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We introduce SOð7Þglobal symmetric mass terms into Bagger-Lambert theory in three dimensions. The

scalar field Xa
I and its fermionic partner  a are provided with the massm, while a quartic interaction term

is induced. These new terms explicitly break the original SOð8Þglobal symmetry down to SOð7Þglobal in
terms of octonion structure constants. The original supersymmetry parameter in the 8S is reduced to a

singlet, implying that the original N ¼ 8 supersymmetry is reduced to N ¼ 1 supersymmetry. As

illustrations, we present some nontrivial vacuum configurations with the breaking SOð7Þglobal !
SOð4Þglobal or smaller symmetry groups. Interestingly, we also find that after a nontrivial vacuum

expectation value hXaIi is developed, the vector field A�ab satisfies a ‘‘self-duality’’ condition, and starts

propagating with a mass. These results are due to the special nature of the octonion structure constants.
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I. INTRODUCTION

Coincident M2-branes have been recently attracting
much attention for understanding the different aspects of
M theory[1]. In particular, Bagger and Lambert (BL) [2,3]
have presented an explicit lagrangian with the maximal
N ¼ 8 supersymmetry in three dimensions (3D) with
global conformal symmetry, based on totally antisymmet-
ric triple brackets or 3-Lie algebras (3D) with global
conformal symmetry, based on totally antisymmetric triple
brackets or 3-Lie algebras [4]

½XI; XJ; XK� ¼ 1

3!
½½XI; XJ�; XK� � ðcyclic perms:Þ (1.1)

for the element XI of nonassociative algebra. The explicit
model presented in [3] has SOð4Þlocal � SOð8Þglobal sym-

metry with a Chern-Simons (CS) term.
Afterwards, there have been considerable developments.

For example, the existence of OSpð8j4Þ superconformal
symmetry in BL theory [2,3] has been confirmed [5] with
possible generalizations to more general algebra including
octonions. The algebraic structure [6] of BL theory [2,3]
has been studied such as from the viewpoint of 3 algebra
[7], or from that of embedding tensor [8], or the viewpoint
of SUð2Þ � SUð2Þ instead of SOð4Þ [9], and further gener-
alized to arbitrary Lie algebras [10], or Janus field theory
[11]. Recently, the ‘‘no-go’’ theorem about gauge groups
has been circumvented in [12] by using nonpositive defi-
nite metric. Relationships between the M2-branes and D2-
branes [13,14], as well as relationships with multiple
membranes and a holographic dual [15], and also with M
folds [16] have been also studied. Furthermore, mass de-
formations of BL theory has been considered in [17] with
the original global SOð8Þglobal symmetry broken down to

SOð4Þglobal � SOð4Þglobal.

In the light of these activities in the new direction for
superconformal CS theory, we present a mass-deformed
BL theory using octonion structure constants as a combi-
nation of the ideas in [5,17]. We consider a new mass
deformation of the SOð8Þglobal � SOð4Þlocal BL theory

[3], where the original global SOð8Þglobal symmetry is

explicitly broken down into SOð7Þglobal, while the original
N ¼ 8 supersymmetry is reduced into N ¼ 1. These result
are accomplished through the mass terms based on octon-
ion structure constants. Explicit N ¼ 1 supersymmetric
vacuum configurations with symmetry SOð4Þglobal or

smaller are also presented.

II. OCTONION STRUCTURE CONSTANT
PRELIMINARIES

Before presenting our total action, we review the basic
ingredients for SOð7Þ-invariant constants1 �IJKL that are

defined by the original octonion structure constants  I
0J0K0

[18]. In this context, we use the indices I0; J0; . . . ¼
1; 2; . . . ; 7. Since SOð7Þ has a positive definite metric, there
is no need to differentiate between their superscripts and
subscripts. The nonzero components of the totally anti-
symmetric  ’s are [18]

 123 ¼  516 ¼  624 ¼  435 ¼  471 ¼  673 ¼  572 ¼ þ1

(2.1)

together with other dependent components, e.g.,  213 ¼
�1. The ‘‘dual’’ components in 7D are2

*hnishino@csulb.edu
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1We call these �’s ‘‘octonion structure constants’’ in this
paper. We use the symbol �IJKL instead of fIJKL in order to
avoid the confusion with the structure constants fabcd in [2,3].

2Despite no difference between superscripts and subscripts of
the indices I0; J0; . . . , both of them are sometimes used to make
contractions transparent. The same applies to I; J; . . . , a; b; . . . ,
A;B; . . . , and _A; _B; . . . .
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’4567 ¼ ’2374 ¼ ’1357 ¼ ’1276 ¼ ’2356 ¼ ’1245

¼ ’1346 ¼ þ1;

’I
0J0K0L0 � þ 1

3!
�I

0J0K0L0M0N0P0
 M0N0P0 : (2.2)

Based on these, the SOð7Þ invariant totally antisymmetric
constants �IJKL are defined now in terms of SOð8Þ indices
I; J; . . . ¼ 1; 2; . . . ; 8 for 8V by

�IJKL ¼
�
�I0J0K08 �  I

0J0K0 ðI0; J0;K0 ¼ 1;2; . . . ;7Þ;
�I0J0K0L0 ¼’I

0J0K0L0 ðI0; J0;K0;L0 ¼ 1;2; . . . ;7Þ:
(2.3)

Their nonzero components are

�1238 ¼ �5168 ¼ �6248 ¼ �4358 ¼ �4718 ¼ �6738

¼ �5728 ¼ þ1;

�4567 ¼ �2374 ¼ �1357 ¼ �1276 ¼ �2356 ¼ �1245

¼ �1346 ¼ þ1;

(2.4)

and any exchange of two indices cause a sign flip.
Accordingly, they also satisfy ‘‘self duality’’ in 8D3

�IJKL ¼ þ 1

4!
�IJKLMNPQ�MNPQ i:e:;

�½4� ¼ þ 1

4!
�½4�½4�0�½4�0 :

(2.5)

Relevantly, other important identities are

�IJKL�
LMNP ¼ �6�½I

M�J
N�K�

P þ 9�½IJ
½MN�K�

P�;

�MN½2��½2�RS ¼ þ12�½M
R�N�

S � 4�MN
RS;

�I½3��J½3� ¼ þ42�I
J;

ð�½4�Þ2 ¼ þ336:

(2.6)

As in the formulation of reduced SOð7Þ holonomy in
SOð8Þ, in 8D [18–20] we use the projectors for the 28 of
SOð8Þ

PIJ
KL � 3

4

�
�½I

K�J�
L þ 1

6
�IJ

KL

�
;

NIJ
KL � 1

4
ð�½I

K�J�
L � 1

2
�IJ

KL

�
;

(2.7)

respectively, into the 21 and the 7 of SOð7Þ. They satisfy
the usual projector relationships

PIJ
KLPKL

MN ¼ PIJ
MN;

NIJ
KLNKL

MN ¼ NIJ
MN;

PIJ
KLNKL

MN ¼ NIJ
KLPKL

MN ¼ 0:

(2.8)

We need the � matrices for the SOð8Þ Clifford algebra

f�I;�Jg ¼ þ2�IJI: (2.9)

Relevantly, we have the chirality projectors P �
ðI þ �9Þ=2 for 8S and N � ðI � �9Þ=2 for 8C of SOð8Þ
with �9 � �1�2 � � ��8. We frequently use the �-matrix
combination

� � 1

4!
�IJKL�IJKL � 1

4!
�½4��½4�: (2.10)

Also needed are the projectors P and Q satisfying

P � 1
8ðPþ 1

2�Þ; Q � 7
8ðP� 1

14�Þ;
P þQ ¼ P; P 2 ¼ P ; Q2 ¼ Q;

PQ ¼ QP ¼ 0:

(2.11)

Note that P and Q, respectively, project the 8S of SOð8Þ
into the 1 and 7 of SOð7Þ [19,20].
The following useful relationships are easily confirmed

[18–20]

��I ¼�1
3�

I½3�P�½3�; �I�¼þ1
3�

I½3�N�½3�;

�½Ij½3��½3�
jJK� ¼ þ3�½IJj½2��9�

jK�
½2�; (2.12a)

P�½IJj½2��jK�
½2� ¼ �6P�IJKþ 2P�IJKL�L; (2.12b)

½�;�IJK� ¼ þ2�IJKL�L� 3�9�
½IJj½2��jK�

½2�;

(2.12c)

P�IP ¼ 0; P�IJP ¼ 0; P�IJKP ¼ 0;

(2.12d)

�IJKL�LP�9 ¼��IJKP�9;

�IJKLP�9�L ¼þP�9�
IJK: (2.12e)

III. TOTAL ACTION AND SYMMETRIES

Our field content is the same as the original SOð4Þlocal �
SOð8Þglobal symmetric BL theory [3], namely,

ðXaI;  � _Aa; A�
abÞ. The indices a; b; . . . ¼ 1; 2; . . . ; 4 are

for the vector representation of SOð4Þ, while I; J; . . . ¼
1; 2; . . . ; 8 are for the 8V of SOð8Þ.
The indices �;�; . . . ¼ 1; 2 are for the Majorana spinors

in 3D, while _A; _B; . . . ¼ _1; _2; . . . ; _8 are for the 8C of SOð8Þ.
These two sorts of indices are frequently omitted.
Since all of these indices are contracted by positive definite
metrics, there is no difference between their superscript
and subscripts. Relevantly, we have �9 a ¼ � a.

3The symbol ½n� means the totally antisymmetric n indices to
save space.
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Our total action I � R
d3xL has the lagrangian

L ¼ � 1

2
ðD�Xa

IÞ2 þ i

2
ð � a��D� 

aÞ � ic�abcdð � a�IJ bÞXcIXdJ �
4

3
c2ð�abcdXbIXcJXdKÞ2

þ 1

64
c�1���	�abcdðF��abA��cd � 2

3
A�

abA�
ceA	e

dÞ � 1

2
m2ðXaIÞ2 þ i

2
mð � a aÞ

� 2

3
cm�abcd�IJKLXa

IXb
JXc

KXd
L; (3.1)

where D� is the SOð4Þ covariant derivative defined by
[2,3]

D�Xa
I � @�Xa

I þ A�a
bXb

I;

D� a � @� a þ A�a
b b:

(3.2)

As in the original system in [2,3,5], c is a nonzero real
constant. All the m-dependent terms are new in (3.1); e.g.,
its last term contains �IJKL. Because of the presence of
�IJKL, our action is no longer invariant under the original
SOð8Þglobal, but is invariant under SOð7Þglobal, as will be
explicitly given in (3.8).

Our action I is also invariant under reduced N ¼ 1
supersymmetry

�QXa
I ¼ þið ��P�I aÞ � þiðP ÞABð�IÞB _Cð ��A _CaÞ;

(3.3a)

�Q a ¼ �ð���IP�ÞD�Xa
I

þ 2
3c�

abcdð�IJKP�ÞXbIXcJXdK
þmð�IP�ÞXaI; (3.3b)

�QA�
ab ¼ �4ic�abcdð ��P���I cÞXdI: (3.3c)

The reduction of supersymmetryN ¼ 8 ! N ¼ 1 is due to
the projector P always multiplying the parameter �.

As is easily seen from our lagrangian and transformation
rule, the total on shell degrees of freedom Xa

Ið4� 8Þ plus
 � _Aað4� 8Þ will be the same as the original BL theory
with SOð4Þlocal � SOð8Þglobal symmetry [3].

The reduction of N ¼ 8 ! N ¼ 1 by the parameter � �
P� is in a sense similar to the reduced supersymmetryN ¼
ð1=8; 1Þ for ‘‘self-dual’’ supersymmetric Yang-Mills theory
in Euclidean 8D [20]. In fact, the reduced supersymmetry
1=8 out of 1 is precisely caused by the restriction of
Q�þ � 0 equivalent to �þ � P�þ in 8D Euclidean space
[20].

The confirmation of �QI ¼ 0 is rather straightforward,

as in [3], because the only new contributions are from the
m-dependent terms. For example, the identity (2.12e) is
crucial for the m
’3 terms in �QI ¼ 0.

Our explicit field equations are4

�L
�XaI

¼ þD2
�X

aI þ 2ic�abcdð � b�IJ cÞXdJ
� 48c2XbJX

c
KX

a½IXb
JXc

K� �m2XaI

� 8

3
cm�abcd�I

JKLXb
JXc

KXd
L¼� 0; (3.4a)

�L
� a

¼ þið��D� aÞ þ 2ic�a
bcdð�IJ bÞXcIXdJ

þ im a¼� 0; (3.4b)

�L
�A�

ab
¼ þ 1

32
c�1���	�abcdF�	

cd þ X½ajID�Xjb�
I

þ i

2
ð � a�� bÞ¼� 0: (3.4c)

The on shell closure of two supersymmetry transforma-
tions

½�Qð�1Þ; �Qð�2Þ� ¼ �Pð�Þ þ �Gð�Þ � �� þ ��; (3.5)

can be also confirmed, where �P and �G are the translation
�Pð�Þ � ��@� and SOð4Þlocal transformation with the pa-

rameters

�� � þ2ið ��1P���2Þ; aab � ���A�ab: (3.6)

Compared with the massless case [3], there is no X2 term
involved in �ab, because of P�IJP � 0 in (2.12d).
Because of the on shell feature of the system, the closure
is valid only up to terms vanishing by the use of field
equations (3.4)

½�Qð�1Þ; �Qð�2Þ�XaI ¼ ��@�Xa
I � �a

bXb
I; (3.7a)

½�Qð�1Þ; �Qð�2Þ� a ¼ ��@� a � �a
b b

þ i

2
��

�
��

�L
� a

�
; (3.7b)

½�Qð�1Þ; �Qð�2Þ�A�ab ¼ ��@�A�
ab þD��

ab

� 4c���	�
abcd��

�
�L
�A	

cd

�
:

(3.7c)

4We use the symbol ¼� for a field equation, or for its solution
(s).
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The closure of supersymmetry with SOð7Þglobal trans-
formation is

��Xa
I ¼ ��IJðþÞXaJ; (3.8a)

�� _Aa ¼ �1
4�

IJ
ðþÞð�IJ aÞ _A � �1

4�
IJ
ðþÞð�IJÞ _A

_B _Ba; (3.8b)

��A�
ab ¼ 0: (3.8c)

Note that the parameter �IJðþÞ is restricted by �IJðþÞ �
PIJKL�

KL. Here, the symbol (þ ) denotes the 21 of
SOð7Þ out of the original 28 components in �IJ projected
out by PIJ

KL. The spinor charge and the original SOð8Þ
generators TIJ satisfy

½Q�A; T
IJ� ¼ þ1

2ð�IJÞABQ�B: (3.9)

However, �Q and �� commute, due to the restriction of

supersymmetry � ¼ P�. In fact, from (3.9) we get5

½�Q;��� ¼ ½ð ��PQÞ;�1
4�

IJ
ðþÞTIJ� ¼�1

4�
IJ
ðþÞð ��P�ðþÞ

IJ QÞ � 0;

(3.10)

due to the identity [18,19]

P �ðþÞ
IJ � 0; �ðþÞ

IJ � PIJ
KL�KL: (3.11)

Under SOð8Þ ! SOð7Þ, the original 28 of SOð8Þ decom-
poses into �IJ into 21þ 7 of SOð7Þ, where the 7 for �IJð�Þ
completely disappears from our system. The explicit con-
firmation of ½�Q; ��� ¼ 0 on all the fields is rather straight-

forward. All of these are consistent with the fact that the
parameter P� reduces the original N ¼ 8 supersymmetry
to N ¼ 1, while �IJðþÞ reduces the original SOð8Þglobal to
SOð7Þglobal.

Because of the mass parameter m in our system, the
original global conformal symmetry [2,3,5] is manifestly
broken, as is easily seen from the terms in our lagrangian
with m.

IV. POTENTIAL, VACUUM CONFIGURATIONS
AND SELF-DUALVECTOR

Our bosonic potential U in our lagrangian is positive
definite:

U ¼ þ 1

2
m2ðXaIÞ2 þ 4

3
c2ð�abcdXbIXcJXdKÞ2

þ 2

3
cm�abcd�IJKLXa

IXb
JXc

KXd
L

¼ þ 1

2

�
mXa

I þ 2

3
c�abcd�IJKLXb

JXc
KXd

LÞ2

¼ þ 1

2

�
@W

@Xa
I

�
2 � 0; (4.1)

where W is a ‘‘superpotential’’

W � þ1
2mðXaIÞ2 þ 1

6c�
abcd�IJKLXa

IXb
JXc

KXd
L: (4.2)

In order to reach the perfect-square form (4.1), we need a
nontrivial identity

�JKLMYaI
JKYaILM � 0; (4.3)

for YaJKL � �abcdXb
JXc

KXd
L. This can be confirmed as

follows: First define ZIJ � Xa
IXaJ, and note that

YaIJKY
aILM ¼ þ2ZI

IZ½J
LZK�

M þ 4ZI ½JZK�
½LZIM�: (4.4)

Because of the symmetry ZIJ ¼ þZJI, if we multiply (4.4)
by �JK

LM, we will get the vanishing result, confirming
(4.3).
For the vacuum-structure analysis, it is advantageous to

use the superpotential W, because �Q a is simplified as

�Q a ¼ �ð���IP�ÞD�Xa
I þ ð�IP�Þ

�
@W

@XaI

�
: (4.5)

Although this simplification looks similar to that in [17], it
is the result of peculiar features of octonion structure
constants such as (2.12e).
The N ¼ 1 supersymmetric vacuum structure can be

analyzed by @W=@Xa
I ¼� 0,

mXa
I ¼� �2

3c�a
bcd�I

JKLXb
JXc

KXd
L: (4.6)

As the simplest nontrivial ansatz, we put

Xa
I ¼�

�
Xa

b0 � 0 ðfor I ¼ b0 ¼ 1; 2; 3; 8Þ;
Xa

b00 ¼� 0 ðfor I ¼ b00 ¼ 4; 5; 6; 7Þ: (4.7)

The expression Xa
b0 � 0 means that the matrix ðXab0 Þ is

not a zero matrix. Since�IJKL is totally antisymmetric and

�1238 ¼ þ1, �a0b0c0d0 can be regarded as an � tensor

�a
0b0c0d0 , even though the index 8 instead of 4 is the last

index for a0; b0; . . . ¼ 1; 2; 3; 8. Equation (4.6) is now re-

lated to detX � detðXab0 Þ,

mXa
a0 ¼� � 2

3
c�a

bcd�a
0
b0c0d0Xb

b0Xc
c0Xd

d0

¼ � 1

6
c

�

�Xa
a0 ½ð4!Þ detðXbb

0 Þ�

¼ �4c½detðXbb0 Þ�Xa0a; (4.8)

where ðXa0aÞ � X�1. In terms of matrices, this is equiva-

lent to

mX2 ¼� �4cðdetXÞI ðI � diagð1; 1; 1; 1ÞÞ: (4.9)

We can get a class of solutions to (4.9) as follows. First,
take the determinant of both sides to get

detX¼� � m2

16c2
¼ ��4

�
� � þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������mcc
��������

s �
:

(4.10)

5The spinor charge Q here should not be confused with the
Q’s in (2.11).
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Substituting this back into (4.9) yields

X2 ¼� � m

4c
I ¼ �sgnðmcÞ�2I: (4.11)

Next, we look for diagonal solutions6

X ¼ diagð�1; �2; �3; �4Þ ð�i�RÞ: (4.12)

Then its substitution into (4.11) fixes �i ¼ ��, so that

X¼� þ�diagð�1;�1;�1;�1Þ; (4.13)

where all the double signs are arbitrary.
As the simplest example, we consider

X¼� þ�I: (4.14)

Then the original SOð4Þlocal � SOð4Þglobal symmetry is

broken down to the diagonal SOð4Þglobal, because (4.14)

is invariant under the SOð4Þglobal transformation

�Xa
b0 ¼ �acXcb0 � b

0c0Xac0 : (4.15)

Here ðabÞ is a 4� 4 antisymmetric constant parameter
matrix for SOð4Þglobal. If instead we choose

X¼� þ�diagðþ1;þ1;�1;�1Þ; (4.16)

the remaining symmetry is the product of the diagonal
SOð2Þ’s: SOð2Þglobal � SOð2Þglobal. Alternatively, the

choice of

X¼� þ�diagðþ1;þ1;þ1;�1Þ: (4.17)

corresponds to SOð3Þglobal.
For all of these solutions (4.14), (4.16), and (4.17), N ¼

1 supersymmetry is intact, because �Q a ¼ 0 is preserved
for @W=@Xa

I¼� 0 with the constant Xa
I in (4.5).

Once the vacuum expectation value (v.e.v.) hXaIi has
been developed, the vector field A�

ab is no longer ‘‘auxil-

iary’’ but propagating. This is associated with the self-
duality condition on a vector field in 3D [21]. For example,
the v.e.v. (4.14) provides the mass term for A�

ab via the

X-kinetic term as in the Higgs mechanism, so that

�L
�A�ab

¼ þ 1

32c
���	�abcdF�	

cd � m

4c
A�

ab þOð’2Þ¼� 0;

(4.18a)

) F��
ab þm���

	�abcdA	
cd þOð’2Þ¼� 0;

(4.18b)

where Oð’2Þ stands for any interaction terms.
Equation (4.18b) is the so-called self-duality condition on
A�

ab [21], with the only difference that �abcd is in the

second term. As in [21], applying @� to (4.18b) implies
A�

ab propagating with the mass 2m,

@2�A�
ab � 4m2A�

ab þOð’2Þ¼� 0: (4.19)

Interestingly, our mass deformation results in the self-
dual and massive propagating vector field for the nontrivial
hXaIi. This resembles the massless case [13], where the

nontrivial v.e.v. hXAðIÞi results in the propagation of A�
ab.

V. CONCLUDING REMARKS

In this brief report, we have presented a mass-deformed
BL theory, in terms of octonion structure constants �IJKL.
We have seen that while the original SOð8Þglobal is reduced
to SOð7Þglobal, the original N ¼ 8 supersymmetry is re-

duced to N ¼ 1. We have also confirmed the positive
definiteness of the bosonic potential U, as well as the
superpotential W whose derivative is involved in �Q a,
as usual in supersymmetric theories. Compared with the
model [17] in which the original N ¼ 8 is maintained, and
SOð8Þglobal is broken into SOð4Þglobal � SOð4Þglobal, our

lagrangian explicitly breaks both N ¼ 8 ! N ¼ 1 and
SOð8Þglobal ! SOð7Þglobal.
We have given the condition (4.6) on the constant hXaIi

for nontrivial N ¼ 1 supersymmetric vacuum configura-
tions. A class of solutions is given by (4.13), if we restrict

Xa
I to be a square matrix ðXab0 Þ. The first vacuum configu-

ration is (4.14) with the reduced symmetry SOð4Þglobal, as
the diagonal of the original SOð4Þlocal � SOð8Þglobal. Other
solutions in (4.16) and (4.17), respectively, preserve the
symmetries SOð2Þglobal � SOð2Þglobal and SOð3Þglobal as the
subgroups of the original SOð4Þlocal � SOð8Þglobal. The

N ¼ 1 supersymmetry is also preserved by these
configurations.
Analyzing the A�

ab-field equation for the nontrivial

vacuum configuration (4.14), we have found that A�
ab

starts propagating with the mass 2m. This mechanism is
well known as the self-dual vector fields in 3D [21]. It is
interesting that such a self-duality is implied by BL theory
[2,3] after our mass deformation.
We emphasize that these are the consequences of the

special role played by the octonion structure constants
�IJKL, via nontrivial relationships, such as (2.12). These
indicate many other possible unexpected aspects of BL
theory [2,3] yet to be discovered.
If no matter multiplets are present in 3D, there is no

upper limit for the number of extended supersymmetric CS
theories, which are calledN 0 supersymmetric CS theories
[22]. In contrast, once matter multiplets are included, N ¼
8 supersymmetry [2,3] is now supposed to be the maximal
global supersymmetry. However, this present common
wisdom itself might be evaded, in a way similar to BL
theory [2,3] that circumvented the widely-held belief [23]
about the limit N 	 3 for matter-coupled supersymmetric
CS theory.
The new links between BL theory [2,3] and octonions

shown in this paper suggest further unknown features of

6Because of the index range b0 ¼ 1, 2, 3, 8, the last column of
(4.12) corresponds to b0 ¼ 8.
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BL theory with M theory [1] or M2-branes that has yet to
be discovered. We believe that our result here will be
helpful in applying the BL formulation [2,3] to more
complicated system or studying multiple M2-branes.

After this work had been completed, we encountered a
new paper [24], where all the possible Bogomol’nyi-
Prasad-Sommerfield states of BL theory are systematically

analyzed in the massless case [2,3] before mass
deformations.
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