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The classical notion of a single-particle scalar distribution function or phase space density can be

generalized to a matrix in order to accommodate superpositions of states of discrete quantum numbers,

such as neutrino mass/flavor. Such a ‘‘neutrino distribution matrix’’ is thus an appropriate construct to

describe a neutrino gas that may vary in space as well as time and in which flavor mixing competes with

collisions. The Liouville equations obeyed by relativistic neutrino distribution matrices, including the

spatial derivative and vacuum flavor mixing terms, can be explicitly but elegantly derived in two new

ways: from a covariant version of the familiar simple model of flavor mixing, and from the Klein-Gordon

equations satisfied by a quantum ‘‘density function’’ (mean value of paired quantum field operators).

Associated with the latter derivation is a case study in how the joint position/momentum dependence of a

classical gas (albeit with Fermi statistics) emerges from a formalism built on quantum fields.
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I. INTRODUCTION

The decoupling of neutrinos from dense nuclear matter
occurs in a number of environments in which neutrino
flavor mixing may also play an important role, including
the early Universe [1,2] and core-collapse supernovae [3–
5]. Treatment of the neutrinos’ transition from diffusion to
free streaming requires some sort of ‘‘transport calcula-
tion’’ embodying the principles of some kind of ‘‘kinetic
theory.’’

Localized ‘‘microscopic’’ quantum-mechanical effects
can be handled within the framework of classical kinetic
theory [6–8]. In classical kinetic theory a single-particle
distribution function fðt;x;pÞ quantifies the average num-
ber dN of particles of a particular type, having spin degen-
eracy g and momenta within d3p of p, at positions within
d3x of x:

dN ¼ fðt;x;pÞ gd
3p

ð2�Þ3 d
3x: (1)

The Boltzmann equation equates a collision integral CðfÞ
to the rate of change df=d� of the average density of
particles in classical phase space trajectories ðxð�Þ;pð�ÞÞ.
Given the geodesic equations defining worldlines xð�Þ,

dx�

d�
¼ p�; (2)

dp�

d�
¼ ���

��p
�p� (3)

(here ��
�� are the connection coefficients associated with

the spacetime metric), the Boltzmann equation can be ex-
pressed as

p� @f

@x�
� �i

��p
�p� @f

@pi ¼ CðfÞ: (4)

On the left-hand side the Liouville operator acts upon f.
The collision integral on the right-hand side, represents the
phase space density (rate per space volume per
momentum-space volume) of isolated ‘‘microscopic’’ or
pointlike scattering events between classical trajectories.
By reasonable extension, the collision integral also in-
cludes inherently quantum-mechanical processes affecting
the population of classical phase space trajectories, such as
particle decays, particle emission/absorption, and pair cre-
ation/annihilation. The restriction to isolated pointlike
transitions allows for insertion into CðfÞ of interaction
rates computed (for instance) with the standard methods
of quantum field theory, together with factors 1� f (with
upper sign for bosons and lower sign for fermions) encod-
ing the impact of quantum statistics upon available final-
state phase space.
However, neutrino flavor mixing is a ‘‘macroscopic’’

quantum-mechanical effect, requiring the evolution of am-
plitudes across time and/or distance scales comparable to
scales characteristic of the total system under considera-
tion; hence, flavor mixing cannot in general be described
by the scalar distribution function fðt;x;pÞ and the
Boltzmann equation it obeys, these being concerned only
with the evolution of particle number, and not quantum
amplitudes and the evolution of phases.
Classical transport being inadequate as a conceptual

framework for handling flavor mixing, attention turns to
a statistical treatment of a quantum gas. An approach
especially suited to cases of spatial homogeneity begins
with the definition of a quantum occupation number
nðt;qÞ, which quantifies the average number dN of parti-
cles of spin degeneracy g, occupying momentum eigen-
states within d3q of q within the (effectively infinite)*cardallcy@ornl.gov
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quantization volume V:

dN ¼ nðt;qÞ gVd
3q

ð2�Þ3 : (5)

The time derivative dn=dt is equal to an entity similar to
the collision integral in the Boltzmann equation, con-
structed using transition rates between quantum states.

Distinctions between quantum occupation numbers
nðt;qÞ and classical distribution functions fðt;x;pÞ should
be kept in mind. Because they specify the average pop-
ulations of quantum states rather than classical trajectories,
quantum occupation numbers are distinguished from clas-
sical distribution functions by an absence of spatial depen-
dence, as required by the impossibility in quantum
mechanics of simultaneous sharp specification of both
position and momentum. Moreover, there is a subtle dif-
ference between the momenta p in fðt;x;pÞ and q in
nðt;qÞ. In the case of an occupation number, q is the
eigenvalue of a momentum eigenstate. But in a classical
distribution function, p represents the momentum of a
classical particle; considered as a limit of a quantum-
mechanical description, p might therefore be thought of
as representing the centroid of a momentum-space wave
packet—that is, p is the expectation value of a superposi-
tion of momentum eigenstates q.

Accommodation of flavor mixing in a neutrino gas was
first contemplated [9,10] for the (homogeneous and iso-
tropic) early Universe, through the introduction of what
might at first glance be thought of as a ‘‘neutrino (quantum)
occupation matrix’’ �ðt; jqjÞ. This is ‘‘a matrix in the space
of neutrino species’’ [9], whose diagonal elements are
occupation numbers of the various neutrino species, and
whose off-diagonal elements quantify the extent to which
neutrinos exist in superpositions of distinct species. Its
introduction appears to have been motivated by the recog-
nition that neutrino interaction amplitudes constitute a
matrix with nonvanishing off-diagonal entries when writ-
ten in terms of ‘‘physical states’’ (neutrinos of definite
mass). The fact that the off-diagonal elements of a neutrino
occupation matrix �ðt; jqjÞ contain information on coher-
ent superpositions is reminiscent of a density matrix, as is
the fact that it obeys a Heisenberg-like equation of motion
(time derivative given by a commutator with a
Hamiltonian). Indeed, it has sometimes been called a
‘‘density matrix’’ in the literature (for instance, in
Refs. [9–11]). However, it is perhaps better thought of as
a ‘‘matrix of densities’’ [12], since it is not a density matrix
(as traditionally defined) for multiparticle neutrino states,
in that its trace is not equal to unity. Hence, its diagonal
elements are not ‘‘probabilities’’ in the strictest (that is,
absolute) sense [13,14,16].

In typical studies of the epoch of big-bang nucleosyn-
thesis, however, the momenta apparently take on their
classical significance—that is, there seems to be a (gener-
ally tacit) assumption that the neutrino gas is described by

a ‘‘distribution matrix’’ �ðt; jpjÞ rather than an ‘‘occupation
matrix’’ �ðt; jqjÞ. This is because the expansion of the
Universe must be accounted for. Classical kinetic theory
calculations in the context of the early Universe—which do
not involve flavor mixing—have long used the Boltzmann
equation, or a momentum integral thereof. The redshift (or
number dilution, in the momentum-integrated case) due to
cosmological expansion results from nonvanishing con-
nection coefficients in Eq. (4); see for instance Ref. [18].
The very reasonable, if unremarked [9,10], assumption
seems to be that a replacement

d�ðt; jqjÞ
dt

! @�ðt; jpjÞ
@t

�Hjpj@�ðt; jpjÞ
@jpj (6)

obtains, where the Hubble parameterH is the cosmological
expansion rate. That is, the total time derivative d�=dt of a
quantum occupation matrix �ðt; jqjÞ that satisfies a
Heisenberg-like equation of motion somehow goes over
to the action of the classical Liouville operator upon a
distribution matrix �ðt; jpjÞ that is classical in all but the
discrete quantum numbers (e.g. flavor/mass) responsible
for the matrix structure. The intuition behind this replace-
ment is evidently similar to that which motivates the use of
interaction rates computed with quantum field theory (plus
quantum statistics) in the Boltzmann equation’s collision
integral, as mentioned above in connection with classical
kinetic theory. In particular, the ‘‘Liouville replacement’’
of Eq. (6) and the calculation of interaction rates that go
into collision integrals share the following feature: plane
waves (momentum eigenstates), here labeled by q, are
taken as proxies for classical particles (or quantum wave
packets) with momenta (or momentum-space wave packet
centroids) p.
The subtle distinction between ‘‘quantum’’ momenta q

and ‘‘classical’’ momenta p is hardly noticeable and easily
glossed over in the treatment of a spatially homogeneous
system like the early Universe, but it becomes more ob-
vious upon consideration of spatial dependence. This is
because writing down an expression like �ðt;x;qÞ imme-
diately brings to mind the quantum-mechanical incompati-
bility of position and momentum. In a limit in which the
neutrinos’ motion through spacetime is expected to be
classical, we want instead an object �ðt;x;pÞ in which p
represents something other than quantum numbers of a
momentum eigenstate. If approached from a fully quantum
perspective, obtaining �ðt;x;pÞ will be expected to some-
how involve a Wigner transformation [19] (see also
Ref. [20] for a general treatment, having a somewhat
different flavor than that presented in Sec. III below, that
employs a Wigner transformation in connection with rela-
tivistic quantum fields). A Wigner transformation is a
Fourier transformation with respect to a spatial difference
variable, with p entering as this difference variable’s
‘‘Fourier conjugate.’’ It is also natural (and correct) to
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guess that a spatial derivative Liouville term pi@�=@xi

would appear in the equation of motion for �ðt;x;pÞ.
A few previous efforts toward a kinetic theory of neu-

trinos with flavor mixing have noted the existence of a
spatial derivative term in the Liouville operator. These
might be divided into two broad classes. In several cases
an explicit derivation of this term is absent [1,12,17,21],
but its expected presence in a Heisenberg-like equation of
motion is noted, based on appeals to literature in non-
relativistic statistical physics [22,23] or quantum optics
[24]. The other class includes two works [25,26] in which
spatial derivatives appear in the course of the derivation
thanks to use in one way or another of the Dirac equation
obeyed by neutrino quantum field operators. At least from
the perspective of working astrophysicists, this second
class of approaches has not lent itself to the greatest
transparency.

The purpose of this paper is to elucidate the phrase
‘‘somehow goes over to’’ in the sentence that follows
Eq. (6), with an emphasis on obtaining the spatial deriva-
tive and vacuum flavor mixing terms in the flat-spacetime
Liouville equations obeyed by relativistic neutrino and
antineutrino single-particle distribution matrices (here
‘‘relativistic’’ means that only terms of Oðm2

�=E�Þ are
kept, where m� and E� are characteristic neutrino mass
and energy scales). Goals include increased simplicity and
transparency in comparison with available explicit deriva-
tions [25,26] and a more detailed discussion of the physical
interpretation of the Wigner-transformed ‘‘density func-
tion’’ (mean value of paired quantum field operators).
The value in this lies in an improved understanding of
how classical expressions emerge from quantum formal-
isms. This bridge between the classical and quantum
worlds will facilitate study of the potential impact of flavor
mixing on the decoupling of neutrinos in (for instance)
core-collapse supernovae: the macroscopic quantum effect
of flavor mixing must be retained, but the neutrinos’ mo-
tion through spacetime goes over to a classical description
in order that the system’s formal dependence on time,
position, and momentum be simplified to a degree compa-
rable to that exhibited by a classical single-particle distri-
bution function. (While the formal dependence of the
neutrino distributions on time, position, and momentum
are not unlike those of a classical single-particle distribu-
tion function, there are indications that flavor mixing may
lead to new and complicated behavior in the supernova
environment [3–5].)

Two different accounts of the construction of neutrino
and antineutrino distribution matrices �ðt;x;pÞ and
��ðt;x;pÞ and the Liouville equations they obey in the
absence of interactions are presented in the following
sections. In Sec. II, a simple model of the flavor evolution
of a single neutrino is taken as a starting point. In this
approach, the quantum treatment is restricted to flavor
evolution; neutrinos are assumed from the outset to follow

classical trajectories in spacetime. Distribution matrices
are built up from single-neutrino states, and the Liouville
equation follows from the evolution equation for these
individual states. In contrast, a density function con-
structed from quantum fields, and the equations of motion
it obeys, are the basis of the approach presented in Sec. III.
In this case, classical expressions involving spacetime
variables are not immediately obvious, but can be drawn
out through use of a Wigner transformation. Section IV
contains a summary and some remarks looking ahead
toward the derivation of interactions from this second
formalism. Metric signature þ��� and units in which
@ ¼ c ¼ 1 are employed throughout.

II. STARTING FROM A SIMPLE MODEL OF
FLAVOR MIXING

A simple model of neutrino flavor mixing postulates the
existence of flavor and mass eigenstates. Neutrino and
antineutrino flavor eigenstates (labeled by �) are related
to mass eigenstates (labeled by i) by

j�W ;�i ¼ X
i

U�
�ij�W ; ii; (7)

j ��W ;�i ¼ X
i

U�ij ��W ; ii; (8)

respectively, where W is the neutrino or antineutrino’s
classical worldline [27]. These basis transformations fea-
ture the same unitary matrix that relates neutrino flavor and
mass quantum field operators: ��ðxÞ ¼

P
iU�i�iðxÞ.

Consider a ‘‘Schrödinger picture’’ in which a neutrino
state evolves along a worldlineW with affine parameter �.
Let j�W ð�Þ;�i denote a neutrino that was born in flavor �
at � ¼ 0 and then translated to � by a unitary ‘‘worldline

evolution operator’’ ÛW ð�; 0Þ. As usual for unitary trans-
formations parametrized by a continuous variable, world-
line translations are generated by a Hermitian operator,

here denoted �̂W :

ÛW ð�þ d�; �Þ ¼ 1� i�̂W d�; (9)

whence the ‘‘Schrödinger equation’’

i
d

d�
j�W ð�Þ;�i ¼ �̂W j�W ð�Þ;�i: (10)

A definition of �̂W is needed. In flat spacetime

i
d

d�
¼ ip

�

W

@

@x�
; (11)

where the classical four-momentum pW is tangent to W .
The familiar significance of i@=@x� as a representation of
the generator of spacetime translations motivates the con-

struction of a flavor evolution operator P̂�

W
modeled on the

four momentum of a particle approaching the relativistic
limit:
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P̂ 0
W

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpW j2 þ M̂2

q
! jpW j þ M̂2

2jpW j ; (12)

P̂ i
W

¼ pi
W

¼ pi
W
; (13)

where the mass operator M̂ with eigenvalues mi is not

diagonal in the flavor basis. Then �̂W ¼ p�

W
P̂W�, and

Eq. (10) becomes [30]

i
d

d�
j�W ð�Þ;�i ¼ M̂2

2
j�W ð�Þ;�i; (14)

a covariant version of the familiar [31] neutrino flavor
evolution equation. Antineutrino states obey the same
equation.

The off-diagonal terms in the flavor-basis representation

of M̂2 imply that a Schrödinger-picture neutrino state
j�W ð�Þ;�i that begins life in flavor � evolves into a
superposition of all flavors �. The ‘‘oscillation probabil-
ity’’ jh�W ;�j�W ð�Þ;�ij2 for a neutrino flavor transfor-
mation �� ! �� that follows from solution of Eq. (14) is a

function of �; but it agrees with the usual expression [31]
for the vacuum flavor oscillation probability as a function
of spatial distance L in a frame at rest with respect to the
source and detector, as can be seen by noting that pi

W
¼

dxi=d� implies (in flat spacetime) that the worldline’s
affine parameter is equal to �L ¼ L=jpW j when the neu-
trino has traveled a spatial distance L.

The operators giving rise to neutrino and antineutrino
distribution matrices can be constructed from states
j�W ð�Þ;�i and j ��W ð�Þ;�i, respectively. The density op-
erator corresponding to the pure state j�W ð�Þ;�i—that is,
the operator whose matrix elements comprise the density
matrix describing a single neutrino with worldline W that
began life with definite flavor �—is

�̂W ;�ð�Þ ¼ j�W ð�Þ;�ih�W ð�Þ;�j: (15)

Suppose we have an ensemble of systems of noninteracting
neutrinos with definite flavors � at � ¼ 0 on worldlineW .
Let fW ;�ð0Þ be the ensemble-averaged number of � neu-

trinos at � ¼ 0 on W ; then the single-particle neutrino
distribution operator describing the ensemble is

�̂W ð�Þ ¼ X
�

fW ;�ð0Þ�̂W ;�ð�Þ: (16)

Its equation of motion is

i
d

d�
�̂W ð�Þ ¼ 1

2
½M̂2; �̂W ð�Þ�; (17)

which follows directly from Eqs. (14) and (15). With
replacements j�W ð�Þ;�i ! j ��W ð�Þ;�i, �̂W ;�ð�Þ !
�̂�W ;�ð�Þ, fW ;�ð0Þ ! �fW ;�ð0Þ, and �̂W ð�Þ ! �̂�W ð�Þ the
same construction holds, so that

i
d

d�
�̂�W ð�Þ ¼ 1

2
½M̂2; �̂�W ð�Þ� (18)

in the case of antineutrinos as well.
While the neutrino and antineutrino distribution opera-

tors obey the same equation of motion, it is convenient to
define the matrix representations of these equations in such
a way that they acquire a relative sign difference. The
reason is that it is desirable for the matrix representations

M2
�� of the flavor-basis squared mass operator M̂2 to be the

same in the neutrino and antineutrino cases (and equal to
the square of the mass matrix in the Lagrangian for free
neutrino flavor fields). In the neutrino case this requirement
is consistent with the standard construction of a matrix
representation:

M̂ 2 ¼ X
�;�

M2
��j�W ;�ih�W ;�j; (19)

so that

M2
�� ¼ h�W ;�jM̂2j�W ;�i: (20)

However, to obtain the same representation M2
�� in the

antineutrino case the ‘‘backwards’’ definition

M̂ 2 ¼ X
�;�

M2
��j ��W ;�ih ��W ;�j; (21)

so that

M2
�� ¼ h ��W ;�jM̂2j ��W ;�i; (22)

is required to compensate for the opposite transformations
of neutrino and antineutrino states in Eqs. (7) and (8). If the
neutrino and antineutrino distribution operators are ex-
panded analogously,

�̂W ð�Þ ¼ X
�;�

�W ;��ð�Þj�W ;�ih�W ;�j; (23)

�̂�W ð�Þ ¼ X
�;�

��W ;��ð�Þj ��W ;�ih ��W ;�j; (24)

then the matrix representationsM2, �W ð�Þ, and ��W ð�Þ all
transform the same way in species (flavor/mass) space: if A
represents any of these matrices, then the flavor represen-
tations are related to the mass representations by Aflavor ¼
UAmassU

y, where U has elements U�i. However, the ma-
trix representations of Eqs. (17) and (18) now acquire a
sign difference:

i
d

d�
�W ð�Þ ¼ 1

2
½M2; �W ð�Þ�; (25)

i
d

d�
��W ð�Þ ¼ � 1

2
½M2; ��W ð�Þ� (26)

for neutrinos and antineutrinos, respectively. Note that the
absence of hats indicates that these are matrix equations
rather than operator equations.
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The elements of �W ð�Þ and ��W ð�Þ deserve further
inspection. They are

�W ;��ð�Þ ¼
X
�

fW ;�ð0Þh�W ;�j�W ð�Þ;�i

� h�W ð�Þ;�j�W ;�i; (27)

��W ;��ð�Þ ¼
X
�

fW ;�ð0Þh ��W ;�j ��W ð�Þ;�i

� h ��W ð�Þ;�j ��W ;�i: (28)

As the sum of the initial numbers of neutrinos in flavors �
on worldline W , weighted by the probabilities of flavor
transitions � ! �, the diagonal elements

�W ;��ð�Þ ¼
X
�

jh�W ;�j�W ð�Þ;�ij2fW ;�ð0Þ (29)

are equal to fW ;�ð�Þ, the number of neutrinos of flavor� at

� (and similarly for antineutrinos). Manifestly, the traces of
�W ð�Þ and ��W ð�Þ are, respectively, equal to the numbers
of neutrinos and antineutrinos of all species on worldline
W . The off-diagonal elements quantify the overlap in
flavors � and � generated from the initial numbers of
neutrinos in flavors �.

The desired Liouville equations are close at hand. A
particular value of � on the worldline W specifies a point
in spacetime, and the on-shell tangent vector to W co-
incides with the neutrino momentum. Therefore, if atten-
tion is broadened from a single worldline to a collection of
them forming a congruence of curves in phase space, then
the specification of W and dependence on � employed
thus far are equivalent to dependence on t, x, p in some
coordinate system. Synchronize parametrizations in the
congruence of curves such that for each worldline, � ¼ 0
corresponds to t ¼ 0 in a chosen coordinate system; then
the average particle numbers per worldline fW ;�ð0Þ and
fW ;�ð�Þ encountered above correspond to f�ð0;x;pÞ and
f�ðt;x;pÞ, where these latter quantities are classical dis-
tribution functions as in Eq. (1). Therefore, with a choice of
coordinate system, the �W ð�Þ pertaining to a set of neigh-
boring worldlines crossing an infinitesimal spacelike hy-
persurface in phase space may be denoted
�ðt;x;pÞd3xd3p=ð2�Þ3, and similarly for antineutrinos.
(Relativistic neutrinos and antineutrinos produced by V �
A interactions have spin degeneracy g ¼ 1.)

Hence, we have neutrino and antineutrino distribution
matrices �ðt;x;pÞ and ��ðt;x;pÞ; taking into account
Eqs. (11), (25), and (26), together with the Liouville theo-
rem (invariance of phase space volume elements [6–8]),
these distribution matrices satisfy the Liouville equations

p� @

@x�
�ðt;x;pÞ þ i

2
½M2; �ðt;x;pÞ� ¼ 0; (30)

p� @

@x�
��ðt;x;pÞ � i

2
½M2; ��ðt;x;pÞ� ¼ 0: (31)

The flavor/mass structure of the Hermitian matrices M2,
�ðt;x;pÞ, and ��ðt;x;pÞ is given in Eqs. (20), (22), (27),
and (28), and their transformation properties are described
in the text between these. The diagonal elements of the
distribution matrices are real and are classical distribution
functions, as in Eq. (1), for the particle types of the chosen
representation (flavor or mass). The off-diagonal elements
quantify the extent of mixing (species superpositions)
present in the neutrino gas.
Observable neutrino flavor mixing phenomena depend

on the differences of squared mass eigenvalues 	ji �
m2

j �m2
i , and (aside from upper limits) such differences

are the only data on neutrino mass that have been experi-
mentally determined [31]. That flavor mixing probabilities
do not depend on absolute masses (other than satisfaction
of the relativistic limit) is apparent when the squared mass
matrix is decomposed as M2 ¼ �þ�, where � is pro-
portional to the identity matrix and � is the traceless part.
For instance, in the standard case of three neutrino species

ð�Þ ¼ 1
3 TrðM2Þ (32)

¼ 1

3
ðm2

1 þm2
2 þm2

3Þ
1 0 0
0 1 0
0 0 1

0
@

1
A (33)

in any basis, and

ð�Þmass ¼ ðM2Þmass � ð�Þ (34)

¼ 1

3

�	21 � 	31 0 0
0 	21 � 	32 0
0 0 	32 þ 	31

0
@

1
A (35)

in the mass basis. Because � cancels out of the commuta-
tor, Eqs. (30) and (31) become [32]

p� @

@x�
�ðt;x;pÞ þ i

2
½�; �ðt;x;pÞ� ¼ 0; (36)

p� @

@x�
��ðt;x;pÞ � i

2
½�; ��ðt;x;pÞ� ¼ 0: (37)

And going back to Eq. (14), � merely gives rise to an
overall phase that cancels in flavor transition probabilities.

III. STARTING FROM A QUANTUM DENSITY
FUNCTION

A more fundamental approach than that presented in the
previous section begins with a quantum density function,
the mean value of a pair of normal-ordered neutrino quan-
tum field operators. (Unlike the previous section, the con-
vention of denoting operators by hats is abandoned here
because distinctions between operators and matrix repre-
sentations thereof using the same symbol will not be
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required.) The focus here is on free neutrino fields. Some
details regarding these—including conventions, and re-
minders about behavior in the relativistic limit—are given
in the appendix.

A. Quantum density function

Define the free-field quantum density function �ðy; zÞ—
a function of spacetime positions y and z—in terms of the
neutrino quantum field operators �ðyÞ and ��ðzÞ:

i �‘m
ij ðy; zÞ ¼ hN�‘

i ðyÞ ��m
j ðzÞi: (38)

The subscripts i, j index fields of definite mass, which are
the ‘‘physical fields’’ for which the usual quantization in
terms of Fock states makes sense [28]. The superscripts ‘,
m are spinor indices. In this case, the bar on ��ðzÞ denotes
the Pauli conjugate ��ðzÞ ¼ �yðzÞ�0; note that in most other
instances later in this section a bar simply labels a quantity
related to antineutrinos rather than a Pauli conjugate. The
angle brackets signify both the taking of an expectation
value with respect to a many-particle quantum state and an
average over a statistical ensemble of such quantum states.
The N on the right-hand side denotes ‘‘normal ordering,’’
which specifies that creation operators are to be placed to
the left of annihilation operators, with the introduction of
minus signs appropriate to the interchange of fermionic
operators as needed. In particular, separating the neutrino
field operator

�ðyÞ ¼ AðyÞ þ BðyÞ (39)

into its positive- and negative-frequency parts AðyÞ and
BðyÞ, the density operator becomes

i �‘m
ij ðy; zÞ ¼ �h �Am

j ðzÞA‘
i ðyÞi þ hB‘

i ðyÞ �Bm
j ðzÞi: (40)

As will become clear below, the first and second terms are
associated with the densities of neutrinos and antineutri-
nos, respectively. Rapidly oscillating cross terms between
positive- and negative-frequency parts are not relevant to
the macroscopic limit, and have been dropped [12,20].

In most cases of practical interest the complications of
spin can be eliminated. This is because the combination of
V � A neutrino interactions with a relativistic limit to
Oðm2

�=E�Þ, where m� and E� are characteristic neutrino
mass and energy scales, ensures that only negative-helicity
neutrinos and positive-helicity antineutrinos need be con-
sidered. The simplifications that result from taking spin
transitions off the table are twofold.

The first simplification resulting from the irrelevance of
spin pertains to the equations of motion employed. While
�‘m
ij ðy; zÞ obeys the Dirac equation by virtue of its con-

struction from Dirac fields, each spinor-space component
of this density function also obeys the Klein-Gordon equa-
tion. Hence, when considerations of spin are irrelevant, the
Klein-Gordon equation can be used from the outset. At first
glance this may seem counterproductive, for the same

reason the Dirac equation was invented in the first place:
like Dirac—and with a somewhat related motivation,
namely, the maintenance of positive probability distribu-
tions—we are ultimately after equations that are first order
rather than second order in time. However, we shall see that
in the present context the desired first-order equations
emerge very naturally from a combination of Klein-
Gordon equations, by virtue of a Wigner transformation.
The second simplification resulting from the neglect of

spin is that the 4� 4 spinor structure of �‘m
ij ðy; zÞ can be

eliminated, so that focus shifts to entities without spinor
indices.

B. Obtaining a first-order equation

An explicit account of these simplifications begins with
two Klein-Gordon equations satisfied by the density func-
tion before the relativistic limit is taken—one with respect
to y, and one with respect to z. Written in matrix form with
species indices suppressed, these two equations are

hy�
‘mðy; zÞ þM2�‘mðy; zÞ ¼ 0; (41)

hz�
‘mðy; zÞ þ �‘mðy; zÞM2 ¼ 0; (42)

where (for instance)

hy � @

@y�

@

@y�
¼ @2

ð@y0Þ2 �r2
y (43)

is the d’Alembertian with respect to spacetime position y.
The difference of Eqs. (41) and (42) is

ðhy �hzÞ�‘mðy; zÞ þ ½�;�‘mðy; zÞ� ¼ 0; (44)

in which M2 has been replaced by its traceless part �
containing only squared mass differences as described in
the last paragraph of Sec. II.
Turn now to the change of variables associated with a

Wigner transformation. Rewrite y and z in terms of new
spacetime variables x and �:

y ¼ xþ�

2
; (45)

z ¼ x��

2
: (46)

The meanings of x and � begin to become more apparent
from the inverse transformations

x ¼ 1
2ðyþ zÞ; (47)

� ¼ y� z: (48)

The average spacetime position x will become the macro-
scopic position variable in classical expressions obtained
from the present quantum formalism. The difference coor-
dinate � is indirectly related to the macroscopic momen-
tum variable in such classical expressions. In particular, the
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Wigner transformation is a Fourier transformation with
respect to �. The Wigner transformation of �‘m

ij ðy; zÞ
yields the ‘‘mixed representation’’ G‘m

ij ðx; PÞ of the density
function:

G ‘m
ij ðx; PÞ ¼

Z
d4�eiP���‘m

ij

�
xþ�

2
; x��

2

�
: (49)

At this point, P is not an on-shell four-momentum.
However, we shall see below that it does basically become
the macroscopic momentum variable in derived classical
expressions (up to a sign difference between the neutrino
and antineutrino parts).

The commutator in Eq. (44) already looks familiar from
the Liouville equations obtained at the end of Sec. II; it
turns out that the change of variables of Eqs. (45) and (46)
associated with the Wigner transformation starts to bring
the differential operator term into more familiar form as
well. Under this change of variables, the second-order
operator becomes

hy �hz ¼ 2
@

@�
� @

@x
; (50)

which is first order with respect to x. Note also that

�‘m
ij ðy; zÞ ¼ �‘m

ij

�
xþ�

2
; x��

2

�
(51)

¼
Z d4P

ð2�Þ4 e
�iP��G‘m

ij ðx; PÞ; (52)

where the transformation in the second line is the inverse of
that in Eq. (49). The mixed representation of the density
function satisfies

� 2iP� @

@x�
G‘mðx; PÞ þ ½�;G‘mðx; PÞ� ¼ 0; (53)

which follows from substitution of Eqs. (50) and (52) into
Eq. (44).

C. Interpretation of the mixed representation

Consider next the spinor-space structure of the density
function in the case of practical interest described above, in
which the neutrino and antineutrino populations are over-
whelmingly relativistic. In this case, it follows from the
explicit expressions in the appendix that the spinor-space
structure of the density function reduces to

ð�‘mðy; zÞÞ ! 0 �LRðy; zÞ
0 0

� �
: (54)

Note that in the relativistic limit only one 2� 2 block is
nonzero. The notation �LRðy; zÞ for this block denotes the
fact that it would be the block projected out if �ðy; zÞ were
sandwiched between the left- and right-projection matrices
PL and PR of Eqs. (A7) and (A8). Explicitly,

i�LR
ij ðy; zÞ ¼ �

Z d3q

ð2�Þ3
d3u

ð2�Þ3 ½e
iðuj�z�qi�yÞNLR

ij ðq;uÞ

� eiðqi�y�uj�zÞ �NLR
ij ðq;uÞ�: (55)

Here, ðq�i Þ ¼ ðEq;i;qÞ with Eq;i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 þm2

i

q
�

jqj þm2
i =2jqj (and similarly for the components of uj),

and to Oðm2
�=E�Þ
N LR

ij ðq;uÞ ¼ 
#
q


#y
u hayu;#;jaq;#;ii; (56)

�N LR
ij ðq;uÞ ¼ �"

q�
"y
u hbyq;";ibu;";ji; (57)

as discussed in the appendix. (Note that 
#
q and �

"
q are two-

component spinors.)
Moving to the mixed representation provides a conve-

nient means of separating the neutrino and antineutrino
parts of the density function, by making manifest its posi-
tive- and negative-frequency parts. Apply the Wigner
transformation of Eq. (49) to Eq. (55) and find

iGLR
ij ðx; PÞ ¼ �

Z d3q

ð2�Þ3
d3u

ð2�Þ3
�
e�iðqi�ujÞ�xNLR

ij ðq;uÞ

� ð2�Þ4	4

�
P� qi þ uj

2

�
� eiðqi�ujÞ�x �NLR

ij ðq;uÞð2�Þ4

� 	4

�
Pþ qi þ uj

2

��
: (58)

Because qi and uj are on-shell momenta, it is evident that

P0 > 0 in the first term and P0 < 0 in the second term.
Separate neutrino and antineutrino density functions are
obtained by projecting out these positive- and negative-
frequency parts with step functions �ðP0Þ and �ð�P0Þ:

iGLR
ij ðx; pÞ ¼ i

Z
d4P	4ðp� PÞ�ðP0ÞGLR

ij ðx; PÞ

¼ �
Z d3q

ð2�Þ3
d3u

ð2�Þ3 e
�iðqi�ujÞ�xNLR

ij ðq;uÞð2�Þ4

� 	4

�
p� qi þ uj

2

�
(59)

and

i �GLR
ij ðx; pÞ ¼ i

Z
d4P	4ðpþ PÞ�ð�P0ÞGLR

ij ðx; PÞ

¼
Z d3q

ð2�Þ3
d3u

ð2�Þ3 e
iðqi�ujÞ�x �NLR

ij ðq;uÞ

� ð2�Þ4	4

�
p� qi þ uj

2

�
: (60)

Note that delta functions included in the projection opera-
tions yield the momentum label changes P ! p in the case
of the neutrino density function GLR

ij ðx; pÞ and P ! �p in

the case of the antineutrino density function �GLR
ij ðx; pÞ.
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These density functions satisfy

� 2ip� @

@x�
GLRðx; pÞ þ ½�; GLRðx; pÞ� ¼ 0; (61)

2ip� @

@x�
�GLRðx; pÞ þ ½�; �GLRðx; pÞ� ¼ 0; (62)

which follow from applying to Eq. (53) the same projec-
tions appearing in Eqs. (59) and (60).

In general cases, the mixed representation provides
complementary position and momentum probability distri-
butions, as required by the quantum-mechanical incom-
patibility of position and momentum, rather than a joint
position/momentum distribution.

1. Position distribution

A position distribution is obtained by integrating the
mixed representation over all ‘‘momenta.’’ This can be
seen by comparison of the diagonal elements of Eqs. (59)
and (60) in species space with the relevant component of
the (normal-ordered) number current hN ��iðxÞ���iðxÞi of
species i.

In particular, the net neutrino number density of species
i—that is, the difference between the neutrino and anti-
neutrino number densities or position distributions niðxÞ
and �niðxÞ—is the 0th spacetime component of the number
current:

niðxÞ � �niðxÞ ¼ hN ��iðxÞ�0�iðxÞi: (63)

More explicitly,

niðxÞ � �niðxÞ ¼
Z d3q

ð2�Þ3
d3u

ð2�Þ3 ½e
�iðqi�uiÞ�xN iðq;uÞ

� eiðqi�uiÞ�x �N iðq;uÞ�; (64)

where

N iðq;uÞ ¼ 
#y
u 
#

qhayu;#;iaq;#;ii; (65)

�N iðq;uÞ ¼ �"y
u �"

qhbyq;";ibu;";ii: (66)

Aside from the single species index i compared with the
potentially different indices i and j, the difference between
Eqs. (65) and (66)and Eqs. (56) and (57) is that the one pair
has inner products of two-component spinors, while the
other has an outer product giving rise to a 2� 2 matrix in
spinor space.

The neutrino and antineutrino contributions to Eq. (64)
are readily obtained from the species-space diagonal com-
ponents of Eqs. (59) and (60), respectively. Integrating
over p, and using the fact that the inner product of any
two spinors is equal to the trace of their outer product, one
finds that

niðxÞ � �niðxÞ ¼ �
Z d4p

ð2�Þ4 Tr½iGLR
ii ðx; pÞ þ i �GLR

ii ðx; pÞ�;
(67)

where the trace is over the spinor indices of the 2� 2
blocks. This motivates the definition of spatial ‘‘number
density matrices’’

�ijðt;xÞ ¼
Z d4p

ð2�Þ4 Tr½�iGLR
ij ðt;x; pÞ�; (68)

and

�� ijðt;xÞ ¼
Z d4p

ð2�Þ4 Tr½i �GLR
ij ðt;x; pÞ�; (69)

whose diagonal elements are spatial number densities of
the various neutrino and antineutrino species, respectively.
(The dependence on spacetime components ðx�Þ ¼ ðt;xÞ
has been displayed here more explicitly.)

2. Momentum distribution

A momentum distribution is obtained by integrating the
mixed representation over the volume of the system.
Integrating Eq. (64) over all space results in a factor
ð2�Þ3	3ðu� qÞ, so that the net total neutrino number of
species i is

Ni � �Ni ¼
Z

d3x½niðxÞ � �niðxÞ�

¼
Z d3q

ð2�Þ3 ðha
y
q;#;iaq;#;ii � hbyq;";ibq;";iiÞ: (70)

Comparison with the definition of an occupation number in
Eq. (5)—whose integral over q also gives a total number of
particles in the system—implies that the difference of
neutrino and antineutrino occupation numbers or momen-
tum distributions is

niðt;qÞ � �niðt;qÞ ¼ 1

V
ðhayq;#;iaq;#;ii � hbyq;";ibq;";iiÞ: (71)

Precisely the same expression, but with momentum label q
replaced by p, is obtained from the diagonal elements of
Eqs. (59) and (60) by integrating over x, integrating over
p0 (which puts the momentum p on shell), and making use
of Eqs. (A29) and (A30) in the appendix:

niðt;pÞ � �niðt;pÞ ¼ � 1

V

Z
d3x

Z dp0

ð2�Þ Tr½iG
LR
ii ðx; pÞ

þ i �GLR
ii ðx; pÞ�: (72)

This motivates the definition of ‘‘occupation matrices’’

�ijðt;pÞ ¼ 1

V

Z
d3x

Z dp0

2�
Tr½�iGLR

ij ðt;x; pÞ� (73)

and
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�� ijðt;pÞ ¼ 1

V

Z
d3x

Z dp0

2�
Tr½i �GLR

ij ðt;x; pÞ�; (74)

whose diagonal elements are occupation numbers of the
various neutrino and antineutrino species, respectively.
(Here the components of p ¼ q ¼ u are quantum numbers
of momentum eigenstates, a role denoted by q in Sec. I.)

3. Classical joint position/momentum distribution

Beyond the complementary position and momentum
probability distributions generally available from the
mixed representation of a density function, a joint posi-
tion/momentum probability distribution—akin to a classi-
cal one-particle distribution function or phase space
density—is expected to emerge when the spacetime and
momentum dependences of a neutrino ensemble satisfy
appropriate conditions. In particular, a classical system is
characterized by

ET 	 1; PL 	 1; (75)

where E and P are characteristic energy and momentum
scales, and T and L are characteristic time and length
scales.

In order to elucidate this classical limit it is necessary to
examine NLR

ij ðq;uÞ and �NLR
ij ðq;uÞ in Eqs. (59) and (60)

more closely, beginning with a specification of the state
with respect to which the expectation values in Eqs. (56)
and (57) are taken. For illustrative purposes a pure state
j�Ni of N neutrinos will be discussed here. The extension
to systems represented by pure or mixed states that also
include antineutrinos or other particle types might provoke
complications (or at least changes) in notation but would
involve no significant additional conceptual difficulties.

A pure state j�Ni of N neutrinos is built up out of
multiparticle momentum eigenstates jk1i1 . . .kNiNi,
where the k are momenta, and the i label mass eigenvalues.
These momentum eigenstates result from the action of
antisymmetrized products of neutrino creation operators

ayk;#;i upon the vacuum, together with energy factors
ffiffiffiffiffiffiffiffiffi
2Ek

p
,

such that these antisymmetric states are normalized ac-
cording to

hk0
1i

0
1 . . .k

0
N0 i0N0 jk1i1 . . .kNiNi

¼ 	N0N
X
P

	P

YN
a¼1

ð2Eka
Þð2�Þ3	3ðk0

Pa � kaÞ	i0Pa
ia :

(76)

The sum is over all permutations P of the list of particle
labels 1 . . .N indexed by a, with 	P equal to 1 for even
permutations and�1 for odd permutations, whilePa is the
particle label moved to the ath position under a particular
permutation P . This sum reflects the complete antisym-
metry of these multineutrino states in that it vanishes if any
two momentum/mass label pairs are equal.

In accordance with the assumption that the neutrino gas
can be represented by a density function—that is, that
correlations can be ignored—take j�Ni to be a superposi-
tion of momentum eigenstates constructed with N inde-
pendent single-particle wave packets

j�Ni ¼
�YN
a¼1

Z d3ka

ð2�Þ3

� 
pa
ðkaÞffiffiffiffiffiffiffiffiffiffiffi

2Eka

p e�ika�xa;0

X
ia

U�
�aia

�
jk1i1 . . .kNiNi:

(77)

The 
pðkÞ are real-valued wave packet ‘‘envelopes’’ cen-

tered on p, each normalized such that

Z d3k

ð2�Þ3 ½
pðkÞ�2 ¼ 1: (78)

According to the usual wave packet technology, these
momentum-space envelopes are related to position-space
wave packet envelopes c x0;pðxÞ, peaked about x0, by

c x0;pðxÞ ¼
Z d3k

ð2�Þ3 
pðkÞeik�ðx�x0Þ; (79)

whose normalization

Z
d3xjc x0;pðxÞj2 ¼ 1 (80)

follows from Eq. (78). (For instance, if the
pðkÞ are taken
to be Gaussian, then

c x0;pðxÞ ¼ c x0ðxÞeip�ðx�x0Þ; (81)

where c x0ðxÞ is a (real-valued) Gaussian centered on x0.)

Before explaining the particular choice of superposition
of mass eigenstates represented by the sum over ia in
Eq. (77), it is helpful to clarify that j�Ni is a
Heisenberg-picture state, which for definiteness is taken
to correspond to a collection of N relativistic neutrinos at
t ¼ 0. These neutrinos are somewhat localized in both
momentum space and position space, the ath neutrino
being localized around pa and x0;a, respectively (where

the subscript 0 is a reminder that this position localization
is that which applies at t ¼ 0). Hence, the particular su-
perposition

P
ia
U�

�aia
applies to a system in which the ath

neutrino is in ‘‘definite flavor’’ �a at t ¼ 0. This corre-
sponds to the assumption used for the sake of illustration in
Sec. II that all the neutrinos were in definite flavors � at
t ¼ 0. More generally, the various neutrinos could be taken
to be have been created in definite flavors (that is, in
association with different charged leptons) at various dif-
ferent times ta < 0; in this case a more general superposi-
tion

P
ia
c�aia with

P
ia
jc�aia j2 ¼ 1 would apply, where

c�aia encodes the amplitude for the ath neutrino to be in

LIOUVILLE EQUATIONS FOR NEUTRINO DISTRIBUTION . . . PHYSICAL REVIEW D 78, 085017 (2008)

085017-9



mass eigenstate ia after evolution from its creation in flavor
�a at ta < 0 until t ¼ 0.

In order to obtain expectation values with respect to
j�Ni, it is necessary to know its norm, and this in turn
requires an understanding of how the Pauli exclusion prin-
ciple—manifest in the complete antisymmetry of the mul-
tiparticle momentum eigenstates jk1i1 . . .kNiNi—impacts
our localized particles. Consider a situation in which (at
least) two neutrinos have the same flavor content, and also
wave packet envelopes 
pðkÞ in Eq. (77) with identical

shapes, centroids p, and spatial offsets x0. In this case j�Ni
vanishes, because a product of wave packet envelopes/
mass amplitudes that is symmetric with respect to (at least)
two sets of quantum numbers k, i is ‘‘contracted’’ with the
completely antisymmetric state jk1i1 . . .kNiNi. More gen-
erally, the norm of j�Ni is

h�Nj�Ni ¼ 1þ X
P�1

	P

YN
a¼1

	�Pa�a

Z d3ka

ð2�Þ3 
pPa
ðkaÞ

�
pa
ðkaÞeika�ðxPa;0�xa;0Þ; (82)

which follows from Eqs. (76)–(78) and the unitarity of the
mixing matrix. The sum is now over all permutations
except the identity. In the aforementioned case of perfect
wave packet overlap this sum becomes �1, and h�Nj�Ni
vanishes. At the other extreme, if there is absolutely no
wave packet overlap in either position or momentum
space, then the sum in second and third lines of Eq. (82)
vanishes, so that h�Nj�Ni is unity. Between these ex-
tremes partial wave packet overlaps give this sum a value
somewhere between 0 and �1, and in turn the norm takes
continuous values between 1 and 0. Therefore, ‘‘wave
packet smearing’’ has a graduated impact upon manifes-
tations of the exclusion principle in microscopic represen-
tations of localized particles.

However, with an end goal of a macroscopic treatment
of a neutrino gas it is neither possible nor desirable to
follow the details of all particles’ wave packet shapes
and overlaps; what is of interest instead is how the Pauli
exclusion principle percolates down to the classical limit.
To this end, take a view that is sufficiently ‘‘coarse
grained’’ as to impose a binary distinction between com-
plete overlap and complete nonoverlap of momentum- and
position-space wave packet envelopes; then Eq. (82) goes
over to

h�Nj�Ni ! 1þ X
P�1

	P

YN
a¼1

	�Pa�a
ð2�Þ3

� 	3ðpPa � paÞ	3ðxPa;0 � xa;0Þ: (83)

Here, the normalizations associated with the momentum
and position 	 functions mirror Eqs. (78) and (80), respec-
tively; in particular, the 	 functions of zero argument are to
be interpreted as ð2�Þ3	3ðpPa � paÞjpPa¼pa

¼ V and

	3ðxPa;0 � xa;0ÞjxPa;0¼xa;0
¼ V�1, where V is the (effec-

tively infinite) quantization volume. Hence, the exclusion
principle is promoted from strict applicability to global
momentum eigenstates to ‘‘for all practical purposes’’ joint
applicability to the centroids of momentum- and position-
space wave packets [35]. (Harking back to the paragraph
before last, the factor 	�Pa�a

pertains to the special initial

condition in which all neutrinos have definite flavor at t ¼
0; more generally, this Kronecker 	 would be replaced byP

ia
c��Paia

c�aia .)

With this sort of multiparticle state in mind the expec-
tation values in Eqs. (56) and (57) can be evaluated. In
particular, continuing with the example of a pure state ofN
neutrinos given by Eq. (77), the action of an annihilation
operator upon j�Ni results in a sum of N terms

aq;#;ij�Ni ¼
XN
a¼1

ð�Þaþ1
pa
ðqÞe�iq�xa;0U�

�ai
j�Na6 i; (84)

where

j�Na6 i ¼
� YN
b¼1;b�a

Z d3kb

ð2�Þ3

pb

ðkbÞffiffiffiffiffiffiffiffiffiffiffi
2Ekb

p e�ikb�xb;0

X
ib

U�
�bib

�

� jk1i1 . . .ka�1ia�1;kaþ1iaþ1 . . .kNiNi (85)

is the N � 1 particle state resulting from the ‘‘removal’’ of
the ath neutrino from j�Ni. The sum in Eq. (84) arises
because of the anticommutation rule obeyed by neutrino
creation and annihilation operators, together with the fact
(mentioned above) that the multiparticle momentum eigen-
states jk1i1 . . .kNiNi are constructed by acting upon the
vacuum with antisymmetrized products of neutrino crea-

tion operators ayk;#;i. (In particular, the relation

aq;#;ijk1i1 . . .kNiNi ¼
XN
a¼1

ð�Þaþ1ð2�Þ3
ffiffiffiffiffiffiffiffiffi
2Eq

q
	3ðq� kaÞ	iia

� jk1i1 . . .ka�1ia�1;

kaþ1iaþ1 . . .kNiNi (86)

has been employed in obtaining Eqs. (84) and (85).) The
expectation value in Eq. (56), which follows from Eq. (84),
is

hayu;#;jaq;#;ii ¼
XN
b¼1

XN
a¼1

ð�Þbþ1ð�Þaþ1
pb
ðuÞ
pa

ðqÞeiu�xb;0

� e�iq�xa;0U�bjU
�
�ai

h�Nb6 j�Na6 i=h�Nj�Ni:
(87)

Evaluate the norms h�Nb6 j�Na6 i and h�Nj�Ni in the coarse-
grained ‘‘all-or-nothing’’ view of wave packet overlap that
led to Eq. (83), and let all the neutrino flavors and wave
packet momentum centroids and positions be nonoverlap-
ping as required for h�Nj�Ni ! 1 instead of h�Nj�Ni !
0. In this same approximation, h�Nb6 j�Na6 i ! 	ab. Hence,

Eq. (87) becomes
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hayu;#;jaq;#;ii !
XN
a¼1


pa
ðuÞ
pa

ðqÞeiu�xa;0e�iq�xa;0U�ajU
�
�ai

;

(88)

when the norms are evaluated in the coarse-grained posi-
tion/momentum picture, with all of the momentum and
position wave packet centroids p and x0 being different
by at least a wave packet width or so.

Before applying the coarse-grained all-or-nothing view
of wave packet overlap to the remaining wave packets in
Eq. (88), it is appropriate to consider the evolution of these
wave packets that follows from putting this expression for

hayu;#;jaq;#;ii back into the density function’s mixed repre-

sentation of Eq. (59), via Eq. (56). In this connection, it is
convenient to ‘‘open up’’ the 	 function in Eq. (59)

ð2�Þ4	4

�
p� qi þ uj

2

�
¼
Z

d4�eiðp�ðqiþujÞ=2Þ��: (89)

According to the usual wave packet technology, the inte-
gral over q in each of the N terms in Eq. (56) yields a
moving position-space wave packet

Z d3q

ð2�Þ3 
pa
ðqÞe�iqi�ðxþð�=2ÞÞe�iq�xa;0
#

q

� c xaðtþ�0=2Þ��=2ðxÞe�ipa;i�ðxþð�=2ÞÞe�ipa�xa;0
#
pa
: (90)

Here, ðp�
a;iÞ ¼ ðEpa;i;paÞ, and

x aðtÞ ¼ xa;0 þ vat; (91)

where va � pa=Epa;i � pa=jpaj is the wave packet’s group
velocity, approximated to Oðm2

�=E�Þ. The wave packet
centroid does not follow this classical trajectory for generic
values of� [all of which are probed, thanks to the integral
over � in Eq. (89)]; instead, the notation
c xaðtþ�0=2Þþ�=2ðxÞ for the wave packet envelope is meant

to convey the fact that the centroid follows the nonclassical
trajectory

x aðtþ�0=2Þ ��=2 ¼ xa;0 ��=2þ vaðtþ�0=2Þ:
(92)

Similarly, the integral over u in each of the N terms in
Eq. (56) yields a factor

Z d3u

ð2�Þ3 
pa
ðuÞeiuj�ðx�ð�=2ÞÞeiu�xa;0
#y

u

� c �
xaðt��0=2Þþ�=2

ðxÞeipa;j�ðx�ð�=2ÞÞeipa�xa;0
#
pa

y; (93)

which has three differences from Eq. (90): complex con-
jugation, the replacement � ! ��, and mass index j
instead of i.

Now that the evolution of the wave packets has been
considered, the full expression for the mixed representation
of the density function can be evaluated.

The first step is to apply the classicality conditions of
Eq. (75), which can be related to assumptions of ‘‘slow
change’’ and ‘‘weak inhomogeneity.’’ Use of Eqs. (56),
(88)–(90), and (93) in Eq. (59) yields

�iGLR
ij ðx; pÞ � XN

a¼1

Z
d4�DaðxÞeiðp�ðpa;iþpa;jÞ=2Þ��

� e�iðEpa;i�Epa;jÞtU�ajU
�
�ai


#
pa

#
pa

y; (94)

where

DaðxÞ � c �
xaðt��0=2Þþ�=2

ðxÞc xaðtþ�0=2Þ��=2ðxÞ: (95)

Because of the wave packets’ localization, DaðxÞ peaks at
� ¼ 0, for which the centroids of both wave packet enve-
lopes follow the classical trajectory of Eq. (91). Expanding
about � ¼ 0,

DaðxÞ ¼ jc xaðtÞðxÞj2 þ� �
�
@

@x
DaðxÞ

���������¼0

�
þ . . . (96)

Note that the first correction term, in combination with the
first exponential in Eq. (94), can be expressed as

� �
�
@

@x
DaðxÞ

���������¼0

�
eiðp�ðpa;iþpa;jÞ=2Þ��

¼ �i
@

@p
�
��

@

@x
DaðxÞ

���������¼0

�
eiðp�ðpa;iþpa;jÞ=2Þ��

�
: (97)

In a collection of particles satisfying the classicality con-
ditions of Eq. (75), it can be expected on dimensional
grounds that this and higher-order corrections can be ne-
glected in the sum over a large number of particles N in
Eq. (94), thanks to the combination of derivatives in
Eq. (97).
A few more simple steps bring the position and momen-

tum dependence of Eq. (94) into fully classical form.
Keeping only the first term in Eq. (96), the integral over
� in Eq. (94) yields a four-momentum 	 function (and
integration over p0 reduces this to a three-momentum 	
function). Moreover, in the coarse-grained view of all-or-
nothing wave packet overlap, this first term of DaðxÞ
approaches a sharp restriction to the classical trajectory
of Eq. (91)

DaðxÞ � jc xaðtÞðxÞj2 ! 	3ðx� xaðtÞÞ: (98)

Finally, because the two spinors in the outer product


#
pa

#
pa

y pertain to the same momentum, Eq. (A25) applies;
hence taking the trace over this 2� 2 block in spinor index
space results in a factor of unity. All together, the neutrino
distribution matrix obtained from Eq. (94) is

�ijðt;x;pÞ ¼
Z dp0

2�
Tr½�iGLR

ij ðt;x; pÞ�; (99)
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! XN
a¼1

ð2�Þ3	3ðx� xaðtÞÞ	3ðp� paÞ

� e�iðEpa;i�Epa;jÞtU�ajU
�
�ai

: (100)

A similar argument applies to antineutrinos, with the result

�� ijðt;x;pÞ ¼
Z dp0

2�
Tr½�i �GLR

ij ðt;x; pÞ�; (101)

! XN
a¼1

ð2�Þ3	3ðx� xaðtÞÞ	3ðp� paÞ

� eiðEpa;i�Epa;jÞtU�ajU
�
�ai

(102)

for the antineutrino distribution matrix. Here, p takes on
the values of momentum-space wave packet centroids
(which ultimately correspond to the momenta of classical
particles), in accordance with the role denoted by p in
Sec. I.

The position and momentum dependence of Eqs. (100)
and (102) is precisely that of a collection of free classical
particles, and the associated species-space structure is just
as expected. These expressions were derived in terms of
mass fields, because these represent the ‘‘physical parti-
cles’’ for which creation and annihilation operators obey-
ing appropriate anticommutation relations exist for
arbitrary momentum. But once an average is taken for a
system containing only relativistic neutrinos, the notion of
a ‘‘flavor-basis’’ for the distribution matrices becomes
workable [36]. From Eq. (38), it is apparent that density
function �‘m

��ðy; zÞ constructed from flavor fields ��ðyÞ ¼
U�i�iðyÞ is related to that constructed from mass fields by

�‘m
��ðy; zÞ ¼

X
i;j

U�i�
‘m
ij ðy; zÞU�

�j: (103)

This propagates down to a ‘‘flavor-basis’’ representation of
the distribution matrices

���ðt;x;pÞ ¼
X
i;j

U�i�ijðt;x;pÞU�
�j; (104)

�� ��ðt;x;pÞ ¼
X
i;j

U�i ��ijðt;x;pÞU�
�j: (105)

In particular, the diagonal elements can be expressed as

���ðt;x;pÞ !
XN
a¼1

X
i

ð2�Þ3	3ðx� xaðtÞÞ	3ðp� paÞ

�
��������U�i exp

�
�i

m2
i t

2jpaj
�
U�

�ai

��������2

; (106)

����ðt;x;pÞ !
XN
a¼1

X
i

ð2�Þ3	3ðx� xaðtÞÞ	3ðp� paÞ

�
��������U�

�i exp

�
�i

m2
i t

2jpaj
�
U�ai

��������2

: (107)

These expressions describe collections of neutrinos and
antineutrinos that begin in flavors �a at t ¼ 0 and follow
classical spacetime trajectories, with the expectation val-
ues of their flavors along those trajectories varying accord-
ing to familiar vacuum oscillation probabilities [31].
To conclude this subsection, it is appropriate to remark

on the illustrative character of this derivation of the clas-
sical limit of the position/momentum dependence. A single
pure state of neutrinos has been singled out for detailed
discussion, and the average denoted by angled brackets in
Eq. (56) has been interpreted as an expectation value with
respect to this pure neutrino state. Hence, the derivation of
Eqs. (100) and (102) constitutes a demonstration of how a
single ‘‘microstate’’ of uncorrelated single-particle quan-
tum wave packets corresponds to a single microstate of
definite classical trajectories (while retaining the quantum-
mechanical phenomena of flavor mixing and Fermi statis-
tics). This adequately illustrates the issues involved in a
passage to the classical limit. But it should also be noted
that in order for �ðt;x;pÞ and ��ðt;x;pÞ to actually be
single-particle distribution matrices for the ‘‘macrostate’’
of the gas, the average represented by angle brackets must
be promoted to an average over a mixed state of neutrinos
or antineutrinos, respectively, together with an ensemble
average over an appropriate statistical distribution of these
mixed states. (The mixed states of neutrinos or antineutri-
nos, represented by density matrices spanning all possible
numbers of neutrinos or antineutrinos with all possible
independent single-particle wave packets, would be ob-
tained by integration of the pure states of the entire system
over the degrees of freedom of all particle types other than
neutrinos or antineutrinos, in accordance with the standard
meaning of mixed states and density matrices [37].) Then,
in an appropriate limit along the lines presented here, the
position/momentum dependence of the single-particle dis-
tribution matrices would correspond to the position/mo-
mentum dependence of single-particle distribution
functions for a statistical ensemble of classical particles.
Finally, as a last reminder of another illustrative feature,
the factor U�ajU

�
�ai

in Eqs. (100) and (102) corresponds to

the special case in which the neutrinos or antineutrinos,
respectively, have definite flavors at t ¼ 0. In more general
cases, one would have c��aj

c�ai, where the meaning of the

amplitude c�ai was explained in the fifth paragraph of this

subsubsection.

D. Liouville equations

The Liouville equations for the neutrino and antineu-
trino distribution matrices of Eqs. (99) and (101) (‘‘mass
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basis’’) and (104) and (105) (‘‘flavor-basis’’) follow imme-
diately from Eqs. (61) and (62). In matrix form, with
species indices suppressed, the Liouville equations are
those obtained at the end of Sec. II:

p� @

@x�
�ðt;x;pÞ þ i

2
½�; �ðt;x;pÞ� ¼ 0; (108)

p� @

@x�
��ðt;x;pÞ � i

2
½�; ��ðt;x;pÞ� ¼ 0: (109)

As mentioned immediately following Eq. (91), the trajec-
tories xaðtÞ appearing in Eqs. (100) and (102) are null to
Oðm2

�=E�Þ. In accordance with this—and in order for these
explicit expressions for �ðt;x;pÞ and ��ðt;x;pÞ to satisfy
Eqs. (108) and (109)—the momentum p in the first term of
the Liouville equations above should be approximated as
ðp�Þ ¼ ðjpj;pÞ. Only in phases in the explicit expressions
for �ðt;x;pÞ and ��ðt;x;pÞ encountered in the previous
subsection are corrections of Oðm2=2jpjÞ to Ep retained.

IV. CONCLUSION

The calculation of neutrino decoupling from dense nu-
clear matter requires a transport formalism capable of
handling both collisions and flavor mixing; and the first
steps toward such a formalism are the construction of
neutrino and antineutrino ‘‘distribution matrices,’’ and a
determination of the Liouville equations they satisfy in the
noninteracting case. These initial steps have been accom-
plished in two new ways in this paper. Both approaches
arrive at neutrino and antineutrino distribution matrices
�ðt;x;pÞ and ��ðt;x;pÞ whose dependence on time t, posi-
tion x, and momentum p is classical. Indeed, the diagonal
elements of these distribution matrices are classical distri-
bution functions, in the sense of Eq. (1), for the various
neutrino species. The off-diagonal elements encode infor-
mation on species overlap in the neutrino ensemble. The
flat-spacetime Liouville equations satisfied by �ðt;x;pÞ
and ��ðt;x;pÞ are given both in Eqs. (36) and (37) and
Eqs. (108) and (109). In addition to the usual flat-spacetime
directional derivative along the phase flow p�@=@x� (see
also endnote [32]), the Liouville operators for neutrinos
and antineutrinos with flavor mixing include a commutator
with a matrix containing differences of squared neutrino
masses [see Eq. (35)], with a difference in sign between the
neutrino and antineutrino cases.

In the approach of Sec. II, the neutrino positions and
momenta are taken to be classical from the outset: only
neutrino mass/flavor are treated quantum mechanically.
Distribution matrices are constructed from the states of a
covariant version of the familiar simple model of flavor
mixing, and the Liouville equations follow straightfor-
wardly from the Schrödinger equations describing the
evolution of flavor along classical worldlines.

The second approach—presented in Sec. III—employs a
density function, the mean value of paired neutrino quan-

tum field operators [Eq. (38)]; therefore, the classical
position/momentum dependence must be derived as a
limit. The key to this is the mixed representation of the
density function obtained by a Wigner transformation
[Eq. (49)]. By definition, the spacetime variable x of the
mixed representation is the average of the field operators’
position variables [Eq. (47)], and the momentum variable P
of the mixed representation also turns out to be (up to a sign
in the case of antineutrinos) an average of the momenta
appearing the field operators’ plane wave expansions [note
the 	 functions in Eqs. (59) and (60)]. In order to make a
concrete physical connection between these density func-
tions and distribution matrices, considerable space is de-
voted in Sec. III C to explicit examination of the general
relationship of the mixed representation to complementary
space and momentum distributions, and especially to a
detailed illustration of how a suitable state of uncorrelated
wave packets, satisfying basic classicality conditions of
slow variation and weak inhomogeneity [Eqs. (75)], cor-
responds to a microstate of a gas whose neutrinos follow
classical trajectories, while exhibiting the usual flavor
oscillations. This last illustration is by far the paper’s
densest thicket; by comparison, almost magically simple
and elegant is the emergence in Sec. III B of the Liouville
operator from a Wigner transformation of the difference of
Klein-Gordon equations obeyed by the density functions.
Given the existence of the simpler approach of Sec. II,

the question arises as to why it is worth bothering with the
more fundamental approach of Sec. III. The reason is that it
is necessary to go beyond the case of noninteracting neu-
trino distributions that satisfy Liouville equations: neutrino
interactions need to be considered, and our understanding
of neutrino interactions is based on quantum field theory. It
is true that one can attempt to compute neutrino effective
masses and interaction rates independently and then insert
them into a formalism based on the simple model of
neutrino flavor mixing. But there is a history of overlook-
ing important aspects of the problem when such an ap-
proach is taken. For instance, early works that considered
contributions of neutrino-neutrino forward scattering to
effective neutrino (squared) masses, such as
Refs. [38,39], failed to recognize the existence of off-
diagonal contributions [15,40]. Another example is an
apparent failure [21] to recognize that the placement of
neutrino blocking factors in neutrino interaction rates is
nontrivial, due to the fact that neutrino distributions are
now represented by noncommuting matrices [12]. Such
issues are automatically raised and naturally handled in a
formalism that begins by treating all aspects of the problem
in terms of quantum field theory from the beginning;
hence, in addition to being conceptually satisfying, an
approach of this kind is also theoretically safe.
It may then further be asked why a new treatment might

be desirable if in fact interactions have already been re-
sponsibly addressed in the literature [12]. While the han-
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dling of general classes of interactions is outlined in
Ref. [12], the particular interactions relevant to neutrino
decoupling are not spelled out with the degree of explicit
specificity needed by those developing large-scale simula-
tions involving neutrino transport. In addition to the
present work’s goal of more thorough understandings of
the spatial derivative term in the Liouville equation and the
nature of neutrino distribution matrices, it also serves as a
first step toward the handling of neutrino interactions with
a diagrammatic approach based on a nonequilibrium
Green’s function [41] (see also Ref. [26]). In addition to
a Green’s function, this approach—which is sometimes
called ‘‘Keldysh theory’’—involves the density function
considered in this paper and two other types of field
operator pairings. Because it is a diagrammatic approach,
while that of Ref. [12] is purely algebraic, it can be
expected to simplify the task of explicitly working out
the full panoply of interactions needed by those wishing
to incorporate neutrino flavor mixing into neutrino trans-
port computations. This will be pursued in a separate work.
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APPENDIX

The approach in Sec. III to neutrino distribution matrices
and the Liouville equations they obey is rooted in quantum
field theory. Quantum density functions constructed from
neutrino fields simplify considerably in the relativistic
limit of practical interest.

Neutrino interactions respect lepton number in the stan-
dard model, but with good evidence from flavor mixing
observations and experiments that neutrinos have mass, it
is not clear that neutrinos actually carry lepton number
[31]. Standard model neutrino interactions are of the V �
A form and therefore involve only left-handed neutrino
fields. For massless neutrinos, this implies the existence
of only two neutrino states for each flavor: negative-
helicity neutrinos and positive-helicity antineutrinos. In
the relativistic limit of extensions that give the neutrinos
mass, these two states could be either left-handed ‘‘neu-
trino’’ and right-handed ‘‘antineutrino’’ states associated
with a Dirac field, or the left- and right-handed states of a
self-conjugate Majorana field carrying no net lepton num-
ber. Differences between these two possibilities occur only
at Oðm2

�=E
2
�Þ, where m� and E� are characteristic neutrino

mass and energy scales. Systems in which effects at this
scale are relevant are not considered in this paper; instead,
only terms ofOðm2

�=E�Þ are kept, which capture the flavor
mixing physics relevant to the neutrino decoupling prob-

lem. For definiteness, the language and formalism of Dirac
fields are used here—that is, neutrinos and antineutrinos
and associated operators aq;r, bq;r and so forth are spoken

of—but the results to Oðm2
�=E�Þ are the same as if

Majorana fields were employed.
The operator c ‘ðyÞ representing a noninteracting

spin-1=2 field possessing one or more quantum numbers
distinguishing particles from antiparticles—that is, a Dirac
field—is

c ‘ðyÞ ¼ A‘ðyÞ þ B‘ðyÞ; (A1)

where A‘ðyÞ and B‘ðyÞ are functions of spacetime position
y and constitute ‘‘positive-’’ and ‘‘negative-frequency’’
parts, respectively,

A‘ðyÞ ¼
Z d3q

ð2�Þ3
1ffiffiffiffiffiffiffiffiffi
2Eq

p X
r

u‘ðq; rÞe�iq�yaq;r; (A2)

B‘ðyÞ ¼
Z d3q

ð2�Þ3
1ffiffiffiffiffiffiffiffiffi
2Eq

p X
r

v‘ðq; rÞeiq�ybyq;r: (A3)

Here, ‘ is a spinor index and r labels spin states. The
momentum 4-vector q has components ðq�Þ ¼ ðEq;qÞ,
where Eq ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijqj2 þm2

p
is the on-shell energy of a particle

of mass m. The positive-frequency term contains particle
annihilation operators aq;r and momentum-space Dirac

spinors u‘ðq; rÞ, and the negative-frequency term contains

antiparticle creation operators byq;r and momentum-space
Dirac spinors v‘ðq; rÞ. The free field satisfies the Dirac
equation �

i�� @

@y�
�m

�
c ðyÞ: (A4)

The Dirac spinor indices on �� and c ðyÞ have been sup-
pressed. Here, the Dirac matrices �� satisfy the anticom-
mutation relations f��; ��g ¼ 2���, where ��� is the
Lorentz metric. The conventions of Ref. [42] are followed
for units (@ ¼ c ¼ 1); metric signature (þ���); crea-
tion/annihilation operator anticommutation relations

[faq;r;ayu;sg¼ fbq;r;byu;sg¼ ð2�Þ3	3ðq�uÞ	rs, with all

other anticommutators vanishing]; single-particle states

(jq; ri � ffiffiffiffiffiffiffiffiffi
2Eq

p
ayq;rj0i) and their normalization

[hq;rju;si¼2Eqð2�Þ3	3ðq�uÞ	rs]; and Dirac matrices,

which have the 2� 2 block form

ð��Þ ¼ 0 ��

��� 0

� �
: (A5)

Here, ð��Þ ¼ ð1;�Þ and ð ���Þ ¼ ð1;��Þ, where � are the
standard 2� 2 Pauli matrices. Moreover, the matrix

ð�5Þ ¼ �1 0
0 1

� �
(A6)

appears in the left- and right-projection operators

PL ¼ 1
2ð1� �5Þ; (A7)
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PR ¼ 1
2ð1þ �5Þ; (A8)

which select the upper two and lower two components of
Dirac spinors, respectively.

The simplifications incident to the relativistic limit are
manifest in explicit expressions for the neutrino and anti-
neutrino momentum-space spinors. These can be written in
block form as

uðq; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
q � �p


r
qffiffiffiffiffiffiffiffiffiffiffi

q � ��
p


r
q

� �
; (A9)

vðq; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
q � �p

�r
q

� ffiffiffiffiffiffiffiffiffiffiffi
q � ��

p
�r
q

� �
: (A10)

It is convenient to define the two-component spinors 
r
q

and �r
q in terms of eigenspinors ��

q that satisfy the rela-

tions

ðq̂ � �Þ��
q ¼ ���

p : (A11)

The Dirac spinors are associated with left-handed
(negative-helicity # ) and right-handed (positive-helicity " )
spin states through the following assignments:


"
q ¼ �þ

q ; (A12)


#
q ¼ ��

q ; (A13)

�"
q ¼ ��

q ; (A14)

�#
q ¼ ��þ

q : (A15)

In the relativistic limit the neutrino momentum spinors
become

uðq; "Þ ! 0ffiffiffiffiffiffiffiffiffi
2Eq

p

"
p

� �
; (A16)

uðq; #Þ !
ffiffiffiffiffiffiffiffiffi
2Eq

p

#
p

0

 !
; (A17)

while the antineutrino momentum spinors become

vðq; "Þ !
ffiffiffiffiffiffiffiffiffi
2Eq

p
�"
q

0

 !
; (A18)

vðq; #Þ ! 0ffiffiffiffiffiffiffiffiffi
2Eq

p
�#
q

� �
: (A19)

As mentioned above, the fact that neutrino interactions
involve only left-handed neutrino fields PL�ðyÞ implies
that to Oðm2

�=E�Þ only negative-helicity neutrinos and
positive-helicity antineutrinos are produced.

Consider the density function defined in Eq. (38); see
also Eq. (40). Applying Eqs. (A2) and (A3) to neutrino
fields with mass indices i, j, it can be expressed

i�‘m
ij ðy; zÞ ¼ �

Z d3q

ð2�Þ3
d3u

ð2�Þ3 ½e
iðuj�z�qi�yÞN‘m

ij ðq;uÞ

� eiðqi�y�uj�zÞ �N‘m
ij ðq;uÞ�; (A20)

where

N ‘m
ij ðq;uÞ ¼

1ffiffiffiffiffiffiffiffiffi
2Eq

p 1ffiffiffiffiffiffiffiffiffi
2Eu

p X
r;s

u‘ðq; r; iÞ �umðu; s; jÞ

� hayu;s;jaq;r;ii; (A21)

�N ‘m
ij ðq;uÞ ¼

1ffiffiffiffiffiffiffiffiffi
2Eq

p 1ffiffiffiffiffiffiffiffiffi
2Eu

p X
r;s

v‘ðq; r; iÞ �vmðu; s; jÞ

� hbyq;r;ibu;s;ji: (A22)

In these expressions, the four-momentum ðu�Þ ¼ ðu0;uÞ
should not be confused with the momentum-space Dirac
spinors u‘ðq; r; iÞ. The components of the Pauli conjugate
spinors are �um ¼ P

nðu�Þnð�0Þnm and similarly for �vm.
To Oðm2

�=E�Þ only a single 2� 2 block of the 4� 4
spinor-space structure remains nonzero, and only one of
the two spin states contributes to the expectation value. In
particular, the nonzero 2� 2 blocks NLR

ij ðq;uÞ and
�NLR
ij ðq;uÞ are those that would be projected out if

ðN‘m
ij ðq;uÞÞ and ð �N‘m

ij ðq;uÞÞ were sandwiched between

the left- and right-projection matrices PL and PR.
Employing Eqs. (A17) and (A18) in Eqs. (A21) and
(A22) results in the expressions

N LR
ij ðq;uÞ ! 
#

q

#y
u hayu;#;jaq;#;ii; (A23)

�N LR
ij ðq;uÞ ! �"

q�
"y
u hbyq;";ibu;";ji (A24)

for these nonzero 2� 2 blocks. A nice form results when
u ¼ q, by virtue of the identity


#
q


#y
q ¼ �"

q�
"y
q ¼ q��

�

2Eq

; (A25)

with jqj ¼ Eq in the relativistic limit. (This identity fol-

lows from an explicit expression for ��
q that satisfies

Eq. (A11):

��
q ¼ �e�i
 sinð�2Þ

cosð�2Þ
 !

; (A26)

where the polar angle � and azimuthal angle 
 give the
direction of q.) Hence,

N LR
ij ðq;qÞ ¼ q��

�

2Eq

hayq;#;jaq;#;ii; (A27)

�N LR
ij ðq;qÞ ¼ q��

�

2Eq

hbyq;";ibq;";ji (A28)

in the relativistic limit with u ¼ q. The trace of these 2� 2
blocks is

Tr ½NLR
ij ðq;qÞ� ¼ hayq;#;jaq;#;ii; (A29)

Tr ½ �NLR
ij ðq;qÞ� ¼ hbyq;";ibq;";ji: (A30)

That the leading factor becomes unity is a consequence of
the tracelessness of the Pauli matrices �.
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