r(l 1= 3ATI0) + %[3(1 —20) + 427 In(1 — 1)
+ %(m, L1+ 2r2)}7TImI(s) + {[D, In(r) + B, In(1 — r)]In(s) + %(cr +2)In(r)

- %[rD, +2(1 = 7r)+ r*]In(1 — r) + %(5 — 4n)In3(r) + %(2 — NIn? (1 — r)

+ %[ZrD, +2(1 —7r)+ r*]In(r)In(1 — r) + 3(2 - r){z}l(t). (61)
2r 2r

085019-9



ACTIS, CZAKON, GLUZA, AND RIEMANN

All three types of corrections are infrared divergent. The
vertex diagrams contribute leading electron-mass singular-
ities of the order In?(s/m?2), while for the factorizable box
diagrams the leading order is In(s/m?2). In addition, the
self-energy insertions /(x) yield a dependence on In(s/m7),
in case m?- is small compared to s. This may be most easily
seen from the e-independent terms in (A3). So, we collect

here at most terms of the order In?(s/m2) In(s/ mjzc)

B. Soft real photon emission

In order to obtain an infrared-finite quantity, we take into
account the interferences of diagrams with real emission of
soft photons from the external legs, where one of the

dagl _F
st = Z<ofIn(s) + In(r) -
€

20 In(1 — r) — 1][A,Rel(s)

PHYSICAL REVIEW D 78, 085019 (2008)

diagram has a vacuum-polarization insertion. The anatomy
of these real corrections is exemplified in Appendix C,
where the soft photon factor is shown both for nonvanish-
ing electron mass m, and in the ultrarelativistic approxi-
mation. The result may be also read off from Eq. (4.4) of
Ref. [113] and reads as

(62)

where w is the maximum energy carried by a soft photon in
the final state. We obtain

— B,I(1)]

- 2{[%1112@) + In()(n(r) — In(1 — 1)) + —lnz(r) 1n2(1 ~ ) — () In(l — £) — 2Lis(r) - ;2]

X [A,Rel(s) — B,I(1)] + D,[In(§) + In(r) — In(1 — r) — 1][Rel(s) + I(t)]}, 63)

d3%a — _4fin(s) + In(r) — In(1 — r) — 1][A,Rel(s)
a0

Again, the infrared divergency is contained in the factor
F./€, and the mass singularities are at most of the orders
In(x/m3), x = s, 1, and In*(x/mg) for the w-independent
part and In(x/m?2) for the w-dependent part.

C. Two-loop irreducible box corrections

From the technical point of view, the two-loop irreduc-
ible box corrections of this section, represented by the
three box kernel functions, are the main result of the
article. Their contributions to the Bhabha-scattering cross
section arise from the interference of the diagrams of Fig. 7
with the tree-level amplitude and can be written as

dohox — <a)2 a’ da_-box _ (a)Z o 2(ReAs + RCAI)
dQ w) s dQ ) 4s s t )

(65)

Here the functions A, and A, contain the interferences of
box diagrams with the s-channel and 7-channel tree-level
diagrams and can be represented through three indepen-
dent form factors, evaluated with different kinematic argu-
ments:

A, = B(s, t) + Bg(t,s) + Be(u, t) — Bg(u, s),  (66)

— B,I(1)]. (64)

A, = Bg(s,t) + B4(t,s) — Bg(u, t) + Be(u, s).  (67)
In addition, note that in Eq. (65) we have collected an
overall factor 1/4, coming from the sum over the spins, and
a factor 2, taking into account the fact that the contribu-
tions generated by the diagrams (1a), (2a), (3a) and (4a) are
equivalent to those of diagrams (1b), (2b), (3b) and (4b) of
Fig. 7. Finally, the correspondence among the form factors
of Eq. (66) and the diagrams of Fig. 7 reads as follows:

diagl X tree; = By(s, 1), diagl X tree, = Bjp(s, 1),

diag2 X tree, = Bg(t, 5), diag2 X tree, = B,(t, 5),

diag3 X tree; = Be(u, ), diag3 X tree, = —Bg(u, 1),

diagd X tree;, = —Bp(u, s), diagd X tree, = B(u, $).

(63)

We evaluate the three form factors B; using dispersion
relations and computing thereby the convolution of the
hadronic or fermionic cross-section ratio R with three
kernel functions K;,

Bi(x,y) = / d K (x v 2), (69)
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where R has been introduced in Eq. (31), and the kernel
function are to be calculated. For positive x or y, one has to
replace x = x + i ory — y + ié.

The self-energy insertion is represented by a dispersion
relation, thus replacing the one-loop photon propagator by
a massive effective propagator as in Eq. (29). This proce-
dure reduces the evaluation of the two-loop diagrams to
one-loop complexity with a subsequent dispersion integra-
tion. Employing standard techniques, together with the
Mathematica packages AMBRE [140] and MB [141], for a
reduction of one-loop integrals to scalar master integrals,
the kernel functions have been finally expressed by eight
one-loop master integrals MY (x, y; z),

8
Ki(x,y:2) = Fe Y CP(x, yi MV (x, y:2),  (70)
=

where F is the usual normalization factor of Eq. (26), and
ng) are rational functions of the kinematic invariants, of
the space-time dimension d, and of the two masses m,, z.
The master integrals M) are shown in Fig. 8 and analytical
expressions for them can be found in Appendix B. Because

me

1

Ka(x, y:2) = m

{—2%(x+y)21n(

PHYSICAL REVIEW D 78, 085019 (2008)

m

v M
M,

m
M

M,

M, /\/\%\/\/\/ M
M3

FIG. 8. The one-loop master integrals with an additional mass
scale M = /7 for the dispersive two-loop box evaluation.

of their length, we do not reproduce here the explicit (exact
in m, and d dimensions) right-hand side of (70), but refer
for them to the Mathematica file at the webpage [120].

In the small electron-mass limit we obtain the two-loop
box kernel functions:

. ) + 4(2[z2 - z(? + y) + 2x(x +y) + yz]

m> m2

+ 2[Z(x + y) + Xz] 1H<— 7@) + [ZZ + 27zx — y(zx + y)]]n2<_ J)
X X
X X2 m2

+ [2Z2(_ + 1) - z(— + 6x + Sy) + x(x + 4y) + 3y2]ln(— —e)
y y y

2 2 2
+ [z2 — 2z<x— +x+ y) + 2x(x +y) + yz]lnz(— &) —2[z2 + 2zx + 2x(x + y) + ¥?] 1n<— &>
y y X

2 2
X ln(—&) + [2z2(f + 1) — z(x— + 4x + 3y
y y y

) + (x + y)2]1n<njg) + [2z<);2 +2x + y) —(x+ y)z]

2 2
X 1n2(i2) —2x +y)? 1n(i2) ln(— m—) + 2[z2 - ZZ(X— +x+ y) + 2x(x +y) + yz] 1n(i2) ln(l - 5)
me me X y me y

x x? y z
- [212(— + 1) - z(— + 6x + Sy) —=(x+ )+ 2x(x + 3y) + 4y2:|1n<1 - —)
y Z y

Y

+ 2[2% + 2zx + 2x(x + y) + y?] ln<1 — E) ln(
y

+2%x + z)2L12(1 + i)}

2

2 2 2 2
- &) + 4[Z— — z(x— +x+ y) +x(x+y)+ y—:ILiZ(E)
x y 2 y

(71)
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Kp(x,y;2) = ﬁ{—4%[x(x +y) + };—z]ln(— m;) + 452[12 - 2z(x;2 + g) +2x(2x +y) + y2]

2 2
PR ol ln<_ %) + [ + 220 — y(2x + y)]ln2(— %)

2 2
+ |:2z2<E + l) — z<2x— + 6x + Sy) + y(4x + 3y) + 2x2:|1n(— %>
y y y

2 2
+ I:z2 — 21(2% +x+ y) + 2x(2x + y) + yz]lnz(—%) —2[z% 4+ 2zx + 2x(2x + y) + y*]

2 2 2
X ln(— %) ln<—&) + [212(5 + 1) - z(Zx— +4x + 3y) +2x(x +y) + yz]ln(%)
X y y y n,
+ 4[ (x—z +x+ X) — Ity - ﬁ]w(i) - 4[ (x +y) + ﬁ]ln<i)ln(—m—%>
Ny ") 2T Y T T BRAERCES Y b V% x

2
+ 2[22 - 4Z<x— + g + g) +2x(2x +y) + y2] 1n(iz) 1n<1 - 5)
y m? y

2 5 2
- [28(f + 1) - 2z(x— +3x + —y) - 2X(x2 +xy + y—) +20202 + 202 + 3xy)]ln<1 - 5)
y y 2 Z 2 y

2

2
+ 2[z% + 2zx + 2x(2x + y) + y?] 1n<1 - 5) 1n<— ﬂ) + 2[z2 - 2z<2x— +x+ y) + 2x(2x + y) + yz:l
y X y

X L12<5) 422+ 2xz + 2x2)Li2(1 + 5)} (72)
y X

1 F 2 2 2
Ke(x, y;z) = {Z—E)c2 ln(— &) + 4§2x2(E - 2) —2(x* + y* + xy) ln(— %> + xz(E - l)ln<— %>
3y—al € x y x Y y

2 2 2 1

+ 2x2(5 - 1)1n2<— m—) +4x2 ln<— m—) ln(— m—) + x2<5 - 1) 1n<iz) - 2x2<E - —)hﬂ(%)

y y x y y me y 2/ \mg

2

+ 4x2(E - 1) 1n<i2) ln(l - 5) + 222 1n<i2) 1n<— m—) - x2<5 +2- 2) ln<1 - 5)

y m? y m? x vz y

2
— 42 ln(l - 5) ln(— m—) + 4x2(E - 1)Liz<5) - 2x2Li2(1 + 5)} (73)
y x y y x

These kernel functions are reproduced in Mathematica files at the webpage [120] as functions KA, KB, KC and KA exp,
KBexp, KC exp.

The two-loop box kernel masters (71) to (73) are evaluated in the Feynman gauge; they are infrared divergent and
contain collinear singularities in m,.

After inserting Eq. (71)—(73) in Eq. (69), we derive the total contribution to the cross section generated by box diagrams.
Collecting powers of «, we write

d G pox © R(z) 1 ©  R(z) 1 [ ( z )]
= dz —= I,(z) + R dz——> ——— | () + Li(z)In[ 1 —
dQ) LMZ ¢ zZ t—2 1@ € AM? ¢ z §s—z+1id 2(2) 3(2)In s+id
00 R 1
+ 7rIm alzﬂ ——I(2), (74)
4M? 7z s—z+id

where the integrand functions are given by
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- L) M

z
t
2 2 2

. z__zz(l+f)+2f_+8s+4s_+7t][m(l__)Hn( )
| ¢ t s t s
(1,1 s 7. ( =z s . (%

— |-+ +2z{1 +-)+s5s+2—|Li, —7>+ +4Z<1+* *_4(S+f) Li, *)
| \s 1 t t s t !

-2 t2 2
) 2z<1 n f) FRLENRY P 4z]L12(1 + f)} (75)
| 7 t s t u

1 ’ £,
vy(s )]_52[227_4{(1 +§)———2S7+S—l‘]

N

[l o)
[erag oot [
+ :é+4z<1 + )—§—4(s + z)] 1n(5)1n(1 ~
S R

%+%)+2z(l +f>+s+2s;]1n<s)1n(1 + )
)3m(=)]

)+ (-5)]
[ +5)

=3 )

Uz(s t)] I:Zg f —2s + t)]ln(l + g)

t

t
+ 2 ln( —)

s

—%[ —2z< )+s+2t:|ln2(l+§) (+

) ) [ ) )

—_é ( )—%—4(s+t):|L12<1—) I:z2<§+%)+2z( §)+2§+I]Liz<l+§)

£ 2z<1+ )++22+4s+5t]L12(1+ )} (76)
13(z)=%{%—21< )+4 +22+7s+8t:|1n<1+£)—[zz(%+%>+2z<l+§)+4§+§+3s+4t:|

Xln( ) [ <+§+2 ) 2z(z+j+2§)+sj+2(s+z)]}. (77)

The functions 7, (z) to I5(z) are reproduced as functions 1,
I,, I3 in a Mathematica file at the webpage [120].

Note that, after assembling all irreducible box diagrams,
their total contribution is free of collinear divergencies in
m, because In(m2) vanishes in the combination

1
Fe _ ln<iz) =—— - ln<iz> + 0(e).
€ m;) € M

(78)
This fact might be observed already for any sum of single
pairs of direct and their related crossed box diagrams,
which is gauge-independent and free of collinear singular-
ities [142]; from (68) and Fig. 7 one selects e.g. the
following ones:

— In(7)

Ky(t, 5;2) — Kg(u, s;2), K, (s, t;2) + Kc(u, t; 2).

(79)

In the limit m]% < s, ||, |ul, the z-integration over the I;(z),

i = 1, 2, develops mass singularities from the lower inte-
gration bound:

00 R z

D ks 0 a2+ B ()] 0)

4M
where A, B are regular for z — 0. It follows immediately
that the irreducible box diagrams yield terms of the order
of at most In?(s/ mj%), because A joins, after integration,
terms with a behavior like a one-loop self-energy, and B
joins terms with one order more in the logarithmic struc-
ture. This has been discussed already in [113].
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The residual infrared-singular part of the box cross
section is:

L L ey

Q)

st

The function I(z) [see Eq. (57)] stems from diagrams with a
vacuum-polarization insertion in the z-channel, and I(s)
from insertions in the s-channel. One may wonder which of
the other infrared divergent parts are needed to compensate
the double-box divergency (in the gauge chosen here). This
may be exemplified by collecting all the IR-divergencies of
the diagrams with a vacuum polarization insertion /(¢) in
the t-channel; for the others, quite analogous arguments
hold. From Secs. VI A and VI B we may extract such terms.
There are the following divergencies due to vertex dia-
grams:

d;‘%ﬁ‘f - [F? - 1n(§)][1n(§) —1+ ln<— é)]

vy | U
x (72 + ;>1(z), (82)

dj_é?} = [F? - ln(§)]{[ln(§) 1+ ln<— é)]%
+ [In() — 1]%}1@). (83)

The reducible box diagrams are (in the curly brackets) free
of electron mass singularities, also in the terms not shown
here. They depend also on u:

o )
R

dé_rest — do_-box + Z do_-éact
aQ  dQ & dO

) R 1 00
= dzﬁ—Fl(z)-i-Re dz

4M> z t—z 4M>

o0 R(z) 1

+ 7l dz—— ———F,(2).
rlm r Z . s—z+id 4(2)

R(z) 1

PHYSICAL REVIEW D 78, 085019 (2008)

For the soft real terms, we refer to Appendix C and may
distinguish between initial and final state corrections
(which are equal) and the initial-final state interference:

dofin™ rF. u\ [t
e = [ 1 [ 21 ) ~21n( 1)

vy Uy
x (72 + E)z(t), (85)

d —4,ini+fin,IR F
GOt _ [_f - 1n(§)][—21n(§) + 2](”—2‘ + 2)I(t)-
€ t st

dQ
(86)

It is now easy to see that the IR-divergency of the double
box diagrams, being proportional to In(—u/s), gets com-
pletely canceled by the sum of the reducible box diagrams
and the interference part of soft bremsstrahlung. Although,
the latter introduce to the sum an IR-divergency with
In(—1/s), and this gets canceled the reducible vertex dia-
grams, thus introducing an IR-divergency with In(s/m2),
which will be canceled finally by the initial and final state
soft corrections. The lesson is: a sensible, infrared safe
cross section contains the complete sum of all the single
IR-divergent diagrams, or no one of them.

Despite that, an isolated treatment of the pure self en-
ergies or of the irreducible vertex corrections is possible.

Finally, we just mention that the analytical integrations
over z may be performed following the hints in Sec. V.

D. Kernel functions for the infrared safe sum

We are now in a state to evaluate the net cross-section
contribution from the various infrared divergent terms of
Secs. VI A and VIC. We have seen that they have to be
treated together. The sum of the box contributions of
Eq. (74) with all infrared-divergent factorizable correc-
tions, given in Egs. (58) and (60)—(62), is infrared-finite
and can be cast in the following form:

I:Fz(z) +Fy(2) 1n(1 -

7))

s—z+1ié

(87)

The lower bound is 4M> = 4m?; for hadrons and 4M* = 4m7 for fermions f. The auxiliary functions F;(z) are given by
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R B O e e I s
oo Pl [
T Tt e P ) )
R Lot (B ) P (R RO

S R O SO N R e R aeae) YE)

R ROE R CE B HO RO

F (1 2
_ Z2<;+2t%+t)_2z< +28 +2)+ +2(s+t):|ln<1 f)
-2 12 2 t 1 1 2
+ Z——2z(1+£>+2—+8s+4s—+7t]ln(l—E)ln<1+—)—[zz(—+—)+2z(l+£)+s+2s—]

| 1 t s t t s s t t t

2 t2 2 t2 2
X Liz(i) + [Z— + 41(1 + f) —D s+ z)]Liz<5) - [Z— - 2z<1 + f) + 455428 ¢ 4t]Li2<1 + 5)}
s s t s t 1 t s 1 u

+ 4(% t: + % S: + 5+ t) 1n<%/a§)>|:ln<nj2) + 1n<— é) - ln(l + é) — 1], (88)
Fy(z) = { 6? + 3— + 9(s + t)]ln(m) - [Z(g + ; + 2) —5(s+ % + % S_:):Iln(— E) - t(% - %)m(] + E)

2 2 2 2 2
z7 /1 t t s 3 t z t t s 15 9 t
=+ =) 1) 22—+ |- | =l A=)+ 22—+ —+ — +fr12<1+7)
2<s ) Z( ) s 4 4:|n< s) [ Z( s) s t 4s 2:|n K
2 t P s? . t
a4 + 4s + 5:) ln( )ln(l + —) - 4[2 -+ 3(s + t)][l + le(— —)]
N S S N

[
[
)
+ (12 + 3— + 125 + 15t)g2 [2? + ? +3(s + z)]ln@[ln(l + é) - ln<— g)]
[
[

—+

+

z2< +=+2 ) (j+2+2;)]ln<§)—[ztz+4z<1 +;)—s;—4(s+z)]Li2<1 —E)
22< ) (1 + )+2§+t]Li2(1 +§)—[§—2z(1 +£)+$+2§+4s+5t]uz(1 +§)}
+ (% ? + % s7 +st t> 1n(27“;)[1n(n1) + ln< ;) 1n<1 + g) - 1], (89)

+

F3(z) = I3(2), (90)
1 [T Z> t 2 2 11 t 1 1 t ? 3 5
F4(z)=—{|:z——21(1+ )+2 +2s—+—s+5t]ln(1+—)—[zz(—+—)+2z<l+—)+2—+—s+—t]
3(lLs K s 2 K st s s 2 2
1 2 1 5%
X 1n<—f)—[22(—+—+212)—2z<2+5+25)——s——s]}. 1)
) t s s t s 2t
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The I5(z) is defined in (77). For 0 < s < 4M? we can write

do_'rest _ o0 R(Z) 1
aQ ,/4M2 dZT{t - zFl(Z)

s [RO+ BEn(-
S Z S

O} e

For s > 4M?, we have to perform some subtractions in
order to make the formulas explicitly stable around z = s,
and at the time retain the sufficiently fast vanishing of the
integrand at z — oo:

d O-I’CSt

Tt [© , R(@) 1
d—Q—f dZ—:F](Z)

o0 1
S S LEC R ETAE

}

1) - 6§2F4(S)

+ [R(2)F5(2) .

R(S){

— R(s)F5(s)]In

Fy(s) ln( —

+ R 26+ 3= 1)

+ L12<1 - #)]} (93)

1 2 1 ¢ 27 t
Fi(z) ~ [—+ 2S7+ 3(s + r)]ln(iz) + [——+ 2s7+§s + Zr]ln( )+%<
s mg

25

1<s lt2>ln2< t) 1<1t2+s2+2 +7) (
_ - — _ J— —_ ] - — - KY —
2\2 35 s 3\2 s t 4
1 /72 52 t 2
—4[( +2 )+s+t]Li2(——)+[2(—+s
3\s t K s

)k
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In the limit m% <« s, |t], |ul, the z-integration over the
F;(z), i = 1,2, develops mass singularities from the lower
integration bound:

a2 gy oAt + By ()
AM? Z N

+ C(x, y) ln(%)] 94)

where A, B, C are regular for z — 0. It follows immediately
that the sum of all infrared divergent diagrams yield terms
of the order of at most In*(s/ mjzc) and In(s/m2) In(s/ m]%),
because A joins, after integration, terms with a behavior
like a one-loop self-energy, B joins terms with one order
more in In(s/m2) and C goes together with at most
In(s/m?2) In(s/ mé) there are no cubic logarithms here.
This has been dlscussed already in [113].

Further, for the numerical evaluation, the functions F,
F,, and F; are replaced for z — oo by their asymptotic
values:

%—;)111(1 +£)
) LC) 2 e0-)

[2“2 §f+§(+t)]
2s 3¢ 4°

—%[f +3(s+t)]ln< )+4<%f+§s +s+t>ln<%/£2)[ln<mig)+ln< :)—ln<1 +£)— 1] + (9(%)

F,(z) = Fy(2) + F5(2) 1n<§ -

2 2

12 2
F(z) ~ [2t += +3(s+t)]ln(s>+( ! +s +5s+2t
) m2 2

2s

3Ls 4 4

N

+l[t2 l(s_t)]1n< f) (ﬁ lS—+7s+2t

(95)

1), (96)

D00
)1n< —) ;<4t2+sz+4s+5t)ln< s)1n<1+§)

2 2 1 2 2 2 2 2
—4(—t—+—s—+s+t)L12( ) (4 +2 +4s+5t)§2 |:§t—+ 35 —3(S+t)]

3s 3

_;[ +3(s+,)]1n( )+4(§§+%s—+s+t)ln(

3s 12t

%’)[m(m) + ln( ;) ln(l + g) - 1] + (o(%) 97)
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x = s, |tl, lul. When m7 > x, the entry is suppressed.

PHYSICAL REVIEW D 78, 085019 (2008)

TABLE III. Numerical values for the differential cross section in nanobarns at scattering angles & = 20° and # = 3°, in units of 10
Concerning the finite remainder, containing irreducible box diagrams, we show for each fermion flavor the result obtained through the
dispersion-based approach (first line) and the one coming from the analytical expansion (second line), neglecting Cf)(m}%/x), where

0[° /s [GeV] 0 =201 6 = 20[10 0=3|M, 6 = 3|500
QED Born 214.903 2.14903 53.0348 1.763 98
weak Born 214.903 2.14930 53.0376 1.763 90
QED Born, running 218.559 2.23814 55.5353 1.909 10
vertices [ + 7 + hadr] —0.001 086 —0.00022513 —0.007 982 —0.00129296
vertices [e] —0.102787 —0.003 254 49 —0.092 546 —0.00574577
soft pairs e e” 0.130264 0.004 03772 0.112763 0.006 858 90
rest: e 0.235562 0.004978 34 0.135650 0.006726 52
M 0.009518 0.001 35040 0.040792 0.002878 09
—0.017214 0.001 342 82 0.040 688 0.002 87795
T 0.000074 0.000 053 85 0.002 706-0.009 610 0.000 876 39
X X 0.000 839 69
hadr 0.008 642 0.002 694 90 0.087618 0.008 107 81

VII. NUMERICAL RESULTS AT MESON
FACTORIES, LEP/GIGAZ, ILC

We begin with numerical results for Eq. (87), multiplied
by the overall factor (a/7)? a?/s. The expressions contain
the contribution of irreducible two-loop boxes, summed up
with reducible two-loop vertex and loop-by-loop diagrams,
and combined with soft-photon emission. They are called
here “rest” from electrons, muons, tau-leptons, and from
hadrons. The top influence was also considered but comes
out so marginal that we do not discuss it. The results are
summarized in Tables III and IV for small- and large-angle
scattering and a variety of energy scales. We do not discuss
the isolated irreducible two-loop boxes because this would
become more convention-dependent. Note further that in
these tables the dependence on the maximal energy of the
soft photons is switched off by setting @ = /s/2 (an
analogous consideration holds for the soft pairs e"e™).

For comparison, the tables also contain entries with pure
QED Born, QED Born with running coupling, and effec-
tive weak Born cross sections, as well as contributions
from: electron vertex insertions and soft e* e~ pairs (with
a quite small sum of them); the sum of heavy fermion
irreducible vertices. The hadronic results have been ob-
tained using the parametrization [133] with flag setting
IPAR = 0 and implementing narrow resonances as de-
scribed in Appendix E.

We see that the two-loop corrections from electron in-
sertions (the so-called Ny = 1 corrections) are the largest,
and the second-largest ones are the hadronic corrections.
The tables also demonstrate that the approximation mjzf <
s, |tl, |u| as applied in e.g. [113] works well in the regions
where this is expected.

A more detailed picture of the relevance of the fermionic
and hadronic two-loop corrections may be got from

TABLE IV. Numerical values for the differential cross section in nanobarns at a scattering angle # = 90°, in units of 10™*. See the

caption of Table III for further details.

s [GeV] 1 10 M, 500
QED Born 466537 4665.37 56.1067 1.866 15
weak Born 466526 4654.16 1238.7500 0.92890
QED Born, running 480 106 4984.83 62.9027 2.17957
vertices [ + 7 + hadr] —16.351 —2.0437 —0.125208 —0.0104275
vertices [e] —477.620 —12.3010 —0.298 589 —0.0155751
soft pairs e e 648.275 16.0690 0.376 531 0.0191990
rest: e 807.476 14.5277 0.270575 0.0119285
M 160.197 6.0819 0.147 046 0.0072579
152.890 6.0809 0.147 046 0.0072579
T 2.383 1.3335 0.075268 0.0045713
X 1.0739 0.075214 0.0045712
hadr 232.674 16.0670 0.469 944 0.024603 5
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FIG. 9. Two-loop corrections to Bhabha scattering at /s =
1 GeV, normalized to the QED tree-level cross section.

Figs. 9-14, where we show the cross-section ratios

103 da'NNLO’

io, (98)

where do, is the effective weak Born cross section at /s =
M, 500 and 800 GeV, and the QED Born cross section
elsewhere. So, the figures show just the relative size of the
corrections in per mille. For a comparison, we show also
the pure photonic corrections. The doyni o 1s here the net
sum of all the terms discussed arising from a fermion flavor
(e or w) or from the hadrons. In case of electrons, we add
also the real pair correction. The total nonphotonic term
includes also the 7 and top-quark contributions. For had-
rons, we decided to use the parametrization Ry,q; as given
in [133] with parameter IPAR = 1. We applied also nu-
merics with a combination Ry,4 11 of several adjusted pieces
valid at different scales, as explained in Appendix E. In
Figs. 9 and 11 it is seen that the predictions with Ry,41 and
Rp,q 11 are quite close to each other. Because we did not get
a stable numerics over all the parameter space with Ry,q 11,
we decided not to use it for the final determination of the
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FIG. 10. Two-loop corrections to Bhabha scattering at /s =
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10 GeV, normalized to the QED tree-level cross section.
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FIG. 11. Two-loop corrections to Bhabha scattering at /s =
M, normalized to the effective weak Born cross section.

physical results until we have a better understanding of its
behavior.

We conclude this section showing a set of plots based on
our work (hadronic and heavy-fermion corrections), on the
photonic result obtained by A. A. Penin in [104] and on the
electron-loop result of R. Bonciani et al. [100]. Concerning
the latter case, we incorporate also the contribution of real
soft electron-positron pairs with logarithmic accuracy eval-
uated by A.B. Arbuzov et al. in [44].

At a meson factory with \/s = 1 GeV (Fig. 9) the heavy-
fermion effects are below 0.5 per mille and are thus cer-
tainly negligible. At \/s = 10 GeV (Fig. 10), electron and
hadron corrections amount to 2 to 5 per mille and might
play some relevance. At the higher energies, we have to
consider small angles and large ones separately. The had-
ronic corrections amount to up to 4 per mille at LEP1/
GigaZ and 20 per mille at ILC energies at large angles,
while at small angles they stay well below 5 per mille. For
/s = 500 GeV this is exemplified in Fig. 13, and from the
tables one may read exact values at § = 3 deg: for the

- -~

40

20

—— T

il

/
I BN BNSES,

(=]

3 E3
10 -dcz/chW

photonic ~.
muon

electron

total non-photonic

hadronic [

-20

52 = 500 Gev

P IS N N R R R
60 80 100 120 140 160

0

FIG. 12. Two-loop corrections to Bhabha scattering at /s =
500 GeV, normalized to the effective weak Born cross section.
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FIG. 14. Two-loop corrections to Bhabha scattering at /s =
800 GeV, normalized to the effective weak Born cross section.

infrared-finite remainder containing box diagrams, at LEP/

GigaZ it is ::—Wg:k = 1.65 per mille, and at /s = 500 GeV
0
the corresponding value becomes 4.6 per mille.

Everywhere, the pure photonic corrections are the largest
one, followed by the Ny = 1 corrections. This is, of course,
due to the small electron-mass producing large logarithmic
mass effects and is extensively discussed in the literature.

VIII. SUMMARY

The NNLO effects of heavy fermions and hadrons on the
Bhabha cross sections are accurately known now and the
determination of QED two-loop corrections is completed.
For each of the corrections there exist several independent
calculations. Quite recently, a second determination of the
hadronic corrections in [119] fully confirmed our results as
presented in [93,114,139] and at our webpage [120]. We
indeed checked, when preparing this longer write-up of our
results, that, when using the same parametrization [133],
all the digits shown in our tables agree with those shown in
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[119] (see Tables III and IV). The numerical differences
which were mentioned in [119] were due to a different
choice of the parameter IPAR in [114,119].

Summarizing the numerical discussion, it is quite ob-
vious that for measurements aiming at an accuracy at the
per mille level it is crucial to take the heavy-fermion and
hadron contributions into account. A detailed conclusion
for a specific experiment evidently depends on the experi-
mental setups and will deserve the use of a precise Monte-
Carlo program.

Finally, we would like to mention that, in pure QED, not
all of the contributions have been determined so far. It
would be quite interesting to know also the influence
from the so-called radiative loops. This problem was
treated in [143], but so far without account of the radiative
loop diagram, which include e.g. radiative boxes with the
need of knowledge of five-point functions. Also here, final
conclusion will be made only with a precise Monte-Carlo
program.

As a third field of future improvement we like to men-
tion the complete treatment of electroweak two-loop cor-
rections to Bhabha scattering. As already said there exists
some literature on that subject. The leading NNLO weak
corrections due to top quarks have been determined long
ago in [10]. This was considered as a satisfactory approxi-
mation for LEP 1 and implemented e.g. in the packages
ZFITTER [81] and in the program family KORALZ [65],
KKMC [73,144], BHLUMI [52], BHWIDE [41]; see also the
workshop report [145]. An improvement of that might
become necessary for large angle scattering at the ILC.
This might be done similarly to the recent implementation
of weak two-loop corrections for muon pair production in
ZFITTER v.6.42 [81], based on original work described in
[11,12] and references therein.
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APPENDIX A: ANALYTIC RESULTS FOR THE
FERMIONIC VACUUM POLARIZATION

The contribution of a fermion of flavour f to the irre-
ducible renormalized photon vacuum-polarization function
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II, introduced in Eq. (21), can be written in pure QED as

2 2
2y — AT T (2 3
) = 3(0) 7o) “@remya) + o

(A1)

where Q is the electric-charge quantum number, C; is the
color factor and the normalization factor F, is defined in
Eq. (26).

For our purposes we need both the n =1 and n = 2
terms up to O(e®). However, since some components of the
infrared-finite differential cross section show single poles
in the € plane, we find useful to consider also the O(e) part
J
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of the one-loop photon self-energy for intermediate checks
of the results.

Both expressions can be written in a compact form
introducing the variable

B V@ 4m; — —q
‘/—qz + 4m}2c + —qz.
The results can be found in Appendix A of Ref. [146] and

at the webpage [120]. In the spacelike region —o0 < g? <
0, it is 0 < x < 1, and one gets a real vacuum polarization:

(A2)

(l) . _§ i X l 4 . 6
Hf (¢%) = 5 + 3 (1 - x)2 + 3[(1 R g + l]ln(x)
¢ x If 32 48 6 4 6
5{ 3 a —x)2+§[(1 — U= 1 —x+5:|h‘(x)_2[(1 s R 1]
[le(—x) + In(x) In(1 + x) — %lnz(x) + %]}, (A3)
W A5 x Iro12 s 4 4 4 6
e = —¢|3 13(1—x)2]+4[(1—x)3 (1—x)2+1—x l]ln(") 3[(1—x)3 (1—x)2+1]
x {le( X+ ;le(x) + ln(x)[ln(l PR ln(l - x)]}
Ir7 26 23 2 Ir 4 8 4
Teli=af a=x U—x2 1 —x_6]1“2(x)+§[(1 — U= Ta=ap 1]
X {In?(x)[In(1 — x) + 21n(1 + x)] + 4 1In(x)[Li,(x) + 2Li,(—x)] — 6[Li5(x) + 2Liz;(—x)] — 343} (A4)

For the timelike region we have to perform an analytical
continuation to g* > 4m2 by setting g> — g> +ié in
Eq. (A2). Now, the conformal variable x develops a small
positive imaginary part and it is —1 < Rex < 0. In order to
derive ImII of Eq. (23), we may introduce an auxiliary

variable y:
V7 -7~
V@ + \Jq? = 4m}

and observe that x = —y + i8, with y = 0 for g> — o0 and
y =1 for ¢* = 4m7. With these conventions, it becomes
evident for Egs. (A3) and (A4) that Li,(*+x), Li;(*x), and
In(1 + x), and In(1 + x) stay well defined, and one has to
take care about In(x):

In(x) —

y= (A5)

In(—y + i6) = In(y) + im. (A6)

Of course, one may perform the evaluations with complex
variables either.

The contribution of electron loops to the irreducible
renormalized photon vacuum-polarization function IT of
Eq. (21) in the small electron-mass limit is available in
pure QED up to three loops,

(%) = i(“)"n‘”( 2) + 0(a?)
e\q . e g a’).

n=1

(A7)

The one- and two-loop contributions can be obtained by
expanding Egs. (A3) and (A4) and neglecting terms sup-
pressed by positive powers of the electron mass. The three-
loop component, (we do not include double-bubble dia-
grams with two different flavors), can be found in Egs. (7)
and (9) of Ref. [126]. The results for ¢g> < 0 are:

5 1 m>
M2y — 2 _ _ e 2
I1:7(g%) 53 ln( qz) + O(m3), (A8)
5 1 m?
@2y — _ — — 2
17 (g%) 2 + & 1 ln( qz) + O(m2), (A9)
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5 1 m>
_ = 4+ — Inf — ==
2515 “( q2)

m?2 I, m?2 5
)m( qz) +oghn ( qz) L Om). (A10)

A'd
double electron bubble

The continuation to g> > 0 is again obtained by the re-
placement ¢g> — ¢* + ié.

APPENDIX B: MASTER INTEGRALS FOR THE
BOX KERNEL FUNCTIONS

The three kernel functions for irreducible box diagrams
of Fig. 7 may be found at webpage [120] with their exact
dependences on m, and on €. They are expressed by eight
master integrals, which were evaluated in the limit m2 <

s, |¢], lu|. The master integrals of Eq. (70), for x = s and
y = t, are evaluated to the power in € needed here:

MWD = N[(kzdfljnz) [1 +1+ e(l + %)]

(B1)
dPk
M® =N
f (k> = m3)[(k — py — p2)* — mg]
2
-1 +2+ ln(— &)
€ s
_ 52 _ mg 1 2f _ mg

+ (O(mg), (B2)

dPk

dP 2

"k . 1+2+1< m—)

P1+ p3) € !
(B3)

M® =N [
K2 (k —

dPk
4) —
M =N / &= mdlk - p)?— 2

= O(my), (B4)

D
O — N[ dPk
(K = 2)(k = py + p3)?

(BS)

_1+2+1n( ";2)—1 (1 i)
) ) e

6) —
M= =N f =Dk + p) — w2k + ps—pr — ) =]

dPk
7 =
M N[(kz — 2[(k + p3)* — mg)(k + p3 — py)?

; [52 S ( ) + L12<1 + f)] + O(m),

(B7)

_ %{52 + 1n(_ ;)[m(— ’”72) - % ln<— é)] - ln(l - ;)[m(— m72> - ln( f)] + L12< )} +0(m2), (BY)

dPk

8) —
M==N f K = Lk + pa) — n2Jk + ps — o1 PLk + s — 11 —

) _me]

) o]l ) ()
- 21n<1 - ;)] - %mz(—;) + ln<—§) 1n(—§) - 21n<1 - %)[ln(—g) - 1n(—§)] - Li2(1 + g)} + O(m2).

(B9)
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where D = 4 — 2¢€ and

eVEe

N = m2 (B10)

i 2—¢€”

For MV and M®, results are needed up to O(e), since,
after the reduction procedure, both coefficients c1 and

, for i = A, B, C, include terms O(e™!). For all other
ba51s integrals, O(e") results suffice. Note that for M
(tadpole), M® and M® (no dependence on m,, apart from
the normalization factor N) results are exact. In other
cases, the order of the expansion in me depends on the
coefficients C(J For example, we have c( = O(m;,?), and
we compute M up to O(m?) (note the overall factor m2 in
Eq. (65)). In contrast, we have c5-4) = O(mY) and we do not
need M™® up to O(m?).

APPENDIX C: SOFT REAL PHOTON EMISSION

The leading order contributions to the soft real photon
corrections

e (p1) + e (py) — e (p3) + et (py) + y(k)

to the Bhabha cross section (2) are contained in the factor
F soft-

(ChH

dg'LO dO'() a

a0 dQ o
with @ being the upper limit of the energy of the non-
observed soft photons:

E, €[0, w]

(C2)

soft(w s,t,m2),

(C3)

The w has to be chosen as small as to guaranty that the
emitted photon does not change the kinematics of the
process (1). The NLO radiative cross section with O(a)
vacuum polarization insertions is:

do° {vl(s 1)
52

= RelT®
dQ s (s)

O vz(S 1) Re[IIW(s) + ITM(7)]

+ — vl(t S) Re H(l)(t)}< > soft(wr s, 1, mg) (C4)

The result for the soft photon factor is split into initial and
final state radiation and their interference:

Foori(@, s, 6, m2) = 8ip + Oine + O, (©C5)
where
8ini = (07 + Q)F 1y + 0,02F ) = 2F); + Fpp,  (C6)
St = (0103 + Q20)F 3 + (0104 + 0203)F 4
= 2F13 + 2F14. (C7)
8tin = (0} + QDF33 + Q304F34 = 2F33 + F3,. (C8)
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Each of the terms in Egs. (C6)—(C8) exhibits the radiating
particles—a factor Q;Q; marks the emission of the photons
from particles with momenta p; and p;; Of course, it is

Q;0; = 1 here. Since the initial and final state particles
have equal masses, it is additionally:
Fy3=Fyy (C9)
F3, = Fy, (C10)
So, it will be:
Fonlw, s, t,m2) = 4F,, + 2F, + 2F 3 + 2F4. (C11)

The evaluation of F; follows standard textbook methods
(see e.g. for details in Sec. (4.3) of [147]). The exact result
for the soft radiation functions is, for d = 4 — 2e:

1 1+
=A, +— ,3 ( B), (C12)
B _ 2s —2m?) 1+
Fo=a] 5B (e B)]
2(s —2mA)[. . ( 2B .. 2B
TR [LIQ(B - 1) LIQ(B + 1)] ©
T+ JA .
Fi3 = AE<— \/_T) ln< \/g) + Flin (C14)
F14 = _F13 with (l « M), (CIS)
and
ﬁn_(t—2m2) . (B—1/B, T B+1/B,
FiE =, [L‘Z( [+ B ) L‘2< e )
. _B—1/B (Bt 1
L12< 71 — B ) + L12<1 — ﬁ)
([ B+1/B,
+L12( -5 )] (C16)
We use the abbreviations:
B =1 —4m?/s, (C17)
B, =41 —4m*/1, (C18)
T=2m*—1 (C19)
A = VT2 — dm?, (C20)
B, =1 —4m?/u, (C21)
U=2m?—u, (C22)
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Ay =VU? — am®. (C23)

Our kinematics fulfills here s + ¢ + u = 4m?, and it is 7T,
U > 0. If necessary, the logarithms and dilogarithms may
be analytically continued with the replacement

s — s + i€, (C24)

Li2<%) = —L12<ﬁ2;3 1) — Liy(1) — %hﬂ(%).
(C25)

In the limit of small electron mass m,, this simplifies
considerably (§ = s/m?2):

Fll = Ae + %ln(f), (C26)

Fi, = —2A.1n(3) — 1In(3)? — 24, (€27)

t 1 . . u
F13 = _2A€1n<_ m_g> - 5 IH(S)2 - 2§2 - L12<_ ?),
(C28)

1 t
Fiy = 2A61n<— %) + - ()2 + 24, + Liz(— —).
m; 2 u
(C29)
Finally, the divergent part is:

A, = %[% — ln(§)] — ln<27a;>.

Taking all the terms together, we obtain:
2w

Foplw, 5,1, m?) = [% —In(8) — Zln<ﬁ)]

X [—21n(§) +2 - 21n<£):| — In(§)?

(C30)

— 44 +2In(3) + 2L12<— %) (C31)

This expression agrees, of course, with e.g. Eq. (4.5) of
[113].

APPENDIX D: REAL FERMION PAIR OR HADRON
EMISSION

The numerical influence of the virtual corrections gets
modified by the nonobserved emission of real pairs of
electrons or other fermions, or of hadrons:

da.real _ do'(] a?

= __ Y _[86 + 5f + 5had]‘

dQ dQ ©b

The real pairs or hadrons give nonsingular contributions
and depend, in the simplest configuration, on an energetic
cutoff D on the invariant mass of the nonobserved pair or
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hadrons E,.,;, and of course also on the production thresh-
old 2M.

There are two basically different situations. In case
AM? < s, |t|, |ul, one may additionally choose 2M <
Ersl < DEpeam < Epeam (remember Ey,, = +/s/2), and
observes a logarithmic dependence of the cross sections
on the two parameters M, D. In the other case, assuming
M > m, but otherwise arbitrary, as it is done in the present
study if not stated differently, the concept of soft pairs
becomes senseless and one has to evaluate the pair and
hadron emission cross section numerically with MC
methods.

For completeness and because of the numerical impor-
tance, we will include the soft pair emission contributions
for electrons, which is by far the biggest one. For this case,
analytical expressions with logarithmic accuracy are
known from [44]:

8¢ = 33L3 + L}(21In(D) —3) + L,(41n*(D) — 2In(D)
+A,) + 1L} + L7(21In(D) — 3) + L,(4In*(D)
—Dn(D) + A,) — 1L} — L2(21In(D) - 3)

— L,(4n*(D) — 2In(D) + A,)] (D2)
where
S
L,= ln<—2), (D3)
mS
Lo=w(-2)  v=ia (D4)
me
A, =L — 47, (D5)
1 =+ cosé
A, = A, + 2Liz(%), v=tu  (D6)
The parameter D has to fulfill:
2m, < DEpean < Eveam- (D7)

From the sum of (39) and (D1), the compensation of the
leading mass singularities (contained here in the L3, L}, L3
terms) in the cross section becomes evident.

APPENDIX E: THE CROSS-SECTION RATIO Ry,.4

The numerical values of the irreducible two-loop cor-
rections depend crucially on Ry,4(s) as defined in (28),
while the reducible corrections may be evaluated with
one of the publicly available parametrizations of II(g?%)
[see (22)]. Unfortunately, we did not find an actual, pub-
licly available code for Ry,4(s) that covers the complete
integration region from the threshold at s = 4M?2 to infin-
ity. In our short communication [93], we used the Fortran
routine of H. Burkhardt [133]. This parameterization dates
back to 1986 and was used for the numerics in [124], and it
was available by contacting the author [133]. The Fortran
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file is made available at our website [120]. It is to be
expected that current hadronic data would not induce
changes compared to the parametrization of [133] of
more than about 10%. This would be tolerable in view of
the smallness of the irreducible two-loop contributions in
our analysis. For the numerically much more sensitive
reducible contributions, the running coupling ., is
needed, and implementations of that are publicly available,
e.g. the Fortran package HADRS.F at [132].

For the present study, we improved our numerical basis
for the evaluation of the irreducible vertex and box con-
tributions by combining packages for the evaluation of
Ry,4(s) in different kinematical regions:

(A) From threshold at s = 4m2 to s = 0.03 GeV?: We

follow Sec. 8.1 of [148]:

1 4m%\3/2
Ruaa(5) = Ryo () = 5 (1= 22) I, P,
S
(E1)
K} s \2
F,(s) =1+ 1.879( 2) + 3.3(—2)
GeV GeV
07(=2_Y E2
' (GeVz)' (E2)

The above is based on a fit to e"e¢~ data whose
results are shown in Table 3 of [148]; spacelike data
[149] are also taken into account.

(B) From s = 0.03 GeV? to s = 10000 GeV?: Use of
subroutine [150].

(C) Above s = 10000 GeV?: Use of
RHAD.FV.1.00, published in [152].

subroutine

In Fig. 15 we show the R, resulting from our Fortran
implementation for the regions (A) to (C) as described
above.

; T T T
! D Intermediates, — " !
| Hagiwara et al. |
100 ! ! ]
F I
1 I
1 I
1 I
1 1
[} |
> 10F | | E
s o 1 1 3]
E ! !
~ 1 /,LJV
[} 1
| Large s, :
1k Harlander & Steinhauser —
F [} ]
l
[}
[ ,J— Low s expansion, Davier et al. 1
1 [}
0 L i : L
100 10000
2
s [GeV]
FIG. 15. The implementation of R,y used for the numerical

evaluation of irreducible two-loop corrections.
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T T T | T
I
I
100 ¢ E
210 E
o
[ e
1 E R, Burkhardt E
r ———— R}, update
| L |
1 100
s [GeV]
FIG. 16. A comparison of the parametrizations from
[133,150].

In Fig. 16 we compare the implementation of Rj,4(s)
taken from Burkhardt [133] (Ry,q1) and our parametriza-
tion based on [148,150,152] (Ry,,q11)- As already stated, the
deviations are evidently much smaller than one might
expect and may be considered to be irrelevant here.

We close this section with a brief discussion of narrow
resonances. Narrow resonances are implemented replacing
the rapidly varying cross-section ratio with the parametri-
zation

97

Rres(z) = ?Mrcsrﬁf 8(z — Mges)- (E3)

The integration over z is then carried on analytically lead-
ing to the following result for the IR-finite remainder
(including the irreducible box diagrams) of Eq. (87):

TABLE V. Numerical values for the treatment of narrow reso-
nances, taken directly from [133].

resonance M, [GeV] Iee [keV]
w(782) 0.7826 0.66
$(1020) 1.0195 1.31
J/y(1S) 3.0969 4.7
¥ (25) 3.6860 2.1
¥ (3770) 3.7699 0.26
1 (4040) 4.0300 0.75
1 (4160) 4.1590 0.77
¥ (4415) 44150 0.47
Y(15) 9.4600 1.22
Y(2S) 10.0234 0.54
Y(39) 10.3555 0.40
Y(4S) 10.577 0.24
Y (10860) 10.865 0.31
Y (11020) 11.019 0.13
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do_'rcst _ 9_7T Ffe+567 {Fl (Mrzes) + 1
dq) a? M L\t — Mrzes s = Mrzes

2
res

X[FAMQ>+Igm&Qm

]} (E4)

For the numerical evaluation of the contribution due to the
narrow resonances, we use the values listed in the
Burkhardt’s routine [133], collected in Table V.

APPENDIX F: EVALUATION OF
POLYLOGARITHMS

At several instances, dilogarithms Li,(z) and trilogar-
ithms Li;(z) of complex argument are needed. A definition
of polylogarithms is:

(="

Li,(z) = m

S,o11(2) = ffﬁlnaﬁmu—za

(FD)

They have the special values Li,(0) =0 and Li,(1) =
[(n), where [(s) is the Riemann /-function, /(2) =
72/6, {(3) =1.202056903 1595942854 .... An effi-
cient evaluation transforms the arguments to the region
where modulus and real part are bound: |z] =1 and
Ne(z) <1, using:

Li,(z) = —Liz(é) - %hﬁ(—z) - {(2), (F2)

Li,(z) = —Li,(1 —2) + £(2) = In(z) In(1 — z), (F3)

and

Lis(s) = LiBG) _ é1n3(—z) _/@)In(=2),  (F4)

Lis(2) = —Li3(1 - %) CLis(1—2) + £0) + %mS(Z)

+ @) () ~ P In(1 <), (FS)
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Then, series expansions with Bernoulli numbers ensure
rapid convergence. For Li,(z) we follow Appendix A of
[153]:

Liy(z) = Z( — 1)' [—In(1 — 2)}*!
=—1In(l — 2) — —lnz(l -2)
+ 4772 Q) )2( Jlr)l [1n(12; Z)]2j+1. (F6)

The B; are Bernoulli numbers, B, = 1, etc. Useful series
expansions for Li,(z) are given in Egs. (48) and (49) of
[154], which we reproduce here for the special case n = 3:

Lis(z) = fo%, -9Vt )
/. i\B,_B

c() = X (4 )k, (F8)
sU l;(k) 1+k

with C5(0) = 1 etc. For Liy(z) and Liz(z) we observe
typically that » summation terms give an n = 1 digits
accuracy. We just mention that we do not allow to evaluate
the logarithms and polylogarithms at their cuts (negative
real axis beginning at z = 0 and positive real axis begin-
ning at z = 1, respectively). For other conventions we refer
to the corresponding remark at p. 19 of [154]. Our Fortran
code is available as file cpolylog.f at the website [120].

An alternative, efficient algorithm for the evaluation of
polylogarithms is described in [155,156].
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