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We study the gravitational corrections to the Maxwell, Dirac, and Klein-Gordon theories in the large

extra dimension model in which the gravitons propagate in the ð4þ nÞ-dimensional bulk, while the gauge

and matter fields are confined to the four-dimensional world. The corrections to the two-point Green’s

functions of the gauge and matter fields from the exchanges of virtual Kaluza-Klein gravitons are

calculated in the gauge independent background field method. In the framework of effective field theory,

we show that the modified one-loop renormalizable Lagrangian due to quantum gravitational effects

contains a TeV scale Lee-Wick partner of every gauge and matter field as extra degrees of freedom in the

theory. Thus the large extra dimension model of gravity provides a natural mechanism for the emergence

of these exotic particles which were recently used to construct an extension of the standard model.
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I. INTRODUCTION

In constructing a finite version of quantum electrody-
namics [1,2], Lee and Wick introduced a physical massive
vector field to play the role of the regulator in Pauli-Villars
regularization, and made the mass, charge, and wave func-
tion renormalizations all finite. The Lee-Wick QED (LW
QED) is Poincaré invariant, gauge invariant, and unitary.
Recently, Grinstein, O’Connell, and Wise [3] extended this
idea to the standard model (SM) and proposed that a higher
derivative term is added for each field in the SM. In this
scenario each propagator includes an extra degree of free-
dom corresponding to a massive LW particle. The extended
SM is shown to be free of quadratic divergences. Therefore
the mass of the Higgs particle is stable and the hierarchy
problem is solved. The Lee-Wick SM (LWSM) does not
provide any information on the masses of Lee-Wick parti-
cles. However, they are expected to have masses at the TeV
scale in various phenomenological studies. Extensive dis-
cussions of the phenomenology of the LWSM, including its
implications for LHC and linear collider physics [4–6],
neutrino physics [7], the flavor changing neutral currents
[8], the electroweak precision constraints [9,10], and an-
other Lee-Wick extension of the SM [11], have been made.
Some theoretical works on the perturbative unitarity, the
one-loop renormalization, and the causality problem of the
LWSM have been discussed in [12–14], respectively.
Chiral symmetry breaking and fermion mass generation
triggered by a higher derivative term were shown in [15].

We studied the Maxwell-Einstein theory in [16]. We
considered the effect of gravity by expanding the metric
around the flat background spacetime and calculated the
photon self-energy in the framework of the gauge indepen-

dent background field method. We showed that the one-
loop gravitational corrections induce a new higher deriva-
tive term with mass dimension six, which is the term
needed in the LWSM. In a ð3þ 1Þ-dimensional renorma-
lizable theory, quantum corrections will generate possible
UV divergences only to the relevant and marginal opera-
tors whose mass dimensions are less than 5. This assures
the predictiveness of the theory. General relativity, the
theory of gravitational interactions, on the other hand, is
not renormalizable after quantization [17,18]. This is one
of the reasons that general relativity was considered to be
incompatible with quantum mechanics. In the quantized
version of general relativity, one would not be able to
reabsorb all the UV divergences into the coupling constant
in the original Lagrangian. That is, new counterterms are
needed at each order of perturbative calculations when
trying to renormalize the theory. Nevertheless, a modern
point of view is that a nonrenormalizable theory might be
sensible and the reliable predictions could still be made
from it within the framework of effective field theories
[19,20]. From the value of the only dimensional coupling
constant G, Newton’s constant, in the Hilbert-Einstein
Lagrangian, one can see that gravitational effects are tiny
at energies E � Mpl � 1019 GeV=c2. It makes sense to

treat general relativity as a low energy effective field theory
of some unknown fundamental theory and consider its
quantum effects [21]. The effects due to nonrenormalizable
terms are suppressed by inverse powers of the Planck scale
Mpl, the mass scale of new physics. In this sense, the higher

derivative term permitted by symmetry should be added to
the Lagrangian at the beginning so that the theory is one-
loop renormalizable. The modified Maxwell-Einstein the-
ory contains a Lee-Wick vector field as an extra degree of
freedom. Since gravity does exist in nature, it provides a
natural mechanism for the emergence of this exotic parti-
cle. Different from the other scenarios, all the Lee-Wick
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fields generated in this way have their masses of orderMpl,

and thus presently escape from any experimental
measurement.

In this work wewill investigate the gauge-matter-gravity
system where the gravitons propagate in ð4þ nÞ-
dimensional spacetime while the gauge and matter fields
live in the normal four-dimensional world. Because of
phenomenological implications, we take the compactifica-
tion scale 1=R of the n extra dimensions to be as low as
10�4 eV. The Planck scale Mplð4þnÞ of the ð4þ nÞ-
dimensional theory is taken to be of order 1 TeV, as is
the case in the ADD model [22]. We will show, by explicit
calculations in the background field method, that up to one-
loop order, quantum corrections to each sector of the
gauge, fermion, and scalar coming from the exchange of
virtual Kaluza-Klein gravitons will generate a new type of
divergence which corresponds to a higher derivative op-
erator with mass dimension six. Summation of the Kaluza-
Klein towers greatly improves the coefficients of these
operators up to�1 TeV�2. Therefore, one needs to modify
the Lagrangian of the system and include the higher de-
rivative operators at the beginning to absorb the divergent
quantum corrections. This modification is natural and con-
sistent with the framework of effective field theories. The
modified theory now contains a Lee-Wick partner whose
mass is at the TeV scale for every gauge, fermion, and
scalar particle. On the one hand, these Lee-Wick particles
are the necessary components of the extension of the SM in
[3] and turn out to be interesting and significant in describ-
ing the physics at the TeV scale. On the other hand, to our
knowledge, they were ignored in the relevant phenomeno-
logical studies of the ADD model in the literature.

The rest of the paper is organized into three parts. In
Sec. II, we describe the Maxwell, Dirac, and Klein-Gordon
theories in the context of the ADD gravity. We compactify
the gravity on an n-dimensional torus Tn and perform a
Kaluza-Klein decomposition. In Sec. III, we compute the
one-loop gravitational corrections to the gauge, fermion,
and scalar self-energy in the framework of the background
field method and discuss the implications of the higher
derivative operators. Similar calculations on the various
self-energy corrections have been made in the conventional
gauge dependent method [23,24], where a cutoff procedure
has been used in the loop momentum integrations and the
summations of the Kaluza-Klein states. In this work we use
dimensional regularization so that one can easily track out
the momenta of the background fields. We present our
discussions and conclusions in the final section.

II. THE FORMALISM AND KALUZA-KLEIN
DECOMPOSITION OF GRAVITY

Our starting point is the Hilbert-Einstein, Maxwell,
Dirac, and Klein-Gordon theory in which the gravity prop-
agates in the ð4þ nÞ-dimensional bulk while the gauge and
matter fields live in four-dimensional spacetime. The extra

dimensions are compactified on a torus Tn. The action of
the theory has the form

S ¼ �
Z

d4xdnyðLHE þLM þLD þLKGÞ; (1)

where the Lagrangians for gravity and gravity-gauge-
matter couplings are

LHE ¼ 1

�̂2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1Þ3þnjĝð4þnÞj

q
R̂;

LM ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jĝð4Þj

q
ĝ��ĝ��F��F���

ðnÞðyÞ;

LD ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jĝð4Þj

q
�c

�
iê����

�
D� þ 1

2
!̂�ab	

ab

��
c�ðnÞðyÞ;

LKG ¼�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jĝð4Þj

q
ðĝ��@�’@�’�m2

s’
2Þ�ðnÞðyÞ; (2)

with �̂2 � 16
ĜN � 1
M2þn

plð4þnÞ
. The hatted symbols R̂, ĝ�̂ �̂,

and Ĝ are the Ricci scalar, the metric tensor, and the
Newton constant in the ð4þ nÞ bulk. The index �̂ extends
over the full ð4þ nÞ dimensions, and � over ð3þ 1Þ
dimensions. The vierbein ê�� is defined by ê��ê

�
���� ¼

ĝ��. The spin connection !̂�ab can be solved in terms of

the vierbein and 	ab ¼ 1
4 ½�a; �b�. The derivative D� is

internal gauge symmetry covariant. The fermion is mass-
less because we are interested in the case of high energies
when electroweak symmetry is unbroken. The scalar field
is taken to be real and thus it does not carry any nontrivial
charges. We ignore the cosmological constant term since it
is irrelevant to our discussions. The action (1) is invariant
under general coordinate and Uð1Þ gauge transformations.
For simplicity, we assume that the compactification scales
of the extra n-dimensional spaces yi are all roughly equal
to R.
In the following we use the background field method

[25] and choose the background spacetime to be
Minkowski space. The basic idea of the method is to
expand the fields appearing in the classical action to the
background fields and the quantum fields. The quantum
fields are the variables of integration in the functional
integral. A gauge choice is made in such a way that it
breaks the gauge invariance of the quantum gauge field, but
retains gauge invariance in terms of the background gauge
field. Therefore, one is able to quantize a gauge field theory
without losing the explicit gauge invariance. The Green’s
functions obey the naive Ward identities of gauge invari-
ance, and even the unphysical quantities like divergent
counterterms take a gauge invariant form, which makes
the following discussion unambiguous. The background
field method is used extensively in gravity. The first rele-
vant papers calculating the one-loop quantum gravitational
effects on the gauge and matter fields are [18,26].
The graviton field ĝ�̂ �̂ðx; yÞ, gauge field AðxÞ, and matter

fields c ðxÞ and ’ðxÞ can be written as sums of background
fields ð�̂�̂ �̂; �AðxÞ;�ðxÞ;�ðxÞÞ and quantum fluctuations
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ðĥ�̂ �̂; aðxÞ; ~c ðxÞ; ~’ðxÞÞ:
ĝ�̂ �̂ðx; yÞ ¼ �̂�̂ �̂ þ �̂ĥ�̂ �̂ðx; yÞ;

AðxÞ ¼ �AðxÞ þ aðxÞ;
c ðxÞ ¼ �ðxÞ þ ~c ðxÞ;
’ðxÞ ¼ �ðxÞ þ ~’ðxÞ:

(3)

Here �̂�̂ �̂ is the Minkowski metric of the bulk.

Now we consider the Hilbert-Einstein term in action (1).
Expanding the gravity field, one can get the linearized
Fierz-Pauli Lagrangian

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1Þ3þnjĝð4þnÞj

q
R̂ðx; yÞ

�̂2
¼ 1

4
ð@�̂ĥ@�̂ĥ� @�̂ĥ�̂ �̂@�̂ĥ�̂ �̂

þ 2@�̂ĥ
�̂ �̂@�̂ĥ�̂ �̂

� 2@�̂ĥ
�̂ �̂@�̂ĥÞ þOð�̂Þ;

(4)

where ĥ � ĥ
�̂
�̂. It is the kinematic of the graviton, and we

have ignored the self-interaction terms of gravitons since
they are irrelevant to our present discussions.

To perform the Kaluza-Klein reduction of Eq. (4) to
four-dimensional spacetime, we parametrize the field

ĥ�̂ �̂ as

ĥ �̂ �̂ ¼ V�ð1=2Þ
n

h�� þ ��� A�j

Ai� 2ij

� �
; (5)

where Vn ¼ Rn is the volume of the n-dimensional com-
pactified torus Tn,  ¼ P

iii, the subscripts �; � ¼ 0, 1,
2, 3, and i; j ¼ 4; 5; . . . ; 3þ n. The fields h��, A�i, andij

are the Lorentz tensor, vector, and scalar, respectively.
They have the following mode expansions:

h��ðx; yÞ ¼
X
~n

h ~n
��ðxÞ exp

�
i
2
~n � ~y

R

�
; (6)

A�iðx; yÞ ¼
X
~n

A ~n
�iðxÞ exp

�
i
2
~n � ~y

R

�
; (7)

ijðx; yÞ ¼
X
~n

~n
ijðxÞ exp

�
i
2
 ~n � ~y

R

�
; (8)

with ~n ¼ ðn1; n2; . . . ; nnÞ. After a straightforward calcula-
tion, we find that Eq. (4) reduces to the expression in terms
of the massive Kaluza-Klein modes

� 1

4

X
~n

ð2@�A~n;i�@�A
� ~n
i� � 2@�A

~n;i�@�A
� ~n;i� � 2m2

~nA
~n;i�A� ~n

i� � 2mnimnjA
~n;i�A� ~n

j� þ @�h~n;��@�h
� ~n
�� � @�h~n@�h

� ~n

� 2@�h
~n;��@�h� ~n

�� þ 2@�h
~n@�h

� ~n;�� �m2
~nh

~n;��h� ~n
�� þm2

~nh
~nh� ~n þ 2@�~n@�

� ~n þ 4@�~n;ij@�
� ~n
ij

� 4m2
~n

~n;ij� ~n
ij � 8mnimnj

~n;ik� ~n
jk þ 8mnimnj

~n� ~n;ij þ 2m2
~nh

~n� ~n þ 4mnimnjh
~n� ~n;ij þ i4mni@�A

~n;j�� ~n
ij

þ i4mni
~n@�A

� ~n;i� þ i4mni@�h
~n;��A� ~n

i� þ i2mnih
~n@�A

� ~n;i� � i2mni@�h
~nA� ~n;i�Þ; (9)

where m2
~n � �mnimni ¼ � 4
2nin

i

R2 ¼ 4
2nini
R2 since we have used the flat spacetime metric tensor diagð�̂Þ ¼

ð1;�1; . . . ;�1Þ. In deriving Eq. (9), we have used the relation between the four-dimensional and the ð4þ
nÞ-dimensional Newton constants �2Rn ¼ �̂2. The last two lines contain the mixing terms h, A, and hA. All of
them result from the last two terms in Eq. (4). It is more convenient to cancel such terms in practical calculations. For this
purpose, we add a special de Donder gauge fixing term

� 1
2ð@�̂ĥ�̂ �̂@	̂ĥ	̂ �̂ � @�̂ĥ

�̂ �̂@�̂ĥþ 1
4@�̂ĥ@

�̂ĥÞ (10)

to the Fierz-Pauli Lagrangian (4), rather than redefine the fields as in [23]. The first two terms will cancel the last two terms
in Eq. (4) so that the mixing terms in Eq. (9) do not appear again. The Lagrangian of the gravity can then be written as a
simple form,

L HE ¼ � 1

4

X
~n

ð@�h~n;��@�h
� ~n
�� � 1

2
@�h~n@�h

� ~n �m2
~nh

~n;��h� ~n
�� þ 1

2
m2

~nh
~nh� ~n þ 2@�A~n;i�@�A

� ~n
i� � 2m2

~nA
~n;i�A� ~n

i�

þ 4@�~n;ij@�
� ~n
ij þ 2@�~n@�

� ~n � 4m2
~n

~n;ij� ~n
ij � 2m2

~n
~n� ~nÞ þOð�Þ: (11)

In this gauge, the propagators for the massive Kaluza-Klein states h~n
��, A

~n
i�, and ~n

ij are

4h
~n��; ~m�	 ðkÞ ¼ �i

� ~n;� ~mð�����	 þ ��	��� � �����	Þ
k2 �m2

~n þ i�
; (12)
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4A
~ni�; ~mj� ðkÞ ¼ �i

� ~n;� ~m�ij���

k2 �m2
~n þ i�

; (13)

4
~nij; ~mklðkÞ ¼ �i

� ~n;� ~m½14 ð�ik�jl þ �il�jkÞ � 1
4þ2n �ij�kl�

k2 �m2
~n þ i�

:

(14)

Obviously the spin-2 state h~n
�� is not a physical state. This

can be seen explicitly from the numerator of its propagator.
The physical massive spin-2 state with the right polariza-
tion tensor is constructed from h~n

��, A~n
i�, and ~n

ij. Its
explicit form is shown in [23]. However, the rearrangement
of the physical spin-2, ðn� 1Þ spin-1, and nðn� 1Þ=2
spin-0 states into h~n

��, A
~n
i�, and ~n

ij states shown above
greatly simplifies our calculations.

Note that we do not include ghost parts in the
Lagrangian since they do not contribute to the one-loop
order.

III. LEE-WICK PARTICLES FROM
GRAVITATIONAL CORRECTIONS

Nowwe turn to the interactions of gravity with the gauge
and matter fields. What we are concerned with are the
higher derivative operators of mass dimension six from
the one-loop gravitational corrections to the two-point
Green’s functions for the gauge and matter wave operators.
The coefficients of the quantum induced higher derivative
operators are divergent. In terms of the effective theory,
one should include each higher derivative operator with an
arbitrary parameter aiði ¼ 1; 2; 3Þ in the Lagrangian, and
then introduce counterterms to cancel the divergences and
renormalize the parameters ai. The tadpole diagrams,
though they do not vanish because of the appearance of
the massive Kaluza-Klein states in the loops, are irrelevant
to the higher derivative operators. Thus, in what follows,
we only need to calculate the rainbow diagrams and write
down the divergent terms explicitly. We will present a
rather detailed description on the gauge field in
Sec. III A, and leave out similar ones on the fermion and
scalar field sectors. We would like to emphasize that since
gravitons do not carry gauge charges, the results of the one-
loop corrections to the two-point Green’s functions can be
applied directly to the non-Abelian case.

A. Lee-Wick gauge bosons

The second term in action (1) specifies the interaction of
the gauge field with the graviton. Adding the Lorentz
gauge fixing term �1

2� ð@�a�Þ2 for the photon field to the

action, we find the propagator for the photon a�,

4a
�� ðkÞ ¼ �i

k2 þ i�

�
��� � ð1� �Þ k�k�

k2

�
: (15)

Up to order �2, the relevant interaction terms contain

ðh~na �AÞ, ðh~nh ~m �A �AÞ, and ðh~n ~m �A �AÞ vertices, from which
only the first one is of interest in our present consideration
since it is the only vertex to compose the rainbow diagram
shown in Fig. 1.

Lint
M � �

X
~n

�
h~n
��@� �A�@�a	

�
�����	��� þ �����	���

þ 1

2
��������	 � ��	������ � ��������	

� 1

2
��������	

��
þOð�2Þ: (16)

The diagram is of order �2 of the gravitational coupling.
We evaluate the loop integral in the dimensional regulari-
zation (DR) scheme to extract the singularity, rather than
introduce a hard cutoff as in [23,24]. By a straightforward
calculation, it can be shown that the correction obtained in
the framework of the background field method is indepen-
dent of the gauge parameter �, as it should be. The result of
the diagram is

�R
��ðp2Þ ¼ i

�2

24
2

1

�
p2ðp2��� � p�p�Þ

X
~n

1þ i
3�2

8
2

1

�

�ðp2��� � p�p�Þ
X
~n

m2
~n þ ½finite part�:

(17)

The contributions of the extra dimensions are embodied in
the summation over the Kaluza-Klein states in a tower. In
the limit of four-dimensional spacetime, the second term
vanishes because the graviton is massless. The summation
can be written as an integration in terms of the mass m2

~n

when the Kaluza-Klein states are nearly degenerate [23],

X
~n

fðm~nÞ ¼
Z �2

0
dm2

~n�ðm~nÞfðm~nÞ; (18)

where

�ðm~nÞ ¼
Rnmn�2

~n

ð4
Þn=2�ðn=2Þ (19)

is the Kaluza-Klein state density. As is well known, using
the DR scheme, which is a mass independent scheme,
heavy states do not decouple. Thus we have introduced

FIG. 1. The rainbow diagram generating the higher derivative
term of the gauge field. The internal wavy and double lines
represent a� and h~n

�� fields, respectively. The external wavy

lines are background photon fields.
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an explicit cutoff� to regularize the mass integration. That
is, we include only a finite number of low-lying Kaluza-
Klein states and assume all other states decouple from the
low energy physics we are interested in. This cutoff does
not break any gauge symmetry and our calculation is gauge
independent. The nearly degenerate condition is satisfied
when the energy scale R�1 characterizing the Kaluza-
Klein excitations is much less than the physical scale �.
This is indeed the case in the large extra dimension model.
In general, we have � � Mplð4þnÞ, since the effective the-
ory is only expected to be valid below the fundamental
scale Mplð4þnÞ. Various phenomenological studies have

suggested that the cutoff should be ��Mplð4þnÞ �
1 TeV [23,24,27]. Our final result for the rainbow diagram
is

�R
��ðp2Þ ¼ i

�̂2

12
2

�
�n

ð4
Þn=2�ðn=2Þn
�

� 1

�
p2ðp2��� � p�p�Þ

þ i
3�̂2

4
2

�
�nþ2

ð4
Þn=2�ðn=2Þðnþ 2Þ
�

� 1

�
ðp2��� � p�p�Þ þ ½finite part�: (20)

The first term of Eq. (20) shows that, different from re-
normalizable theories, the correction due to gravitons gen-
erates a new type of divergence which cannot be absorbed
in the Maxwell-Einstein action. In flat spacetime, the term
ip2ðp�p� � p2���Þ in the truncated photon-photon corre-
lation function corresponds to the dimension six operator
� 1

2@�
�F��@� �F��. This is the leading higher derivative

term allowed by symmetries. Without renormalizability
as an axiom, it should be included in the Lagrangian. If
one unnaturally neglects it, the theory will lack its predic-
tiveness at one-loop order. The second term which vanishes
in the four-dimensional theory results from the summation
of the Kaluza-Klein states. It contributes to the one-loop �
function of the gauge coupling and leads to the power-law
running of the gauge coupling.

Note that the one-loop correction to the gauge couplings
from a tower of gauge boson Kaluza-Klein states is of
order �n [28,29]. Here we show explicitly that the correc-
tion coming from graviton Kaluza-Klein states is of order
�nþ2. The effect on the unification of gauge coupling
constants caused by this term is itself an interesting subject
and will be reported elsewhere [30].

When we take n ¼ 0 in Eq. (20), we will come to the
case of gravity in four-dimensional spacetime that we have
discussed in [16]. But since we start from different defini-
tions of the action (1) and � in this work, the result here
differs by a factor of 1

8 from that in [16].

Now let us consider the modified Maxwell theory in
curved spacetime with the required higher derivative term.
The action has the form

�
Z

d4xdny

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jĝð4Þj

q �
1

4
ĝ��ĝ��F��F��

� a1
2M2

ĝ��ĝ��ĝ	�D�F�	D�F��

�
�ðnÞðyÞ

�
(21)

where a1 is a dimensionless parameter and will be renor-
malized by introducing a counterterm to cancel the diver-
gence of the first term in Eq. (20) at a certain
renormalization condition. The operator D� is the

spacetime covariant derivative. For convenience, we have

defined a dimension-one parameter M � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=�̂2�n

p �
1 TeV. Based on the previous discussion, the origin of
the last term is clear. The existence of gravity naturally
provides a mechanism to generate this nonrenormalizable
term. With this term, the gauge sector in the theory is one-
loop renormalizable.
Let us consider again the four-dimensional background

spacetime to be a Minkowski one and focus our discussion
on the gauge sector. The part of the action we are interested
in is the quadratic terms of the gauge field,

�
Z

d4x

�
1

4
F��F

�� � a1
2M2

@�F
��@�F��

�
; (22)

from which we can find the propagator in the background
spacetime:

�i

p2 � a1
M2 p

4 þ i�

�
��� �

p�p�

q2
þ �

�
1� a1

p2

M2

�
p�p�

p2

�
;

(23)

where we have used the same Lorentz gauge fixing term as
before. The propagator contains two poles: One corre-

sponds to the massless photon, and the other one at p2 ¼
M2

a1
corresponds to the Lee-Wick particle with mass Mffiffiffiffi

a1
p for

positive a1.
Remember the electric field Ei ¼ Fi0 and magnetic

fields Bi ¼ ��ijkFjk. ‘‘Maxwell’s equations’’ derived

from Eq. (22) read

~r � ~B ¼ 0; (24)

@ ~B

@t
þ ~r� ~E ¼ 0; (25)

~r � ~D ¼ 0; (26)

@ ~D

@t
� ~r� ~H ¼ 0; (27)

where

~D �
�
1þ a1

M2

�
@2

@t2
� ~r2

��
~E; (28)
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~H �
�
1þ a1

M2

�
@2

@t2
� ~r2

��
~B: (29)

The first set comes from the gauge invariance of the
system. The second set are the equations of motion derived

from Eq. (22). One can easily see that the solution ~D ¼ ~E

and ~H ¼ ~B corresponds to the well-known massless pho-

ton. The other independent solution, ~D ¼ 0 and ~H ¼ 0,
implies

�
@2

@t2
� ~r2 þM2

a1

�
~E ¼ 0; (30)

�
@2

@t2
� ~r2 þM2

a1

�
~B ¼ 0: (31)

This corresponds to the Lee-Wick particle with mass Mffiffiffiffi
a1

p .

B. Lee-Wick fermions

We now switch to the third term in the action (1) which
contains the interaction terms of the fermion field with the
gravitons. Since only the rainbow diagrams plotted in
Fig. 2 can contribute to the higher derivative operator, we
are interested in the following interaction terms exclu-
sively:

�

2

X
~n

f �~c ½i��ð@bh~n
a� þ�a�@b

~nÞ	ab

� iðh~n;�
� þ�

�
�~nÞ��@� þðh~n þ 4~nÞi��@���

þ ��½i��ð@bh~n
a� þ�a�@b

~nÞ	ab

� iðh~n;�
� þ�

�
�~nÞ��@� þðh~n þ 4~nÞi��@�� ~c g; (32)

where� and ~c are the background field and fluctuation of
the fermion. Our final result for these two diagrams is

�Rðp6 Þ ¼ �i
�̂2

128
2

�
�n

ð4
Þn=2�ðn=2Þnðnþ 2Þ
�

� 1

�
ðn� 16Þp2p6

þ i
�̂2

64
2

�
�nþ2

ð4
Þn=2�ðn=2Þðnþ 2Þ2
�

� 1

�
ð30� 12nÞp6 þ ½finite part�: (33)

After a Fourier transform to the configuration space, the
first term corresponds to a dimension-six operator

1
M2

��@6 @6 @6 �. The second term contributes to the renormal-

ization of the fermion field.
In the effective theory, we should add the higher deriva-

tive term permitted by symmetry at the beginning. Thus the
modified curved spacetime Dirac action becomes

Z
d4xdny

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jĝð4Þj

q
�c

�
iê

�
���D�

þ i
a2
M2

ê
�
� ê��ê

�
��

�����D�D�D�

�
c�ðnÞðyÞ

�
; (34)

where the derivative is defined asD� ¼ D� þ 1
2 !̂�ab	

ab.

The effective action in four-dimensional Minkowski space-
time is of the form

Z
d4x �c ði 6Dþ i

a2
M2

6D 6D 6DÞc : (35)

The propagator of the higher derivative theory is

i

p6 � a2
M2 p

2p6 ¼ �i
a2
M2 ðp2 � M2

a2
Þp6 ; (36)

which implies two freedoms of the fermion: One is the
massless fermion, and the other one is its Lee-Wick partner
with mass Mffiffiffiffi

a2
p .

C. Lee-Wick scalars

The fourth term in the action (1) is the Klein-Gordon
theory in curved spacetime. In terms of the Kaluza-Klein
states of the graviton, the relevant interaction terms can be
reduced to

� �

2

X
~n

h ~n
��½2@� ~’@��� ���ð@� ~’@���m2

s ~’�Þ�

þ �
X
~n

~nð@� ~’@��� 2m2
s ~’�Þ: (37)

Similar to the gauge and fermion field sectors, only the
rainbow diagrams plotted in Fig. 3 contribute to the higher
derivative operator. Summing up these two diagrams, we
find the final result,

FIG. 2. The rainbow diagrams generating the higher derivative term of the fermion. The internal line, double lines, and dashed
double lines represent ~c , h~n

��, and ~n
ij fields, respectively. The external lines are background fermion fields.
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�Rðp2Þ ¼ �i
�̂2

16
2

�n

ð4
Þn=2�ðn=2Þ
1

�

�
1

nþ 2
p4

þ nþ 16

nðnþ 2Þm
2
sp

2 þ 5nþ 8

ðnþ 2Þ2 �
2p2

þ 8n� 16

nðnþ 2Þm
4
s

�
þ ½finite part�: (38)

It is easy to transform the first term to configuration space.
It is a higher derivative operator 1

M2 ð@2�Þ2. The other three
terms work on the renormalizations of the field and the
mass of the scalar. Note that when there are not any extra
dimensions, i.e. n ¼ 0, the higher derivative operator does
not appear.

To write down a one-loop renormalizable theory, we
should include the higher derivative operator allowed by
symmetry in action (1). Then the modified action has the
form

1

2

Z
d4xdny

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jĝð4Þj

q
½ĝ��@�’@�’� a3

M2
ðĝ��D�D�’Þ2

�m2
s’

2��ðnÞðyÞ: (39)

By a straightforward reduction, the quadratic terms in the
flat four-dimensional world can be obtained,

1

2

Z
d4x½@�’@�’� a3

M2
ð@2’Þ2 �m2

s’
2�: (40)

One can easily find the propagator to be

i

p2 � a3
M2 p

4 �m2
s
: (41)

For Mffiffiffiffi
a3

p 	 ms, it has poles at p
2 ’ m2

s and at p2 ’ M2=a3,

indicating the description of 2 degrees of freedom: the
scalar and its Lee-Wick partner.

IV. CONCLUSIONS

We have studied Maxwell, Dirac, and Klein-Gordon
theories in the model of large extra dimensional gravity
in which the gravitons propagate in the ð4þ
nÞ-dimensional bulk, while the gauge and matter fields
are confined to the four-dimensional world. The one-loop
corrections to the two-point Green’s functions of the
gauge, fermion, and scalar fields from the exchange of
virtual Kaluza-Klein gravitons have been calculated with
the gauge independent background field method. We show
that the gravitational corrections generate a new type of
divergence which corresponds to a higher derivative op-
erator with mass dimension six for every field. Besides, the
one-loop corrections to the � function of the gauge cou-
pling from a tower of graviton Kaluza-Klein states is found
to be of order �nþ2.
In the framework of effective field theories, the higher

derivative operators permitted by the symmetry should be
added to the Lagrangian at the beginning so that one can
subtract the divergences and renormalize the theory. We
show that the modified one-loop renormalizable
Lagrangian contains a TeV scale Lee-Wick partner of
every gauge and matter field as an extra degree of freedom.
Since gravitons do not carry gauge charges, the same
results can be applied directly to the non-Abelian case.
Thus the large extra dimension model of gravity provides a
natural mechanism for the emergence of these exotic par-
ticles which were introduced in [3] to construct an exten-
sion of the standard model.
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