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We present an identity satisfied by the kinematic factors of diagrams describing the tree amplitudes of

massless gauge theories. This identity is a kinematic analog of the Jacobi identity for color factors. Using

this we find new relations between color-ordered partial amplitudes. We discuss applications to multiloop

calculations via the unitarity method. In particular, we illustrate the relations between different contri-

butions to a two-loop four-point QCD amplitude. We also use this identity to reorganize gravity tree

amplitudes diagram by diagram, offering new insight into the structure of the Kawai-Lewellen-Tye (KLT)

relations between gauge and gravity tree amplitudes. This insight leads to similar but novel relations. We

expect this to be helpful in higher-loop studies of the ultraviolet properties of gravity theories.
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I. INTRODUCTION

Gauge and gravity scattering amplitudes have a far
simpler and richer structure than apparent from Feynman
rules or from their respective Lagrangians. Striking tree-
level examples include the Parke-Taylor maximally helic-
ity violating (MHV) amplitudes in QCD [1], the delta-
function support of amplitudes on polynomial curves in
twistor space [2,3], and the Kawai-Lewellen-Tye (KLT)
relations [4–6] between gravity and gauge-theory tree
amplitudes. Besides their intrinsic theoretical value, these
structures have led to a number of useful computational
advances, as described in various reviews [7–10].

In particular, tree-level color-ordered partial amplitudes
satisfy simplifying relations dictated by the color algebra.
Adjoint representation amplitudes must vanish whenever
an external gluon is replaced by a color neutral photon,
giving a ‘‘photon decoupling identity’’ [7] (also referred to
as the subcyclic property). More generally, the Kleiss-Kuijf
relations [11,12] reduce the number of independent n-point
tree partial amplitudes from ðn� 1Þ! to ðn� 2Þ! partial
amplitudes.

In this paper we propose a kinematic identity that further
constrains the n-point color-ordered partial amplitudes at
tree level. This is based on the observation that gauge-
theory amplitudes can be rearranged into a form where the
kinematic factors of diagrams describing the amplitudes
satisfy an identity analogous to the Jacobi identity obeyed
by the color factors associated with the same diagrams. At
four points this kinematic identity has been used previously
to explain certain zeroes in cross sections [13]. By solving
the generated set of equations at higher points, we obtain
new nontrivial relations amongst color-ordered tree ampli-
tudes, reducing the number of independent partial ampli-
tudes to ðn� 3Þ!.

The existence of such an identity is unobvious from the
Feynman diagrams contributing to higher-point tree am-
plitudes. Indeed, color-ordered Feynman diagrams, in a
generic choice of gauge, will not satisfy this new identity

in isolation beyond four points. Rather the kinematic fac-
tors satisfying the identity only appear after rearranging
terms between contributing Feynman diagrams into con-
venient representations of the amplitudes. In this paper we
do not present a complete proof that this rearrangement is
always possible. However, because of the many explicit
tree-level checks that we have performed, and because of
its close connection to the color Jacobi identity, we expect
this new n-point identity to hold for tree-level color-
ordered Yang-Mills amplitudes. In this paper we will focus
on gluonic amplitudes.
Although the amplitude relations derived from the new

kinematic identity may be helpful in tree and one-loop
calculations, powerful computational methods are already
available, or are under development [7,8,10,14]. In the past
decade important progress has also been made in comput-
ing higher-loop scattering amplitudes both for phenome-
nological and theoretical purposes. For example, on the
phenomenological side, even fully differential cross sec-
tions for processes as complicated as eþe� ! 3 jets at
next-to-next-to-leading order are now computable [15].
Much of this progress relies on various improvements in
loop integration techniques [16]. On the theoretical side,
multiloop calculations of scattering amplitudes have be-
come important as a means of studying fundamental issues
in gauge and gravity theories [17–20]. Various useful
relations aiding computations in higher-loop maximally
supersymmetric theories have been discussed in
Refs. [18,21–25]. To go beyond this, a greatly improved
understanding of the structure of multiloop scattering am-
plitudes will likely be important.
The unitarity method [26] gives us a means of trans-

ferring properties of amplitudes from tree level to loop
level. Since this approach constructs loop diagrams out of
tree-level amplitudes, we can apply the relations following
from the kinematic identity to help simplify multiloop
calculations. Specifically, we will show that it induces
nontrivial relations between planar and nonplanar loop-
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level contributions. Its application to the construction of
the four-loop four-point amplitude ofN ¼ 4 super-Yang-
Mills theory in terms of loop integrals—including non-
planar contributions—will be given elsewhere [27]. The
planar contributions at four and five loops have already
been given in Refs. [18,24].

Besides applications to gauge theories, the identity also
suggests a natural reorganization of gravity tree amplitudes
so that the numerator of each kinematic pole in the ampli-
tude is given by a product of two gauge-theory kinematic
numerators. As we will show, this is closely connected to
the KLT relations between color-ordered gauge-theory and
gravity amplitudes. The new representations for gravity
tree amplitudes can be used in loop calculations via gen-
eralized unitarity [19,20,22,28]. There may also be a con-
nection to other recently uncovered relations between
maximally helicity violating gravity and gauge-theory am-
plitudes [6], but this requires further study.

This paper is organized as follows. In Sec. II we review
some pertinent properties needed later in the paper, as well
as establish notation. In Sec. III, we derive the identity at
four points, guiding our higher-point construction. Then in
Sec. IV we motivate the higher-point generalization of the
identity, discussing the five-point case in some detail. In
Sec. V we work out multiloop QCD examples of its appli-
cation. In Sec. VI we present implications for gravity
amplitudes, showing how the identity clarifies the KLT
relations and can be used to derive new representations
for gravity tree amplitudes in terms of gauge-theory ones.

II. REVIEW

In this section we set up the terminology, notation, and
review a number of pertinent results directly relevant for
our subsequent discussion.

A. Gauge-theory color structure

At tree level, with particles all in the adjoint representa-
tion of SUðNcÞ, the full tree amplitude can be decomposed
as

Atree
n ð1; 2; 3; . . . ; nÞ

¼ gn�2
X

P ð2;3;...;nÞ
Tr½Ta1Ta2Ta3 � � �Tan�Atree

n ð1; 2; 3; . . . ; nÞ;

(2.1)

where Atree
n is a tree-level color-ordered n-leg partial am-

plitude. The Ta’s are color-group generators, encoding the
color of each external leg 1; 2; 3 . . . n. The sum is over all
noncyclic permutations of legs, which is equivalent to all
permutations keeping leg 1 fixed. Helicities and polariza-
tions are suppressed. At higher loops, detailed color de-
compositions of gauge-theory amplitudes have not been
given though general properties are clear. For example, at
L loops the corresponding decomposition involves up to
Lþ 1 color traces per term. Discussions of such color

decompositions at tree level and at one loop may be found
in Refs. [7,29].
Other color decompositions involve using the fabc group

structure constants. At tree level and at one loop a decom-
position of this type was given in Refs. [12,30]. For tree
level, this decomposition is similar to the one in Eq. (2.1)
using, instead, color matrices in the adjoint representation
(the fabc’s), and summing over fewer partial amplitudes.
Color-ordered tree-level amplitudes satisfy a set of well-

known relations. The simplest of these are the cyclic and
reflection properties,

Atree
n ð1; 2; . . . ; nÞ ¼ Atree

n ð2; . . . ; n; 1Þ;
Atree
n ð1; 2; . . . ; nÞ ¼ ð�1ÞnAtree

n ðn; . . . ; 2; 1Þ: (2.2)

Next there is the ‘‘photon’’-decoupling identity (or subcy-
clic property) [7,11],X

�2cyclic

Atree
n ð1; �ð2; 3; . . . ; nÞÞ ¼ 0; (2.3)

where the sum runs over all cyclic permutations of legs
2; 3; 4; . . . n. This identity follows by replacing Ta1 ! 1 in
the full amplitude (2.1) corresponding to replacing leg 1
with a photon. The amplitude must then vanish since
photons cannot couple directly to adjoint representation
particles.
Other important relations are the Kleiss-Kuijf relations

[11]:

Atree
n ð1; f�g; n; f�gÞ ¼ ð�1Þn� X

f�gi2OPðf�g;f�T gÞ
Atree
n ð1; f�gi; nÞ;

(2.4)

where the sum is over the ‘‘ordered permutations’’
OPðf�g; f�TgÞ, that is, all permutations of f�g [ f�Tg that
maintains the order of the individual elements belonging to
each set within the joint set. The notation f�Tg represents
the set f�gwith the ordering reversed, and n� is the number

of � elements. These relations were conjectured in
Ref. [11] and proven in Ref. [12].
Consider, as an example, a five-point tree amplitude. For

Atree
5 ð1; f2; 3g; 5; f4gÞ we have

Atree
5 ð1; 2; 3; 5; 4Þ ¼ �Atree

5 ð1; 2; 3; 4; 5Þ � Atree
5 ð1; 2; 4; 3; 5Þ

� Atree
5 ð1; 4; 2; 3; 5Þ: (2.5)

The other five-point relations are given by permuting legs
2, 3, 4 and using the cyclic and reflection properties. This
means that the six amplitudes Atree

5 ð1;P f2; 3; 4g; 5Þ—where

P f2; 3; 4g signifies all permutations over legs f2; 3; 4g—
form a basis in which the remaining five-point partial
amplitudes can be expressed. More generally, for multi-
plicity n, the Kleiss-Kuijf relations can be used to rewrite
any color-ordered partial amplitude in terms of only ðn�
2Þ! basis partial amplitudes, where two legs are held fixed
in the ordering.
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For the two-loop four-point identical-helicity pure gluon
and two-loop MHV amplitudes in maximally supersym-
metric Yang-Mills theory, a color decomposition in terms
of fabc has been given in terms of ‘‘parent’’ diagrams
establishing both the color and kinematic structure [22,31],

A2-loop
4 ð1; 2; 3; 4Þ ¼ g6½CP

1234A
P
1234 þ CP

3421A
P
3421

þ CNP
12;34A

NP
12;34 þ CNP

34;21A
NP
34;21

þ Cð234Þ�; (2.6)

where ‘‘þ Cð234Þ’’ signifies that one should add the two
cyclic permutations of 2, 3, 4. The AP and ANP are primitive
amplitudes stripped of color. The values of the color co-
efficients CP and CNP may be read off directly from the
parent diagrams in Fig. 1. For example, CP

1234 is the color

factor obtained from diagram (a) by dressing each vertex

with an ~fabc, where

~fabc � i
ffiffiffi
2

p
fabc ¼ Trð½Ta; Tb�TcÞ; (2.7)

and dressing each internal line with a �ab. In Sec. V, we
will make use of this decomposition in a two-loop ex-
ample. As discussed in Ref. [12], general representations
in terms of parent diagrams can be constructed by making
repeated use of the Jacobi identity, but this has not been
studied in full generality.

A key property of the ~fabc’s are that they satisfy the
Jacobi identity illustrated in Fig. 2,

cu � ~fa4a2b ~fba3a1 ; cs � ~fa1a2b ~fba3a4 ;

ct � ~fa2a3b ~fba4a1 ; cu ¼ cs � ct:
(2.8)

The main result of this paper is that the kinematic factors
corresponding to n-point tree diagrams can be rearranged
to satisfy an analogous identity giving nontrivial con-
straints on the form of tree amplitudes. This then has useful
consequences at loop level and for corresponding gravity
amplitudes.

B. Higher-loop integral representation and the
unitarity method

Any multiloop amplitude can be expanded in a set of
loop integrals with rational coefficients,

AðLÞ
n ¼ X

i

aiI
ðLÞ;i
n ; (2.9)

where the a’s are the coefficients, i runs over a list of

integrals IðLÞ;in , and AðLÞ
n is a generic n-point L-loop ampli-

tude, not necessarily color decomposed. Here, we neither
demand that the integrals form a linear independent basis
under integral reductions, nor that integrals vanishing
under integration be removed from the set.
In this paper we consider representations of n-point

L-loop integrals that can be written in a D-dimensional
Feynman-like manner, schematically,

IðLÞ;in ¼
Z �YL

m¼1

dDlm
ð2�ÞD

�
NiQ
j
p2
j

; (2.10)

where the propagators, 1=p2
j , specify the structure of the

graph. The numerator factors Ni in general depend on the
loop momenta and also on external kinematics and polar-
izations. The number of powers of loop momenta that can
appear in the numerator factors depends on the theory
under consideration. The lm are the L independent varia-
bles of loop momenta, usually picked from the set of
propagator momenta pj.

(P) (NP)

FIG. 1. The parent diagrams for the two-loop four-point
identical-helicity amplitudes of QCD and N ¼ 4 super-Yang-
Mills theory. All other diagrams appearing in the amplitude are
obtained by collapsing propagators. These parent diagrams also
determine the color factors appearing in Eq. (2.6), by dressing
them with ~fabcs in a clockwise ordering.

−=

2 3

41

cu

1

2 3

4

cs

4
ct

1

2 3

FIG. 2. The Jacobi identity relating the color factors of the u, s,
t channel ‘‘color diagrams.’’ The color factors are given by
dressing each vertex with an ~fabc following a clockwise order-
ing.

FIG. 3. The unitarity method constructs multiloop amplitudes
from lower-loop amplitudes. The blobs represent amplitudes, the
white holes loops, and the dotted lines indicate cuts which
replace propagators with on-shell delta functions. Generalized
cuts which decompose loop amplitude solely in terms of tree
amplitudes are particularly useful in carrying out multiloop
calculations.
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To carry over the newly uncovered tree-level relations to
loop level we use the unitarity method [21,22,26,28,29,32]
to construct complete loop-level amplitudes, at the level of
the integrands, prior to carrying out any loop integration. In
this method higher-loop-level integrands are constructed
by taking the product of lower-loop or tree amplitudes and
imposing on-shell conditions on intermediate legs. As
illustrated in Fig. 3, the unitarity cuts are given by a
product of lower-loop amplitudes,X

states

Að1ÞAð2ÞAð3Þ � � �AðmÞ; (2.11)

where the sum runs over all particle types and physical
states that can propagate on the internal cut lines. A
complete integrand is then found by systematically con-
structing an ansatz that has the correct cuts in all channels.
Overviews of the unitarity method may be found in
Refs. [29]. A systematic description of the merging proce-
dure for constructing multiloop amplitudes from the cuts
may be found in Ref. [32]. Examples of explicit higher-
loop calculations using the unitarity method may be found
in Refs. [21,22].

For the purposes of this paper, the generalized cuts give
us a means of applying the new tree-level relations and
identities directly at higher-loop level, since it allows us to
construct amplitudes entirely from tree-level amplitudes.
A particularly useful set of cuts are the maximal cuts

[24,25,33] where the maximum number of propagators are
put on shell.1 In this case, the cut is given by a sum over
products between three-point tree amplitudes, isolating a
particular parent diagram (modulo any contact terms). We
build complete amplitudes by systematically releasing on-
shell conditions to identify all relevant contact terms. This
procedure has been described in some detail in Ref. [24].
Such maximal cuts may be exploited in D-dimension, as
we do in Sec. V.

C. Gravity amplitudes

At tree level, gravity amplitudes satisfy a remarkable
relation with gauge-theory amplitudes, first uncovered in
string theory by Kawai, Lewellen, and Tye [4–6]. These
relations also hold in field theory, as the low-energy limit
of string theory. In this limit, the KLT relations for four-,
five-, and six-point amplitudes are

Mtree
4 ð1; 2; 3; 4Þ ¼ �is12A

tree
4 ð1; 2; 3; 4Þ ~Atree

4 ð1; 2; 4; 3Þ; (2.12)

Mtree
5 ð1; 2; 3; 4; 5Þ ¼ is12s34A

tree
5 ð1; 2; 3; 4; 5Þ ~Atree

5 ð2; 1; 4; 3; 5Þ þ is13s24A
tree
5 ð1; 3; 2; 4; 5Þ ~Atree

5 ð3; 1; 4; 2; 5Þ; (2.13)

Mtree
6 ð1; 2; 3; 4; 5; 6Þ ¼ �is12s45A

tree
6 ð1; 2; 3; 4; 5; 6Þ½s35 ~Atree

6 ð2; 1; 5; 3; 4; 6Þ þ ðs34 þ s35Þ ~Atree
6 ð2; 1; 5; 4; 3; 6Þ� þ P ð2; 3; 4Þ:

(2.14)

Here theMn’s are amplitudes in a gravity theory stripped of couplings, the An’s and ~An’s are the color-ordered amplitudes
in two, possibly different, gauge theories (the gravity states are direct products of gauge-theory states for each external leg)
[7,34], sij � si;j ¼ ðki þ kjÞ2 with ki being the outgoing momentum of leg i, and P ð2; 3; 4Þ signifies a sum over all
permutations of the labels 2, 3, and 4. An n-point generalization of the KLT relations is [35],

Mtree
n ð1; 2; . . . ; nÞ ¼ ið�1Þnþ1

�
Atree
n ð1; 2; . . . ; nÞ X

perms

fði1; . . . ; ijÞ �fðl1; . . . ; lj0 Þ ~Atree
n ði1; . . . ; ij; 1; n� 1; l1; . . . ; lj0 ; nÞ

�

þ P ð2; . . . ; n� 2Þ; (2.15)

where the sum is over all permutations fi1; . . . ; ijg 2
P f2; . . . ; bn=2cg and fl1; . . . ; lj0 g 2 P fbn=2c þ 1; . . . ; n�
2g with j ¼ bn=2c � 1 and j0 ¼ bn=2c � 2, which gives a
total of ðbn=2c � 1Þ!ðbn=2c � 2Þ! terms inside the square
brackets. The notation ‘‘þP ð2; . . . ; n� 2Þ’’ signifies a sum
over the preceding expression for all permutations of legs
2; . . . ; n� 2. The functions f and �f are given by

fði1; . . . ; ijÞ ¼ s1;ij
Yj�1

m¼1

�
s1;im þ Xj

k¼mþ1

gðim; ikÞ
�
;

�fðl1; . . . ; lj0 Þ ¼ sl1;n�1

Yj0
m¼2

�
slm;n�1 þ

Xm�1

k¼1

gðlk; lmÞ
�
;

(2.16)

and the function g is

gði; jÞ ¼
�
si;j if i > j
0 else

�
: (2.17)

1We use the terminology of Ref. [24], not Refs. [25] where
maximal cuts include additional hidden singularities as well.
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The full gravity amplitudes are obtained by multiplying
with gravity coupling constants,

Mtree
n ¼

�
�

2

�
n�2

Mtree
n : (2.18)

III. AN IDENTITYAT FOUR POINTS

In this section we discuss an identity that kinematic
numerator factors of color-ordered four-point gauge-
theory amplitudes satisfy. Specifically, we show that
four-point gauge-theory amplitudes can be decomposed
in terms of numerators ns, nt, nu of kinematic poles of
the Mandelstam variables, s, t, and u. As we shall see these
numerator factors satisfy an identity analogous to the
Jacobi identity (2.8) for adjoint representation color fac-
tors. For four-point tree amplitudes this identity may ap-
pear to be a curiosity, but as we will see below, the
consequences at higher points and loops will be rather
nontrivial. Interestingly, the identity had been noted almost
three decades ago at the four-point level [13].

To derive the identity we will utilize general properties
of adjoint representation gluonic amplitudes. As explained
in Sec. II A, color-ordered tree-level amplitudes satisfy a
photon-decoupling identity [7]. At four points we have

Atree
4 ð1; 2; 3; 4Þ þ Atree

4 ð1; 3; 4; 2Þ þ Atree
4 ð1; 4; 2; 3Þ ¼ 0:

(3.1)

To exploit this equation, we note that tree amplitudes in
general are rational functions of polarization vectors, spin-
ors, momenta, and Mandelstam invariants, s ¼ ðk1 þ k2Þ2,
t ¼ ðk1 þ k4Þ2, and u ¼ ðk1 þ k3Þ2, where the ki are out-
going massless momenta, corresponding to each external
leg i. Because the decoupling identity (3.1) does not rely on
the specific polarizations or space-time dimension, the
cancellation is entirely due to the amplitude’s dependence
on the Mandelstam variables. In particular, it cannot rely
on four-dimensional spinor identities. We recognize that
the only nontrivial way this can happen is if the sum in
Eq. (3.1) is equivalent to the vanishing of sþ tþ u as
follows:

Atree
4 ð1; 2; 3; 4Þ þ Atree

4 ð1; 3; 4; 2Þ þ Atree
4 ð1; 4; 2; 3Þ

¼ ðsþ tþ uÞ� ¼ 0; (3.2)

where � is a shared factor that depends on the polarizations
and momenta. From Eq. (3.2), the partial amplitudes
should be proportional to each other. Furthermore, since
Atree
4 ð1; 2; 3; 4Þ treats any factors of s and t the same, its

contribution to Eq. (3.2) should be proportional to u ¼
�ðsþ tÞ. We therefore make the following identification:

Atree
4 ð1; 2; 3; 4Þ ¼ u�: (3.3)

Similar considerations give

Atree
4 ð1; 3; 4; 2Þ ¼ t�; Atree

4 ð1; 4; 2; 3Þ ¼ s�; (3.4)

consistent with Eq. (3.2). After eliminating � we obtain the
following relations between four-point amplitudes,

tAtree
4 ð1; 2; 3; 4Þ ¼ uAtree

4 ð1; 3; 4; 2Þ;
sAtree

4 ð1; 2; 3; 4Þ ¼ uAtree
4 ð1; 4; 2; 3Þ;

tAtree
4 ð1; 4; 2; 3Þ ¼ sAtree

4 ð1; 3; 4; 2Þ:
(3.5)

We note that the well-known four-point tree-level helic-
ity amplitudes in D ¼ 4 explicitly satisfy this. For ex-
ample, pure gluon amplitudes in the two color orders,

Atree
4 ð1�; 2�; 3þ; 4þÞ ¼ i

h12i4
h12ih23ih34ih41i

¼ �i
h12i2½34�2

st
;

Atree
4 ð1�; 4þ; 2�; 3þÞ ¼ i

h12i4
h14ih42ih23ih31i

¼ �i
h12i2½34�2

tu
;

(3.6)

satisfy the relations (3.5). The habi and ½ab� are spinor
inner products of Weyl spinors, using notation of Refs. [7].
To obtain the kinematic analog of the Jacobi identity we

exploit the fact that the color-ordered tree amplitudes can
be expanded in a convenient representation in terms of the
poles that appear,

Atree
4 ð1; 2; 3; 4Þ � ns

s
þ nt

t
;

Atree
4 ð1; 3; 4; 2Þ � �nu

u
� ns

s
;

Atree
4 ð1; 4; 2; 3Þ � �nt

t
þ nu

u
:

(3.7)

Practically, this can be done in terms of Feynman diagrams
(by absorbing the quartic contact terms into the cubic
diagrams). One may also think of the numerators as un-
known until solved for, and thus Eq. (3.7) defines the ni’s.
The sign flipping is due to the antisymmetry of color-
ordered Feynman rules. (The overall signs of the numer-
ators depend on our choice of conventions. Of course,
trivial redefinitions of the type ni ! �ni, can be used to
modify the signs used to define the ni, but this cannot
change the actual value of the diagram or residues that
the numerators correspond to.)
Comparing Eq. (3.5) to Eq. (3.7) gives us the desired

kinematic numerator identity,

nu ¼ ns � nt: (3.8)

With the chosen sign conventions in Eq. (3.7), this is
exactly of the same form as the Jacobi identity for the
color factors given in Eq. (2.8).
Using the definition of the fully dressed amplitude

Eq. (2.1) and the partial amplitude form Eq. (3.7), after
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converting to the ~fabc’s, we obtain a color-dressed repre-
sentation,

Atree
4 ¼ g2

�
nscs
s

þ ntct
t

þ nucu
u

�
; (3.9)

where the color factors are given in (2.8). With our sign
conventions the signs in this color-dressed diagram repre-
sentation are all positive. Note that the form of Eq. (3.9) is
very similar to the usual expansion in terms of Feynman
diagrams, except that we decomposed the four-point con-
tact terms according to their color factors. In absorbing the
contact terms into Eq. (3.9) we must ensure that no cross
terms, such as nsct=s, appear.

We may take the kinematic numerators to be local in the
external polarizations and momenta. A natural question is
whether these objects are unique gauge-invariant quanti-
ties. One check would be to consider the limit s ! 0 of the
Atree
4 ð1; 2; 3; 4Þ amplitude, where the four-point amplitude

factorizes into two three-point amplitudes, each of which
are manifestly gauge invariant. From this we would con-
clude that ns is gauge invariant in the s ! 0 factorization
limit. (To make ns nonvanishing in the limit we may use
complex momenta [2,36].) However, we should think of
ns=s as essentially an s-channel Feynman diagram, and of
course individual Feynman diagrams are not gauge invari-
ant, so we would properly conclude that ns is gauge
dependent for nonzero values of s and, more generally,
dependent on the choice of field variables. Under the
assumption that ns is local, this freedom corresponds to
all possible terms that can be added to ns which cancel the
1=s pole. We will call this a ‘‘gauge freedom,’’ because the
gauge transformations are a familiar concept correspond-
ing to a freedom of moving terms between diagrams.2 We
may parametrize this freedom as

n0s ¼ ns þ �ðki; "iÞs; (3.10)

where �ðki; "iÞ is local. This corresponds to a contact term
ambiguity, and it does not change the residue of the s-pole.
However, to keep the value of the tree amplitudes in
Eq. (3.7) unchanged we must simultaneously change nt
and nu,

n0t ¼ nt � �ðki; "iÞt; n0u ¼ nu � �ðki; "iÞu: (3.11)

Notice that this is exactly what is needed to make the sum
of the shifted numerators vanish,

�n0s þ n0t þ n0u ¼ �ns þ nt þ nu � �ðki; "iÞðsþ tþ uÞ
¼ 0: (3.12)

Therefore the transformation in Eqs. (3.10) and (3.11) has
the effect of moving contact terms between the s, t, and u
channel diagrams without altering the numerator identity
(3.8). Although the numerators depend on the gauge
choices, the identity (3.8) remains true for all gauges. As
we shall see in Sec. IV, this property is special to four
points. At higher points, only specific choices of numer-
ators will satisfy the analogous identities and the form
obtained from generic gauge Feynman diagrams will not.
In general we can choose the numerators to be local. It

should be noted, however, that even if we allow �ðki; "iÞ to
be nonlocal, the kinematic identity equation (3.8) remains
true. This follows from the observation that we did not use
any locality constraints on the ni’s or �ðki; "iÞ in arriving at
either Eq. (3.8) or Eq. (3.12). So one can choose the ni to be
nonlocal without affecting the value of the amplitudes. We
can even set any one of the ni to zero. For example,
choosing �ðki; "iÞ ¼ nu=u we get n0u ¼ 0. This then puts
a u pole into the numerators n0s and n0t, making them
nonlocal. In fact this choice takes us back to the relations
found in the beginning of this section in Eq. (3.5). In the
next section, we will obtain nontrivial relations between
higher-point tree-level partial amplitudes, by choosing
nonlocal numerators.

IV. HIGHER-POINT GENERALIZATION

In this section we generalize the relations found at four
points to higher points. To do this wewill promote Eq. (3.8)
to be the master identity of this paper. We will use the close
analogy between this kinematic numerator identity and the
color-group Jacobi identity to apply it to higher-point tree-
level amplitudes. We will find that this is indeed possible
given that certain extra conditions are satisfied.
Specifically, given three dependent color factors c�, c�,

c� associated with tree-level color diagrams, we propose

that color-ordered scattering amplitudes can always be
decomposed into kinematic diagrams with numerator fac-
tors n�, n�, n� that obey the analogous numerator identity,

c� � c� þ c� ¼ 0; ) n� � n� þ n� ¼ 0: (4.1)

A. The five-point kinematic identities

First consider the five-point case. We may again repre-
sent the amplitudes in terms of diagrams with purely cubic
interactions. These diagrams specify the poles, examples
of which are given in Fig. 4. As in the four-point case we
absorb any contact terms into the numerator factors of
these diagrams. In total there are 15 independent diagrams
with two kinematic poles. In order for the four-point
numerator identity to generalize we require that the numer-
ators of the 15 independent diagrams can be arranged so

that they satisfy exactly the same identities as the ~fabc

composed color factors.

2We use the words ‘‘gauge freedom’’ loosely here; the free-
dom does not necessarily mean that a gauge transformation
exists that causes a particular rearrangement of terms.
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For example, consider the diagrams in Fig. 4.
Interpreting these diagrams as color diagrams we immedi-
ately see that as a consequence of the Jacobi identity they
satisfy the color-factor identity,

c3 ¼ c5 � c8; (4.2)

where

c3 � ~fa3a4b ~fba5c ~fca1a2 ;

c5 � ~fa3a4b ~fba2c ~fca1a5 ;

c8 � ~fa3a4b ~fba1c ~fca2a5 :

(4.3)

If the kinematic numerators are to satisfy a correspond-
ing identity we must ensure that contact term contributions
are associated with the proper numerator. This is not
automatic, as we can easily check. Even color-ordered
Feynman diagrams at five points, in isolation, do not gen-
erally satisfy the identity. Rather the numerator factors
correspond to rearrangements of the Feynman diagrams.

In general, a color-ordered five-point tree amplitude
consist of five diagrams,

Atree
5 ð1; 2; 3; 4; 5Þ ¼ n1

s12s45
þ n2

s23s51
þ n3

s34s12
þ n4

s45s23

þ n5
s51s34

; (4.4)

where we use the notation sij ¼ ðki þ kjÞ2, and the numer-

ators are simply labeled ni for i ¼ 1; 2; . . . ; 15. Again we
take the external momenta, ki, to be massless and outgoing.
The color-ordered five-point amplitudes are symmetric
under cyclic permutations and antisymmetric under reflec-
tions. This means that there are at most 12 color orders that
are not trivially related. We have not yet made use of the
Kleiss-Kuijf relations [11,12] given in Eq. (2.5). Doing so
reduces the number of independent amplitudes down to
only six,

Atree
5 ð1; 2; 3; 4; 5Þ � n1

s12s45
þ n2

s23s51
þ n3

s34s12
þ n4

s45s23

þ n5
s51s34

;

Atree
5 ð1; 4; 3; 2; 5Þ � n6

s14s25
þ n5

s43s51
þ n7

s32s14
þ n8

s25s43

þ n2
s51s32

;

Atree
5 ð1; 3; 4; 2; 5Þ � n9

s13s25
� n5

s34s51
þ n10

s42s13
� n8

s25s34

þ n11
s51s42

;

Atree
5 ð1; 2; 4; 3; 5Þ � n12

s12s35
þ n11

s24s51
� n3

s43s12
þ n13

s35s24

� n5
s51s43

;

Atree
5 ð1; 4; 2; 3; 5Þ � n14

s14s35
� n11

s42s51
� n7

s23s14
� n13

s35s42

� n2
s51s23

;

Atree
5 ð1; 3; 2; 4; 5Þ � n15

s13s45
� n2

s32s51
� n10

s24s13
� n4

s45s32

� n11
s51s24

; (4.5)

where the 15 numerator factors are distinguished by the
propagator structure that accompany them. The relative
signs are again due to the antisymmetry of the color-
ordered Feynman vertices, or alternatively the antisymme-
try of the color factors.
It is important to note that the diagram expansion on the

right-hand side of Eq. (4.5) will satisfy the Kleiss-Kuijf
relations. In fact, the Kleiss-Kuijf relations can be under-
stood from this perspective: Any color-ordered amplitudes
that have an expansion in terms of diagrams with only
totally antisymmetric cubic vertices will automatically
satisfy the Kleiss-Kuijf relations.
The full color-dressed amplitudes can also be expressed

in terms of the kinematic numerators ni and color factors
via

Atree
5 ¼ g3

�
n1c1
s12s45

þ n2c2
s23s51

þ n3c3
s34s12

þ n4c4
s45s23

þ n5c5
s51s34

þ n6c6
s14s25

þ n7c7
s32s14

þ n8c8
s25s43

þ n9c9
s13s25

þ n10c10
s42s13

þ n11c11
s51s42

þ n12c12
s12s35

þ n13c13
s35s24

þ n14c14
s14s35

þ n15c15
s13s45

�
;

(4.6)

where the color factors are explicitly given by

= −

c3 c5 c8

4 15

23

4

3

2 1

5 3

4 1 2

5

FIG. 4. The Jacobi identity at five points. These diagrams can
be interpreted as relations for color factors, where each color
factor is obtained by dressing the diagrams with ~fabc at each
vertex in a clockwise ordering. Alternatively it can be interpreted
as relations between the kinematic numerator factors of corre-
sponding diagrams, where the diagrams are nontrivially rear-
ranged compared to Feynman diagrams.
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c1 � ~fa1a2b ~fba3c ~fca4a5 ; c2 � ~fa2a3b ~fba4c ~fca5a1 ;

c3 � ~fa3a4b ~fba5c ~fca1a2 ; c4 � ~fa4a5b ~fba1c ~fca2a3 ;

c5 � ~fa5a1b ~fba2c ~fca3a4 ; c6 � ~fa1a4b ~fba3c ~fca2a5 ;

c7 � ~fa3a2b ~fba5c ~fca1a4 ; c8 � ~fa2a5b ~fba1c ~fca4a3 ;

c9 � ~fa1a3b ~fba4c ~fca2a5 ; c10 � ~fa4a2b ~fba5c ~fca1a3 ;

c11 � ~fa5a1b ~fba3c ~fca4a2 ; c12 � ~fa1a2b ~fba4c ~fca3a5 ;

c13 � ~fa3a5b ~fba1c ~fca2a4 ; c14 � ~fa1a4b ~fba2c ~fca3a5 ;

c15 � ~fa1a3b ~fba2c ~fca4a5 : (4.7)

The number of independent color factors always coincides
with the number of partial amplitudes that are independent
under the Kleiss-Kuijf relations. This can, for example, be
seen in the color decomposition of Ref. [12]. There are six
independent five-point partial amplitudes, corresponding
to the six independent color factors ci. The other color
factors are related to these six by the Jacobi identity. At five
points, this means that there can be no more than six
independent ni’s, if the corresponding numerator identity
is to generalize. If these coincide—as they do—we might
expect that we should pick exactly one basis numerator per
amplitude, for example, the numerator of the first term of
every amplitude in Eq. (4.5). However, this choice is likely
not optimal for our purposes. Naively, such a diagram basis
would correspond to six choices of gauge-dependent quan-
tities which may not necessarily be mutually compatible. If
we instead pick n1, n2, n3, n4 and then define n5 and n6,
using

n5 � s51s34

�
Atree
5 ð1; 2; 3; 4; 5Þ � n1

s12s45
� n2

s23s51
� n3

s34s12

� n4
s45s23

�
; (4.8)

n6 � s14s25

�
Atree
5 ð1; 4; 3; 2; 5Þ � n5

s43s51
� n7

s32s14
� n8

s25s43

� n2
s51s32

�
; (4.9)

then fewer gauge-dependent choices are made, and the
consistency of amplitudes Atree

5 ð1; 2; 3; 4; 5Þ and

Atree
5 ð1; 4; 3; 2; 5Þ is automatically guaranteed. (Here we

have defined n6 in terms of n7 and n8 but this will not
cause any problems, as they turn out to depend only on n1,
n2, n3, n4.)

We require that the remaining numerators,
n7; n8; . . . ; n15, satisfy the same Jacobi identity equations
as the corresponding color factors associated with each
diagram. For example, we require,

c3 � c5 þ c8 ¼ 0; ) n3 � n5 þ n8 ¼ 0; (4.10)

where the color factors and numerators correspond to
Eq. (4.6), and the explicit values of the color factors are

given in Eq. (4.7). Working our way through all possible
Jacobi identities at five points we find ten numerator iden-
tities,

n3 � n5 þ n8 ¼ 0; n3 � n1 þ n12 ¼ 0;

n4 � n1 þ n15 ¼ 0; n4 � n2 þ n7 ¼ 0;

n5 � n2 þ n11 ¼ 0; n7 � n6 þ n14 ¼ 0;

n8 � n6 þ n9 ¼ 0; n10 � n9 þ n15 ¼ 0;

n10 � n11 þ n13 ¼ 0; ðn13 � n12 þ n14 ¼ 0Þ;

(4.11)

where the last equation is redundant. Solving for the nine
numerators, n7; n8; . . . ; n15, then gives

n7 ¼ n2 � n4; n8 ¼ �n3 þ n5;

n9 ¼ n3 � n5 þ n6; n10 ¼ �n1 þ n3 þ n4 � n5 þ n6;

n11 ¼ n2 � n5; n12 ¼ n1 � n3;

n13 ¼ n1 þ n2 � n3 � n4 � n6; n14 ¼ �n2 þ n4 þ n6;

n15 ¼ n1 � n4: (4.12)

We may now replace n7 and n8 in our definition of n6,

n6 ¼ Atree
5 ð1;4;3;2;5Þs14s25

�Atree
5 ð1;2;3;4;5Þðs15 þ s25Þs14 þn1

s14ðs15þ s25Þ
s12s45

þn2
s23þ s35

s23
þn3

s14
s12

þ n4
s14s15þ s14s25þ s25s45

s23s45
:

(4.13)

Note that both n5 and n6 appear to be nonlocal quantities in
general, but by adjusting n1, n2, n3, n4 in Eq. (4.13) we can
cancel poles in Atree

5 ð1; 2; 3; 4; 5Þ and Atree
5 ð1; 4; 3; 2; 5Þ,

making all numerators local.
Any one of the five-point color-ordered tree amplitudes

Atree
5 can now be found by writing down the diagram

expansion and plugging in the solutions of the correspond-
ing numerator factors from the numerator identities (4.8),
(4.12), and (4.13). The amplitudes will be functions of six
parameters: the four gauge-dependent numerators n1, n2,
n3, n4 and the two gauge-independent amplitudes
Atree
5 ð1; 2; 3; 4; 5Þ, Atree

5 ð1; 4; 3; 2; 5Þ. However, since n1, n2,
n3, n4 are gauge dependent this construction may seem
problematic. Indeed we must check that the construction is
consistent with the known properties of amplitudes.
We verify consistency by considering all factorization

channels of the five-point tree amplitudes. In these limits
each five-point amplitude factorizes into the product of a
three-point and a four-point amplitude. In the factorization
channels the five-point numerator equations (4.11) reduce
to the four-point numerator identity (3.8). Thus, any po-
tential violation of the general numerator identity must
come from contact terms that vanish in all of these limits.
Similarly, as the five-point numerator equations are gauge
invariant in these factorization channels, the relevant terms
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that potentially break the gauge invariance of the five-point
identity must be exactly these contact terms. Therefore, we
need to investigate how the five-point numerators behave
under the freedom,

n01 ¼ n1 þ �1s12s45; n02 ¼ n2 þ �2s23s51;

n03 ¼ n3 þ �3s34s12; n04 ¼ n4 þ �4s45s23:
(4.14)

Let us, for the moment, treat the �’s as local objects,
but otherwise arbitrary functions of the kinematics and
polarizations. By construction Atree

5 ð1; 2; 3; 4; 5Þ and

Atree
5 ð1; 4; 3; 2; 5Þ are invariant under this freedom, since

n5 and n6 are constrained so as to correctly reproduce these
amplitudes. From the definition of n5 and n6 we obtain the
transformations

n05 ¼ n5 � ð�1 þ �2 þ �3 þ �4Þs51s34;
n06 ¼ n6 þ �3s12s14 þ ð�1 þ �2 þ �3 þ �4Þs14s15

þ ð�1 þ �3 þ �4Þs14s25 � �2s15s25 þ �4s25s45:

(4.15)

Remarkably, we find the four remaining amplitudes in
Eq. (4.5) are also invariant under these transformations.
Plugging in the shifts of numerators n1; n2; . . . ; n6 into the
remaining ni using Eq. (4.12) gives a set of nontrivial
cancellations,

�Atree
5 ð1; 3; 4; 2; 5Þ ¼ �n9

s13s25
� �n5

s34s51
þ �n10

s42s13
� �n8

s25s34

þ �n11
s51s42

¼ 0;

�Atree
5 ð1; 2; 4; 3; 5Þ ¼ �n12

s12s35
þ �n11

s24s51
� �n3

s43s12
þ �n13

s35s24

� �n5
s51s43

¼ 0;

�Atree
5 ð1; 4; 2; 3; 5Þ ¼ �n14

s14s35
� �n11

s42s51
� �n7

s23s14
� �n13

s35s42

� �n2
s51s23

¼ 0;

�Atree
5 ð1; 3; 2; 4; 5Þ ¼ �n15

s13s45
� �n2

s32s51
� �n10

s24s13
� �n4

s45s32

� �n11
s51s24

¼ 0; (4.16)

where �ni ¼ n0i � ni.
As for the four-point case, there is no need to restrict the

� parameters to be local. In fact we can pick the �’s so that
n01 ¼ n02 ¼ n03 ¼ n04 ¼ 0, which implies that the explicit

dependence on these parameters in the amplitudes cancel
out. Hence, our construction is completely gauge invariant
since the amplitudes in Eq. (4.5) depend only on the two
gauge-invariant basis amplitudes Atree

5 ð1; 2; 3; 4; 5Þ and

Atree
5 ð1; 4; 3; 2; 5Þ.
Feeding the numerator solutions in Eqs. (4.8), (4.12),

and (4.13) into Eq. (4.5), we find remarkably simple rela-
tions,

Atree
5 ð1; 3; 4; 2; 5Þ ¼ �s12s45A

tree
5 ð1; 2; 3; 4; 5Þ þ s14ðs24 þ s25ÞAtree

5 ð1; 4; 3; 2; 5Þ
s13s24

;

Atree
5 ð1; 2; 4; 3; 5Þ ¼ �s14s25A

tree
5 ð1; 4; 3; 2; 5Þ þ s45ðs12 þ s24ÞAtree

5 ð1; 2; 3; 4; 5Þ
s24s35

;

Atree
5 ð1; 4; 2; 3; 5Þ ¼ �s12s45A

tree
5 ð1; 2; 3; 4; 5Þ þ s25ðs14 þ s24ÞAtree

5 ð1; 4; 3; 2; 5Þ
s35s24

;

Atree
5 ð1; 3; 2; 4; 5Þ ¼ �s14s25A

tree
5 ð1; 4; 3; 2; 5Þ þ s12ðs24 þ s45ÞAtree

5 ð1; 2; 3; 4; 5Þ
s13s24

;

(4.17)

independent of n1, n2, n3, n4. Thus, we find novel non-
trivial relations between color-ordered gauge-theory tree
amplitudes. Note that these relations should hold for any
helicity configuration and they should be valid in D di-
mensions. We explicitly verified these for D-dimensional
five-gluon amplitudes. However, we would also like to
have a general argument as to why these hold.

This is found by looking at the factorization limits more
carefully. The five-point numerator equations reduce to the
correct gauge-invariant four-point identity in all factoriza-
tion limits. Furthermore we know that at four points we can

make the numerators local (for example, by using individ-
ual color-ordered Feynman diagrams). Similarly, we can
make the five-point numerators local, by construction.
Specifically, from Eq. (4.8), we can make n5 local by
taking n1, n2, n3, n4 to be the coefficients of the corre-
sponding poles in the amplitude. When these poles are
subtracted, the only remaining poles can be 1=s51s34, so
that n5 is local. It is a bit trickier to show that n6 is local.
The n5 and n2 terms are automatically the correct terms for
subtracting poles in A5ð1; 4; 3; 2; 5Þ. However, n7 and n8
cannot be adjusted since we demand that these satisfy
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Eq. (4.12). Do they have the correct values to subtract the
poles? Indeed, they do. This is because in any factorization
limit the identities in Eq. (4.12) do hold, since we already
demonstrated that they hold at four points. Thus n6 is also
local. The only missing pieces of the amplitudes that
cannot be seen in factorization limits are the five-point
contact terms. These potentially missing pieces are, of
course, local. However from dimensional analysis, a five-
point gauge-theory amplitude cannot contain a five-point
contact term. Such a term would correspond to a forbidden
five-point contact term in the Lagrangian. Thus we can
always find a local solution to numerator factors satisfying
the identity. The resulting amplitudes have the correct
factorizations limits, strongly suggesting the consistency
of our construction.

We expect this argument to generalize also to higher-
point tree amplitudes, allowing us to do similar rearrange-
ments of the terms in the amplitudes such that the respec-
tive kinematic numerator identities are satisfied, with local
or nonlocal numerators. What remains to be determined is
how much freedom we have in this rearrangement, that is,
how many of the numerator factors can be left undeter-
mined and thus gauge dependent, and how many numer-
ators are constrained by extra constraints of the type
Eq. (4.9). In the next section we will identify the all-n
pattern.

B. Implications for n points

As with the lower-point cases, we expect the numerator
identity (3.8) to lead to new constraints between ampli-
tudes for any number of external legs. Under the Kleiss-
Kuijf relations we know that there are at most ðn� 2Þ!
independent color-ordered amplitudes. Here we argue that
the kinematic numerator identity imposes additional con-
straints so that the number of independent color-ordered
amplitudes is ðn� 3Þ!.

Following the four- and five-point discussion we may
expand each of these color-ordered amplitudes in terms of

diagrams with only cubic and totally antisymmetric verti-
ces, that is, numerators and propagators,

Atree
n ð1; 2; 3; . . . ; nÞ ¼ X

j

nj

ðQm p2
mÞj

; (4.18)

where the sum runs over all distinct ordered diagrams. The
number of color-ordered diagrams with a fixed ordering of
external legs is given in the first row in Table I. For this we
count diagrams with only cubic vertices, and we absorb
four-point contact terms into numerator factors that cancel
propagators. The total number of distinct diagrams at n
points contributing to the full color-dressed amplitudes is
ð2n� 5Þ!! as listed in the second row of the table.
Applying the same reasoning as to lower points we have

explored higher-point properties of the kinematic identity.
This leads to the following conjecture for the n-point
structure:
(1) The kinematic numerators of gauge-theory tree-

level diagrams can always be rearranged to satisfy
the numerator identity (3.8) equations, which is in
one-to-one correspondence to the Jacobi identity
equations satisfied by the color factors of the same
diagrams. The numerators can be either local or
nonlocal.

(2) One must simultaneously rearrange the diagrams of
at least ðn� 3Þ! partial amplitudes to ensure gauge
invariance of the full amplitude. The remaining
partial amplitudes will automatically satisfy the nu-
merator equations, since they are built from the
same diagrams.

In Table I, we have collected various numerical counts
helpful for understanding the effect of the numerator iden-
tity at higher points. The description of the count in each
row is given in the caption. For all numbers given in the
table we have explicitly constructed the count. The n-point
count in the last row remains a conjecture, beyond eight
points.

TABLE I. Counts of various diagrams, equations, and amplitudes as a function of the number of external points. We count only
diagrams with three vertices. The first row gives the number of diagrams that appear in color-ordered partial amplitudes (where the
external legs are cyclically ordered). The second row gives the number of such diagrams that appear in a full color-dressed amplitude.
The third row gives the number of numerator (or equivalently Jacobi identity) equations. The fourth row gives the number of such
independent equations. The fifth row gives the number of linearly independent (or basis) numerators which are not constrained by these
equations. The number of independent amplitudes under the Kleiss-Kuijf relations is given in the sixth row. The number of
independent basis partial amplitudes under the new kinematic identity, in terms of which all others can be expressed, is given in
the last row. The last row is a conjecture beyond eight points.

External legs 3 4 5 6 7 8 n

ordered diagrams 1 2 5 14 42 132 2n�2ð2n�5Þ!!
ðn�1Þ!

diagrams 1 3 15 105 945 10 395 ð2n� 5Þ!!
numerator equations 0 1 10 105 1260 17 325 ðn�3Þð2n�5Þ!!

3

indep. numerator eqs. 0 1 9 81 825 9675 ð2n� 5Þ!!� ðn� 2Þ!
basis numerators 1 2 6 24 120 720 ðn� 2Þ!
Kleiss-Kuijf amplitudes 1 2 6 24 120 720 ðn� 2Þ!
basis amplitudes 1 1 2 6 24 120 ðn� 3Þ!
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The above conjecture does not address how this arrange-
ment of diagrams is best achieved. The approach we take
here is to simply treat the numerators as being unknown
variables satisfying an equation system that describes the
conjecture,

fn� ¼ n� � n�g; (4.19)

Atree
n ðP if1; 2; 3; . . . ; ngÞ ¼

�X
j

nj

ðQm p2
mÞj

�
i
; (4.20)

where Eq. (4.19) represents all possible numerator identi-
ties that can be written down at the n-point level corre-
sponding to the color-factor Jacobi identities, and
Eq. (4.20) represents the statement that the diagrams
dressed with the unknown numerators must sum up to
the known partial amplitudes for at least ðn� 3Þ! different
permutations of the external legs labeled by i ¼
1; . . . ; ðn� 3Þ!.

The solution to these equations will give kinematic
numerators that are functions of a set of ðn� 3Þ! basis
amplitudes. The basis amplitudes must be chosen to be
independent under the Kleiss-Kuijf relations, since these
relations are manifest in our diagrammatic representation,
but otherwise the basis is arbitrary. As noted in Table I,
there are a total ð2n� 5Þ!! diagrams and associated numer-
ators. By counting the equations we see that the solution of
Eqs. (4.19) and (4.20) will not fix all these numerators, but
it will leave ðn� 2Þ!� ðn� 3Þ! unspecified. However, our
conjecture implies that any amplitude built out of the
solution to Eqs. (4.19) and (4.20) will be independent of
these free numerators, and will only depend on the gauge-
invariant basis amplitudes. In particular, we can set the
unspecified numerators to zero without altering any partial
amplitudes. We have explicitly checked this through eight
points.

Specifically, we solve Eqs. (4.19) and (4.20) using
basis amplitudes where legs 1, 2, 3 are fixed
Atree
n ð1; 2; 3;P f4; . . . ; ngÞ. By feeding the solved numera-

tors into those amplitudes not in the basis, we obtain new
tree-level relations. As part of the conjecture we expect that
these relations hold for the partial amplitudes with any
external polarizations in D dimensions.
Using the fact that the Kleiss-Kuijf relations allow us to

always put legs 1 and 2 next to each other, we need only
give the formula for the case where leg 3 is separated from
leg 2 by a set of legs f�g and similarly separated from leg 1
by a set f�g. We order the leg labels in f�g and f�g as

f�g � f4; 5; . . . ; m� 1; mg;
f�g � fmþ 1; mþ 2; . . . ; n� 1; ng; (4.21)

which can always be undone in the final expressions by a
permutation of legs 4; . . . ; n. By extrapolating from the
structure of the solutions evaluated up through eight exter-
nal particles, we obtain an all-n form

Atree
n ð1; 2; f�g; 3; f�gÞ ¼ X

f�gj2POPðf�g;f�gÞ
Atree
n ð1; 2; 3; f�gjÞ

� Ym
k¼4

F ð3; f�gj; 1jkÞ
s2;4;...;k

; (4.22)

where the sum runs over ‘‘partially ordered permutations’’
(POP) of the merged f�g and f�g sets. This corresponds to
all permutations of f�g [ f�g that maintains the order of
the f�g elements. Either set may be taken as empty, but if
f�g is empty the equation becomes trivial. The function F
associated with leg k is given by

F ð3; �1; �2; . . . ; �n�3; 1jkÞ � F ðf	gjkÞ ¼
( P

n�1
l¼tk

Gðk; 	lÞ if tk�1 < tk
�Ptk

l¼1 Gðk; 	lÞ if tk�1 > tk

)
þ

8<
:

s2;4;...;k if tk�1 < tk < tkþ1

�s2;4;...;k if tk�1 > tk > tkþ1

0 else

9=
;;
(4.23)

and where tk is the position of leg k in the set f	g, except
for t3 and tmþ1 which are always defined to be3

t3 � t5; tmþ1 � 0: (4.24)

(Note that for m ¼ 4 this implies t3 ¼ tmþ1 ¼ 0.) The
function G is given by

G ði; jÞ ¼
�
si;j if i < j or j ¼ 1; 3
0 else

�
: (4.25)

Finally, the kinematic invariants are

si;j ¼ ðki þ kjÞ2; s2;4;...;i ¼ ðk2 þ k4 þ . . .þ kiÞ2;
(4.26)

where the momenta are massless and outgoing. We have
explicitly confirmed in D ¼ 4 that all MHV amplitudes
through 12 points satisfy Eq. (4.22). We have also checked
that gluon amplitudes for all helicity configurations
through eight points satisfy this.
The four-, five-, and six-point relations generated by this

formula are

3An alternative choice is t3 � 1, tmþ1 � 0 which is equiva-
lent to Eq. (4.24) by momentum conservation.
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Atree
4 ð1; 2; f4g; 3Þ ¼ Atree

4 ð1; 2; 3; 4Þs14
s24

;

Atree
5 ð1; 2; f4g; 3; f5gÞ ¼ Atree

5 ð1; 2; 3; 4; 5Þðs14 þ s45Þ þ Atree
5 ð1; 2; 3; 5; 4Þs14

s24
;

Atree
5 ð1; 2; f4; 5g; 3Þ ¼ �Atree

5 ð1; 2; 3; 4; 5Þs34s15 � Atree
5 ð1; 2; 3; 5; 4Þs14ðs245 þ s35Þ

s24s245
;

Atree
6 ð1; 2; f4g; 3; f5; 6gÞ ¼ Atree

6 ð1; 2; 3; 4; 5; 6Þðs14 þ s46 þ s45Þ
s24

þ Atree
6 ð1; 2; 3; 5; 4; 6Þðs14 þ s46Þ

s24
þ Atree

6 ð1; 2; 3; 5; 6; 4Þs14
s24

;

Atree
6 ð1; 2; f4; 5g; 3; f6gÞ ¼ �Atree

6 ð1; 2; 3; 4; 5; 6Þs34ðs15 þ s56Þ
s24s245

� Atree
6 ð1; 2; 3; 4; 6; 5Þs34s15

s24s245

� Atree
6 ð1; 2; 3; 6; 4; 5Þðs34 þ s46Þs15

s24s245
� Atree

6 ð1; 2; 3; 5; 4; 6Þðs14 þ s46Þðs245 þ s35Þ
s24s245

� Atree
6 ð1; 2; 3; 5; 6; 4Þs14ðs245 þ s35Þ

s24s245
� Atree

6 ð1; 2; 3; 6; 5; 4Þs14ðs245 þ s35 þ s56Þ
s24s245

;

Atree
6 ð1; 2; f4; 5; 6g; 3Þ ¼ �Atree

6 ð1; 2; 3; 4; 5; 6Þs34ðs245 þ s56 þ s15Þs16
s24s245s2456

þ Atree
6 ð1; 2; 3; 4; 6; 5Þs34s15ðs2456 þ s36Þ

s24s245s2456

þ Atree
6 ð1; 2; 3; 6; 4; 5Þðs34 þ s46Þs15ðs2456 þ s36Þ

s24s245s2456
� Atree

6 ð1; 2; 3; 5; 4; 6Þðs14 þ s46Þs35s16
s24s245s2456

� Atree
6 ð1; 2; 3; 5; 6; 4Þs14s35s16

s24s245s2456
þ Atree

6 ð1; 2; 3; 6; 5; 4Þs14ðs245 þ s35 þ s56Þðs2456 þ s36Þ
s24s245s2456

: (4.27)

We introduce the brackets ‘‘f’’ and ‘‘g’’ to emphasize the
connection to Eq. (4.22)—they carry no other significance.

One amusing point is that this solution allows us to
express any partial amplitude with three negative helicities
as a linear combination of the ‘‘split helicity’’ cases where
the three negative helicity legs are nearest neighbors in the
color ordering [37].

As for four- and five-point amplitudes, we expect the
higher-point numerator identities to lead to interesting
consequences at loop level, via the unitarity method. In
the next section we will address these consequences, albeit
only for the simplest case of the four-point identity.

V. HIGHER-LOOP APPLICATIONS

The four-point identity (3.8) appears to be rather innoc-
uous compared to the higher-point relations, but as we now
discuss even this case has interesting consequences at
higher loops.

A. Near-maximal cuts

Consider a near-maximal cut where we leave only one
four-point tree blob uncut, but where all other propagators
are cut, as illustrated in Fig. 5(a). As in Sec. III, we are
interested in relating different color orderings, hence we
label the cut similarly,

C4ð1; 2; 3; 4Þ � Atree
4 ð1; 2; 3; 4Þ: (5.1)

To be specific we can work with the cut in Fig. 5(a), but the

structure of the cut outside of the four-point blob is unim-
portant, since it will play no role in the analysis. The blob
appearing in the cut, up to the polarizations, spins, and
particle types being summed over, is equivalent to a color-
ordered four-point tree amplitude. Therefore, if the tree
amplitudes satisfy the relations given in the previous sec-
tion, the cuts must as well,

C4ð1; 2; 3; 4Þ þ C4ð1; 3; 4; 2Þ þ C4ð1; 4; 2; 3Þ ¼ 0;

tC4ð1; 2; 3; 4Þ ¼ uC4ð1; 3; 4; 2Þ;
sC4ð1; 2; 3; 4Þ ¼ uC4ð1; 4; 2; 3Þ;
tC4ð1; 4; 2; 3Þ ¼ sC4ð1; 3; 4; 2Þ;

(5.2)

where the Mandelstam variables are now understood to
be for the cut internal loop momenta, s ¼ ðl1 þ l2Þ2, t ¼
ðl2 þ l3Þ2, and u ¼ ðl1 þ l3Þ2, not the external momenta.
We can use the factorization properties of the four-point

tree amplitudes appearing in the blob to express the cut as

C4ð1; 2; 3; 4Þ ¼ ns
s
þ nt

t
;

C4ð1; 3; 4; 2Þ ¼ �nu
u
� ns

s
;

C4ð1; 4; 2; 3Þ ¼ nu
u
� nt

t
;

(5.3)

where the numerators ns, nt are the s-channel and
t-channel numerators, respectively. Following the same
steps as for the tree-level discussion in Sec. III we arrive
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at the same kinematic identity for the numerators,

nu ¼ ns � nt: (5.4)

As for the tree-level case, the numerator factors in the cuts
also have a freedom similar to Eqs. (3.10) and (3.11).

We can now apply the four-point identity (5.4) to any
higher-loop amplitude. In Fig. 6 we give various examples
of such applications. The idea is that if one computes the
numerator contributions of the diagrams on the right-hand

side, all numerator terms are determined on the left-hand
side, up to the cut conditions. The diagrams in the figure
specify the propagator structure of contributions under
study. We expect the relations in Fig. 6 to hold for any
gauge theory. In each of these diagrams the associated
color factors are just those obtained by dressing each

diagram by ~fabc’s at each vertex.
We note that the construction presented here based on

near-maximal cuts with a four-point blob, as shown in

1

2 3

4 1

2 3

5

4

C4 (1, 2, 3, 4) C5 (1, 2, 3, 4, 5)

FIG. 5. Near-maximal cuts with specified color order given by the uncut blob. All visible lines are cut, thus on shell. The blobs are
tree amplitudes with implied sums over all helicity and particle types entering and leaving the blobs.

(d)

(c)

(b)

(a)

= −

−=

= −

−=

ntns

1

nu

4

32

41

32

1

3
2

4

32

414

32

1

3

41

2

3

41

2

4

2

1

3

4

32

1

1

2 3

4

p q

3

4p q

2

1

p
q

3

41

2

FIG. 6 (color online). Applications of the four-point numerator identity to loop amplitudes. The equalities should be interpreted
either as equalities for the color factors obtained by dressing the diagrams with ~fabcs at each vertex, or as equalities between
numerators of cut diagrams and hold for any gauge theory. All lines are cut except for the propagator inside the (blue) four-point
diagram indicated by the dotted lines. Our construction here is similar to Fig. 5, where we consider near-maximal cuts.
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Fig. 5(a), generalizes to higher-point blobs. For example,
we can consider instead a near-maximal cut with a five-
point blob, as illustrated in Fig. 5(b). This cut obeys the
same identities and relations as the five-point amplitude
Atree
5 ð1; 2; 3; 4; 5Þ in Sec. IVA. We can continue to relax the

cut conditions obtaining further generalizations based on
higher-point blobs. With further relaxation of cut condi-
tions we can also have generalized cuts with several inde-
pendent tree blobs. Each n-point blob will now have its
own n-point identity and relations. In general, any gener-
alized cut will contain nontrivial relations between the
constituent diagrams analogous to the tree-level relations
presented in previous sections.

As simple checks of the relations, we used the one- [38],
two-[21,22], and three-loop [20,21] expressions for the
four-point amplitudes of N ¼ 4 super-Yang-Mills theory
to confirm all examples in Fig. 6. To see how this works in
practice with more physical theories, here we work out a
two-loop example in QCD.

B. Two-loop QCD examples

As a nontrivial example of the four-point numerator
identity in QCD we consider the two-loop four-gluon all-
plus helicity amplitude of pure Yang-Mills theory. This
amplitude has been worked out in Ref. [31] in terms of the
color decomposition given in Eq. (2.6). The result is that

the planar primitive amplitude is

AP
1234 ¼ i

½12�½34�
h12ih34i

�
s12I

P
4 ½ðDs � 2Þð
2

p

2
q þ 
2

p

2
pþq

þ 
2
q


2
pþqÞ þ 16ðð
p � 
qÞ2 � 
2

p

2
qÞ�ðs12; s23Þ

þ 4ðDs � 2ÞIbow tie
4 ½ð
2

p þ 
2
qÞð
p � 
qÞ�ðs12Þ

þ ðDs � 2Þ2
s12

� Ibow tie
4 ½
2

p

2
qððpþ qÞ2 þ s12Þ�ðs12; s23Þ

�
: (5.5)

Similarly, the nonplanar primitive amplitude is

ANP
12;34 ¼ i

½12�½34�
h12ih34i s12I

NP
4 ½ðDs � 2Þð
2

p

2
q þ 
2

p

2
pþq

þ 
2
q


2
pþqÞ þ 16ðð
p � 
qÞ2 � 
2

p

2
qÞ�ðs12; s23Þ:

(5.6)

The vectors ~
p, ~
q represent the ð�2�Þ-dimensional com-

ponents of the loop momenta p and q and ðDs � 2Þ counts
the number of gluon states circulating in the loop—in four
dimensions Ds ¼ 4. The planar double-box integral,
whose corresponding diagram is depicted in Fig. 7(a), is
defined as

IP4 ½Nð
i; p; q; kiÞ�ðs12; s23Þ �
Z dDp

ð2�ÞD
dDq

ð2�ÞD
Nð
i; p; q; kiÞ

p2q2ðpþ qÞ2ðp� k1Þ2ðp� k1 � k2Þ2ðq� k4Þ2ðq� k3 � k4Þ2
; (5.7)

where Nð
i; p; q; kiÞ represents the numerator factor, which is a polynomial in the momenta. Similarly, the nonplanar
double-box integral, depicted in Fig. 7(b), is given by

INP4 ½Nð
i; p; q; kiÞ�ðs12; s23Þ �
Z dDp

ð2�ÞD
dDq

ð2�ÞD
Nð
i; p; q; kiÞ

p2q2ðpþ qÞ2ðp� k1Þ2ðq� k2Þ2ðpþ qþ k3Þ2ðpþ qþ k3 þ k4Þ2
:

(5.8)

Note that ANP
12;34 is symmetric under k1 $ k2, and under k3 $ k4. The ‘‘bow-tie’’ integral Ibow tie

4 shown in Fig. 7(c) is
defined by

Ibow tie
4 ½Nð
i; p; q; kiÞ�ðs12Þ �

Z dDp

ð2�ÞD
dDq

ð2�ÞD
Nð
i; p; q; kiÞ

p2q2ðp� k1Þ2ðp� k1 � k2Þ2ðq� k4Þ2ðq� k3 � k4Þ2
: (5.9)

Note that in the color decomposition (2.6), the color factors
associated with the bow-tie integral are those of the parent
double-box integral.

The amplitude has a simple feature which is rather
surprising from the Feynman diagram point of view.
Namely, the planar and nonplanar numerators have a
very similar structure. We may use the cut-loop numerator
identity displayed in Fig. 6(b) to explain this feature. To
compare the numerators we need to relabel the cut mo-
menta in the nonplanar double-box integral so that it

matches the cut momenta of the planar double-box inte-
gral. This relabeling amounts to swapping 
q $ 
pþq in

the nonplanar integrals. Since the nonplanar numerator is
invariant under this swap, we may directly read off the
numerator from the nonplanar contribution (5.6). Up to an
overall prefactor the numerator is

nu ¼ ðDs � 2Þs12ð
2
p


2
q þ 
2

p

2
pþq þ 
2

q

2
pþqÞ

þ 16s12ðð
p � 
qÞ2 � 
2
p


2
qÞ: (5.10)
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Similarly from the planar integral we may read off the
numerator factor for the planar integral. This then gives us
the numerator

ns ¼ ðDs � 2Þs12ð
2
p


2
q þ 
2

p

2
pþq þ 
2

q

2
pþqÞ

þ 16s12ðð
p � 
qÞ2 � 
2
p


2
qÞ: (5.11)

The bow-tie integrals do not contribute to the indicated
cuts in Fig. 6(b). Since there is no contribution with propa-
gators corresponding to the second diagram on the right-
hand side of Fig. 6(c) the corresponding numerator van-
ishes,

nt ¼ 0: (5.12)

Thus we see that the numerator identity (5.4) correspond-
ing to Fig. 6(b) is indeed satisfied. It also explains the
previously mysterious identical structures of the nonplanar
and planar double-box numerators.

We may also use the numerator identity, as applied in
Fig. 6(c) to constrain the bow-tie contributions in AP

1234.

First consider the terms proportional to ðDs � 2Þ. Since
there are no 1=s12 contributions we may take

nt ¼ 0; (5.13)

where nt corresponds to the last term in Fig. 6(c) (where s,
t, u refer to the figure and not the external kinematics).
Reading off ns from A1234 we have

ns ¼ s12ðDs � 2Þð
2
p


2
q þ 
2

p

2
pþq þ 
2

q

2
pþqÞ

þ 16s12ðð
p � 
qÞ2 � 
2
p


2
qÞ

þ 4ðDs � 2Þð
2
p þ 
2

qÞð
p � 
qÞðpþ qÞ2; (5.14)

where the last term comes from the Ds � 2 bow-tie con-
tribution. Similarly from AP

2134 ¼ AP
3421 we can read off

nu ¼ s12ðDs � 2Þð
2
p


2
q þ 
2

p

2
p�q þ 
2

q

2
p�qÞ

þ 16s12ðð
p � 
qÞ2 � 
2
p


2
qÞ

� 4ðDs � 2Þð
2
p þ 
2

qÞð
p � 
qÞðp� qþ k3 þ k4Þ2;
(5.15)

where we adjusted the momentum labels to ensure that the
cut momenta are the same as in A1234. We have

ns � nu ¼ 4ðDs � 2Þð
2
p þ 
2

qÞð
p � 
qÞ
� ðs12 þ ðpþ qÞ2 þ ðp� qþ k3 þ k4Þ2Þ ¼ 0;

(5.16)

where we made use of the cut conditions. Thus, from here
and from Eq. (5.13), we find that the numerator identity
(5.4) is satisfied.
We have also confirmed that the ðDs � 2Þ2 terms of the

bow-tie contributions satisfy the numerator identity in
Fig. 6(c). This is somewhat trickier than for the other
terms, because the color factors of the terms with a 1=s12
pole need to be rearranged so they correspond to the last
diagram of Fig. 6(c), not the planar double-box diagrams,
before the identity is apparent.
The systematics of how we use the numerator identity

(3.8) in conjunction with the method of maximal cuts [24]
will be discussed elsewhere [27]. For the special case
of N ¼ 4 super-Yang-Mills theory, various additional
relations between different contributions, including some
between different loop orders, may be found in
Refs. [21,22,24,25].

VI. IMPLICATIONS FOR GRAVITYAMPLITUDES

The KLT relations [4] tell us that gravity tree amplitudes
can be expressed directly in terms of gauge-theory tree
amplitudes. These relations were originally derived in
string theory and hold in field theory, since the low-energy
limit of string theory is field theory. However, from a
purely field-theoretic viewpoint, starting from the
Einstein-Hilbert and Yang-Mills Lagrangians, these rela-
tions have remained obscure [39]. Some new relations
between gravity and gauge-theory MHV amplitudes were
recently presented in Ref. [6], adding to the mystery.
In this section we use the identity (3.8) to clarify the

relationship between gravity and gauge theories, arguing
that the KLT relations are equivalent to a diagram-by-
diagram numerator ‘‘squaring’’ relation with gauge theory.
Consider first the four-point color-dressed amplitude in

Eq. (3.9). As already noted in Ref. [22], the four-point
gravity tree amplitudes can be expressed directly in terms
of diagrams whose numerators are squares of the numer-
ators of the corresponding gauge theory. In particular, for
pure gravity we have

� iMtree
4 ð1; 2; 3; 4Þ ¼ n2s

s
þ n2t

t
þ n2u

u
; (6.1)

where the numerators ni are just the kinematic numerators
of the gauge theory. More generally, for other particle
contents, the two gauge-theory amplitudes corresponding
to each factor of ni can be different. Distinguishing the two
gauge-theory amplitudes with a tilde, we have

� iMtree
4 ð1; 2; 3; 4Þ ¼ ns~ns

s
þ nt~nt

t
þ nu~nu

u
: (6.2)

(P) (NP) (bow-tie)
1

2 3

4
p

q

1

2 3

4
p q

1

2 3

4

p q

FIG. 7. The diagrams corresponding to integrals contributing
to the identical-helicity two-loop four-point QCD amplitude.
The numerator factors are given in the text.
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It is straightforward to verify that this expression reprodu-
ces the correct amplitude using the four-point KLT form in
Eq. (2.12) together with the definition of the numerators in
Eq. (3.7). It is essential here to use the fact that the gauge-
theory numerators satisfy the identities

nu ¼ ns � nt; ~nu ¼ ~ns � ~nt: (6.3)

Can we generalize this behavior to higher points? Indeed
it is straightforward to check that the five-point KLT
relation (2.13) is equivalent to a sum over all 15 diagrams
defined in Eq. (4.5), but with a product of two gauge-theory
numerators,

�iMtree
5 ð1; 2; 3; 4; 5Þ ¼ n1~n1

s12s45
þ n2~n2

s23s51
þ n3~n3

s34s12
þ n4~n4

s45s23

þ n5~n5
s51s34

þ n6~n6
s14s25

þ n7~n7
s32s14

þ n8~n8
s25s43

þ n9~n9
s13s25

þ n10~n10
s42s13

þ n11~n11
s51s42

þ n12~n12
s12s35

þ n13~n13
s35s24

þ n14~n14
s14s35

þ n15~n15
s13s45

: (6.4)

Again, for this to hold, it is important that the ni’s satisfy
the numerator identities in Eq. (4.11), and that the ~ni’s
satisfy corresponding ones.
Using Eq. (6.4) we can obtain new relations between

gravity and gauge-theory amplitudes simply by altering the
basis amplitudes when solving for the kinematic numera-
tors ni, ~ni. For example, if we use Atree

5 ð1; 2; 3; 4; 5Þ and
Atree
5 ð1; 3; 2; 4; 5Þ for the basis amplitudes for the left

(tildeless) gauge theory and ~Atree
5 ð2; 1; 4; 3; 5Þ and

~Atree
5 ð3; 1; 4; 2; 5Þ for the basis amplitudes for the right

(tilde) gauge theory, we immediately obtain the KLT rela-
tion (2.13) from Eq. (6.4). On the other hand if we change
the basis amplitudes of both the left and right gauge
theories to the same orderings, (1, 2, 3, 4, 5) and (1, 4, 3,
2, 5), we find an alternative left-right symmetric represen-
tation of the five-point gravity amplitudes,

�iMtree
5 ð1; 2; 3; 4; 5Þ ¼ s12s45ðs12s14s23 þ s34ðs12 þ s13Þðs23 þ s25ÞÞ

s13s24s35
Atree
5 ð1; 2; 3; 4; 5Þ ~Atree

5 ð1; 2; 3; 4; 5Þ

� s12s14s25ðs13 þ s35Þs45
s13s24s35

ðAtree
5 ð1; 2; 3; 4; 5Þ ~Atree

5 ð1; 4; 3; 2; 5Þ þ Atree
5 ð1; 4; 3; 2; 5Þ ~Atree

5 ð1; 2; 3; 4; 5ÞÞ

þ s14s25ðs12s14s34 þ s23ðs13 þ s14Þðs34 þ s45ÞÞ
s13s24s35

Atree
5 ð1; 4; 3; 2; 5Þ ~Atree

5 ð1; 4; 3; 2; 5Þ: (6.5)

This representation can also be obtained directly from the
KLT relations by substituting in the expressions for the
gauge-theory amplitudes in terms of the same basis partial
amplitudes used in Eq. (6.5).

In general, we expect the numerator relation between
gravity and gauge theories to hold for an arbitrary number
of external legs. Starting from the color-dressed gauge-
theory amplitudes,

1

gn�2 A
tree
n ð1; 2; 3; . . . ; nÞ ¼ X

i

nici
ðQj p

2
j Þi

;

1

gn�2
~Atree

n ð1; 2; 3; . . . ; nÞ ¼ X
i

~nici
ðQj p

2
j Þi

;

(6.6)

where the ni and ~ni satisfy the kinematic numerator iden-
tity (3.8), the ci satisfy the Jacobi identity, and where the
sum runs over all diagrams with only cubic vertices. We
then expect gravity amplitudes to be given by

� iMtree
n ð1; 2; 3; . . . ; nÞ ¼ X

i

ni~ni
ðQj p

2
j Þi

; (6.7)

where the sum runs over the same set of diagrams as in
Eq. (6.6). We have explicitly confirmed that this is consis-
tent with the KLT relations through eight points. We may
think of formula (6.7) as a master formula for generating
new representations of gravity amplitudes. As part of the
conjecture, this equation has a freedom corresponding to
the 2ðn� 3Þðn� 3Þ! numerators ni and ~ni not fixed by any
constraints and which drop out of the amplitudes (6.6) and
(6.7). Furthermore, if we solve for the ni, ~ni in terms of
gauge-theory basis amplitudes, as done in Sec. IVB, then
one has the freedom to choose these 2ðn� 3Þ! basis am-
plitudes. Every choice would result in a different KLT-like
relation when fed into the master formula (6.7). The five-
point representation (6.5) is one example of many possible
KLT-like relations between gravity and gauge-theory am-
plitudes that we can construct. Note that the number of
tilde and no-tilde gauge-theory amplitudes appearing in the
n-point KLT relations (2.15) is ðn� 3Þ! each, matching the
number of independent gauge-theory amplitudes. Indeed,
imposing the choice of basis amplitudes corresponding to
the ones appearing in the KLT relations,
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Atree
n ð1;P f2; . . . ; n� 2g; n� 1; nÞ;
~Atree
n ðP fi1; . . . ; ijg; 1; n� 1;P fl1; . . . ; lj0 g; nÞ;

(6.8)

where P signifies all permutations over the arguments,
recovers the original KLT relations.

We expect that the simplified connection between grav-
ity and gauge-theory tree amplitudes presented here should
make it easier to link the ultraviolet properties of gravity
theories to those of gauge theories.

VII. CONCLUSIONS

In this paper we presented a new kinematic identity for
n-point tree-level color-ordered gauge-theory amplitudes.
This identity is the kinematic analog of the Jacobi identity
for color. By solving the constraints imposed by the iden-
tity we obtained nontrivial relations between tree-level
color-ordered partial amplitudes. We derived the relevant
identities at four and at five points in some detail and have
confirmed it explicitly for all gluon helicity amplitudes
through eight points. Beyond this it remains a conjecture,
although we have performed a variety of consistency
checks. A consequence of this identity is that it gives
nontrivial relations between different color-ordered tree
amplitudes. We conjectured an explicit all-n formula relat-
ing the different color-ordered n-point amplitudes. Under
the Kleiss-Kuijf relations between color-ordered partial
amplitudes [11], for a given helicity and particle configu-
ration there are ðn� 2Þ! independent partial amplitudes.
The new relations reduce this number to ðn� 3Þ! indepen-
dent partial amplitudes.

Using generalized unitarity we demonstrated that this
kinematic numerator identity implies nontrivial relations
between contributions at higher loops. In this paper we
applied these relations to the QCD two-loop four-point
amplitude with identical helicities to explain a previously
mysterious similarity between planar and nonplanar con-
tributions. This amplitude is much simpler than for the
other helicity configurations in QCD, but it does serve to
illustrate the constraints imposed on higher-loop gauge-
theory amplitudes by the numerator identity.

We also discussed the implication of the kinematic
numerator identity for gravity tree amplitudes. We found
that through at least eight points this numerator identity,
together with the KLT relations, implies that gravity tree-
level amplitudes can be put in a diagrammatic form where
each numerator is a product of two corresponding gauge-
theory numerators. We conjecture that this can be done for

any number of external particles. Using the solution of
color-ordered gauge-theory amplitudes in terms of a basis
set of such amplitudes, we also showed how to rearrange
the KLT relations into new forms.
A natural arena for applying these identities is in high-

loop studies of maximally supersymmetric gauge and grav-
ity amplitudes. As will be discussed elsewhere [27], these
are very useful for obtaining four-loop four-point ampli-
tudes in N ¼ 4 super-Yang-Mills theory, including the
subleading color contributions. The super-Yang-Mills am-
plitudes are useful both for studying AdS/CFT conjecture
[17] and as input to the corresponding calculations in
N ¼ 8 supergravity to determine their ultraviolet proper-
ties [19,20,22], which appear better behaved than antici-
pated, and may even be finite. Indeed, cancellations appear
to continue to all loop orders in a class of terms detectable
in certain cuts [19]. These cancellations follow from the
existence of novel one-loop cancellations [40]. These can-
cellations do not appear to be connected to supersymmetry.
Instead, they appear connected to the recently uncovered
behavior [41] of gravity tree amplitudes under large com-
plex deformations [42]. String dualities have also been
used to argue for improved ultraviolet behavior of N ¼
8 supergravity, though various difficulties with decoupling
towers of massive states may spoil this conclusion [43].
It would be very interesting to explore the consequences

of the kinematic numerator identity for spontaneously
broken and massive theories, especially in theories of
phenomenological interest. More generally, we expect
the new relations discussed in this paper to be helpful for
further clarifying the structure of perturbative gauge and
gravity theories. In particular, we expect it to aid higher-
loop investigations of gauge and gravity theories using the
unitarity method.
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