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We present an exact numerical computation of the one-loop correction of the string tension for the

Nielsen-Olesen vortex in the Abelian Higgs model. The computation proceeds via the computation of the

Euclidean Green’s function for the gauge, Higgs, and Faddeev-Popov fields using mode functions, and

taking the appropriate trace. Renormalization is an essential part of this computation. It is done by

removing leading order contributions from the numerical results so as to make these finite, and to add the

divergent parts back, after suitable regularization and renormalization. We encounter and solve some

problems which are specific to gauge theories and topological solutions. The corrections to the energy are

found to be sizable, but still smaller than the classical energy as long as g2 is smaller than unity.
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I. INTRODUCTION

Extended classical solutions that can be interpreted as
strings exist in various realistic and semirealistic models of
particle physics [1,2]. Their possible role in cosmology has
been evocated long ago [3], see [4,5] for reviews. In con-
frontation with the recent wealth of cosmological observa-
tions they present a very interesting and active, but still
controversial, field of research, see e.g. [6,7].

In the present investigation we consider the string that is
made up by the vortex solution of the Abelian Higgs model
in 3þ 1 dimensions, well known from superconductivity
[8], and commonly denoted in particle physics as the
Nielsen-Olesen vortex [9]. The 1þ 1 dimensional version
of this solution represents an instanton solution that has
been widely considered in the context of baryon number
violation.

There have been various investigations of the one-loop
correction to the string tension. The fermionic corrections
to the energy of the Nielsen-Olesen vortex have been
computed exactly in Ref. [10]. Fermionic corrections to
strings in 2þ 1 and 3þ 1 dimensions have also been
considered by various other authors [11–14]. Such calcu-
lations may be important in the context of the instability of
the electroweak string [15].

Here we consider the energy corrections arising from the
gauge-Higgs and Faddeev-Popov sector. There are some
previous investigations, using heat kernel techniques
[16,17]. Here we attempt an exact computation, using
techniques that have been developed previously in
Refs. [18–21] and applied in various semiclassical compu-

tations, of one-loop energy corrections and one-loop pre-
factors to transition rates. The computations have three
essential ingredients: the use of mode functions (‘‘Jost
functions,’’ see e.g., [22]) in order to compute exact results,
the use of perturbative subtractions, so as to make these
results finite, and the computation of the subtracted parts
using a covariant regularization and renormalization
scheme. Similar approaches have been used recently by
other authors, see e.g. [23–26]. In a gauge theory as con-
sidered here, one finds some complications due to the fact
that there are cancellations of divergences between graphs
of a different number of vertices. This will be discussed in
detail in the context of renormalization.
Whether the energy corrections are small or big de-

pends, in the present case, on the gauge coupling. The
classical string tension is proportional to v2 ¼ m2

W=g
2,

where g is the gauge coupling, while the corrections are
proportional to m2

W multiplied by a function of � ¼
mH=mW . So the corrections are necessarily small relative
to the classical string tension if g is sufficiently small. If
ever the corrections are big, then this signals the break-
down of the semiclassical method. In intermediate situ-
ations one may have recourse to a Hartree-type
approximation by including the backreaction of the quan-
tum fluctuations to the classical solution. The methods we
use here are suitable for such investigations [27,28], or
even for self-consistent calculations without a classical
solution [29].
The text is organized as follows: In Sec, II we present the

model, the classical vortex solution, and the classical string
tension. In Sec, III we relate in general the fluctuation
operator to the one-loop correction to the string tension,
and we explicitly derive the fluctuation operator. Its partial
wave reduction is presented in Sec. IV. This is the basis for
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the actual numerical computation of the one-loop string
tension, which is described in Sec. V. Renormalization is
discussed in some detail in Sec. VI. In Sec. VII we give
some details of the numerical implementation and present
the results. We conclude with a summary in Sec. VIII.
Some technical details are discussed in Appendices A, B,
C, D, E, F, and G.

II. BASIC RELATIONS

The Abelian Higgs model in (3þ 1) dimensions is
defined by the Lagrange density

L ¼ � 1

4
F��F

�� þ 1

2
ðD��Þ�D��� �

4
ðj�j2 � v2Þ2:

(2.1)

Here � is a complex scalar field and

F�� ¼ @�A� � @�A�; (2.2)

D� ¼ @� � igA�: (2.3)

The particle spectrum consists of Higgs bosons of mass
m2

H ¼ 2�v2 and vector bosons of mass m2
W ¼ g2v2. The

model allows for vortex-type solutions, representing
strings with a magnetic flux, the Nielsen-Olesen vortices
[8,9,30,31]. The cylindrically symmetric ansatz for this
solution is given by [32]

Acl;?
i ðx; y; zÞ ¼ �ijx

?
j

gr2
AðrÞi ¼ 1; 2; (2.4)

�clðx; y; zÞ ¼ vfðrÞei’ðxÞ; (2.5)

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and ’ is the polar angle. Furthermore

Acl
3 ¼ Acl

0 ¼ 0. In order to have a purely real Higgs field,

one performs a gauge transformation

� ! e�i’�; (2.6)

A?
i ! A?

i �r?
i ’=g (2.7)

to obtain the instanton fields in the singular gauge

Acl?
i ðx; y; zÞ ¼ "ijx

?
j

gr2
½AðrÞ þ 1� i ¼ 1; 2 (2.8)

�clðx; y; zÞ ¼ vfðrÞ: (2.9)

With this ansatz the energy per unit length, or string
tension �, takes the form

�cl ¼ �v2
Z 1

0
dr

�
1

rm2
W

�
dAðrÞ
dr

�
2 þ r

�
dfðrÞ
dr

�
2

þ f2ðrÞ
r

½AðrÞ þ 1�2 þ rm2
H

4
½f2ðrÞ � 1�2

�
: (2.10)

The magnetic flux is given by

�M ¼
Z

d2xB3 ¼ �
Z

dxdyF12: (2.11)

Explicitly we find

�M ¼
Z

d2xðr?
1 A

cl?
2 �r?

2 A
cl?
1 Þ

¼
Z

d�rdr

��1

gr
A0ðrÞ

�
¼ 2�

g
½Að0Þ � Að1Þ�:

(2.12)

For the case mH ¼ mW an exact solution to the variational
equation is known [30], for which the classical string
tension takes the value �cl ¼ �v2. We here will consider
the general case mW � mH, for which the classical equa-
tions of motion

�
@2

@r2
þ 1

r

@

@r
� ½AðrÞ þ 1�2

r2
�m2

H

2
½f2ðrÞ � 1�

�
fðrÞ ¼ 0;

(2.13)

�
@2

@r2
� 1

r

@

@r
�m2

Wf
2ðrÞ

�
½AðrÞ þ 1� ¼ 0 (2.14)

have to be solved numerically.
Imposing the boundary conditions on the profile func-

tions

AðrÞ!r!0
const � r2; AðrÞ !r!1 � 1;

fðrÞ!r!0
const � r; fðrÞ !r!1

1;
(2.15)

the magnetic flux is �M ¼ 2�=g, the Dirac magnetic flux
quantum, and the action is finite.
Since we have to consider fluctuations around these

solutions, a good numerical accuracy for the profile func-
tions fðrÞ and AðrÞ is required. As in previous publications
[33,34] we have the method of Bais and Primack [35].

III. FLUCTUATION OPERATOR AND ONE-LOOP
STRING TENSION

The fluctuation operator is defined in general form as

M ¼ 	2S

	c �
i ðxÞ	c jðx0Þ

��������c k¼c cl
k

; (3.1)

where c i denotes the fluctuating fields and c cl
i the ‘‘clas-

sical’’ background field configuration; here these will be
the vortex and the vacuum configurations. If the fields are
expanded around the background configuration as c i ¼
c cl

i þ�i and if the Lagrange density is expanded accord-
ingly, then the fluctuation operator is related to the second-
order Lagrange density via
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L II ¼ 1
2�

�
iMij�j: (3.2)

In terms of the fluctuation operators M on the vortex
andM0 on the vacuum backgrounds, the effective action is
defined as

Seff ¼ i

2
ln

�
detMþ i�

detM0 þ i�

�
: (3.3)

As the background field is time independent and also
independent of z, the fluctuation operators take the form

M ¼ @20 � @23 þM?; (3.4)

where M? is a positive-definite operator describing the
transversal fluctuations. As is well known the logarithm of
the determinant can be written as the trace of the logarithm.
One can do the trace over p0, the momentum associated
with the time variable, by integrating over T

R
dp0=2�,

where T is the lapse of time. One then obtains

Seff ¼ �iT
1

2

X½E
 � Eð0Þ

 �; (3.5)

where E
 are square roots of the eigenvalues of the
positive-definite operator

� @23 þM?; (3.6)

and likewise Eð0Þ

 are those of the analogous operator in the

vacuum

� @23 þM0 ¼ �@23 � ~r2
? þm2: (3.7)

Here m2 ¼ diagðm2
1; . . . ; m

2
nÞ is the diagonal mass squared

operator for the various fluctuations.
So the effective action becomes equal to the difference

between the zero point energies of the fluctuations around
the vortex and in the vacuum, multiplied by �T. We can
also do the trace over the variable p3 by integration over
L
R
dp3=2�. We then obtain

Seff ¼ �iTL
X



Z dk3
2�

1

2
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ�2




q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ�ð0Þ 2




q
�;

(3.8)

where �2

 are the eigenvalues of the operator M? and

�ð0Þ 2

 those of � ~r2

? þm2. In the same way the classical
action becomes

Scl ¼ �TL�cl; (3.9)

where �cl is the classical string tension. So our goal

reduces to computing the one-loop approximation to the
string tension given by

�1-loop ¼ �cl þ �fl; (3.10)

where the fluctuation part of the string tension is given by

�fl ¼
X



Z dk3
2�

1

2
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ�2




q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ�ð0Þ 2




q
�: (3.11)

Of course all expressions are formal, the integrals do not
exist before a suitable regularization. Anyway we do not
plan to compute any eigenvalues of the fluctuation opera-
tors but will reduce these expressions to traces over
Euclidean Green’s functions, where renormalization will
be done properly. However, the formal identities will allow
us to trace the way in which the counterterms in the
original Lagrangian enter the final expressions that are
going to be computed numerically.
The fluctuation operator has been derived previously

[33], in the context of quantum corrections to the
Abelian instanton; we here recall this derivation. The
gauge and Higgs fields are expanded as

A� ¼ A
�
cl þ a�; (3.12)

� ¼ �cl þ ’: (3.13)

In the following we will drop the superscript cl, so the
letters A� and � will denote the background field, and a�

and ’ the quantum fluctuations.
In order to eliminate the gauge degrees of freedom, we

introduce, as in Ref. [36], the background gauge function:

F ðaÞ ¼ @�a
� � ig

2
ð��’��’�Þ: (3.14)

We note that for the background field @�A� ¼ 0. In the

Feynman background gauge we get the gauge-fixing
Lagrange density

LII
GF ¼ �

�
1

2
F 2ðaÞ

�
II

¼ � 1

2
ð@�a�Þ2 � ig

2
a�ð’@��þ�@�’� ’�@��

��@�’
�Þ þ g2

8
�2ð’� ’�Þ2: (3.15)

The associated Faddeev-Popov Lagrangian becomes

L FP ¼ 1
2�

�ð�@2 � g2�2Þ�: (3.16)

In terms of the real components ’ ¼ ’1 þ i’2 and � ¼
ð�1 þ i�2Þ, the second-order Lagrange density now be-
comes
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ðLþLGF þLFPÞII ¼ �a�
1
2ð�hþ g2�2Þa� þ ’1

1
2½�hþ g2A�A

� � �ð3�2 � v2Þ�’1

þ ’2
1
2½�hþ g2A�A

� � g2�2 � �ð�2 � v2Þ�’2 þ ’2ðgA�@�Þ’1 þ ’1ð�gA�@�Þ’2

þ a�ð2g2A��Þ’1 þ a�ð2g@��Þ’2 þ �1
1
2ð�h� g2�2Þ�1 þ �2

1
2ð�h� g2�2Þ�2; (3.17)

where we have omitted the superscript from �cl and Acl
�).

We now specify the fluctuating fields ðc 1; c 2; c 3; c 4; c 5Þ
as ða?1 ; a?2 ; ’1; ’2; �1;2Þ,

c 1

c 2

c 3

c 4

c 5

0
BBBBB@

1
CCCCCA ¼

a?1
a?2
’1

’2

�1;2

0
BBBBB@

1
CCCCCA; (3.18)

where we have used Euclidean notation for the transverse

gauge field components. The two Faddeev-Popov compo-
nents �1 and �2 have been subsumed into one field, c 5, as
they have identical fluctuation operators. We furthermore
write (see also above)

M ij ¼ ð@20 � @23Þ	ij þM?
ij ; (3.19)

separating the trivial part from the one that is modified by
the background field. With these preliminaries, we obtain
the following nonvanishing components of the overall
fluctuation operator M?

ij :

M?
11 ¼ ��? þ g2�2 M?

22 ¼ ��? þ g2�2

M?
13 ¼ 2g2A?

1 � M?
14 ¼ 2gr1�

M?
23 ¼ 2g2A?

2 � M?
24 ¼ 2gr2�

M?
33 ¼ ��? þ g2A? 2 þ g2�2 þ �ð�2 � v2Þ M?

34 ¼ �gA? � r
M?

44 ¼ ��? þ g2A? 2 þ �ð3�2 � v2Þ M?
43 ¼ gA? � r

M?
55 ¼ ��? þ g2�2:

(3.20)

Owing to the fermionic nature of the Faddeev-Popov
ghosts �1;2, it is understood that the contribution of the
operatorM55 enters with a factor�2 into the definition of
the one-loop string tension. The fluctuation operators for
the vortex and vacuum background are now obtained by
substituting the corresponding classical fields. The vacuum
fluctuation operator becomes a diagonal matrix of Klein-
Gordon operators with masses ðfmigÞ ¼ ðmW;mW;mW;
mH;mWÞ. It is convenient to introduce a potential V via

M ij ¼ M0
ij þV ij; (3.21)

where M0
ij ¼ 	ij½hþm2

i � and where the potential V ij

can be obtained from Eqs. (3.19) and (3.20). It will be
explicitly given below, in the partial wave basis.

IV. PARTIALWAVE DECOMPOSITION

The fluctuation operator M? can be decomposed into
partial waves with respect to the polar angle ’, and the
string tension decomposes accordingly. We introduce the
following partial wave decomposition for fields:

~a ¼ Xþ1

n¼�1
bnðrÞ

cos’

sin’

 !
ein’ffiffiffiffiffiffiffi
2�

p þ icnðrÞ
� sin’

cos’

 !
ein’ffiffiffiffiffiffiffi
2�

p ;

’1 ¼
Xþ1

n¼�1
hnðrÞ e

in’ffiffiffiffiffiffiffi
2�

p ;

’2 ¼
Xþ1

n¼�1
~hnðrÞ e

in’ffiffiffiffiffiffiffi
2�

p ;

�1;2 ¼
Xþ1

n¼�1
gnðrÞ e

in’ffiffiffiffiffiffiffi
2�

p :

(4.1)

After inserting these expressions into the Lagrange den-
sity and using the reality conditions for the fields, one finds
that the following combinations are real relative to each
other and make the fluctuation operators symmetric:

Fn
1 ðrÞ ¼ 1

2ðbnðrÞ þ cnðrÞÞ; Fn
2ðrÞ ¼ 1

2ðbnðrÞ � cnðrÞÞ;
Fn
3 ðrÞ ¼ ~hnðrÞ; Fn

4ðrÞ ¼ ihnðrÞ; Fn
5 ðrÞ ¼ gnðrÞ:

(4.2)

Writing the partial fluctuation operators as

M? ¼ M?
0 þ V; (4.3)

the free operators M?
0 become diagonal matrices with

elements
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M?
0;ii ¼ � d2

dr2
� 1

r

d

dr
þ n2i

r2
þm2

i ; (4.4)

where ðniÞ ¼ ðn� 1; nþ 1; n; n; nÞ and ðmiÞ ¼ ðmW;mW;mW;mH;mWÞ. The potential V takes the elements

Vn
11 ¼ m2

Wðf2 � 1Þ Vn
12 ¼ 0

Vn
13 ¼

ffiffiffi
2

p
mWf

0 Vn
14 ¼

ffiffiffi
2

p
mWf

Aþ 1

r

Vn
22 ¼ Vn

11 Vn
23 ¼ Vn

13

Vn
24 ¼ �Vn

14 Vn
33 ¼

ðAþ 1Þ2
r2

þ
�
m2

H

2
þm2

W

�
ðf2 � 1Þ

Vn
34 ¼ �2

Aþ 1

r2
n Vn

44 ¼
ðAþ 1Þ2

r2
þ 3

2
m2

Hðf2 � 1Þ
Vn

55 ¼ m2
Wðf2 � 1Þ Vi5 ¼ 0:

(4.5)

Choosing the dimensionless variable mWr, one realizes
that the fluctuation operator only depends on the ratio
mH=mW up to an overall factor m2

W which cancels in the
ratio with the free operator.

The fields AðrÞ and fðrÞ reach exponentially their
asymptotic limits given in Eq. (2.15). As a consequence,
it can be verified that the potentialVn

ij is of finite range, and

this entails that the computation of the Green’s function via
mode or Jost functions [22], as described below Eq. (5.10),
is mathematically sound. However, one finds a singular
behavior at r ¼ 0. There the terms ðAþ 1Þ2=r2 cause a
distortion of the centrifugal barrier for the Higgs fields.
This distortion is related to the winding number of the
background field. In a suitable diagonalization the effective
centrifugal barrier corresponds to ð �niÞ ¼ ðn� 1; nþ
1; n� 1; nþ 1; nÞ instead of the (ni) given above. This is
discussed in some more detail in Refs. [33,34]. At the same
time these terms cause the potential not to be square
integrable. Had we chosen the regular gauge for the back-
ground gauge field, the centrifugal barrier would be deter-
mined by (ni) as r ! 0, and the twisted barrier represented
by ( �ni) would determine the behavior as r ! 1. The
potential would be long range and again not square inte-
grable; so the difficulties encountered here at r ¼ 0 would
be transferred to r ! 1, then requiring a modification of
the mode function formalism. This explains our preference
for the singular gauge.

V. COMPUTATION OF THE EFFECTIVE STRING
TENSION

The method for computing the effective string tension
used here is based on the Euclidean Green’s function of the
fluctuation operator. This Green’s function is defined by

ð�2 þ k23 þM?ÞGð ~x?; ~x0?; k3; �Þ ¼ 1	ð ~x? � ~x0?Þ; (5.1)

and similarly for the operator M0. It contains the infor-

mation on the eigenvalues �2

 of the fluctuation operator

M? via

Z
d2x? TrGð ~x?; ~x?; k3; �Þ ¼

X



1

�2

 þ k23 þ �2

: (5.2)

We define a function Fðk3; �Þ as

Fðk3; �Þ ¼
Z

d2x? TrðGð ~x?; ~x?; k3; �Þ
� G0ð ~x?; ~x?; k3; �ÞÞ: (5.3)

We then find

�
Z 1

�1
d��2

2�
Fðk3; �Þ ¼

X



1

2
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ �2




q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ ð�ð0Þ


 Þ2
q

�: (5.4)

This expression is still to be integrated over k3 and is by
itself already linearly divergent. The sum over eigenvalues
becomes an integral

R
d2k? and the difference of the

energies behaves asymptotically as 1=jk?j. So regulariza-
tion is required. This will be discussed in the next section.
Assuming that it has been achieved, we can do the � and k3
integrations at once, using the fact that Fðk3; �Þ only

depends on p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ �2

q
, i.e., Fðk3; �Þ ¼ Fð0; pÞ. We

then obtain for the one-loop string tension

�fl ¼ �
Z 1

0

dpp3

4�
Fð0; pÞ: (5.5)

After these more formal considerations we will present
the way in which we actually compute Fðk3; �Þ. We first
use the partial wave decomposition to write
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Fðk3; �Þ � FðpÞ ¼ Xþ1

n¼�1
FnðpÞ; (5.6)

where

FnðpÞ ¼
Z

drrTrðGnðr; r; pÞ �G0
nðr; r; pÞÞ; (5.7)

and where the partial wave Green functions are defined by

ðMn þ p2ÞGnðr; r0; pÞ ¼ 1
1

r
	ðr� r0Þ: (5.8)

For M0
n the Green function is simply a diagonal matrix

with elements

G 0
n iiðr; r0; pÞ ¼ Inið�ir<ÞKnið�ir>Þ; (5.9)

where �i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p2
q

. For the Green function of the

operator Mn the matrix elements similarly become [19]

G n ijðr; r0; pÞ ¼ f
�ni ðr<Þf
þnj ðr>Þ; (5.10)

where the mode functions f
�ni form a fundamental system
of linearly independent solutions of (5.8), regular as r ! 0
for the minus sign and as r ! 1 for the plus sign. For the
single channel, this representation of Green’s functions by
Jost functions can be found in many textbooks, e.g.,
Ref. [22]. For coupled channels, a derivation can be found
in the Appendix of Ref. [37]. The correct normalization is
obtained by imposing the boundary conditions

f
�ni ðrÞ ’ 	

i Inið�irÞ; f
þni ðrÞ ’ 	


i Knið�irÞ; (5.11)

as r ! 1. Actually we have solved numerically the dif-
ferential equations for the functions h
�i defined by

f
�ni ¼ B�
nið�irÞð	
�

i þ h
�ni ðrÞÞ; (5.12)

where Bþ
ni ¼ Kni and B�

ni ¼ Ini are the appropriate Bessel

functions, and with the boundary conditions h
�ni ! 0 as
r ! 1. In this way, one keeps track of the free contribution
/ 	


i and

Tr½Gnðr; r; �Þ �G0
nðr; r; �Þ�

¼ ½hi�ni ðrÞ þ hiþni ðrÞ þ h
�ni ðrÞh
þni ðrÞ�Inið�irÞKnið�irÞ;
(5.13)

to be inserted into (5.6). Equations (5.5), (5.6), (5.7), and
(5.13) define an exact expression for the one-loop string
tension, which, however, has to be renormalized.

VI. RENORMALIZATION

The expression (5.5) for the string tension is divergent.
The trace of the Green’s function appearing in this defini-
tion, see Eq. (5.7), can be expanded perturbatively with
respect to the potential V , and one finds that the diver-
gences arise from contributions of first and second order in
V . These can be related to the divergences found in
standard perturbation theory which can be regularized
and renormalized in the usual way. The strategy for renor-
malization is, therefore, to first subtract the divergent parts
from FðpÞ and then to add back the finite parts remaining
after regularization and renormalization. This will be dis-
cussed in detail in this section.
The expansion of the Green’s function is based on the

equations

MGðx; x0Þ ¼ ðM0 þV ÞGðx; x0Þ ¼ 	4ðx� x0Þ (6.1)

and

M 0G0ðx; x0Þ ¼ 	4ðx� x0Þ (6.2)

from which we get the standard expansion

Giiðx; xÞ ¼ G0
iiðx; xÞ �

Z
d4x0G0

iiðx; x0ÞV iiðx0ÞG0
iiðx0; xÞ

þ
Z

d4x0
Z

d4x00G0
iiðx; x0ÞV ikðx0Þ

� G0
kkðx0; x0ÞV kiðx00ÞG0

iiðx00; xÞ þ � � � ; (6.3)

where we have already taken the diagonal elements of
Green’s function at equal arguments, as needed here. The
potential V ij is a function only of the transversal compo-

nents of x. We call this expansion of the Green’s function
the vertex expansion, the vertices being given by the com-
ponents of the potential V . The first two terms in this
expansion are represented graphically in Figs. 1 and 2. The
Green’s functions G0 are of course just the Feynman
propagators and in this form the expansion can be com-
pared easily with the Feynman graph expansion of the
effective action. The vertex graphs and the Feynman
graphs are not identical, but closely related. In general,
the one-vertex graph is a sum of several Feynman
graphs. The relation will be presented in detail below, in
Secs. (VI A)–(VI F).

Vii (x)

i i

x’

FIG. 1. The one-vertex graph. The cross symbolizes the point
where the first-order Green’s function is contracted.
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Using formulas given in Appendices A, B, and C, the
vertex expansion can be formulated in terms of partial
waves, and this will be the basis for performing the sub-
tractions numerically.

Our numerical results are computed in such a way that
we first compute the contributions of the subsystems for
fixed n, then sum over n, and finally integrate over p. The
subtractions necessary to make the summation over n and
the integration over p convergent are done in the partial
waves. There are two ways of doing this: either one plainly
subtracts in the partial waves the first-order contributions

TrGð1Þ
n ¼ �TrG0

nViiG
0
n and the second-order contributions

TrGð2Þ
n ¼ TrG0

nVijG
0
nVjiG

0
n, or one does the subtractions

already in the functions h
�n;i as described in detail in

Ref. [21]. For the Faddeev-Popov sector we have used
both methods and the results agree very well. In the
gauge-Higgs sector, the singularity of the external gauge
field at r ¼ 0 leads to specific difficulties, to be discussed
below. These are easier to handle with the first method, and
so we decided to work with the plain subtractions
throughout.

The essential problems occurring here are twofold:
(i) the external gauge field is not square integrable, due
to its singularity at r ¼ 0, and (ii) there are cancellations
between graphs of different order in the external vertices,
the well-known cancellation of the quadratic divergence in
the vacuum polarization involves seagull terms with one
vertex and graphs with two vertices. Such cancellations
occur in higher orders as well, so one has to be careful;
some contributions with two external vertices do not have
to be subtracted, because their divergences are canceled by
those of graphs with more than two vertices. These state-
ments apply both to the vertex expansion for the Green’s
function as also to Feynman graphs with different numbers
of vertices.

In the following wewill treat the various contributions of
first and second order in the vertices term by term, compar-
ing the contributions which are subtracted with the corre-
sponding Feynman graphs. The subtracted contributions
are then added back in covariant form. In this way we
preserve covariance, which would be violated if we would
introduce noncovariant cutoffs (e.g. in p).

The Feynman rules are formulated in the vacuum sector,
with a gauge fixing analogous to the one for the vortex

sector: we define the background gauge function

F vðAÞ ¼ @�a
� � ig

2
½ðvþ’1Þ�’�ðvþ’1Þ’�� (6.4)

and the gauge-fixing Lagrangian

LII
GF ¼ �

�
1

2
F 2

vðAÞ
�
II

¼ � 1

2
ð@�a�Þ2 þ ga�ð’2@�’1 þ ðvþ ’1Þ@�’2Þ

�
�
g2

2
v2 þ g2v’1 þ g2

2
’2

1

�
2
’2

2: (6.5)

FIG. 3. Vertices for Feynman graphs derived from the
Lagrangian (6.6): gauge-Higgs sector. We have not included
combinatorial factors for permutations of the external lines.

Vij(x) Vji(x’)

x’’

i i

j

FIG. 2. The two-vertex graph. The cross symbolizes the point
where the second-order Green’s function is contracted.
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Then the Lagrangian, including the gauge fixing and Faddeev-Popov terms, takes the form

L ¼ � 1

2
@�a�@

�a� þ 1

2
m2

Wa�a
� þ 1

2
@�’1@

�’1 � 1

2
m2

H’
2
1 þ

1

2
@�’2@

�’2 � 1

2
m2

W’
2
2 þ 2ga�’2@�’1 þ g2a�a

�v’1

þ 1

2
g2a�a

�ð’2
1 þ ’2

2Þ �
�

4
ð’4

1 þ ’4
2 þ 2’2

1’
2
2Þ � �v’3

1 � �v’1’
2
2 � g2v’1’

2
2 �

g2

2
’2

1’
2
2

þX2
i¼1

�i

1

2
ð�h� g2ðvþ ’1Þ2Þ�i: (6.6)

The vertices for the Feynman rules are presented in Figs. 3
and 4.

We denote as Feynman graphs the vacuum graphs with
the external sources which are provided by the classical
Higgs and gauge fields: ’1ðxÞ ¼ v½fðrÞ � 1�, ’2 ¼ 0,
a� ¼ 0 for� ¼ 0, 1 and ai ¼ �ikxkðAðrÞ þ 1Þ=gr2 for i ¼
3, 4. Vacuum graphs with external fields ’2 will not be
displayed as they do not contribute.

A. Graphs with one vertex

The graphs with one vertex all come within a combina-
tion analogous to the one displayed in Fig. 5, except for
the graphs with the seagull vertex. The external lines v�1

and �2
1 combine as v2ðfðrÞ � 1Þ þ v2ðf� 1Þ2=2 ¼

v2ðf2 � 1Þ=2. They then are in correspondence with one
of the vertex graphs with the external potential ViiðrÞ. In
order to illustrate the relation between the Feynman and
vertex graphs, we consider the graphs with a Higgs field
loop. The corresponding vertex graph is the one with the
vertex V44. We use the subscript 44 for identifying this
contribution.

The Feynman rules yield the contribution

3i�v2 m2
H

32�2

�
L� þ 1� ln

m2
H

�2

�
LT

Z
d2x

�
ðfðrÞ � 1Þ

þ 1

2
ðfðrÞ � 1Þ2

�

¼ iLT
3m2

H

64�2

�
L� þ 1� ln

m2
H

�2

�Z
d2x½f2ðrÞ � 1�

� �iLT��fl;44; (6.7)

where L� ¼ 2=�� 
þ ln4� and where we have used

�v2 ¼ m2
H=2. The factor LT comes from the trivial inte-

grations over time and along the string axis. The Feynman
graph constitutes a correction to iS, where S is the action,
so as an energy correction it receives a minus sign.
The contribution we subtract is given, in the partial

waves, by

Fn
44 ¼ �

Z 1

0
rdr

Z 1

0
r0dr0VH

44ðrÞG0
nðr; r0; �HÞG0

nðr0; r; �HÞ:
(6.8)

The corresponding vertex graph is of the type shown in
Fig. 1. As announced above, we do not include the ðAðrÞ þ
1Þ2=r2 term and denote the restricted potential by VH

44. We
also leave out the index n as this potential does not depend
on it. The r0 integration can be carried out and one finds

Fn;44 ¼ d

dm2
H

Z 1

0
rdrV44ðrÞG0

nðr; r; �HÞ: (6.9)

This can be summed up to yield

F44ðpÞ ¼ d

dm2
H

2�
Z 1

0
rdrVH

44ðrÞG0ðx;x; �HÞ

¼ 1

2p

d

dp

Z d2k

ð2�Þ2
1

k2 þ p2 þm2
H

Z
d2xVH

44ðrÞ:
(6.10)

This is discussed in some more detail in Appendix B.
Integration over dpp3=4� leads, after integration by parts,
to

FIG. 4. Vertices for Feynman graphs derived from the
Lagrangian (6.6): Faddeev-Popov sector, without combinatorial
factors for permutations of external lines.

ϕ

ϕ
1

1

ϕ
1

ϕ

ϕ ϕ

ϕ1

1

1

1

FIG. 5. Feynman graphs corresponding to the one-vertex graph
with VH

44.
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��fl;44 ¼ �
Z 1

0

p3dp

4�
F44ðpÞ

¼
Z 1

0

pdp

4�

d2k

ð2�Þ2
1

k2 þ p2 þm2
H

Z
d2xVH

44ðrÞ

¼ 1

2

Z d�dk3d
2k

ð2�Þ4
1

k2 þ k23 þ �2 þm2
H

�
Z

d2xVH
44ðrÞ: (6.11)

If we use dimensional regularization applied to the
Euclidean four momentum integration d�dk3d

2k ¼ d4k,
we obtain

��fl;44 ¼ � m2
H

32�2

�
L� þ 1� ln

m2
H

�2

�Z
d2xVH

44ðrÞ

¼ �3
m4

H

64�2

�
L� þ 1� ln

m2
H

�2

�Z
d2xðf2ðrÞ � 1Þ

(6.12)

in agreement with the result from the Feynman graph. In
this case it was possible to check in detail the relation
between the subtracted part, the vertex graph, and the
Feynman graphs.

Obviously the procedure is analogous for the other
graphs with one vertex. We obtain, both by using the
Feynman graphs of Fig. 6 as well as from the vertex graph:

��fl;33 ¼ � m2
H

32�2

�
L� þ 1� ln

m2
W

�2

�Z
d2xVH

33ðrÞ

¼ �ðm2
H þ 2m2

WÞ
m2

H

64�2

�
L� þ 1� ln

m2
W

�2

�

�
Z

d2xðf2ðrÞ � 1Þ: (6.13)

For the contribution of V11 and V12 in the sector of angular
momentum n, one notes that they involve the Green’s
functions G0

n�1. In the sum the shifts compensate each

other and the result is, both from the Feynman graphs in
Fig. 7 as well as from the vertex graphs,

��fl;11þ22 ¼ � m2
W

32�2

�
L� þ 1� ln

M2
W

�2

�

�
Z

d2x½V11ðrÞ þ V22ðrÞ�

¼ � m4
W

16�2

�
L� þ 1� ln

m2
W

�2

�

�
Z

d2xðf2ðrÞ � 1Þ:

(6.14)

These are canceled exactly by the Faddeev-Popov graphs
of Fig. 8.

B. Graphs with two vertices: Vii � Vii

We have subtracted in the partial waves the second-order

contributions to F ð2Þ
n ðpÞ of the type

Fn;ij;jiðpÞ ¼
Z

dr0r0
Z

drr
Z

dr00r00VijðrÞG0
nðr; r0; �jÞ

� Vjiðr0ÞG0
nðr0; r00; �iÞG0

nðr00; r; �iÞ; (6.15)

as represented graphically in Fig. 2. The r00 integration can
be done, see Appendix C, with the result

Fn;ij;jiðpÞ ¼ � d

dm2
i

Z
dr0r0

Z
drrVn

ijðrÞG0
nðr; r0; �jÞ

� Vn
jiðr0ÞG0

nðr0; r; �iÞ: (6.16)

We recall that �2
j ¼ p2 þm2

j . The one-to-one relation with

Feynman graphs is most obvious for the diagonal parts
where i ¼ j, and we will treat these first. For V33 and V44

we again discard the gauge field parts Vg
33 ¼ Vg

44 ¼
ðAðrÞ þ 1Þ=r2, restricting them to the Higgs field contribu-
tions VH

33 and VH
44 This will be justified later. As now �i ¼

�j, we can apply the derivative with respect to m2
i to both

Green’s functions and compensate this double action by a

ϕ

ϕ
1

ϕ
2

2

ϕ

ϕ ϕ

ϕ1

1

2

2

FIG. 6. Feynman graphs corresponding to the one-vertex graph
with VH

33.

ϕ
1

aν

aµ

aν

aµ

ϕ
1

ϕ
1

FIG. 7. Feynman graphs corresponding to the one-vertex
graphs with V11 and V22.

ϕ
1

η

η

η
ϕ

ϕ

1

1

FIG. 8. Feynman graphs corresponding to the one-vertex graph
with V55.
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factor 1=2. Furthermore, we can replace this derivative by
the derivative with respect to dp2 ¼ 2pdp, applied to the
whole graph. Then

�
Z dp

4�
p3Fn;ii;iiðpÞ ¼ 1

2

Z p3dp

4�

1

2p

d

dp

Z
dr0r0

�
Z

drrVn
iiðrÞG0

nðr; r0; �iÞVn
iiðr0Þ

�G0
nðr0; r; �iÞ

¼ �
Z pdp

8�

Z
dr0r0

Z
drrVn

iiðrÞ
�G0

nðr; r0; �iÞVn
iiðr0ÞG0

nðr0; r; �iÞ:
(6.17)

As the potentials under consideration do not depend on n
we may sum over n to obtain

�
Z pdp

8�

Z
d2x

Z
d2x0ViiðrÞG0ðx;x0; �iÞViiðr0Þ

�G0ðx0;x; �iÞ; (6.18)

and this is just the conventional Feynman graph with
external sources. As in the case with one vertex the integral
over pdp=2� can be rewritten as an integral over
dk3d�=ð2�Þ2, and the Green’s function G0 in two dimen-
sions involves the integral over dk2?, so altogether we have
an integration over d4k=ð2�Þ4, times a factor 1=4. In
momentum space we obtain

� 1

4

Z d2q

ð2�Þ2 j
~ViiðqÞj2

Z d4k

ð2�Þ4

� 1

½k2 þm2
i �½ðkþ qÞ2 þm2

j �
; (6.19)

where q ¼ ð0; 0;qÞ has only the transversal components.
The Euclidean Feynman integral is logarithmically di-

vergent. In dimensional regularization it is given by

Z d4��k

ð2�Þ4��

1

½k2 þm2
i �½ðkþ qÞ2 þm2

j �
¼ 1

16�2

�
L� �

Z 1

0
d!

� ln
!ð1�!Þq2 þ!m2

i þ ð1�!Þm2
j

�2

�
: (6.20)

This is to be folded with the Fourier transform of f2 � 1:

½f2 � 1��ðqÞ ¼ 2�
Z 1

0
drrðf2ðrÞ � 1ÞJ0ðqrÞ � �f2�1ðqÞ:

(6.21)

Altogether we find

��fl;44;44 ¼ � 9m4
H

256�2

Z d2q

ð2�Þ2
�
L�

�
Z 1

0
d! ln

!ð1�!Þq2 þm2
H

�2

�
j�f2�1ðqÞj2:

(6.22)

The corresponding Feynman graphs are displayed in Fig. 9.
The external legs combine as

18�2v4½ðfðrÞ � 1Þðfðr0Þ � 1Þ þ ðfðrÞ � 1Þ2ðfðr0Þ � 1Þ=2
þ ðfðrÞ � 1Þðfðr0Þ � 1Þ2=2
þ ðfðrÞ � 1Þ2ðfðr0Þ � 1Þ2=4�

¼ ð9=2Þ�2v4ðf2ðrÞ � 1Þðf2ðr0Þ � 1Þ
¼ ð9=8Þm4

Hðf2ðrÞ � 1Þðf2ðr0Þ � 1Þ: (6.23)

Using the MS scheme the finite contribution is given by

��fl;44;44 ¼ 9m4
H

256�2

Z d2q

ð2�Þ2

�
Z 1

0
d! ln

!ð1�!Þq2 þm2
H

�2
j�f2�1ðqÞj2:

(6.24)

The integral over the logarithm is discussed in
Appendix G. The Fourier transform of the potential, which
actually is a Fourier-Bessel transform, is discussed in
Appendix F. The analogous diagonal contributions, dis-
played in Figs. 10–12, are given by

��fl;33;33 ¼ ðm2
W þm2

H=2Þ2
64�2

Z d2q

ð2�Þ2

�
Z 1

0
d! ln

!ð1�!Þq2 þm2
W

�2
j�f2�1ðqÞj2;

(6.25)

ϕ

ϕ

ϕ
1

1

1

1

ϕ

ϕ

ϕ ϕ

ϕ1

1

1

1

ϕ1

ϕ

ϕ ϕ

ϕ1

1

1

1

ϕ

1

1

ϕ

FIG. 9. Feynman graphs corresponding to the vertex graph with VH
44 � VH

44.
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��fl;11;11 þ ��fl;22;22 ¼ m4
W

32�2

Z d2q

ð2�Þ2

�
Z 1

0
d! ln

!ð1�!Þq2 þm2
H

�2

� j�f2�1ðqÞj2; (6.26)

and

��fl;55;55 ¼ � m4
W

32�2

Z d2q

ð2�Þ2

�
Z 1

0
d! ln

!ð1�!Þq2 þm2
H

�2
j�f2�1ðqÞj2;

(6.27)

respectively. The latter two contributions, those of the
transverse gauge field and the Faddeev-Popov fluctuations,
cancel each other, as for the first-order contributions.

C. Graphs with two vertices: V13 � V31 and V23 � V32

The vertex graphs with V13 � V31 and V23 � V32 corre-
spond to the Feynman graph of Fig. 13. The Feynman
integral is given by

� ig2

8�2
q2
�
L� �

Z 1

0
d! ln

�!ð1�!Þq2 þm2
W

�2

�
: (6.28)

The external legs are given by vðf� 1Þ. Denoting the
Fourier transform by

½vðf� 1Þ��ðqÞ � v�f�1ðqÞ
¼ 2�v

Z 1

0
drrðfðrÞ � 1ÞJ0ðqrÞ (6.29)

we obtain for the Feynman graph including the external
legs

iLT
m2

W

8�2

Z d2q

ð2�Þ2 q
2j�f�1ðqÞj2

�
�
L� �

Z
d! ln

!ð1�!Þq2 þm2
W

�2

�
: (6.30)

The infinite part corresponds to the wave function renor-

malization of the Higgs field. In the MS scheme, the finite
correction to the string tension is given by

��fl;ð12Þ3;ð12Þ3 ¼ m2
W

8�2

Z d2q

ð2�Þ2 q
2j�f�1ðqÞj2

�
Z

d! ln
!ð1�!Þq2 þm2

W

�2
: (6.31)

ϕ

ϕ

ϕ
1

2

1

ϕ

2

ϕ

ϕ ϕ

ϕ1

1

2

ϕ1

2

ϕ

ϕ ϕ

ϕ1

1

2

2

ϕ

1

1

ϕ

FIG. 10. Feynman graphs corresponding to the vertex graph with VH
33 � VH

33.

aν

aµ

ϕ
1

ϕ
1

aν

aµ

ϕ
1

ϕ
1

ϕ
1

aν

aµ

ϕ
1

ϕ
1

ϕ

ϕ
1

1

FIG. 11. Feynman graphs corresponding to the vertex graphs with V11 � V11 and V22 � V22.

ϕ

η

ϕ
1 1

η

ϕ

ϕ η

η1

1

ϕ1

η

η

ϕ

ϕ

ϕ

ϕ

1

1

1

1

FIG. 12. Feynman graphs corresponding to the Faddeev-Popov ghost vertex graphs with V55 � V55.

ϕ
1

ϕ
1

µ ν

p−q

p

qq

FIG. 13. Feynman graph corresponding to the vertex graphs
with V13 � V31 and V23 � V32.
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D. Graphs with two vertices: V14 � V41 and V24 � V42

These nondiagonal terms correspond to the Feynman
graphs of Fig. 14. The external Higgs field legs combine as

1þ ðfðrÞ � 1Þ þ ðfðr0Þ � 1Þ þ ðfðrÞ � 1Þðfðr0Þ � 1Þ
¼ fðrÞfðr0Þ: (6.32)

The Feynman integral is given by

� ig��

g4

4�2

�
�
L� �

Z 1

0
d! ln

!ð1�!Þq2 þ!m2
W þð1�!Þm2

H

�2

�
:

(6.33)

The external legs combine to A��, which restricts to a

two-dimensional vector A?
i vfðrÞ. We write the Fourier

transform as

½A?
i vf�i� ¼ 2�

v

g
�ijq̂j

Z 1

0
drðAðrÞ þ 1ÞfðrÞJ1ðqrÞ

¼ v

g
�ijq̂j�AfðqÞ: (6.34)

The Feynman graph with external legs then is given by

iLT
m2

W

8�2

Z d2q

ð2�Þ2 j�AfðqÞj2

�
�
L� �

Z 1

0
d! ln

!ð1�!Þq2 þ!m2
W þð1�!Þm2

H

�2

�
:

(6.35)

The infinite term corresponds to the coupling constant
renormalization in the term g2j�j2A�A

�=2. For the finite

correction to the string tension we obtain

��fl;ð12Þ4;ð12Þ4 ¼ m2
W

8�2

Z d2q

ð2�Þ2 j�AfðqÞj2
Z 1

0
d!

� ln
!ð1�!Þq2 þ!m2

W þ ð1�!Þm2
H

�2
:

(6.36)

E. Graphs with two vertices: V34 � V43

The graphs containing V34 � V43 were the hardest stum-
bling block for this computation. As is well known, the
quadratic divergence of the second-order Feynman graph
of Fig. 15 cancels with the one of the first-order seagull
diagrams displayed in the same figure. The problem we
have here is the fact that the quadratic divergence is
proportional to A�A

� and this has a nonintegrable singu-

larity at r ¼ 0. While the ultraviolet divergence appears
only after summation over n and integration over p, the
radial integrations already appear in the partial waves. On
the other hand, all we have to ensure is the fact that the final
ultraviolet divergence is a wave function renormalization
and does not contain terms proportional to A�A

�.

Furthermore our subtraction must render the total result
finite. The solution of this problem was found essentially
by trial and error and amounts to subtracting in the partial
waves a second-order term

Z
rdr

Z
r0dr0V34ðrÞG0

nðr; r0; �WÞ
�
V43ðr0Þ � r2

r02
V43ðrÞ

�

� ½G0
nðr0; r; �HÞ�2

¼
Z

rdr
Z

r0dr02n
ðAðrÞ þ 1Þ

r2
G0

nðr; r0; �WÞ2n

� ðAðr0Þ � AðrÞÞ
r02

½G0
nðr0; r; �HÞ�2; (6.37)

and analogously for V43 � V34 or �W $ �H. This contains
already the subtraction of first-order divergences that
would arise from the gauge field parts of V33 and V44. So
the numerical results get finite without subtraction of those
first-order terms. However, this subtraction does not cor-

µ ν

ϕ
1

ϕ
1

µ ν

ϕ
1 ϕ

1

µ ν

ϕ ϕ1 1

FIG. 14. The Feynman graphs corresponding to the vertex graphs with V14 � V41 and V24 � V42.

FIG. 15. Vacuum polarization Feynman graphs. They are equivalent to the vertex graphs with V34 � V43 and V43 � V34, and to the
one-vertex graphs with Vg

33 and Vg
44, respectively.
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respond exactly to the subtraction of the Feynman graphs
of Fig. 15, it only takes care in the correct way of the
divergent terms. The finite terms will be different. So when
we add back the subtracted term after covariant regulari-
zation, we have to compute it in the same way as we did the
subtraction, not by evaluating the Feynman graphs with the
external gauge field legs. This we will describe now.

The Feynman integral corresponding to the second-
order diagram is given, in our gauge, by

g2
Z d4p

ð2�Þ4
4p�p�

ðp2 �m2
H þ i�Þððp� qÞ2 �m2

W þ i�Þ ;
(6.38)

where q� is the external momentum. The graph evaluates

to

i
g2

4�2

Z 1

0
d!

�
2Q2

4� �

�
L� þ 1

2
� ln

Q2

�2

�

þ q�q�!
2

�
L� � ln

Q2

�2

��
; (6.39)

with Q2 ¼ !m2
W þ ð1�!Þm2

H �!ð1�!Þq2. Our
gauge potential is transverse, so in the following we do
not have to keep track of the q�q� terms. The external

fields as we have used them in the subtraction can be
written as

�ikx̂k�jlx̂l
AðrÞ þ 1

gr

Aðr0Þ � AðrÞ
gr0

¼ �ikx̂k�jlx̂l

�
AðrÞ þ 1

gr

Aðr0Þ � 1

gr0
� ðAðrÞ þ 1Þ2

gr

1

gr0

�
:

(6.40)

Taking the Fourier transform and setting q ¼ q0 because of
momentum conservation, we have

1

g2
�ikq̂k�jlq̂lð2�Þ2

�Z
drJ1ðqrÞðAðrÞ þ 1Þ

Z
dr0J1ðqr0Þ

� ðAðr0Þ þ 1Þ �
Z

drJ1ðqrÞðAðrÞ þ 1Þ2
Z

dr0J1ðqr0Þ
�
:

(6.41)

Contracting with g�� we have

� 1

g2
ð2�Þ2

�Z
drJ1ðqrÞðAðrÞ þ 1Þ

Z
dr0J1ðqr0ÞðAðr0Þ þ 1Þ

�
Z

drJ1ðqrÞðAðrÞ þ 1Þ2
Z

dr0J1ðqr0Þ
�
: (6.42)

At first we consider the divergent part of the Feynman
graph. It is given by

i
g2

16�2
g��L�

�
1

3
q2 � ðm2

H þm2
WÞ
�
: (6.43)

This is to be multiplied with the external leg factor given
above and to be integrated with d2q=ð2�Þ2. The part inde-
pendent of q2 vanishes upon this integration:

Z
qdq

�Z
drJ1ðqrÞðAðrÞ þ 1Þ

Z
dr0J1ðqr0ÞðAðr0Þ þ 1Þ �

Z
drJ1ðqrÞðAðrÞ þ 1Þ2

Z
dr0J1ðqr0Þ

�

¼
�Z

drðAðrÞ þ 1Þ
Z

dr0ðAðr0Þ þ 1Þ �
Z

drðAðrÞ þ 1Þ2
Z

dr0
�
1

r
	ðr� r0Þ ¼ 0; (6.44)

where we have used

Z
qdqJnðqrÞJnðqr0Þ ¼ 1

r
	ðr� r0Þ: (6.45)

This cancellation implies, as it should, the absence of a divergent term proportional to A�A
� in our subtraction. The

remaining divergent term is proportional to q2. We note that now q2 ¼ �q2. Furthermore,
R
drJ1ðqrÞ ¼ 1=q,R

dqq2J1ðqrÞ ¼ 0, and qJ1ðqrÞ ¼ �dJ0ðqrÞ=dr. Including all factors we find

i
L�

16�2

1

3
2�

Z
q3dq

�Z
drJ1ðqrÞðAðrÞ þ 1Þ

Z
dr0J1ðqr0ÞðAðr0Þ þ 1Þ � 1

q

Z
drJ1ðqrÞðAðrÞ þ 1Þ2

�

¼ i
L�

16�2

1

3
2�

Z
qdq

Z
dr

dJ0ðqrÞ
dr

ðAðrÞ þ 1Þ
Z

dr0
dJ0ðqr0Þ

dr0
ðAðr0Þ þ 1Þ ¼ i

L�

16�2

1

3
2�

Z dr

r
½A0ðrÞ�2: (6.46)
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This is just the kinetic term of the gauge field, multiplied
with the wave function renormalization factor
ðg2=3ÞL�=8�

2. In the MS scheme this term is dropped.
We are left with the finite part. Denoting

2�
Z

drJ1ðqrÞðAðrÞ þ 1Þ ¼ �AðqÞ; (6.47)

2�
Z

drJ1ðrÞðAðrÞ þ 1Þ2 ¼ �A2ðqÞ; (6.48)

the finite part is given by

��fl;34;34 ¼ 1

8�2

Z d2q

ð2�Þ2
Z 1

0
d!Q2

�
ln
Q2

�2
� 1

�

�
�
�2
AðqÞ �

2�

q
�A2ðqÞ

�
; (6.49)

with Q2 ¼ !m2
H þ ð1�!Þm2

W þ!ð1�!Þq2. The inte-
gration over d! can be done analytically, we do not display
the somewhat lengthy result.

F. Graphs with two vertices: gauge field contributions
in V33 and V44

There are some contributions with two vertices which
we have left out. Denoting the gauge part of V33 with Vg

33

with Vg
33ðrÞ ¼ ðAðrÞ þ 1Þ2=r2 and analogously for V44, we

have left out second order the diagonal parts Vg
33 � VH

33 and

Vg
33 � Vg

33, and likewise for the 44 (Higgs) channel. These

diagrams with seagull-type vertices combine with higher
order graphs to give finite results. So they do not have to be
subtracted. The corresponding Feynman graphs are dis-
played in Figs. 16 and 17. If one looks at the Feynman
graphs there are graphs with more than three vertices that
are superficially divergent. In fact these combine in such a
way that their divergences are canceled. So with the sub-
tractions described in the previous subsections, we have
done the necessary steps towards computing the finite
result. Indeed with these subtractions the numerical results
get finite, and we have already presented the finite expres-
sions by which these graphs are to be replaced.

VII. NUMERICAL RESULTS

We have carried out the numerical program as described
in the previous sections, for values of � ¼ mH=mW be-
tween 0.5 and 2.
The program starts with computing a fundamental sys-

tem of the mode functions h
�n;i ðrÞ for the 4� 4 gauge-

Higgs and the Faddeev-Popov sector. We have used 2000
grid points in r, up to rmax ¼ 30, as we did already for the
classical profiles fðrÞ and AðrÞ. These are the basis for the
partial wave Green’s functions. This computation is iden-
tical to the one performed already in Refs. [33,34].
We have computed the partial wave Green’s function

and the related integrals up to n ¼ �n ¼ 35. Contributions
of higher nwere included by fitting the data between �n� 5
and �n using power fits An�3 þ Bn�4 þ Cn�5, and by
appending the sum for �n < n <1 on the basis of these
fits. The perturbative subtractions were done in the partial
waves, the sum over the unsubtracted and the subtracted
partial wave contributions constitute the unsubtracted and
subtracted functions FðpÞ. These are displayed, for � ¼ 1
in Figs. 18 and 19, for the gauge-Higgs and the Faddeev-
Popov sector, respectively. All the general features of these
figures are similar for other values of �. In these figures we
also present the perturbative contributions of first and
second order, summed separately. These can and have
been used for cross-checks against semianalytical results:
The numerical sum over the first-order subtractions can

be checked against the result obtained by summing the
partial wave contributions analytically. One finds

ϕα

α
2

ϕν

µ 2
ϕα

α
2

ϕν

µ 2

ϕ

ϕ1

ϕ

1

2 ϕ2 ϕ2 ϕ2

ϕ
1

FIG. 16. Feynman graphs corresponding to the vertex graph
with Vg

33 � VH
33 and the three-vertex graphs that cancel their

logarithmic divergences. The cancellation for the graphs related
to Vg

44 � VH
44 is analogous, with the replacement �1 ! ’2 in the

internal lines.

FIG. 17. Feynman graphs corresponding to the vertex graphs with Vg
33 � Vg

33 and Vg
44 � Vg

44 and the higher order graphs that cancel
their logarithmic divergences.
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X
i¼1;4

FiiðpÞ ¼ �
�
3m2

W þm2
H=2

2�2
W

þ 3m2
H=2

2�2
H

�

�
Z

rdrðf2ðrÞ � 1Þ: (7.1)

The Faddeev-Popov contribution, which was computed
separately, behaves (including the factor �2) as

F55ðpÞ ¼ m2
W

�2
W

Z
rdrðf2ðrÞ � 1Þ: (7.2)

The integrals over r, here and below, are computed nu-
merically using the classical profiles.

For the second-order contributions, we cannot do the
sum over partial waves analytically, this involves the nu-

merical Fourier transforms of various functions of the
classical profiles; but we can easily check the asymptotic
behavior. It is given by

X
ij

FijijðpÞ ¼
�
ðm4

W þ ðm2
W þm2

H=2Þ2 þ 9m4
H=4Þ

�
Z

rdrðf2ðrÞ � 1Þ2 þ 8m2
W

Z
rdrf0ðrÞ2

þ 8m2
W

Z
rdrf2ðrÞ ðAðrÞ þ 1Þ2

r2

þ 4
Z

rdr
½A0ðrÞ�2

r2

�
1

4p4
: (7.3)

The first term collects the diagonal contributions that can
be derived analytically by summing up the partial waves.
The three other contributions are retrieved from the
Feynman graphs by doing the transverse loop momentum
integrations only. They collect the 1313 and 2323 contri-
butions, the 1414 and 2424 contributions, and the 3434
contribution, respectively. Of course these can also be
computed and verified separately. The asymptotic behavior
of the Faddeev-Popov contribution is given by

F5555ðpÞ ¼ 2
m4

W

4p4

Z
rdrðf2ðrÞ � 1Þ2: (7.4)

These semianalytic results can be and have been checked
against the numerical subtractions, thus verifying prefac-
tors and signs.
After the subtractions, the function FsubðpÞ behaves as

p�6 and the integral over p4dp can be done in order to
obtain the subtracted part of the string tension. Finally, we
have to add back the subtracted terms in a covariantly
regularized and renormalized form given in the previous
section.
As we have already mentioned, the integrands for the p

integration are displayed in Figs. 18 and 19, for the gauge-
Higgs and the Faddeev-Popov sector, respectively. The
figures show the unsubtracted functions, the first-order
and second-order contributions and the subtracted func-
tions. Note that the functions differ, at large p, by several
orders of magnitude, so these subtractions are quite
delicate.
The gauge-Higgs sector displays a 2=p2 behavior for

small p, which is of course related to the 2 translation
modes of the two-dimensional solution (the ‘‘instanton’’).
Here it merges into a continuum of transverse string oscil-
lations. The small-p pole remains of course after subtrac-
tions and causes the gauge-Higgs sector to be much more
important than the Faddeev-Popov sector. Indeed, the finite
parts obtained after integration with p3dp=4� are much
larger for the gauge-Higgs than for the Faddeev-Popov
sector. Obviously this important contribution of the trans-
lation mode is related to the transversal quantum oscilla-
tion of the string.

011

p

1e-06

1e-05

0.0001
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1
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FIG. 18 (color online). The integrand function FðpÞ defined in
Eq. (5.6), for the gauge-Higgs sector: circles, the unsubtracted
function; dashed line, one-vertex contribution; dash-dotted line,
two-vertex contribution; squares, subtracted function; straight
line at small p, translation mode pole 2=p2; solid line at large p,
asymptotic fit.
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FIG. 19 (color online). The integrand function FðpÞ defined in
Eq. (5.6), for the Faddeev-Popov sector. Symbols and lines as in
Fig. 18, except that there is no translation mode pole at small p.
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At large p the subtracted integrand should behave as
p�6. For the Faddeev-Popov sector this is realized in ideal
form. For the gauge-Higgs sector there are deviations for
p > 6, which remain even if higher partial waves are
included. So they seem to be caused by some very small
numerical deficiencies in the low partial waves. Their
origin is difficult to localize. As these contributions only
appear above p ’ 6, we have done least-square fits of the
form A=p6 þ B=p8 based on the data points between p ¼
2 and p ¼ 6. These fits then were used in order to append
the integrals from p ¼ 6 to 1. The fits are displayed in
Figs. 18 and 19 for the gauge-Higgs and Faddeev-Popov
sectors, respectively.

The integrals over the subtracted part of the function
FðpÞ, including the asymptotic tail based on the fits, are
given in Table I; they are denoted as ��sub.

Now that we have computed the subtracted integrals, we
have to add back the regularized and renormalized diver-
gent contributions. Those with one vertex are given, in
unrenormalized form, by

��ð1Þ ¼ ��fl;33 þ ��fl;44

¼ � m2
W

32�2

��
L� þ 1� ln

m2
W

�2

�
ð1þ 2�2Þ

� 3

2
�2 ln�2

� Z
d2xðf2ðrÞ � 1Þ; (7.5)

see Eqs. (6.12) and (6.13), as well as the comment below
Eq. (6.14). One may choose the renormalization such as to
omit these tadpole contributions entirely, as one would do
in the 1þ 1 dimensional theory, using normal ordering the

field operators. Here we use the strict MS scheme and
choose the renormalization scale as �2 ¼ m2

W . Therefore,
we have to add back

��ð1Þ
fin ¼ � m2

W

32�2

��
1� ln

m2
W

�2

�
ð1þ 2�2Þ � 3

2
�2 ln�2

�

�
Z

d2xðf2ðrÞ � 1Þ: (7.6)

As we separately present this contribution in Table I, the
reader may easily change this contribution according to
her/his own preferences.
For computing the finite parts of the graphs with two

vertices, as given in Eqs. (6.22), (6.25), (6.26), (6.27),
(6.31), (3.6), and (6.49), we need the Fourier-Bessel trans-
forms of the classical profiles, as defined in Secs (VI A)–
(VI E), and the second-order kernels as defined in
Appendix G. The numerical evaluation is straightforward,
the Fourier-Bessel transforms were checked using the
Parseval equation. The sum of these contributions is de-
noted as

��ð2Þ
fin ¼ ��fl;11;11 þ��fl;22;22 þ��fl;33;33 þ��fl;44;44

þ ��fl;55;55 þ ��fl;ð12Þ3;ð12Þ3 þ ��fl;ð12Þ4;ð12Þ4
þ ��fl;34;34: (7.7)

The separate results for the graphs with one vertex,

��ð1Þ
fin , for the graphs with two vertices ��ð2Þ

fin , the sub-

tracted contribution ��sub, and the total one-loop contri-
bution ��tot are listed in Table I and displayed in Fig. 20.
Table I and Fig. 20 also include the values of the classical
string tension. We should like to recall that the subtracted
contribution still includes some gauge field graphs with
two vertices, which by themselves are divergent, but whose

0.6 0.8 1 1.2 1.4 1.6 1.8 2

ξ-1

-0.5

0

0.5

1

1.5

∆ σ

FIG. 20 (color online). The correction to the string tension as a
function of � ¼ mH=mW . Squares: contributions with one vertex
��ð1Þ; triangles: contributions with two vertices ��ð2Þ; dia-
monds: subtracted contribution ��sub; circles: total one-loop
correction ��tot; asterisks: the classical string tension multiplied
by g2=�. All string tensions are in units of m2

W .

TABLE I. The correction to the string tension as a function of
� ¼ mH=mW . We present the finite part of the contributions with

one vertex, ��ð1Þ
fin , the finite contributions from graphs with two

vertices��ð2Þ
fin , the sum of higher order terms ��sub, and the total

one-loop correction ��tot. We also include the classical string
tensions. All entries are in units of m2

W .

� ��ð1Þ
fin ��ð2Þ

fin ��sub ��tot g2�cl=�

0.5 0.244 �0:001 �0:731 �0:488 0.757 42

0.6 0.204 0.002 �0:773 �0:567 0.813 06

0.7 0.176 0.005 �0:795 �0:615 0.864 41

0.8 0.154 0.009 �0:811 �0:649 0.912 32

0.9 0.135 0.014 �0:825 �0:675 0.957 37

1.0 0.119 0.022 �0:837 �0:700 1.0000

1.1 0.105 0.030 �0:848 �0:713 1.0405

1.2 0.092 0.041 �0:859 �0:726 1.0792

1.3 0.080 0.054 �0:870 �0:736 1.1163

1.4 0.069 0.069 �0:881 �0:743 1.1518

1.5 0.058 0.086 �0:891 �0:747 1.1860

1.6 0.048 0.107 �0:902 �0:747 1.2190

1.7 0.038 0.130 �0:913 �0:745 1.2509

1.8 0.028 0.155 �0:923 �0:740 1.2818

1.9 0.018 0.184 �0:934 �0:731 1.3116

2.0 0.009 0.216 �0:944 �0:719 1.3406
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divergences are canceled by higher order vertex graphs, as
discussed in Sec. VI F.

VIII. SUMMARY

We have presented here a numerical computation of the
one-loop corrections to the string tension of the Nielsen-
Olesen vortex in the 3þ 1 dimensional Abelian Higgs
model, taking into account the fluctuations of gauge, the
Higgs, and the Faddeev-Popov fields. One of the main
complications arose from the fact that the divergences of
graphs with external gauge field loops require cancella-
tions of Feynman graphs with different numbers of exter-
nal vertices. This has required an extensive discussion of
vertex graphs and vacuum Feynman graphs. On the nu-
merical side, we had to adapt a previously developed
computation scheme to this new situation. We had to find
and have found a way of implementing the necessary
cancellations, which are relatively straightforward when
done analytically, into the numerical procedure.

The computation is exact to one-loop order in the sense
that the equations on which it is based, Eqs. (5.5), (5.6),
(5.7), and (5.13), constitute an exact expression for the
unrenormalized one-loop string tension, and that the ex-
pressions defining the subtractions and the finite parts to be
added back, as given in the various subsections of Sec. VI,
constitute an exact framework for the computation of the
renormalized one-loop string tension. Of course these ana-
lytical expressions have to be evaluated numerically, and of
course numerical computations are always of limited ac-
curacy. Some of these, like the accuracy in the low partial
waves, can be improved by using still better profiles, using,
e.g., finer grids, by a more precise solution of the differ-
ential equations, beyond the four-step Runge-Kutta we
used here. A problem of a more basic nature is the use of
extrapolations both in angular momentum n and in mo-
mentum p. The asymptotic behavior of the leading orders
in the vertex expansion can be cross-checked, as described
in Sec. VII. For the very small subtracted parts the asymp-
totic power behavior in n is expected to set in only if n is
much larger as pR, where R is a typical radius of the
classical solution, and vice versa for the asymptotic behav-
ior in p. The fact that using our power fit summation in n
leads finally to a p�6 of FsubðpÞ behavior represents a
valuable and—in our opinion—satisfactory cross-check.
However, we are faced here with a subtraction which,
already at p ¼ 10, reduces the unsubtracted integrand by
4 orders of magnitude. So even very small errors, e.g., in
the low partial waves, will set limits to an ‘‘ultimate’’
verification of this power behavior at really large p. The
use of uniform expansions of Bessel functions as proposed
in Ref. [38] could be helpful, but its application to a
coupled system and to the twice subtracted integrand
would constitute, to the least, a very involved research
project.

The size of the corrections of course depends on the
renormalization scheme and renormalization conditions.

We here have adapted the MS scheme with m2
W as the

renormalization scale. The corrections are sizable, but
small with respect to the classical string tension as long
as the gauge coupling g is smaller than unity, which may be
considered as a reasonable assumption. Unlike in the case
of the fermionic corrections, we do not have at our disposal
an extra parameter, the Yukawa coupling, that could render
the corrections important for heavy fermions. The parame-
ters are fixed already at the classical level.
Of course, in the present situation of cosmic string

phenomenology a precise information on the string ten-
sions and corrections to it cannot be considered as very
important. Indeed we consider as our main result that we
presented a method for computing such corrections in a
gauge theory with all its technical complications. The
situation may be different if these corrections are com-
puted at finite temperature, as it may be realistic in pri-
mordial cosmology. Such computations, using similar
techniques, have been done for bubble nucleation in
Ref. [39]. In the high-temperature approximation to the
electroweak theory, the corrections to the transition rate
were found to be huge [40,41].
A further application of the methods presented here may

be the investigation of the role of quantum fluctuations for
the electroweak string, in particular, in the context of its
stabilization [42]

APPENDIX A: PARTIALWAVE DECOMPOSITION
OF THE FREE GREEN’S FUNCTION

We shortly recall the partial wave decomposition of the
free Green’s function, a decomposition that is used repeat-
edly in the subtraction procedure. We here consider the
Green’s function in two dimensions, with an effective mass
�2 ¼ m2 þ p2; the one in four dimensions is obtained by
replacing p2 ¼ �2 þ k23 and by further integrations over �
and k3. We further omit the subscript ? , replacing x? !
x and k? ! k. The free Green’s function G0ðx;x0; �Þ is
defined as

G0ðx;x0; �Þ ¼
Z d2k

ð2�Þ2
eik�ðx�x0Þ

k2 þ �2
: (A1)

It can be computed readily, using formulas (9.1.18) and
(11.4.44) of Ref. [43]:

G0ðx;x0; �Þ ¼ 1

4�2

Z 1

0
kdk

Z �

0
d�

2 cosðkR cos�Þ
k2 þ �2

¼ 1

2�

Z 1

0

dkkJ0ðkRÞ
k2 þ �2

¼ 1

2�
K0ð�RÞ; (A2)

with R ¼ jx� x0j. Furthermore this may be expanded,
using Eq. (4) in section 7.6.1 of Ref. [44] as
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G0ðx;x0; �Þ ¼ 1

2�

X1
k¼�1

Knð�r>ÞInð�r<Þein�: (A3)
APPENDIX B: FIRST-ORDER CONTRIBUTIONS

TO THE PARTIALWAVES

Using the formula for the free Green’s function derived
in Appendix A the first-order contribution to the Green’s
function in two dimensions is given by

Gð1Þðx;x0; pÞ ¼ �
Z

d2x00G0ðx;x00; �ÞVðr00ÞG0ðx00;x0; �Þ

¼ � 1

4�2

Z
dr00r00d�00 X1

n¼�1

X1
n0¼�1

Knð�r>ÞInð�r<Þeinð���00ÞVðr00ÞKn0 ð�r0>ÞIn0 ð�r0<Þein0ð�00��0Þ

¼ � 1

2�

Z
dr00r00

X1
n¼�1

Knð�r>ÞInð�r<Þeinð���0ÞVðr00ÞKnð�r0>ÞInð�r0<Þ; (B1)

where r> ¼ maxfr; r00g, r0> ¼ maxfr0; r00g, and similarly
for r< and r0<. The ‘‘potential’’ VðrÞ subsumes all vertex
contributions appearing in first order.

We define

Gð1Þðx;x0; pÞ ¼ 1

2�

X1
n¼�1

einð���0ÞGð1Þ
n ðr; r0; pÞ (B2)

and therefore get

Gð1Þ
n ðr; r; pÞ ¼ �

Z
dr00r00K2

nð�r>ÞI2nð�r<ÞVðr00Þ: (B3)

Using the integrals of Appendix D, this can be integrated
over rdr with the resultZ 1

0
drrGð1Þ

n ðr; r; pÞ ¼ �
Z 1

0
dr0r0Vðr0Þ z

2�2

�f�2n½Inþ1ðzÞInðzÞK2
nðzÞ

þ Knþ1ðzÞKnðzÞI2nðzÞ�
þ z½K2

nþ1ðzÞI2nðzÞ
� I2nþ1ðzÞK2

nðzÞ�g; (B4)

with z ¼ �r0. Using the Wronskian relation

InðzÞKnþ1ðzÞ þ Inþ1ðzÞKnðzÞ ¼ 1

z
; (B5)

this can be rewritten asZ 1

0
drrGð1Þ

n ðr; r; pÞ ¼ �
Z 1

0
dr0r0Vðr0Þ 1

2�2

�f�2nInðzÞKnðzÞ
þ z½Knþ1ðzÞInðzÞ � Inþ1ðzÞKnðzÞ�g

¼ �
Z 1

0
dr0r0Vðr0Þ 1

2�

d

d�
InðzÞKnðzÞ:

(B6)

This is the contribution of one partial wave to the sum over
partial waves, which is then to be integrated with respect to

� and k3 to yield the string tension in first order. However,
the sum over partial waves and the integrals are divergent;
the perturbative contribution has to be subtracted from the
full, nonperturbative contribution of each partial wave in
order to obtain convergent summations and integrations.
We may check that formally the first-order perturbative
contributions can be summed up and integrated so as to
reobtain the Feynman integral. The sum over partial waves
of this expression yields

� X1
n¼�1

1

p

d

dp

Z 1

0
dr0r0Vðr0ÞInðzÞKnðzÞ

¼ �2�
1

2p

d

dp

Z 1

0
dr0r0Vðr0ÞG0ðx;x; �Þ

¼ � 1

2p

d

dp

Z
d2xVðjxjÞ

Z d2k?
ð2�Þ2

1

k2
? þm2 þ p2

:

(B7)

Going back to Sec. V we see that we have to integrate this
with �R

p3dp=4�. We obtain

�ð1Þ ¼ � 1

2

Z
d2xVðjxjÞ

Z p3dpd2k?
ð2�Þ3

1

2p

d

d�

� 1

k2
? þ p2 þm2

¼ � 1

2

Z
d2xVðjxjÞ

Z pdpd2k?
ð2�Þ3

1

k2
? þ p2 þm2

¼ � 1

2

Z
d2xVðjxjÞ

Z d�d3k

ð2�Þ4
1

k2 þ �2 þm2
;

(B8)

where in the last step we have substituted p2 ¼ k23 þ �2.

The result is indeed the first-order vacuum graph.
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APPENDIX C: SECOND-ORDER CONTRIBUTION
TO THE PARTIALWAVES

Using similar steps as in Appendix B and using again the
integrals in Appendix D and Wronskian relations, we find
that the second-order contribution to the partial waves is
given byZ

drrGð2Þ
n ðr; r; pÞ ¼ X

ij

Z
dr0r0Vn

ijðr0Þ
Z

dr00r00Vn
jiðr00Þ

� Inið�ir<ÞKnið�ir>Þ
�
� 1

2�j

d

d�j

�

� Injð�jr<ÞKnjð�jr>Þ; (C1)

where r< ¼ minðr0; r00Þ and r> ¼ maxðr0; r00Þ. The compu-
tation is quite lengthy, as we start with an expression where
the values r, r0, and r00 appear in six different orderings.
Here we have written all relevant indices, as the two
propagators have, in general, different masses and angular
momenta. We note that the differentiation with respect to

�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

j

q
can be written as a differentiation with

respect to p if the combinations VijVji and VjiVij are

combined. If applied to the sum over i and j, this results
in a double counting that has to be compensated by a factor
1=2. SoZ

drrGð2Þ
n ðr; r; pÞ ¼ 1

2

�
� 1

2p

d

dp

�X
ij

Z
dr0r0Vn

ijðr0Þ

�
Z

dr00r00Vn
jiðr00ÞInið�ir<Þ

� Knið�ir>ÞInjð�jr<ÞKnjð�jr>Þ:
(C2)

APPENDIX D: SOME INTEGRALS

In our calculations we repeatedly need some integrals
over Bessel functions which we write down here, without
derivation. They can be obtained from Eq. (11.3.29) of
Ref. [43] by taking the limit k ! l (see there). The for-
mulas areZ r

0
drrI2nð�rÞ ¼ z

2�2
f�2nInþ1ðzÞInðzÞ

þ z½I2nðzÞ � I2nþ1ðzÞ�g; (D1)

Z 1

r
drrK2

nð�rÞ ¼ z

2�2
f�2nKnþ1ðzÞKnðzÞ

� z½K2
nðzÞ � K2

nþ1ðzÞ�g; (D2)

Z r
drrInð�rÞKnð�rÞ ¼ z

2�2
fn½Knþ1ðzÞInðzÞ

� KnðzÞInþ1ðzÞ� þ z½InðzÞKnðzÞ
þ Inþ1ðzÞKnþ1ðzÞ�g; (D3)

with z ¼ �r. Note the limits of integration; the third in-
tegral is an indefinite one.

APPENDIX E: SOME USEFUL SUMS

We define the two-dimensional Green’s function

Gð0Þ
2 ðx;x0; �2Þ as the solution of the equation

½��2 þm2 þ �2�G2
ð0Þ ¼ 	2ðx� x0Þ: (E1)

We readily obtain

Gð0Þ
2 ðx;x0; �2Þ ¼

Z d2k

ð2�Þ2
eikðx�x0Þ

k2 þm2 þ �2
: (E2)

The integral may be done explicitly with the result

Gð0Þ
2 ðx;x0; �2Þ ¼ 1

2�
K0ð�RÞ; (E3)

with

R ¼ jx� x0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cosð’� ’0Þ

q
: (E4)

Furthermore the Gegenbauer expansion of the modified
Bessel function yields

Gð0Þ
2 ðx;x0; �2Þ ¼ 1

2�

X1
n¼�1

einð’�’0ÞInð�r<ÞKnð�r>Þ:

(E5)

The limit x ! x0 of the Green’s function does not exist.
However, what we need is

� 1

2�

d

d�

X1
n¼�1

Inð�rÞKnð�rÞ: (E6)

We note that

� 1

2�

d

d�
K0ð�RÞ ¼ R

2�
K1ð�RÞ: (E7)

The limit R ! 0 exists and one obtains

� 1

2�

d

d�

X1
n¼�1

Inð�rÞKnð�rÞ ¼ 1

2�2
: (E8)

APPENDIX F: FOURIER-BESSEL TRANSFORMS

For the evaluation of the perturbative contributions, we
need the Fourier transform of the external sources. Let us
consider at first a scalar field �ðr?Þ, independent of
Euclidean time � and z. In our application � will be
fðr?Þ � 1, f2ðr?Þ � 1 etc. We have
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~�ðq0; qz; q?Þ ¼
Z

d4xe�ip�x�ðr?Þ

¼ ð2�Þ2	ðp0Þ	ðpzÞ
Z 1

0
drr

�
Z �

��
d’�ðrÞe�iq?r cos’ (F1)

¼ ð2�Þ3	ðp0Þ	ðpzÞ
�
Z 1

0
rdr�ðrÞJ0ðq?rÞ: (F2)

In the following we will omit the trivial factor
ð2�Þ2	ðp0Þ	ðpzÞ originating from the � and z integrations
and write

~�ðqÞ ¼ ��ðqÞ ¼ 2�
Z 1

0
rdr�ðrÞJ0ðqrÞ (F3)

implying q� q?. The relation between the Fourier-Bessel
transformation and the inverse transformation implies the
relation

Z
qdqJlðqrÞJlðqr0Þ ¼ 1

r
	ðr� r0Þ (F4)

for arbitrary l. We deduce the Parseval equation

Z d2q

ð2�Þ2 j��ðqÞj2 ¼
Z dqq

2�
j��ðqÞj2

¼ 2�
Z 1

0
rdrj�ðrÞj2 ¼

Z
d2xj�ðrÞj2;

(F5)

which can be used as a numerical cross-check. If one
disregards V34 ¼ V43 and the gauge field parts of V33 and
V44, these Fourier-Bessel transforms are unproblematic.
We shortly discuss the various components.

In the diagonal we have the Higgs field parts which are
proportional to f2ðrÞ � 1. This function goes to zero ex-
ponentially as r ! 1, so the Fourier transform exists. It is
found to decrease exponentially at large q.

Considering the contribution of V13 ¼ V23 ¼
ffiffiffi
2

p
mWf

0,
the function f0ðrÞ decays exponentially as r ! 1 and goes
to a constant as r ! 0. So ~V13ðqÞ exists. It is found to
decrease as 1=q2.

The function V14ðrÞ ¼
ffiffiffi
2

p
mWfðAþ 1Þ=r goes to a con-

stant as r ! 0 and decreases exponentially as r ! 1. So
again the Fourier transform exists, and again it decreases as
1=q2.

All the Fourier transforms discussed up to now have to
be folded with the Feynman integral kernels (see
Appendix G) which behave as lnq2 at large q. One easily
convinces oneself that the integrals over the kernels times
the squared Fourier transforms are well convergent.

The Fourier transform of the gauge field

A?
i ¼ �ijx̂j

AðrÞ þ 1

r
(F6)

is problematic. The function is not square integrable; due
to the singularity at r ¼ 0 its norm diverges logarithmi-
cally. So the Fourier transform is not square integrable
either. Nevertheless it can be computed. The Fourier trans-
form must be of the form

~A?
i ðqÞ ¼ �ijq̂j�AðqÞ: (F7)

We have

�AðqÞ ¼ �ijq̂j ~A
?
i ðqÞ ¼ �ij�ik

Z
d2x

AðrÞ þ 1

r
e�i ~q ~rq̂jx̂k

¼
Z 1

0
rdr

AðrÞ þ 1

r

Z �

��
e�iqr cos’ cos’

¼ 2�
Z 1

0
rdr

AðrÞ þ 1

r
J1ðqrÞ: (F8)

The function �AðqÞ behaves as �q as q ! 0 with

� ¼ �
Z 1

0
rdrðAðrÞ þ 1Þ; (F9)

and like 2�=q as r ! 1. This asymptotic behavior makes
the square norm of the Fourier transform logarithmically
divergent, as a reflection of the logarithmic divergence of
the norm of the field A?

i ðrÞ. The handling of the graphs
with two external gauge field legs is discussed in some
detail is Sec. VI E.

APPENDIX G: THE SECOND-ORDER KERNELS

The finite parts of the second-order graphs all contain an
integral

Iðm2
a; m

2
b; q

2Þ ¼
Z 1

0
d! log½!ð1�!Þq2 þ!m2

a

þ ð1�!Þm2
b�: (G1)

We generally assumem2
a > 0,m2

b > 0. If furthermore q2 >
0 then we define

!� ¼ 1þm2
a �m2

b

2q2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þm2

a �m2
bÞ2 þ 4m2

bq
2

4q4

s
:

(G2)

One easily realizes that !þ > 1 and !� < 0. With this
definition I is given by

Iðma2; m2
b; q

2Þ ¼ !þ ln!þ þ!� lnð�!�Þ
þ ð1�!þÞ lnð!þ � 1Þ þ ð1�!�Þ
� lnð1�!�Þ þ lnq2 � 2: (G3)

This expression is symmetric in m2
a and m2

b.
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If q2 ¼ 0 the integral is given, for m2
a � m2

b, by

I ðm2
a; m

2
b; 0Þ ¼

m2
a lnm

2
a �m2

b lnm
2
b

m2
a �m2

b

� 1: (G4)

Finally, if m2
a ¼ m2

b we have

I ðm2
a;m

2
a; 0Þ ¼ lnm2

a: (G5)

For small q2 the integral behaves as c1 þ c2q
2, where

the constant c1 is of course identical to I2ðm2
a; m

2
b; 0Þ. For

large q2 the integral behaves as lnq2 þ constþOð1=q2Þ.

The correction to the gauge boson propagator, the term
��fl;3434 contains an integral

J ¼
Z 1

0
d!Q2

�
ln
Q2

�2
� 1

�
; (G6)

withQ2 ¼ !m2
H þ ð1�!Þm2

W þ!ð1�!Þq2. Using the
same conventions for !� and !þ with ma ¼ mw, mb ¼
mH. It is given by

J ¼ q2½ð9!� þ 9!þ � 18!�!þ � 6Þ lnð�!�!þ þ!� þ!þ � 1Þ þ ð9!� þ 9!þ � 18!�!þ � 6Þ lnq2

þ 3!2�ð3!þ �!�Þ ln1�!�
�!�

þ 3!2þð3!� �!þÞ ln!þ � 1

!þ
� 3!2� þ 18!�!þ � 6!� � 3!2þ � 6!þ þ 4�=18:

(G7)
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