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We study whether broken dual gauge symmetry, as detected by a monopole order parameter introduced

by the Pisa group, is necessarily associated with the confinement phase of a lattice gauge theory. We find a

number of examples, including SU(2) gauge-Higgs theory, mixed fundamental-adjoint SU(2) gauge

theory, and pure SU(5) gauge theory, which appear to indicate a dual gauge symmetry transition in the

absence of a transition to or from a confined phase. While these results are not necessarily fatal to the dual

superconductor hypothesis, they may pose some problems of interpretation for the present formulation of

the Pisa monopole criterion.
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I. INTRODUCTION

It is an old idea that the vacuum state of a non-Abelian
gauge theory in the confined phase can be thought of as a
dual superconductor, with magnetic monopoles playing the
role of Cooper pairs. Magnetic monopoles, in this well-
known scenario, condense in the confined phase, thereby
spontaneously breaking a dual gauge symmetry, and elec-
tric flux tubes form as a consequence of the dual Meissner
effect. In testing this idea numerically, it is important to
carefully specify what one means by monopole condensa-
tion, particularly in the absence of elementary Higgs fields,
and to identify precisely which dual gauge symmetry is
under consideration.

It is worth recalling that the whole notion of spontane-
ously broken gauge symmetries, dual or otherwise, can be
a little ambiguous. According to the well-known Elitzur
theorem [1] a continuous gauge symmetry cannot break
spontaneously, and the vacuum expectation value of a
Higgs field must vanish, regardless of the form of the
Higgs potential, in the absence of gauge fixing. For this
reason, spontaneous gauge symmetry breaking must nec-
essarily refer to the breaking of a global subgroup of the
local symmetry, such as, e.g., a global symmetry which
remains after fixing to Coulomb or Landau gauge. In
principle, there are an infinite number of such subgroups,
and they do not necessarily break at the same place in the
phase diagram. Nor do such transitions necessarily indicate
a genuine change of phase. In a recent article [2] which
considered spontaneous gauge symmetry breaking in an
SU(2) gauge-Higgs theory, it was shown that remnant
gauge symmetries in the Coulomb and Landau gauges
do, in fact, break along different lines in the gauge-Higgs
coupling space; moreover, these transitions occur in re-
gions where the Fradkin-Shenker-Osterwalder-Seiler theo-
rem [3,4] assures us that there is no transition whatsoever
in the physical state. In view of this result, we think it may
be of interest to revisit the issue of dual gauge symmetry

breaking in pure gauge theories, as formulated concretely
by the Pisa group in Refs. [5–8].
The Pisa proposal is based on the fact that in a compact

U(1) gauge theory there are stable magnetic monopole
configurations, and a corresponding conserved magnetic
current

jM� ¼ @� ~F�� (1.1)

where

~F �� ¼ 1
2"����F

�� (1.2)

is the dual field strength tensor. This conserved current is
associated with a dual U(1) gauge symmetry, and a global
subgroup of this local symmetry is generated by the total
magnetic charge operator. An order parameter � for the
breaking of this global dual gauge symmetry was proposed
in Refs. [5,6]. The �ðxÞ operator is a monopole creation
operator, which acts on states in the Schrodinger represen-
tation by inserting a monopole field configuration AM

i ðyÞ
centered at the point y ¼ x, i.e.

�ðxÞjAii ¼ jAi þ AM
i i: (1.3)

Explicitly, the operator

�ðxÞ ¼ exp

�
i
Z

d3yAM
i ðyÞEiðyÞ

�
(1.4)

performs the required insertion. It was shown in Ref. [5]
that the � operator is noninvariant under the global sub-
group of the dual gauge symmetry generated by the mag-
netic charge operator, and h�i � 0 is the sign that this
global symmetry is spontaneously broken, i.e. that the
system is in a phase of ‘‘dual superconductivity.’’
As discussed first by ’t Hooft [9], some of the concepts

derived from compact U(1) gauge theory can be carried
over to non-Abelian SU(N) pure gauge theories by fixing to
an Abelian projection gauge. The resulting gauge-fixed
Lagrangian still has a local Uð1ÞN�1 gauge symmetry,
and can be thought of as an Abelian theory containing
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magnetic monopoles. The monopole creation operator �,
in these non-Abelian theories, is defined in terms of the
gauge fields associated with the Abelian subgroup. The
Pisa proposal is that the confined phase is the phase in
which a global subgroup of the dual Abelian gauge sym-
metry is broken, i.e. h�i> 0, as in other Abelian models.
Of course, in an SU(N) gauge theory, the need to introduce
an Abelian projection gauge is a potential source of arbi-
trariness. However, it has been found in practice that the
choice of Abelian projection gauge does not make much
difference: maximal Abelian gauge, Polyakov line gauge,
field strength gauge, and even a ‘‘random’’ Abelian gauge
have all been tested, with very similar results. In addition to
Abelian projection, the Pisa proposal also involves singling
out a particular global subgroup of the dual Abelian sym-
metry, i.e. the global symmetry generated by the magnetic
charge operator. This global symmetry can be thought of as
the remnant left after fixing the local dual Abelian sym-
metry to Coulomb gauge. Details concerning this construc-
tion on the lattice can be found in Refs. [7,8].

In general, order parameters for confinement based on
specific remnant symmetries are inspired by confinement
mechanisms proposed in specific gauges. The Kugo-Ojima
‘‘quartet mechanism,’’ in covariant gauges, requires un-
broken remnant symmetry in Landau gauge [10]. The
Gribov-Zwanziger scenario for a confining Coulomb po-
tential calls for unbroken remnant symmetry in Coulomb
gauge [11]. The Pisa proposal is of course inspired by the ’t
Hooft-Mandelstam suggestion of a dual Meissner effect.
One might ask why, given that confinement must occur in
any gauge, one should focus on any particular gauge, or
any particular remnant gauge symmetry. The standard
answer to this question is that the confinement mechanism
might be easier to explain in certain gauges, which (per-
haps) isolate or emphasize the relevant degrees of freedom.
For this reason the Kugo-Ojima criterion, the Gribov-
Zwanziger ‘‘Coulomb confinement’’ scenario, and the
dual superconductor mechanism should be regarded as
proposals which cannot be dismissed out of hand, but
instead need to be tested, and possibly falsified, on a
case-by-case basis. We choose to focus on whether the
remnant symmetry breaking in these various proposals is
always accompanied by a transition to or from a confining
phase, which is a necessary condition for their validity.
Evidence relevant to the Kugo-Ojima and Coulomb con-
finement scenarios was reported in Ref. [2]; in this article
we will be concerned with the Pisa proposal, which is
based on the � operator.

For a lattice pure gauge theory, it can be shown analyti-
cally that h�i ¼ 1 in the lattice coupling � ! 0 limit, and
hence the global dual gauge symmetry is spontaneously
broken in that limit. However, h�i cannot be computed
analytically at weak couplings, and must instead be deter-
mined numerically, via lattice Monte Carlo simulations.
Since it is impractical, numerically, to compute h�i di-

rectly, one instead computes the logarithmic derivative

� ¼ @

@�
logh�i ¼ ���1½hSiS � hSMiSM �: (1.5)

In this expression S is the usual Wilson action, and h� � �iS
indicates an evaluation with the usual probability measure
/ exp½S�. hSMi is a monopole-modified action, in which
the timelike plaquettes of the Wilson action on a time slice
are modified by the monopole field (we refer to Refs. [7]
for details of this construction), and h� � �iSM denotes a

vacuum expectation value with a probability measure pro-
portional to exp½SM�. Then

h�ð�Þi ¼ exp

�Z �

0
d�0�ð�0Þ

�
: (1.6)

If there is some �cr where �ð�crÞ ! �1 in the infinite
volume V ! 1 limit, such that the integral in the exponent
diverges for �>�cr, it means that h�ð�Þi ¼ 0 at �>�cr,
i.e. that there is a transition from the broken to the un-
broken phase of global dual gauge symmetry.
Previous investigations of the Pisa operator have focused

mainly on the deconfinement transition, for gauge theories
with various gauge groups, with and without dynamical
fermions. In every case the deconfinement transition co-
incides with a sharp negative peak in �ð�Þ, which grows
deeper with lattice volume, implying that h�i> 0 in the
confined phase and h�i ¼ 0 in the deconfined phase. The
same sort of negative peak in � was found in U(1) gauge
theory, inD ¼ 4 dimensions and at zero temperature, at the
transition from the confining to the massless Coulomb
phase [5]. All of these results are consistent with the
view that the confining phase is a phase of broken dual
gauge symmetry.
We will now present several possible counterexamples

to that view, and show that at zero temperature, in
(1) SU(5) lattice gauge theory,
(2) SU(2) lattice gauge theory with a mixed

fundamentalþ adjoint action,
(3) SU(2) lattice gauge theory with the standard Wilson

action, and
(4) SU(2) gauge-Higgs theory

there is a large negative peak in �, growing deeper with
lattice volume, suggesting that there can be restoration of
the dual gauge symmetry without a corresponding transi-
tion away from a confined phase. In these computations we
follow the Pisa construction of � described in Refs. [5–8],
with the random Abelian projection advocated in [8].

II. RESULTS

Our first example is SU(5) pure gauge theory, with the
standard Wilson action, at zero temperature. Many years
ago it was found that there is a bulk first-order transition in
this theory [12]; the most recent determination of the
transition point is at � ¼ 16:65 [13]. In Fig. 1 we display
our results for �, which indicates a negative peak, growing
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with volume, at the bulk transition point. The lattices are a
bit too small to draw strong conclusions, but if the trend
continues at larger volumes, then it would appear that
h�i ¼ 0 for � values beyond the bulk transition point,
despite the fact that the bulk transition is not associated
with a loss of confinement.

The second example is the SU(2) fundamental-adjoint
mixed action

S ¼ �
X

plaq

1

2
TrF½UðPÞ� þ �A

X

plaq

1

3
TrA½UðPÞ�

¼ SWilson þ Sadjoint (2.1)

where TrF;A refer to traces in the fundamental and adjoint

representations, respectively, of the SU(2) group. The

phase diagram of this theory was determined numerically,
many years ago, by Bhanot and Creutz [14]; the diagram is
drawn schematically in Fig. 2(a), and the solid lines in-
dicate lines of first-order transition. Keeping �A fixed at
�A ¼ 1:5, and varying only�, we discover a negative peak
in �, shown in Fig. 2(b). In this case � is given by

� ¼ @

@�
logh�i ¼ ���1½hSWilsoniS � hSWilson

M iSM �: (2.2)

The location of this peak (� � 1:1 at �A ¼ 1:5) lies on a
line of first-order phase transitions. Of course, the lines of
first-order transitions in the �� �A coupling plane do not
imply a deconfinement transition at zero temperature, since
the mixed-action model is confining at all values of �, �A.
However, the existence of a transition in h�i does suggest
that the dual gauge symmetry is restored in an entire region
of the coupling plane, and it is of interest whether that
region includes large � at �A ¼ 0; i.e. pure SU(2) lattice
gauge theory with the usual Wilson action. Figure 3 shows
our results for � computed in ordinary SU(2) lattice gauge
theory with the Wilson action. In these data there does
appear to be a very broad peak, growing with lattice
volume, centered at about � ¼ 2:3. It is clear, in this
case, that one really does need to go out to fairly large
volumes, greater than 164, to actually see the peak. If we
take this result at face value, then it means that the dual
gauge symmetry is unbroken in the large � regime, despite
the fact that the theory is believed to confine at all values
of �.
The next example is taken from the theory which moti-

vated a previous investigation [2] into the ambiguities
associated with spontaneously broken gauge symmetries.
This is the ‘‘Fradkin-Shenker’’ model, i.e. an SU(2) gauge-
Higgs theory with a fixed modulus Higgs field in the
fundamental representation of the gauge group, whose
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FIG. 2. (a) Schematic phase diagram of the SU(2) fundamental-adjoint mixed-action model. Our data points are taken along the
dashed line. (b) � vs � in the SU(2) fundamental-adjoint mixed action of Eq. (2.1), at �A ¼ 1:5.
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FIG. 1. � vs � in SU(5) lattice gauge theory with the standard
Wilson action. The negative peak occurs at the bulk transition
point.
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action can be written in the form

S ¼ �
X

plaq

1

2
Tr½UðPÞ� þ �

X

x;�

1

2
Tr½�yðxÞU�ðxÞ�ðxþ �̂Þ�

¼ SWilson þ SHiggs; (2.3)

where �ðxÞ is SU(2) group valued. What is important
about this theory, for our purposes, is that it has been
proven rigorously [3,4] that there is no complete separation
between the Higgs-like and confinement-like regions of the
theory. More precisely, consider a point a in the �� �
phase diagram at �, � � 1 (confinement-like region), and
another point b at �, � � 1 (Higgs-like region). Then
the theorem states that there is a path between points a
and b such that all correlators of all local gauge-invariant
operators

hAðx1ÞBðx2ÞCðx3Þ . . .i (2.4)

vary analytically along the path. This rules out any abrupt
transition from a colorless to a color-charged spectrum. So
if by ‘‘confinement’’ one simply means the absence of
color-charged particles in the asymptotic spectrum, then
the Higg’s phase is ‘‘confined’’ in this sense (cf. the dis-
cussion in Ref. [2]). Computer simulations [15] have found
a phase structure indicated schematically in Fig. 4. The
solid line is either a very weak first-order transition or a
sharp crossover. Campos, in Ref. [15], argues for a first-
order transition, but the argument requires taking the limit
of theories with varying modulus Higgs fields. It is unim-
portant, for our purposes, whether the line represents genu-
ine first-order transitions or only crossover behavior. What
is important is that the Higgs-like and confinement-like
regions are connected, and it is possible to go from one
region to the other without encountering a physical tran-
sition of any sort. The question we raise is whether this
connectedness also holds true for the dual gauge symmetry,
as detected by the� operator. In this case� is a function of
�, �, and it is convenient to define � in this model as the
logarithmic derivative with respect to �, i.e.

� ¼ @

@�
logh�i ¼ ���1½hSHiggsiS � hSHiggsiSM � (2.5)

so that

h�ð�;�Þi ¼ h�ð�; 0Þi exp
�Z �

0
d�0�ð�;�0Þ

�
: (2.6)

If there is only one phase, then one expects h�i> 0 every-
where in the phase diagram, and there should not be any
negative peaks, growing deeper with volume, in the �
observable.
However, this expectation does not seem to hold. In

Fig. 5(a) we show our data for � vs � at � ¼ 2:2, and
we find a negative peak in � at � ¼ 0:84, which coincides
with a sharp crossover (or weak first-order transition) at
this point. Despite the fact that there is only one color-
neutral phase, the � observable finds two phases. But if
there are two phases, corresponding to broken and unbro-
ken symmetry, then the boundary between them must
continue past the line of crossover/weak first-order transi-
tions. In Fig. 5(b) we show our data for � vs � at � ¼ 1:6,
where there is no physical transition of any kind. However,
there again appears to be a broad peak in �, centered at
� ¼ 1:3, which is growing deeper with lattice volume.
The final example is not due to us, but rather to Cossu

et al. in Ref. [16]. These authors have computed � for the
G(2) group, and found a sharp negative peak, growing
deeper with volume, at a point of sharp crossover behavior
found at� ’ 1:35. A negative peak at the high-temperature
deconfinement transition is also visible, but is actually very
small in comparison to the negative peak at the crossover
point. The existence of a transition to h�i ¼ 0 at � ’ 1:35
in G(2) lattice gauge theory, where there is no actual

β
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FIG. 4. Schematic phase diagram of the SU(2) gauge-Higgs
system. The solid line is a line of either sharp crossover or weak
first-order transitions.
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transition to or from a color-neutral spectrum, fits neatly
together with the other examples we have shown above.

III. DISCUSSION

All of the data shown above suggest that the � operator,
as currently defined, has zero-temperature transitions at
couplings where there are, in fact, no physical transitions
to or from a confined phase. We have found sharp negative
peaks in � where there are bulk transitions or crossover
points in the phase diagram, and also much broader peaks,
which show up even in the absence of any activity in the
thermodynamics. Although a finite size scaling analysis of
� goes beyond the scope of this paper, our numerical data
are clearly compatible with a divergence of the peaks in the
infinite volume limit and seem to exclude sharp crossovers

in all the cases we have investigated. It is then reasonable
to infer from this behavior that h�i ¼ 0 past the peak in the
infinite volume limit. There are then two possibilities:
Either the � operator is an unreliable indicator for the
presence of broken or unbroken dual gauge symmetry,
i.e. we can have h�i ¼ 0 even in the broken phase, or
else confinement is not necessarily a phase of spontane-
ously broken dual gauge symmetry. A third, less likely
alternative is that the negative peaks in � cease to grow
deeper beyond some finite volume. Such a possibility can
never be ruled out just from numerical simulations.
However, a very rough estimate from our data is that this
convergence in �, if it were to occur, would have to happen
at distance scales beyond 4–5 fm, corresponding to 40–
50 MeV. The origin of such a low energy scale, in the
theories we have considered, is rather unclear.
If � is the wrong operator to use to test for spontaneous

breaking of dual gauge symmetry, then one would like to
understand exactly why it is the wrong operator. In particu-
lar, it is important to explain why h�i ¼ 0 when the dual
gauge symmetry is broken, and to construct a better op-
erator ~� which shows a transition if and only if there is a
transition to or from the broken symmetry phase. It may
well be possible to construct such an operator. However,
the following remarks may be relevant to certain
approaches.

A. Rescale �

One could easily construct a variant of � which avoids
bulk transitions in SU(5) and G(2) (along the lines of a
suggestion in Ref. [16]) by normalizing the � operator at
finite temperature T by its value at zero temperature. Since
h�i at any finite volume depends on the temperature T, the
volume of a time slice VD�1, and lattice coupling �, we
might, e.g., define a renormalized operator

~�ðT;�Þ � lim
T0!0

lim
VD�1!1

�ðT;�; VD�1Þ
h�ðT0; �; VD�1Þi : (3.1)

In practice, one might redefine � at any temperature by
subtracting its value at zero temperature, and computing
h ~�i from Eq. (1.6) with the subtracted �. An operator
defined in this way is obviously insensitive to the bulk
transition, but it may be sensitive to transitions at the
deconfinement temperature. However, this redefinition
begs the question of whether the dual gauge symmetry is
realized in the broken or unbroken phase at high� and zero
temperature. An operator which is, by definition, unity at
zero temperature for all � and all gauge groups, in all
dimensions D, clearly cannot address this crucial issue.

B. Modify S

Bulk transitions can also be avoided, in certain cases, by
modifying the lattice action. For example, SO(3) lattice
gauge theory [set � ¼ 0 in the mixed action of Eq. (2.1)] is
known to have a bulk transition at �A � 2:5, and the
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FIG. 5. � vs � in the SU(2) gauge-Higgs (Fradkin-Shenker)
model of Eq. (2.3). (a) At � ¼ 2:2 a very sharp negative peak in
� is found at the thermodynamic transition/crossover point at
� ¼ 0:84. (b) At � ¼ 1:6, there is no thermodynamic transition,
but nevertheless there is a broad negative peak in � centered at
� � 1:3.
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transition is associated with certain lattice artifacts known
as Z2 monopoles. The bulk transition can be avoided by
introducing a term in the action which suppresses these
monopoles,

~S ¼ �A

X

plaq

1

3
TrA½UðPÞ� þ �

X

cubes

	c (3.2)

where

	c ¼
Y
P2@c

signðTr½UðPÞ� (3.3)

and the product runs over all plaquettes P on the boundary
of cube c.1 At sufficiently large � the bulk transition
disappears. Perhaps some modification of the lattice action
would also avoid bulk transitions in other theories.

However, it does not follow that eliminating a bulk
transition via a modified action will also eliminate the
transition to h�i ! 0 at large � and zero temperature.
We assume that the modified and unmodified actions
have the same continuum limit, in the sense that expecta-
tion values

hQi~S ! hQiS at large �: (3.4)

But if that is the case, and h�iS ¼ 0 for the unmodified
action at large �, then if (3.4) holds it must also be true that
h�i~S ¼ 0 at large � in the modified action. Of course, the

logarithmic derivative � is different for S and ~S, and it may
be that the transition from h�i~S � 0 to h�i~S ¼ 0 is harder
to detect on finite lattice volumes with the modified action.
In fact, we have seen in two examples,

(1) pure SU(2) gauge theory with the Wilson lattice
action at � ¼ 2:3;

(2) the Fradkin-Shenker model at � ¼ 1:6 and � ¼ 1:3,
that there are transitions in � in the absence of any ther-
modynamic transition or crossover behavior. However, in
these cases the peaks are much broader than in our other
examples where the transitions coincide with thermody-
namic activity. Especially in the case of pure SU(2) lattice
gauge theory, the transition in � is only convincingly seen
at larger lattice volumes. This may also be the case when

using a modified action ~S which eliminates the bulk tran-
sition, but still has the property (3.4). It is certainly possible
that the transition in h�i~S happens at a different � than the
transition in h�iS, and is only seen clearly at very large
lattice volumes. But whether or not the peak in � is readily
seen at small volumes with the modified action, a transition
in h�iS implies a transition in h�i~S. In a sense, the fact that
� has a prominent negative peak at the bulk transition point
of the unmodified action is fortunate, because it informs us
of the existence of a dual gauge symmetry restoration at
weak couplings, that might otherwise have been missed.

C. Modify �

Perhaps there is some other way to modify�, apart from
the rescaling (3.1), such that the modified observable ~�
would remain nonzero across bulk and other unphysical
transition points. We cannot say whether this is possible or
impossible, but only remark that if ~� approaches � in the
continuum limit, i.e. if

h ~�iS ! h�iS at large �; (3.5)

then, for same reasons as before, h�i ¼ 0 at large �
implies h ~�i ¼ 0 at large �. Once again, the transition
from h ~�i � 0 to h ~�i ¼ 0 may occur at a different value
of � than the transition in h�i, and the peak may be much
broader and harder to detect at small volumes, but the
limiting behavior (3.5) is essentially a guarantee that the
transition must exist at some coupling.

D. Other symmetries?

If the � operator cannot be redefined so as to eliminate
the difficulties we have found above, then of course there is
still the possibility that dual superconductivity could be
formulated in some other way. Perhaps the relevant global
Abelian symmetry is different from the one singled out by
the monopole charge operator. Possibly it is the breaking of
some global non-Abelian dual symmetry group which is
relevant. Given any definite formulation of dual supercon-
ductivity as a broken symmetry phase in pure Yang-Mills
theory, it should be possible to subject the proposal to the
sorts of tests we have reported here. In the absence of a
concrete proposal, the viability of the dual superconductor
mechanism ‘‘in principle’’ is an issue that we cannot
possibly address.

IV. CONCLUSIONS

The trend of our data suggests that either the Pisa �
operator, as currently defined, is not a reliable order pa-
rameter for the dual gauge symmetry breaking, or that the
confinement phase of a gauge theory is not necessarily a
phase in which that symmetry is broken. If � is not a
reliable order parameter, then it is necessary to understand
why this is so; i.e. how it can happen, in a phase of broken
symmetry, that nevertheless one may find h�i ¼ 0, even at
weak lattice couplings where lattice artifacts (such as Z2

monopoles) are presumably irrelevant. If this point can be
understood, then perhaps a more viable order parameter
can be constructed.
The other possibility is that confinement is not neces-

sarily tied to the breaking of a dual gauge symmetry, and it
is possible for confinement to exist in the unbroken phase.
In fact this would fit in rather well with previous results
reported in Ref. [2]. There it was pointed out that different
global subgroups of a gauge symmetry, associated with the
Kugo-Ojima confinement criterion [10] and the Coulomb

1Data on the Pisa operator at finite temperature in this model
can be found in Ref. [17].
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confinement criterion [11], respectively, break along dif-
ferent lines in the Fradkin-Shenker phase diagram, in
regions where no physical change of phase exists. Thus
the very concept of a spontaneously broken gauge symme-
try is a little ambiguous (since a global subgroup must be
specified), and the broken or unbroken realization of the
symmetry is not necessarily tied to confinement. The latter
conclusion may also hold for global subgroups of the dual
gauge symmetry.

At this stage, we think it is not yet clear whether con-
finement is really independent of dual gauge symmetry

breaking, or whether, alternatively, � as currently formu-
lated is simply an imperfect order parameter for that break-
ing. The issue is not settled, and will require some further
investigation.
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