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We present a comparison of the noncommutative field theories built using two different star products:

Moyal and Wick-Voros (or normally ordered). For the latter we discuss both the classical and the quantum

field theory in the quartic potential case and calculate the Green’s functions up to one loop, for the two-

and four-point cases. We compare the two theories in the context of the noncommutative geometry

determined by a Drinfeld twist, and the comparison is made at the level of Green’s functions and Smatrix.

We find that while the Green’s functions are different for the two theories, the Smatrix is the same in both

cases and is different from the commutative case.
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I. INTRODUCTION

It is likely that at short distances spacetime has to be
described by different geometrical structures and that the
very concept of point and localizability may no longer be
adequate. This is one of the main motivations for the
introduction of noncommutative geometry [1–3]. The sim-
plest kind of noncommutative geometry is the so-called
canonical one [4,5]. What is usually done for the construc-
tion of a field theory on a noncommutative space is to
deform the product among functions (and hence among
fields) with the introduction of a noncommutative ? prod-
uct, so that for the coordinate functions one has

½xi; xj�? � xi ? xj � xj ? xi ¼ i�ij: (1.1)

In the simplest case �ij is constant; i.e. it does not depend
on the x’s. The choice of the ? product compatible with
(1.1) is not unique; in the following we will introduce two
different products, the Moyal [6,7] andWick-Voros [8–11],
and compare their ‘‘physical predictions.’’

There are several reasons to consider field theories on a
noncommutative space equipped with the standard canoni-
cal noncommutativity, ranging from intrinsic motivations
to the localizability of events [4,5] to string theory [12] to
constructive field theories [13]. Field theories on noncom-
mutative spaces have interesting renormalization proper-
ties [14,15]. For a review see [16,17], their references and
their citations. What we will compare are field theories in
which the product among fields is substituted by the two
different ? products. This leads to an action in which
arbitrary degree derivatives of the fields are present, as a
series in �. Written in terms of derivatives the two actions
with the Moyal and Wick-Voros products are different.
There is however a map which renders equivalent the
algebras generated by the two products. Field theory with

the Wick-Voros product has been discussed in [18] as a
regularizing model, and their conclusion (that ultraviolet
divergences persist) is in agreement with ours.
This paper originates from the consideration that one

can reason in two ways: one point of view is to say that
what counts is the noncommutative structure of spacetime,
and the ? product is just a way to express this intimate
structure, and therefore one chooses the most convenient
product. As long as one is describing the same field theory,
the results should be the same, a fact noted already in [19].
Another view is to claim a total lack of interest in the
noncommutativity of spacetime. What counts is the fact
that one has a field theory on ordinary spacetime, whose
action contains an infinity of derivatives of arbitrary order.
With this second point of view one would not in principle
expect the same physical results from the two theories. In
this paper we calculated the Green’s functions of the Wick-
Voros field theory and found them to be different from the
Moyal case. This leads to a contradiction. We will see that
the contradiction is only apparent. Green’s functions are
not observable quantities; what is observable is the S
matrix.
Discussions of the properties of the S matrix often go

together with the issue of Poincaré invariance.
Relation (1.1) is not Poincaré invariant, and this casts
doubts on its being fundamental. It is however possible
to build a theory which is invariant under a deformation of
the Poincaré Lie algebra, so that the theory becomes a
twisted theory. This theory has a symmetry described by
a noncommutative, noncocommutative Hopf algebra. In
particular the kind of noncommutativity described by the
two ? products is the one generated by a twist [20–22].
Then the theory has a twisted Poincaré symmetry [23–25].
The presence of a twist forces one to reconsider all of the

steps in a field theory, which has to be built in a coherent
‘‘twisted’’ way. We will see that there is equivalence
between the two theories at the very end, where by ‘‘very
end’’ we mean the calculation of the Smatrix. Prior to this,
vertex, propagators and Green’s functions are in fact differ-
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ent. Moreover the equivalence is only obtained if a con-
sistent procedure of twisting all products is applied. In this
way the Poincaré symmetry, which appears to be broken in
(1.1), is preserved, albeit in a deformed way, as a non-
commutative, noncocommutative Hopf algebra.

There is some ambiguity in the issue of twisting, and
some results have been somewhat controversial [26–35]. In
an optimal world one should let experiments resolve these
ambiguities. Unfortunately the noncommutative structure
of spacetime is not yet mature for a confrontation with
experiments at such a level. What we do in this paper is to
use the field theories built with the Wick-Voros and Moyal
products to check each other. We will see that using a
consistent twisting procedure we obtain that at the level
of the S matrix the two theories are equivalent. This gives
us the indication on the procedure to follow for noncom-
mutative theories coming from a twist.

In this paper we will consider exclusively spatial non-
commutativity; i.e. time is a commuting variable. The
matrix � therefore is of the form

�ij ¼ �"ij; (1.2)

with " the antisymmetric tensor of order two.
The paper is organized as follows. In Sec. II we intro-

duce the two products. In Sec. III we discuss the classical
free field theory for the Wick-Voros product. In Sec. IV we
calculate the Green’s functions for the two theories for the
two- and four-point case to one loop and compare the two
cases. In Sec. V we describe the two products as twisted
noncommutative geometries. In Sec. VI we describe the
relevant twisted products which we then use in Sec. VII to
calculate the S matrix. A final short section contains the
conclusions.

II. THE WICK-VOROS AND MOYAL PRODUCTS

In this section we describe in a comparative way the two
? products we are using in this paper. The most well known
product is the Moyal product [6,7]

fð ~xÞ ?M gð ~xÞ ¼ fð ~xÞeði=2Þ�ij@Qi ~@jgð ~xÞ; (2.1)

where the operator @Q i (respectivly, ~@j) acts on the left

(respectively, the right). This product comes from a Weyl
map which associates to a function on the plane an operator
according to

�̂ MðfÞ ¼ 1

2�

Z
d2�~fð�1; �2Þei�ijX̂i�j

; (2.2)

where ~f is the symplectic Fourier transform of the function
f:

~f ¼ 1

��

Z
d2x~fðx1; x2Þe�i�ijx

i�j
; (2.3)

�ij is the inverse of �ij, and the X̂ are operators which

satisfy the commutation relation

½X̂i; X̂j� ¼ i�ij: (2.4)

It is useful to think of the operators X̂ in two dimensions in
an abstract way, without reference to spacetime, and define
them as

X̂ 1 ¼ âþ âyffiffiffi
2

p ; X̂2 ¼ â� ây

i
ffiffiffi
2

p ; (2.5)

and â is an operator which we define on a certain basis by
its components as

â nm ¼ ffiffiffiffiffiffi
�n

p
�m;nþ1; (2.6)

with m, n � 0. Of course we are using the analogy of the
commutation relations (2.4) with the usual quantum me-
chanical commutation relations and using the jni’s as a
convenient basis.
The Moyal product is then defined as

f ?M g ¼ ��1
M ð�̂MðfÞ�̂MðgÞÞ: (2.7)

From this expression it is not difficult (see for example
[36]) to obtain integral expressions for the product, a few of
which are collected in the appendix of [37]. The standard
expression is then an asymptotic expansion of the integral
expressions [37].
One important property of the Moyal product is that

Z
d2xf ?M g ¼

Z
d2xfg (2.8)

and obviously

x1 ?M x2 � x2 ?M x1 ¼ i�: (2.9)

We now proceed to the definition of the Wick-Voros
product. For the following it is useful to consider the space
as a complex plane defining:

z� ¼ x1 � ix2ffiffiffi
2

p ; (2.10)

where of course z�þ ¼ z�. With this substitution we define
the Wick-Voros product as

f ?V g ¼ X
n

�
�n

n!

�
@nþf@n�g ¼ fe�@Qþ ~@�g; (2.11)

where

@� ¼ @

@z�
¼ 1ffiffiffi

2
p

�
@

@x1
� i

@

@x2

�
: (2.12)

Notice that the Moyal product (2.7) may be rewritten in
these coordinates as

f ?M g ¼ feð�=2Þð@Qþ ~@��@Q� ~@þÞg: (2.13)

It results

zþ ?V z� ¼ zþz� þ �; z� ?V zþ ¼ zþz�; (2.14)

and therefore
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½zþ; z��?V
¼ �: (2.15)

Going back to the x’s, it is possible to see that this relation
gives rise again to the standard commutator among the x’s:

x1 ?V x2 � x2 ?V x1 ¼ i�: (2.16)

With the z� coordinates the Laplacian and the
d’Alembertian are, respectively, r2 ¼ 2@þ@� and h ¼
@20 �r2. The integral on the plane is still a trace, but the

strong condition of (2.8) is not valid any more:

Z
d2zf ?V g ¼

Z
d2zg ?V f �

Z
d2zfg; (2.17)

where by d2z we mean the usual measure on the plane
dzþdz�. We will also use the notation

k� ¼ k1 � ik2ffiffiffi
2

p (2.18)

for a generic vector ~k.
The Wick-Voros and Moyal products can be cast in the

same general framework in that they are both coming from
a generalized ‘‘Weyl map.’’ More precisely, as we saw in
(2.2) the Moyal product comes from a map which asso-
ciates operators to functions, with symmetric ordering. The
Wick-Voros product comes from a similar map, a weighted
Weyl map as follows:

�̂ VðfÞ ¼ 1

2�

Z
d2�~fð�; ��Þe��aye�� ��a: (2.19)

An equivalent way to associate the operators �̂VðfÞ to a
function f ¼ P

mnfmnz
mþzn� analytic on the plane is

�̂ VðfÞ ¼
X
mn

fmnâ
ymân; (2.20)

where â has been defined in (2.6). Thus effectively the map
(2.20) corresponds to the normal (or Wick) ordering (and is
sometimes called normal ordered product). In this sense
the two maps correspond to two different quantization
procedures (see for example [38,39]).

III. CLASSICAL FREE FIELD THEORY

Although the main interest of this paper is in the inter-
acting quantum field theory, we start the discussion from
the classical free case. In this section we discuss the kind of
field theory one obtains from a deformation of the free
Klein-Gordon action based on the Wick-Voros product.
Such analysis is unnecessary in the Moyal case, because
in that case the action, being quadratic in the fields, is the
same as in the commutative case.

We consider a field theory described by an action which
is a Wick-Voros deformation of a scalar field theory action,
obtained inserting the star product. Consider a classical
free theory and its action, Lagrangian density and

Lagrangian defined as:

S0 ¼
Z

dtL0 ¼
Z

dtd2zL0

¼
Z

dtd2z
1

2
ð@�’ ?V @�’�m2’ ?V ’Þ: (3.1)

With the help of (2.11) it may be rewritten as

S0 ¼
Z

dtd2z
1

2
ð@�’e�@Qþ ~@�@�’�m2’e�@Qþ ~@�’Þ

¼
Z

dtd2z
1

2
’½e�ð�=2Þr2ð�@2� �m2Þ�’: (3.2)

This is a theory which contains an infinite number of the
derivatives of the fields, and in principle even the Cauchy
problem would not be well defined. This appears to be the
biggest difference with respect to the noncommutative field
theory defined via the Moyal product. In the latter case the
action being the same as in the commutative case, the
solution of the free theory is still given by plane waves,
and upon quantization the propagator is the same as in the
commutative case. This time instead the action is different,
the theory is nonlocal as it contains derivatives of arbitrary
order.
The two products are equivalent in a precise technical

sense: there is an invertible map [40,41]

TðfÞ ¼ X
n

�ntnðfÞ (3.3)

with the tn differential operators, such that

Tðf ?M gÞ ¼ TðfÞ ?V TðgÞ; (3.4)

where

T ¼ eð�=4Þr2
: (3.5)

Therefore the two products define the same deformed
algebra. This is certainly true if we consider functions as
formal power series in the generators. The issue can be
more complicated in the realm of C� algebras. Starting
from the same set of functions the completion in the
supremum norm of the two products could in principle
be different.
The fact that the algebra is the same does not mean that

the two deformations of an action are the same. Therefore
let us map the free action S0 (3.1) written with the Wick-
Voros product to the corresponding action with the Moyal
product, using (3.5), to find which Moyal theory corre-
sponds to it.
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The action (3.1) is mapped into

S00 ¼
Z

dtd2zT�1ðL0Þ

¼
Z

dtd2z
1

2
ððe�ð�=4Þr2

@�’Þ ?M ðe�ð�=4Þr2
@�’Þ

�m2ðe�ð�=4Þr2
’Þ ?M ðe�ð�=4Þr2

’ÞÞ

¼
Z

dtd2z
1

2
ððe�ð�=4Þr2

@�’Þðe�ð�=4Þr2
@�’Þ

�m2ðe�ð�=4Þr2
’Þðe�ð�=4Þr2

’ÞÞ

¼
Z

dtd2z
1

2
ð@�’e�ð�=2Þr2

@�’�m2’e�ð�=2Þr2
’Þ;
(3.6)

which is not the free action with the Moyal product. In fact
in the latter case the noncommutative product could be
eliminated from the integral leaving just the free commu-
tative action. Therefore, the two actions being different,
they could in principle give different equations of motion.

Since we are dealing with a theory involving an infinite
number of derivatives we can ask whether we would need
an infinity of boundary conditions to solve the classical
theory. This is not so, as the higher derivatives appear as
analytic functions of the Laplacian, and in this case the
boundary problem is the same as in the standard case. Note
that with our choice of ��� our equation is second order in
the time derivatives, so that the initial value problem
requires knowledge of the field and its derivative as an
initial condition. But also if we had deformed the time
derivatives, the initial data for the Cauchy problem would
have been the same if the higher derivative had been an
analytic function of the d’Alembertian. For more details
and references see the recent paper [42].

Let us derive the classical equations of motion starting
from the variation of the action. Since the standard tech-
niques have been developed for a theory with a finite
number of derivatives, we will proceed from first principles
and start from the infinitesimal variation of the field:

’ ! ’þ �’: (3.7)

It is not difficult to see that the corresponding infinitesimal
variation of the action under such a transformation is given
by

�S0 ¼
Z

dtd2zðð@0’Þ ?V ð@0�’Þ � ð@þ’Þ ?V ð@��’Þ
� ð@þ�’Þ ?V ð@�’Þ �m2’ ?V �’Þ; (3.8)

where we have used the trace property of the integrals with
Wick-Voros products. By integrating by parts and using
once again the trace property we obtain, up to boundary
terms

�S0 ¼ �
Z

dtd2zð�’Þ ?V ð@0@0’� 2@þ@�’þm2’Þ;
(3.9)

namely,

�S0 ¼ �
Z

dtd2z
X1
n¼0

�n

n!
@nþð�’Þ

� @n�ð@0@0’� 2@þ@�’þm2’Þ: (3.10)

By integrating once again by parts we obtain

�S0 ¼ �
Z

dtd2z
X1
n¼0

ð��Þn
n!

ð�’Þ@nþ
� @n�ð@0@0’� 2@þ@�’þm2’Þ; (3.11)

that is,

�S0 ¼ �
Z

dtd2zð�’Þe��@þ@�ð@0@0 � 2@þ@� þm2Þ’:
(3.12)

Since the variation of the action �S must be vanishing for
any variation of the field �’, we obtain that the equation of
motion is given by

e��@þ@�ð@0@0 � 2@þ@� þm2Þ’ ¼ 0: (3.13)

Equivalently, it can be written as

e�ð�=2Þr2ðhþm2Þ’ ¼ 0: (3.14)

As we can see, the equation of motion (3.14) differs from
the classical Klein-Gordon equation

ðhþm2Þ’ ¼ 0 (3.15)

only by the presence of the exponential of the Laplacian, an
invertible operator. It is immediate to see that all solutions
of the commutative theory are still solutions of the non-
commutative one. It is in principle possible that there can
be solutions of the noncommutative equation (3.14) which
are not solutions of the commutative one. This is not the

case, due to the invertibility of the operator e�ð�=2Þr2
.

Notice that the on shell condition is not altered by the
presence of the deformation factor. In other words the
dispersion relation is the same in the two cases. In fact in
Fourier transform

’ðxÞ ¼
Z d3k

ð2�Þ3 e
ik	x ~’ðkÞ; (3.16)

and then Eq. (3.14) becomes

e�ð�=2Þr2ðhþm2Þ
Z d3k

ð2�Þ3 e
ik	x ~’ðkÞ

¼
Z d3k

ð2�Þ3 e
ð�=2Þk2ð�k2 þm2Þeik	x ~’ðkÞ ¼ 0: (3.17)

The relation
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e ð�=2Þk2ðk2 �m2Þ~’ðkÞ ¼ 0 (3.18)

gives the same on shell relation of the classical case since
the exponential never vanishes.

Classically therefore the two theories have the same
solutions of the equations of the motion, despite the fact
that the action, the Lagrangian and the equations of motion
are different.

IV. GREEN’S FUNCTIONS

Let us consider a field theory described by the action:

S ¼ S0 þ g

4!

Z
dtd2z’ ? ’ ? ’ ? ’; (4.1)

where ? is either ?M or ?V . In the following we will use a
generic ? for all relations and formulas valid for both
products. We now calculate the Feynman rules for these
field theories.

Because of property (2.8) the free theory is unchanged
for the Moyal case. Therefore the Moyal propagator is the
same as in the undeformed case. In the Wick-Voros case
[18] there are differences.

To this purpose let us rewrite the action S0 in Eq. (3.2) in
the form

S0 ¼
Z

dtd2zdt0d2z0’ðt; zÞKðt; t0; z; z0Þ’ðt0; z0Þ; (4.2)

with

Kðt; t0; z; z0Þ ¼ e�ð�=2Þr2ð�@2� �m2Þ�ðt� t0Þ�2ðz� z0Þ:
(4.3)

The quantum propagator �?V
ðx; yÞ is the two-point

Green’s function of the free theory, that is, the inverse of
the operator K,

�?V
ðxa; xbÞ ¼

Z d3p

ð2�Þ3 e
ip	ðxa�xbÞ e

�ð�=2Þj ~pj2

p2 �m2
: (4.4)

We can read off the propagator in momentum space and
compare it with the one in the Moyal (and undeformed)
case

Gð2Þ
0M
ðpÞ ¼ 1

p2 �m2
; Gð2Þ

0V
ðpÞ ¼ e�ð�=2Þj ~pj2

p2 �m2
: (4.5)

Since the poles in the propagator in momentum space are
the same as in the commutative theory, despite the change
in the propagator, the free field theory with the Wick-Voros
product is the same as in the commutative (and Moyal
noncommutative) case. This is the quantum counterpart of
the previous result that the solutions of the classical equa-
tions of the motion are the same. Nevertheless the two
propagators are not identical, and we will have to take this
into account in the following. Note however that for infinite
momentum there is an essential singularity, or a zero, of the
propagator, according to the sign of �. The meaning of the

essential singularity is not clear, but the oddity is that the
sign of � has no physical meaning since it can be changed
by an exchange of the sign of one of the two coordinates, in
a theory which appears to be parity invariant. We will see
later that, with the proper twisting of the theory, also this
paradox is solved.
We now proceed to the calculation of the interaction

vertex in the Wick-Voros case, comparing it with the
theory obtained with the Moyal product. In this latter
case the difference with respect to the commutative case
resides in the fact that the vertex acquires a phase [43]. In
order to see the corrections let us write down the Moyal
product as a convolution twist in momentum space1:

ðf ?M gÞðxÞ ¼
Z d3k

ð2�Þ3

� d3k0

ð2�Þ3
~fðkÞ~gðk0Þeiðkþk0Þ	xe�ði=2Þ� ~k^ ~k0 ;

(4.6)

where ~f and ~g are the Fourier transforms of f and g and

~k ^ ~k0 ¼ "ijkik
0
j: (4.7)

We see that in momentum space the Moyal product is the
standard convolution of Fourier transforms, twisted by a

phase. For the Wick-Voros product, defining k� ¼ ðk1 �
ik�Þ=

ffiffiffi
2

p
in a way analogous to (2.10) we have

ðf ?V gÞðzþ; z�; tÞ ¼
Z d3k

ð2�Þ3

� d3k0

ð2�Þ3
~fðkÞ~gðk0Þeiðkþk0Þ	xe��k�k0þ :

(4.8)

Explicitly the exponent of the twist in the convolution can
be expressed as

k�k0þ ¼ 1
2ð ~k 	 ~k0 þ i ~k ^ ~k0Þ (4.9)

with the same imaginary part as in the Moyal case (4.6)
plus a real part.
For a’4 theory in ordinary space the four-point vertex in

momentum space is the coupling constant multiplying the
� of momentum conservation:

V ¼ �i
g

4!
ð2�Þ3�3

�X4
a¼1

ka

�
: (4.10)

In the Moyal case we have that the vertex acquires a phase
factor due to the twist in the product (4.6):

V?M
¼ V

Y
a<b

e�ði=2Þ�ijkaikbj : (4.11)

1Some of the formulas of this section are specific to our 2þ 1
case, but the results are more general.
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The presence of the phase in the vertex makes it noninvar-
iant for a generic exchange of the momenta. This is a
consequence of noncommutativity and of the fact that the
integral of Moyal product of more than two functions is not
invariant for an exchange of the functions. Invariance for a
cyclic rotation of the factors still survives. This gives rise to
a difference between planar and nonplanar graphs and
ultimately to the well known phenomenon of infrared-
ultraviolet mixing [44].

In theWick-Voros case the correction, due to (4.9), is not
just a phase, but it contains a real exponent:

V?V
¼ V

Y
a<b

e��ka�kbþ ¼ V
Y
a<b

e�ð�=2Þð ~ka	 ~kbþi ~ka^ ~kbÞ: (4.12)

The exponent can have both signs, and in some case it
could diverge exponentially for large external momenta.
The divergence is however compensated by the fact that, to
the four-point function, there must be added the contribu-
tion of the four propagators, each of which comes with an
exponentially convergent part. These convergent parts
compensate the possibly divergent contributions of the
vertex for positive �.

We can write the vertices with an unified notation as

V? ¼ V
Y
a<b

eka
kb ; (4.13)

where

ka 
 kb ¼
�� i

2 �
ijkaikbj Moyal;

��ka�kbþ Wick-Voros:
(4.14)

To calculate the four-point Green’s function in theWick-
Voros case at the tree level we must attach to the vertex four
propagators (4.5), each carrying an exponential. The four-
point Green’s function therefore is

Gð4Þ
0V

¼ �igð2�Þ3 e
��ðP4

a¼1
ka�kaþþ

P
a<b

ka�kbþÞQ
4
a¼1ðk2a �m2Þ �ð3Þ

�X4
a¼1

ka

�
:

(4.15)

With some simple algebraic passages we can express the
exponent as

X4
a¼1

ka�kaþ þ X
a<b

ka�kbþ ¼ 1

4

�
j ~k1j2 þ j ~k2j2 þ j ~k3j2

þ j ~k4j2 þ 2i
X
a<b

~ka ^ ~kb

þ j ~k1 þ ~k2 þ ~k3 þ ~k4j2
�
:

(4.16)

The � of conservation of momentum effectively kills the
last term, so that the four-point function, at tree level, is

Gð4Þ
0V

¼ �igð2�Þ3

� e�ð�=4ÞP4
a¼1

j ~kaj2 Q
a<b e

�ði=2Þ�ijkaikbjQ
4
a¼1ðk2a �m2Þ �ð3Þ

�X4
a¼1

ka

�
:

(4.17)

Noticing that in the Moyal case, because of antisymmetry,
it results p 
 p ¼ 0, we can express in the unified notation
the Green’s functions as

Gð4Þ
0 ¼ �igð2�Þ3 e

P
a�b

ka
kbQ
4
a¼1ðk2a �m2Þ�

�X4
a¼1

ka

�
: (4.18)

The presence of a real exponent for the Wick-Voros case
could signify that the ultraviolet behavior of the theory
could be different from the Moyal (and the commutative)
case. Hence we calculate the one-loop correction to the
propagator and verify the ultraviolet behavior of the theory
under renormalization. The presence of the phase in the
four-point function in the complete vertex (4.17) makes it
noninvariant for a generic permutation of the external
momenta, and this in turn implies that the planar and
nonplanar cases are to be treated differently; this is what
happens in the Moyal case as well. Consider first the planar
case in Fig. 1(a). The amplitude is obtained using three
propagators (4.5), two with momentum p, one with mo-
mentum q, and the vertex (4.12) with assignments k1 ¼
�k4 ¼ p and k2 ¼ �k3 ¼ q, and of course the integration
in q and the proper symmetry factor:

Gð2Þ
P ¼ �i

g

3

Z d3q

ð2�Þ3
e��ð2p�pþþq�qþÞe��ðp�qþ�p�qþ�p�pþ�q�qþ�q�pþþq�pþÞ

ðp2 �m2Þ2ðq2 �m2Þ ¼ �i
g

3

Z d3q

ð2�Þ3
e��p�pþ

ðp2 �m2Þ2ðq2 �m2Þ ;
(4.19)

FIG. 1. The (a) planar and (b) nonplanar one-loop correction to
the propagator.
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where the first exponential is due to the propagators and the second to the vertex. In this case all of the contributions due to
q cancel, so that there is no change in the convergence of the integral.

We now proceed to the discussion of the nonplanar case, in Fig. 1(b). The structure is the same as in the planar case, but
this time the assignments are instead k1 ¼ �k3 ¼ p and k2 ¼ �k4 ¼ q, and we have

Gð2Þ
NP ¼ �i

g

6

Z d3q

ð2�Þ3
e��ð2p�pþþq�qþÞe��ðp�qþ�p�pþ�p�qþ�q�pþ�q�qþþp�qþÞ

ðp2 �m2Þ2ðq2 �m2Þ ¼ �i
g

6

Z d3q

ð2�Þ3
e��ðp�pþþi ~p^ ~qÞ

ðp2 �m2Þ2ðq2 �m2Þ :
(4.20)

This time the q contribution does not cancel completely,
and there remains the factor

p�qþ � q�pþ ¼ i ~p ^ ~q (4.21)

so that the phase factor of the Moyal case is reproduced.
We can express in the unified notation:

Gð2Þ
P ¼ �i

g

3

Z d3q

ð2�Þ3
ep
p

ðp2 �m2Þ2ðq2 �m2Þ ;

Gð2Þ
NP ¼ �i

g

6

Z d3q

ð2�Þ3
ep
pþp
q�q
p

ðp2 �m2Þ2ðq2 �m2Þ :
(4.22)

The ultraviolet divergence of the diagram is unchanged,
with respect to the commutative case, for the planar dia-
gram. In the nonplanar case there is the presence of the
oscillating factor i ~p ^ ~q in the exponential. This factor
softens the ultraviolet divergence, since it dampens the
functions for high q, but is responsible for infrared diver-

gences. We can conclude at this level that, while the
Green’s functions are different, between the Moyal and
Wick-Voros case, their ultraviolet behavior is the same as
far as the momentum in the loop is concerned.2 This
indicates that the noncommutative geometry, at the ultra-
violet level, is basically described by the uncertainty prin-
ciple, a consequence of the commutator (1.1), which is
unchanged between Wick-Voros and Moyal cases.
Nevertheless the two Green’s functions are not the same
because of the p 
 p term which vanishes in the Moyal
case but not in the Wick-Voros one.
We now proceed to the one-loop Green’s functions

corresponding to the planar case of Fig. 2. In the NC
case the Green’s function correspondent to it can easily
be calculated by properly joining two vertices. It turns out
that we have for the two cases

Gð4Þ
P ¼ ð�igÞ2

8
ð2�Þ3

Z d3q

ð2�Þ3
e
P

a�b
ka
kb�ðP4

a¼1 kaÞ
ðq2 �m2Þððk1 þ k2 � qÞ2 �m2ÞQ4

a¼1ðk2a �m2Þ : (4.23)

The exponent in the numerator can be rewritten as in (4.17), and we see that the internal momentum q appears only in the
denominator, so that also in this case the planar diagram has the same renormalization property of the undeformed theory.
In the Moyal case the real part exponent of the numerator is not present. In the Wick-Voros case instead there is the same
correction encountered at tree level.

The three nonplanar cases are shown in Fig. 3. The calculation of their contribution is straightforward and gives, in
momentum space,

Gð4Þ
P ¼ ð�igÞ2

8

Z
d3q

e
P

a�b
ka
kb�ðP4

a¼1 kaÞ
ðq2 �m2Þððk1 þ k2 � qÞ2 �m2ÞQ4

a¼1ðk2a �m2Þ ; (4.24)

FIG. 2. The planar one-loop four-point diagram.
FIG. 3. The nonplanar one-loop four-point diagrams.

2The convergence properties can however be changed by going to a different noncommutative space, such as a torus [18]
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Gð4Þ
NPa

¼ ð�igÞ2
8

Z
d3q

e
P

a�b
ka
kbþEa�ðP4

a¼1 kaÞ
ðq2 �m2Þððk1 þ k2 � qÞ2 �m2ÞQ4

a¼1ðk2a �m2Þ ; (4.25)

with

E1 ¼ q 
 k1 � k1 
 q ¼ i ~q ^ ~k1;

E2 ¼ k2 
 q� q 
 k2 þ k3 
 q� q 
 k3

¼ ið ~k2 ^ ~qþ ~k3 ^ ~qÞ;
E3 ¼ k1 
 q� q 
 k1 þ k2 
 q� q 
 k2

¼ ið ~k1 ^ ~qþ ~k2 ^ ~qÞ:

(4.26)

Contrary to our expectations we find that the Green’s
functions are different. The Green’s functions are not
however directly measurable quantities, and the S matrix
is. We will calculate it in the twist-deformed framework in
Sec. VII.

V. THEWICK-VOROSANDMOYAL PRODUCTSAS
TWISTED NONCOMMUTATIVE GEOMETRIES

The main physical motivation to study field theory
equipped with a ? product is the belief that, at very short
distances, the geometry of spacetime is deformed, with the
deformation dictated by a small parameter, � in our case. In
the presence of noncommutativity the concept of point is
not well defined, and in fact the proper mathematical
formalism should use the theory of C� algebras and the
language of spectral triples (see for example [1–3]). A star
product deforms the commutative algebra of functions on a
space into a noncommutative algebra. The proper formal
definition of the mathematical objects involved in the
definition is beyond the scope of this article. For us it
suffices to know that the plane equipped Moyal product
can be made into a spectral triple [45,46].

As we have discussed in Sec. III the two products come
from a different quantization of the same Poisson structure,
which classifies ? products up to equivalences [47]. They
can also be seen as gauge equivalent for the (infinite rank)
group of gauge transformations given by field redefinition
of the kind (3.3). Note however that the action is not
invariant under the action of this gauge group.

With the introduction of a different, but equivalent,
product one can heuristically reason as follows. The pres-
ence of the noncommutativity described by (1.1) gives the
noncommutative structure of space, regardless of the real-
ization of the product one uses. In fact one could avoid the
use of a ? product altogether, by considering the fields to
be infinite matrices function of the operators X defined in
(2.5) and solving, for example, with a path integration, this
matrix model. We tested this conjecture for a bosonic
quantum field theory with a ’4 interaction and found that
the two deformations of the action give different Green’s
functions. Interestingly however the ultraviolet structure of

the two theories remains the same. We are nevertheless in
front of a puzzle.
The element that we need to consider to solve this puzzle

is symmetries. The commutation relation (1.1) breaks
Poincaré symmetry, and this is not a desirable feature for
a fundamental theory. The symmetry can be reinstated
however at a deformed level, considering the fact that
both products can be seen as coming from a Drinfeld twist
[20,21]. The noncommutative geometry described by ei-
ther ? product is therefore a twisted noncommutativity.
Given the Poincaré Lie algebra � and its universal

enveloping algebra U�, the twist F which we will con-
sider is an element ofU� �U�: For the Moyal and Wick-
Voros case it is, respectively,

F M ¼ exp

�
�i

�ij

2
@i � @j

�
; (5.1)

F V ¼ exp½��@þ � @��; (5.2)

where partial derivatives stand for translation generators
and have to be appropriately realized when acting on a
given space. Following [25,48–50] we will consider the
following point of view: the noncommutative geometry is a
consequence of a twist of all products of the theory. Then
every bilinear map � defined as

�: X � Y ! Z (5.3)

(where X, Y, and Z are vector spaces) is consistently
deformed by composing it with the appropriate realization
of the twist F . In this way we obtain a deformed version
�? of the initial bilinear map �:

�? :¼ � 
F�1: (5.4)

The ? product on the space of functions is recovered
setting X ¼ Y ¼ Z ¼ FunðMÞ. That is, if we indicate
with m0 the usual pointwise product between functions3:

m0: FunðMÞ � FunðMÞ ! FunðMÞ; m0ðf � gÞ ¼ f 	 g;
(5.5)

the noncommutative product can be seen as the composi-
tion of m0 with the twist:

F : FunðMÞ � FunðMÞ ! FunðMÞ � FunðMÞ (5.6)

so that

3At this level we need not specify which kind of algebra of
functions we are considering. The algebra of formal series of the
generators is adequate, but more restricted algebras such as
Schwarzian functions can also be considered.
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f ?M g ¼ m0 
F�1
?M
ðf � gÞf ?V g ¼ m0 
F�1

?V
ðf � gÞ:

(5.7)

Associativity of the product is ensured by normalization
and cocycle conditions (see [48,49] for a short introduc-
tion; see also the book [51]). We also introduce the uni-
versalRmatrix which represents the permutation group in
noncommutative space

R :¼ F 21F�1; (5.8)

with

F 21ða � bÞ ¼ � 
F 
 �ða � bÞ (5.9)

and � the usual exchange operator

�ða � bÞ ¼ b � a: (5.10)

For the cases at hand with the two twists given by (5.1) and
(5.2), it results:

R ?V
¼ R?M

¼ F�2
?M
; (5.11)

that is, the exchange operator, and therefore the statistics,
are the same in the two cases.

The presence of the twist deforms the structure of the
universal enveloping algebra of the Poincaré Lie algebra,
rendering it a noncocommutative Hopf algebra. The analy-
sis of [23–25], made for the Moyal case, can be repeated in
the Wick-Voros case with similar conclusions. Therefore
the representations of the undeformed Poincaré algebra can
still be used. We will see later in the paper the important
role that the twisted Poincaré symmetry will play in the
equivalence between Moyal and Wick-Voros theories.

VI. TWIST-DEFORMED PRODUCTS

We have now the necessary ingredients to calculate a
physical process, like the Smatrix for the elastic scattering
of two particles. We recall that one of the crucial ingre-
dients in the importance of the S matrix in physics is the
issue of Lorentz and Poincaré invariance. If we naively
insert the Green’s functions of Sec. IV into the calculation
of the S matrix, we would find a dependence of it from the
external momenta, something like a momentum depen-
dence of the coupling constant. What is more relevant for
our purposes, we find that the result would be different for
the Moyal and the Wick-Voros case, in contradiction with
the heuristic reasoning we made in the introduction. We
would also find a breaking of Poincaré invariance.4

The reason for the breaking of Poincaré invariance is
that the commutator (1.1) apparently breaks this invari-
ance. However the invariance can be reinstated if one

considers it to be a quantum symmetry; i.e. the Poincaré
algebra is not a cocommutative Hope algebra, but it has a
nontrivial coproduct [23,24].
Our purpose is to show, with an explicit calculation of

scattering amplitudes, that the naive procedure which leads
to a difference between the two cases can be corrected by a
coherent twisting procedure. Wewill see that, if the twisted
symmetry is properly implemented, the final, ‘‘physical’’
result will be the same in the Wick-Voros and Moyal cases,
despite the presence of different propagators and vertices.
We will consider the elastic scattering of two particles, as
described in Fig. 4.
The first consequence of noncommutativity is the fact

that, since the vertex is noninvariant for noncyclic ex-
change of the particles, we have to twist-symmetrize the
incoming and outgoing states using the R matrix. Several
aspects of this twist symmetrization and the consequences
for spin and statistics have been discussed in [27,54,55]. In
the commutative case the order of the propagators into the
vertex is irrelevant, and therefore this discussion is redun-
dant. Here there are several twists at work and we have to
be careful in considering all of them.
Since we have to properly define multiparticle states as

twisted tensor products, and accordingly modify the defi-
nition of their scalar product, for the remaining part of the
section we will only deal with free fields solution of the
Klein-Gordon equation, and free states. In the next section
these will serve to define the asymptotic states.
Let us consider the two-particle state:

jka; kbi ¼ jkai � jkbi: (6.1)

Although for the comparison we are going to make later we
will not actually use the fact that the state has to be
symmetrized, we will discuss the symmetrization of the
states for completeness. Consider the exchange operator

�jkai � jkbi ¼ jkbi � jkai: (6.2)

The symmetrized state, the eigenvector of the exchange
operator � with eigenvalue þ1, is

jka; kbisimm ¼ jkai � jkbi þ jkbi � jkai
2

; (6.3)

and inserting the two expressions (6.1) or (6.3) does not
make a difference in the calculation (of the connected
diagrams) because of the invariance for exchange on the
incoming momenta. The symmetries for identical particles
change for the noncommutative case [27,54,55], we have

FIG. 4. The two-particle elastic scattering.

4We are considering �ij to be constant. Another solution which
preserves Poincaré invariance is to have it a tensor [4,52] or to
have it transform together with the product [53]. The residual
rotational invariance is an artifact of the two-dimensionality of
the model. In higher dimensions also this invariance is broken.
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to take into account the fact that the tensor product is
twisted, and moreover that the exchange is twisted as
well. Therefore we define

jka; kbi? ¼ ~F�1jka; kbi; (6.4)

where by ~F we indicate the twist that this time acts in
momentum space:

~F�1
?M
jkai � jkbi ¼ e

�ði=2Þ�ijkai�kbj jkai � jkbi;
~F�1

?V
jkai � jkbi ¼ e�ka��kbþ jkai � jkbi:

(6.5)

This is not the only change we have to make to the state
(6.3): the state has to be the eigenvalue of the twist-
exchange, given by the R matrix acting in momentum
space. The properly symmetrized state is therefore

jka;kbisimm?
¼ 1

2ð ~F�1jkai � jkbiþ ~F�1 ~R�1jkai � jkbiÞ
¼ 1

2ð ~F�1jkai � jkbiþ ~F�1 ~F ~F�1
21 jkai � jkbiÞ:

(6.6)

We define as usual the momentum eigenstates as created by

the creation operators ak and ayk :

jki ¼ ayk j0i; (6.7)

where ak and ayk are obtained in terms of the free field

’ðxÞ ¼
Z d2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þ22!k

p ðake�ik	x þ ayk e
ik	xÞ (6.8)

to be

ak ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þ22!k

p Z
d2xeik	x@$0’inðxÞ;

ayk ¼ � iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þ22!k

p Z
d2xe�ik	x@$0’inðxÞ:

(6.9)

The operators ak and ayk may be regarded, for fixed k, as
functionals of the fields, and therefore their ? product may
be obtained as in [50]:

aðkÞ ?M aðk0Þ ¼ e�ði=2Þ�ijkik0jaðkÞaðk0Þ;
aðkÞ ?M ayðk0Þ ¼ eði=2Þ�

ijkik
0
jaðkÞayðk0Þ;

ayðkÞ ?M aðk0Þ ¼ e�ði=2Þ�ijkik0jayðkÞaðk0Þ;
(6.10)

aðkÞ ?V aðk0Þ ¼ e��k�k0þaðkÞayðk0Þ;
aðkÞ ?V ayðk0Þ ¼ e�k�k

0
þaðkÞayðk0Þ;

ayðkÞ ?V aðk0Þ ¼ e��k�k0þayðkÞaðk0Þ:
(6.11)

Therefore we may reexpress Eqs. (6.5) and (6.6) as

jka; kbi? ¼ ayka ? aykb j0i (6.12)

and

jka; kbisimm?
¼ ayka ? aykb þ aykb ? ayka

2
j0i: (6.13)

The next step is the twist of the inner product. We consider
it as a map from two copies of the Fock space of states into
complex numbers. In the commutative case, for the mo-
mentum one-particle states we have

h	j	i: jki � jk0i ! hkjk0i ¼ h0jakayk0 j0i ¼ �ðk� k0Þ:
(6.14)

We twist this product in the usual way composing it with
the twist operator:

h	 j? 	i: jki � jk0i ! h	j	i 
F�1: jki � jk0i
¼ ~F�1ðk; k0Þhkjk0i ¼ h0jak ? ay

k0 j0i; (6.15)

with ~F�1ðk; k0Þ given by the exponential factor in
Eqs. (6.5) for the Moyal andWick-Voros case, respectively.
We are not yet finished twisting. Let us consider the

inner product in the commutative case:

hk1; k2jk3; k4i ¼ �ðk1 � k3Þ�ðk2 � k4Þ: (6.16)

In the noncommutative case we have to twist the two-
particle state according to (6.5), and then we have to twist
the inner product according to the two-particle general-
ization of (6.15). In order to realize such a generalization
we must consider the action of the twist on two-particle
states. This is done, in canonical form, via the coproduct of
the Hope algebra. Given a representation of an element of
the Hope algebra on a space, the representation of the
element on the product of states is given (in the unde-
formed case) by

�0ðuÞðf � gÞ ¼ ð1 � uþ u � 1Þðf � gÞ: (6.17)

The coproduct is responsible, for example, for the Leibnitz
rule. For the twisted Hope algebra the coproduct is de-
formed according to the fact that it is the R matrix which
realizes the permutations:

�?ðuÞðf � gÞ ¼ ð1 � uþR�1ðu � 1ÞÞðf � gÞ: (6.18)

However the twists we are considering are built out of
translations, whose coproduct is undeformed:

�0ð@iÞ ¼ �?M
ð@iÞ ¼ �?V

ð@iÞ ¼ 1 � @i þ @i � 1: (6.19)

Since we are acting on two-particle states we need to define
also

�0ð@i � @jÞ ¼ �?ð@i � @jÞ
¼ 1 � 1 � @i � @j þ @i � @j � 1 � 1: (6.20)

Therefore the twisted inner product among two-particle
states

hk1k2 j? k3k4i ¼ h	j	i 
�?ðF�1Þðjk1k2i � jk3k4iÞ
(6.21)
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may be easily computed to be

hk1; k2 j?M k3; k4i ¼ e
ði=2Þ�ijðk1iþk2i Þðk3jþk4j Þhk1; k2jk3; k4i;

hk1; k2 j?V k3; k4i ¼ e�ðk1�þk2�Þðk3þþk4�Þhk1; k2jk3; k4i:
(6.22)

We can now calculate the twisted inner product of twisted
states. Combining (6.22) with (6.5) we obtain the simple
expression

?M
hk1; k2 j?M k3; k4i?M

¼ e
ði=2Þ�ijP

a<b
kai kbj hk1; k2jk3; k4i;

?V
hk1; k2 j?V k3; k4i?V

¼ e�
P

a<b
ka�kbþhk1; k2jk3; k4i;

(6.23)

that is,

?hk1; k2 j? k3; k4i? ¼ e�
P

a<b
ka
kbhk1; k2jk3; k4i; (6.24)

with ka 
 kb defined in (4.14).
Recalling the results (6.10) and (6.11), we can cast the

previous expression in the form:

?hk1; k2 j? k3; k4i? ¼ h0jak1 ? ak2 ? ayk3 ? ayk4 j0i: (6.25)

This is in some sense also a consistency check. We could
have started with the commutative expression

hk1; k2jk3; k4i ¼ h0jak1ak2ayk3ayk4 j0i and twisted the product
among the creation and annihilation operators, obtaining
the above result. We decided to follow a longer procedure
to highlight the appearance of the various twists.

VII. THE TWISTED S MATRIX

Let jfi and jii denote a collection of free asymptotic
states at t ¼ �1, respectively. We also assume that we can
define in someway the one-particle incoming and outgoing
states. This is a nontrivial assumption,5 that in a theory in
which localization is impossible the concept of localization
may not be well defined. Nevertheless it is reasonable to
expect that also in this theory, for small � for large dis-

tances and times it will be possible to talk on incoming and
outgoing states, expandable in the eigenvalues of momen-
tum jki.
As in standard books in quantum field theory we define

the Smatrix as the matrix which describes the scattering of
the initial jii states into the final jfi states

Sfi ¼ in?hf j? ii?out ¼ out?hf ? jS ? jii?out
¼ in?hf j? S j? ii?in; (7.1)

where the twisted inner product of twisted states (6.23) is
understood. The one-particle asymptotic state is defined as
in (6.7) to be

jkiin ¼ N?ðkÞayk j0iin
¼ �N?ðkÞ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þ22!k

p Z
d2xe�ik	x@$0’inðxÞj0iin;

(7.2)

with N?ðkÞ a normalization factor to be determined for the
Moyal and Wick-Voros cases separately and analogously
for the out states. Moreover we assume, as in the commu-
tative case, that the matrix elements of the interacting field
’ðxÞ approach those of the free asymptotic field as time
goes to �1

lim
x0!�1

hfj’ðxÞjii ¼ Z1=2hfj’out
in
ðxÞjii; (7.3)

with Z a renormalization factor. To be definite let us
consider an elastic process of two particles in two particles.
According to the previous section we have then

Sfi?ðk1; . . . ; k4Þ ¼ in?hk1k2 j? k3k4iin?

¼ e

P
a<b

ka
kb
inhk1k2jk3k4iout; (7.4)

which can be expressed in terms of Green’s functions,
following the same procedure as in the commutative case
(see for example [56]). On repeatedly using (7.2) and (7.3)
we arrive at

Sfi ¼ in?hk1k2 j? k3k4iout?
¼ disconnected graphsþ �N?ðk1Þ �N?ðk2ÞN?ðk3ÞN?ðk4ÞðiZ�1=2Þ2e�

P
a<b

ka
kb
Z �ad

2xaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ22!ka

q
� e�ikax

að@2� þm2ÞaGðx1; x2; x3; x4Þ; (7.5)

where Gðx1; x2; x3; x4Þ is the four-point Green’s function.
In order to fix the normalization of the asymptotic states

let us compute the scattering amplitude for one particle
going into one particle, at zeroth order. Up to the unde-
formed normalization factorsNðpaÞ, this has to give a delta

function

�NðkÞNðpÞ�2ðk� pÞ ¼ N�
?ðkÞN?ðpÞin?hk j? piout?

¼ N�
?ðkÞN?ðpÞe�k
p

inhkjpiout
¼ N�

?ðkÞN?ðpÞe�k
p�2ðk� pÞ
(7.6)5We thank Harald Grosse for bringing this fact to our attention.
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from which

N?M
ðpÞ ¼ NðpÞ; N?V

ðpÞ ¼ e�ð�=4Þj ~pj2NðpÞ: (7.7)

Let us now compute the scattering amplitude for the
process above (two particles in two particles) at one loop.
We have two kinds of contribution to (7.5), one coming
from the planar terms (4.24), which in spatial coordinates
read

GPðx1; x2; x3; x4Þ ¼
Z

�a

d2kaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ22!ka

q

� eikax
a
Gð4Þ

P ðk1; k2; k3; k4Þ; (7.8)

the other coming from nonplanar terms (4.25)

GNPðx1; x2; x3; x4Þ ¼
Z

�a

d2kaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ22!ka

q

� eikax
a
Gð4Þ

NPðk1; k2; k3; k4Þ: (7.9)

Let us do the computation for the planar case first.
Substituting in (7.5) we find the same result in Moyal
and Wick-Voros case; moreover they coincide with the
undeformed result:

Sfi?Pðk1; . . . ; k4Þ ¼
ð�igÞ2

8
ð2�Þ3 �Nðk1Þ �Nðk2ÞNðk3ÞNðk4Þ�ae

ð�=4Þj ~kaj2e�
P

a<b
ka
kb

Z
�a

d2xaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ22!ka

q e�ikax
a

�
Z

�a

d2paffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ22!pa

q eipax
að�p2

a þm2Þ
Z d3q

ð2�Þ3
e
P

a�b
pa
pb�ðP4

a¼1 paÞ
ðq2 �m2Þððp1 þ k2 � qÞ2 �m2ÞQ4

a¼1ðp2
a �m2Þ :

(7.10)

The integration over the xa variables yields factors of ð2�Þ2�ð2Þðka � paÞ; therefore the propagators of the external legs
cancel as in the standard case, as well as the factor

�ae
ð�=4Þj ~kaj2e�

P
a<b

ka
kb � e
P

a�b
pa
pb�ð2Þðka � paÞ ! 1; (7.11)

so that we are left with the usual commutative expression

Sfi?Pðk1; . . . ; k4Þ ¼ Sfiðk1; . . . ; k4Þ: (7.12)

In the NP case instead we find

Sfi?NPðk1; . . . ; k4Þ ¼
ð�igÞ2

8
ð2�Þ3 �Nðk1Þ �Nðk2ÞNðk3ÞNðk4Þ�ae

ð�=4Þj ~kaj2e�
P

a<b
ka
kb

Z
�a

d2xaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ22!ka

q e�ikax
a

�
Z

�a

d2paffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ22!pa

q eipax
að�p2

a þm2Þ
Z d3q

ð2�Þ3
e
P

a�b
pa
pbþEa�ðP4

a¼1 paÞ
ðq2 �m2Þððp1 þ k2 � qÞ2 �m2ÞQ4

a¼1ðp2
a �m2Þ :

(7.13)

After integrating over xa the propagators of the external
legs cancel and the simplification (7.11) continues to hold,
but we are left with the exponential of Ea which does not
simplify. Its explicit expression is given in (4.26), as we can
see it is an imaginary phase, and it has the same expression
in the Moyal and Wick-Voros case. It depends on the q
variable, and therefore it gets integrated and modifies the
IR and UV behavior of the loop: this is the correction
responsible for the UV/IR mixing [44]. Therefore we can
conclude that

Sfi?MNPðk1; . . . ; k4Þ ¼ Sfi?VNPðk1; . . . ; k4Þ
� Sfiðk1; . . . ; k4Þ: (7.14)

VIII. CONCLUSIONS

In Giuseppe Tomasi di Lampedusa’s novel Il Gattopardo
(translated The Leopard) [57] the Prince of Salina says:
‘‘Change everything so that nothing changes.’’ This sums
up the situation that we faced in our analysis of the field
theory in the presence of the Wick-Voros and Moyal prod-
ucts. We started with different actions, coming from differ-
ent Lagrangian densities already at the level of the free
theory. The free propagator for the Wick-Voros is different
from the Moyal case, but the classical theory has no new
solutions, and at the quantum level the poles of the propa-
gators are the same. Then we found a different vertex for
the quartic theory, which led to a different four-point
function. But the differences are reabsorbed in the S ma-
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trix, provided one recognizes the properly normalized
asymptotic states. It is not anymore enough to think of a
flux of particles to be identified by ordinary plane waves
described by the usual exponential wave with the custom-
ary dispersion relation. In a field theory with a different
propagator such as the one considered here the asymptotic
states change. The noncommutative cases are however
different from the commutative one (something has to
change), but they describe the same ‘‘physics’’ among
themselves.

The two noncommutative products (Moyal and Wick-
Voros) are different realizations of the same algebra and as
such describe the same noncommutative geometry, and it
would have been curious to find different physical conse-
quences. In fact one could have studied the noncommuta-
tive geometry exclusively at the operatorial level, without
the need for a deformed product. But at the end of the day,

to confront with a physical theory, one has to map the states
into physically observable states that an experimenter (at
least an ideal one) can prepare. The correspondence be-
tween states and real objects is not immediate in non-
commutative geometry and has to be handled with
extreme care. This is the moral of this tale. In noncommu-
tative geometry, the different structure of spacetime forces
to change the correspondence between mathematical ob-
jects and physical observables. This should lead to the
formulation of a coherent theory of observables and mea-
surements on noncommutative spaces.
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