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For many quantum models an apparent non-Hermiticity of observables just corresponds to their hidden

Hermiticity in another, physical Hilbert space. For these models we show that the existence of observables

which are manifestly time-dependent may require the use of a manifestly time-dependent representation

of the physical Hilbert space of states.
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I. INTRODUCTION

In standard textbooks one finds numerous examples of
an elementary quantum Hamiltonian H ¼ p2 þ VðxÞ
which describes a particle (or quasiparticle) moving in a
time-independent external field VðxÞ in one dimension,
x 2 R. The time evolution of its wave function �ðx; tÞ is
determined by the time-dependent Schrödinger equation

i @t�ðx; tÞ ¼ H�ðx; tÞ: (1)

Tacitly, it is understood that all of the operators of observ-
ables �j with j ¼ 1; 2; . . . (including also the Hamiltonian

itself at j ¼ 0, H ¼ �0) are self-adjoint, �j ¼ �y
j , j ¼

0; 1; . . . . Even if the external field becomes manifestly time
dependent, V ¼ Vðx; tÞ, the generalized model with H ¼
HðtÞ ¼ HyðtÞ (and, optionally, with an appropriate experi-

mental background for the time dependence of �1 ¼
�1ðtÞ ¼ �y

1 ðtÞ, etc.) does not necessitate any modification

of the time-evolution law (1).
Bender and Boettcher [1] conjectured (and, subse-

quently, Dorey, Duncan and Tateo proved [2]) that certain
manifestly non-Hermitian Hamiltonians H ¼ p2 þ
VðxÞ � Hy may also generate a purely real, i.e., in princi-
ple, observable spectrum of bound-state energies. This
reattracted attention to several older works where the
similar ideas appeared in the context of field theory [3]
or relativistic quantum mechanics [4] or nuclear physics
[5]. Empirically, the reality of spectra of similar Hamil-
tonians has been attributed to their PT symmetry [6],
CPT symmetry [7], quasi-Hermiticity [5,8,9], or crypto-
Hermiticity [10]. The related innovation of methods led to
a new round of perceivable progress in relativistic quantum
mechanics [11], quantum cosmology [12], statistics [13]
and scattering theory [14], and even in classical electro-
dynamics [15] and magnetohydrodynamics [16]. In this
context, the title, ‘‘Making sense of non-Hermitian
Hamiltonians’’ of the recent review paper [17] written by
Carl Bender gives the name to one of the most remarkable
recent projects in theoretical physics.

In Refs. [18,19] the idea has tentatively been extended to
the time-dependent non-Hermitian Hamiltonians

H ¼ HðtÞ � HyðtÞ: (2)

Unexpectedly, a number of conceptual difficulties has been
encountered. Serious problems have arisen, first of all, in
connection with the probabilistic and unitary-evolution
interpretation of the generalized models. For this reason,
just a very special linear time dependence ofHðtÞ has been
admitted in [18] and the so-called quasistationary general-
ization of this constraint has been accepted in [19]. The
resulting theories of time dependence with constraints
looked incomplete and deeply unsatisfactory.
In our present paper, we intend to reanalyze the problem.

In essence, we shall reveal that all of the specific and
constrained, quasistationary models are based on the
same, purely intuitive and unfounded assumption that
even for all of the models with property (2) the time-
dependent Schrödinger equation must remain valid in its
naive, noncovariant form (1). We shall show here that after
this assumption is relaxed, the theory becomes transparent
again. We shall point out that the time-dependent non-
Hermitian Hamiltonians (2) may simply cease to play the
role of the generators of time evolution in general.
In the preliminary part of our text, Sec. II will summa-

rize a few basic mathematical features of crypto-Hermitian
operators, i.e., of the Hamiltonians H and/or other opera-
tors of observables �1;�2; . . . with real spectra which are
manifestly non-Hermitian in an auxiliary Hilbert space

H ðAÞ. We shall emphasize that the reality of the respective
spectra is to be understood as a direct consequence of the
standard Hermiticity requirements imposed in another,

physical Hilbert space of states H ðPÞ.
Our main results will be presented in Sec. III where we

shall show how the crypto-Hermitian time-evolution law
has to be modified in order to preserve the consistency of

the theory in H ðPÞ. These observations will be comple-
mented by their brief discussion and summary in Sec. IV.

II. CRYPTO-HERMITIAN HAMILTONIANS

For models with property (2) a striking contrast emerges
between their innovative mathematics and conservative

*znojil@ujf.cas.cz
http://gemma.ujf.cas.cz/~znojil/

PHYSICAL REVIEW D 78, 085003 (2008)

1550-7998=2008=78(8)=085003(5) 085003-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.085003


physics. In [17], Carl Bender identifies a deeper source of
interest in Hamiltonians H � Hy in the theoretical weak-
ness of the current practice where among all of the eligible
representations of the quantum Hilbert space of states H
people most often choose the most friendly one, viz., the

space H ðAÞ ¼ L2ðRÞ composed of the square-integrable
complex functions of the single real variable x 2 R. In this
representation the inner product between two equal-time
wave functions c aðx; tÞ and c bðx; tÞ is trivial,

ðc a; c bÞðAÞ ¼
Z
R
c �

aðx; tÞc bðx; tÞdx (3)

but its use seems to exclude, as unphysical, any complex
potential VðxÞ. Still, for many concrete non-Hermitian
Hamiltonians H ¼ p2 þ VðxÞ � Hy exhibiting the stan-
dard kinetic energyþ potential energy structure and lead-
ing to the real spectrum of bound states one can admit a
complex VðxÞ. Naturally, the representation of the physical
Hilbert space of states must be changed. Such a change of
space from auxiliary to physical,

H ðAÞ ! H ðPÞ

is usually nontrivial. At the same time, the innovated

Hilbert space H ðPÞ need not necessarily be substantially

different from its unphysical partnerH ðAÞ. In the majority
of applications the latter two spaces even coincide as
vector spaces while the second one merely requires a
modified definition of the inner product using the following
double integral,

ðc a; c bÞðPÞ ¼
Z
R2

c �
aðx; tÞ�ðx; x0; tÞc bðx0; tÞdxdx0: (4)

The time t is considered fixed and the integral kernel
�ðx; x0; tÞ itself is usually called ‘‘metric.’’

One of the most visible features shared by virtually all of
the quantum models defined within any anomalous, non-

Dirac [17] Hilbert space H ðPÞ with metric � � I is that
the underlying Hamiltonian H looks non-Hermitian,

H � Hy in H ðAÞ ¼ H ðunphysicalÞ: (5)

The same Hamiltonian H remains safely self-adjoint (and,

hence, standard and physical) in H ðPÞ. Unfortunately, the
definition of the Hermitian conjugation H ! Hz derived
from Eq. (4) is more complicated and depends on the
metric,

H ¼ Hz ¼ ��1Hy� in H ðPÞ ¼ H ðphysicalÞ: (6)

A certain complementarity is encountered between physics

which is correct in H ðPÞ and mathematics which usually

proves much easier inH ðAÞ [5]. Thus, one is only allowed
to speak about a loss of Hermiticity of the Hamiltonian in

the irrelevant, auxiliary space H ðAÞ with, typically,

�ðDiracÞðx; x0; tÞ ¼ �ðx� x0Þ

in Eq. (4). All the postulates of quantum theory remain

unchanged in the correct space H ðPÞ.

III. TIME-DEPENDENT SCHRÖDINGER
EQUATION

A. A Hermitization of the Hamiltonian in H ðAÞ

Inside the physical Hilbert space of states H ðAÞ let us
contemplate an arbitrary auxiliary invertible operator� ¼
�ðtÞ and replace the non-Hermitian ‘‘uppercase’’
Hamiltonian H by its ‘‘lowercase’’ isospectral partner

h ¼ �H��1: (7)

Whenever needed, we must apply the same mapping also
to all of the other operators of observables �j ¼ �jðtÞ in
H ðAÞ. It is well-known that a simple change of the basis is
obtained when � is chosen unitary. In an opposite direc-
tion we now intend to choose such a nonunitary map� that
the resulting new representation h ¼ hðtÞ of our
Hamiltonian becomes Hermitian,

h ¼ hðtÞ ¼ �ðtÞHðtÞ��1ðtÞ ¼ hyðtÞ
¼ ½��1ðtÞ�yHðtÞ�yðtÞ: (8)

This must be complemented by an observation that both
the representations HðtÞ and hðtÞ of the energy operator
need not play the role of the generator of the time evolution
simultaneously. There exists no mathematical or physical
principle which would force us to insist on the validity of
Eq. (1) when H � Hy. We are allowed to restrict our
attention to the lowercase generators hðtÞ of the safely
unitary time evolution and to the related lowercase wave
functions defined by the integral containing the kernel of
�,

’ðx; tÞ ¼
Z
R
�ðx; x0; tÞ�ðx0; tÞdxdx0: (9)

When we use the current Dirac bracket notation the latter
relation can be abbreviated as j’ðtÞi ¼ �ðtÞj�ðtÞi. Thus,
we may characterize the state of our physical quantum
system, at any time t, by the very standard elementary
projector

�ðtÞ ¼ j’ðtÞi 1

h’ðtÞj’ðtÞi h’ðtÞj: (10)

The evolution of this expression in time is controlled by the
usual time-dependent Schrödinger equation

i @tj’ðtÞi ¼ hðtÞj’ðtÞi: (11)

For any state ’ðx; tÞ ¼ hxj’ðtÞi prepared at t ¼ 0 and
measured at t > 0 the operator hðtÞ plays the role of its
self-adjoint generator of evolution in time.
Our knowledge of this generator enables us to introduce

the evolution operator uðtÞ defined by the following opera-
tor alternative to Eq. (11),
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i @tuðtÞ ¼ hðtÞuðtÞ: (12)

The formal solution of Eq. (11) then reads

j’ðtÞi ¼ uðtÞj’ð0Þi (13)

and, obviously, it satisfies the identity

h’ðtÞj’ðtÞi ¼ h’ð0Þj’ð0Þi:
This identity is a guarantee that the evolution of the system
is unitary.

B. The doublet of pullbacks of wave function

For a sufficiently general kernel �ðtÞ in Eq. (9) the
Hermitian representation hðtÞ of the Hamiltonian is a com-
plicated integro-differential operator. A return to HðtÞ ¼
p2 þ Vðx; tÞ � HyðtÞ makes good sense, therefore. One of
the most immediate consequences of the resulting parallel

work in H ðAÞ and H ðPÞ is that we must carefully distin-
guish between the respective bra vectors. In the usual Dirac
notation, for example, Mostafazadeh [9] recommends the
two-letter notation where ½j�ðtÞi�z � h�ðtÞj and where, in
the light of Eq. (4),

hxj�bðtÞi � c bðx; tÞ 2 H ðPÞ;

h�aðtÞjxi �
Z
R
c �

aðy; tÞ�ðy; x; tÞdy 2 ½H ðPÞ�0:

This convention well reflects the fact that in H ðPÞ there
emerge two different pullbacks of the single wave function
(13), viz.,

j�ðtÞi ¼ ��1ðtÞj’ðtÞi; h�ðtÞj ¼ h’ðtÞj�ðtÞ: (14)

One should emphasize that in spite of being marked by the
two different Greek letters, these symbols still represent
the same state of our physical system in question.
Formally, this description is provided by the uppercase
pullback of the projector �ðtÞ given by Eq. (10),

�ðtÞ ¼ j�ðtÞi 1

h�ðtÞj�ðtÞi h�ðtÞj: (15)

The new projector �ðtÞ ¼ �zðtÞ remains non-Hermitian

in the unphysical space H ðAÞ and its construction requires
the knowledge of the pair of time-dependent functions or

vectors (14). As long as ��1ðtÞ � �yðtÞ, these two com-
plex functions of x are different in general.
Our knowledge of the time dependence of the latter two

functions is a remarkable consequence of the construction.
The Schrödinger Eq. (11) and some elementary algebra
lead to the right-action evolution rule

j�ðtÞi ¼ URðtÞj�ð0Þi; URðtÞ ¼ ��1ðtÞuðtÞ�ð0Þ
(16)

accompanied by its left-action parallel

j�ðtÞi ¼ Uy
LðtÞj�ð0Þi; Uy

LðtÞ ¼ �yðtÞuðtÞ½��1ð0Þ�y:
(17)

The respective non-Hermitian analogues of the Hermitian
evolution-operator rule (12) are obtained by the elementary
differentiation and insertions yielding

i @tURðtÞ ¼ ���1ðtÞ½i@t�ðtÞ�URðtÞ þHðtÞURðtÞ (18)

and

i@tU
y
LðtÞ ¼ HyðtÞUy

LðtÞ þ ½i@t�yðtÞ�½��1ðtÞ�yUy
LðtÞ:

(19)

We achieved our goal. In the language of mathematics the
latter doublet of operator equations offers a differential-
equation simplification of the equivalent integro-
differential lowercase Schrödinger Eq. (12). Thus, the
role of the complicated lowercase representation uðtÞ of
the evolution operator is transferred to its two uppercase
maps which offer a consistent description of quantum

dynamics in H ðPÞ.

IV. DISCUSSION

Several misunderstandings concerning the pullbacks of
wave functions have recently been encountered in a series
of comments and replies on [20]. There, a few unexpected
properties of the generalized quantum time-evolution
equations have been discussed, with the final clarification
of the puzzle presented in the preliminary preprint version
[21] of our present paper. It makes sense, therefore, to
perform an independent check of what happens with the
norm h�ðtÞj�ðtÞi of a given state which evolves with time

in H ðPÞ. The elementary differentiation confirms that

i@th�ðtÞj�ðtÞi ¼ i@th�ð0ÞjULðtÞURðtÞj�ð0Þi ¼ h�ð0Þj½i@tULðtÞ�URðtÞj�ð0Þi þ h�ð0ÞjULðtÞ½i@tURðtÞ�j�ð0Þi
¼ h�ð0ÞjULðtÞ½�HðtÞ þ��1ðtÞ½i@t�ðtÞ��URðtÞj�ð0Þiþ h�ð0ÞjULðtÞ½HðtÞ ���1ðtÞ½i@t�ðtÞ��URðtÞj�ð0Þi
¼ 0:

We see that irrespectively of the mapping� the norm does
not vary so that the time evolution of the system is unitary
also by this check. It reconfirms that the naive picture of the
time evolution as generated by the non-Hermitian Hamil-
tonian HðtÞ is incomplete.

In our present brief paper we were more constructive in
showing that whenever H � Hy, the time evolution must
in general be prescribed by a pair of modified Schrödinger
equations. With the purpose of making this argument fully

explicit, let us abbreviate @t�ðtÞ � _�ðtÞ and write down
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the following explicit specification of the time-evolution

generator in H ðPÞ,

HðgenÞðtÞ ¼ HðtÞ � i��1ðtÞ _�ðtÞ: (20)

It is remarkable that this operator enters both the updates of

the Schrödinger equation for wave functions in H ðPÞ,

i @tj�ðtÞi ¼ HðgenÞðtÞj�ðtÞi; (21)

i @tj�ðtÞi ¼ Hy
ðgenÞðtÞj�ðtÞi: (22)

Such a confirmation of the overall unitarity of the evolution
comes at a very reasonable cost of the covariant redefini-
tion H ! HðgenÞ of its generator.

We can summarize that the adequate and fairly universal
picture of quantum dynamics can be reinstalled in its
uppercase crypto-Hermitian (i.e., typically, less nonlocal
and technically simpler) representation provided only that
one admits that the time evolution is not necessarily gen-
erated by the naive, noncovariant map HðtÞ of a physical
self-adjoint Hamiltonian hðtÞ. This confirms that the ‘‘tra-
ditional’’ Schrödinger Eq. (1) may cease to be valid in
general. The existence of papers like [19,22] as well as of
several unpublished comments on the web [20] indicates
that this observation is nontrivial and that it can perceiv-
ably extend the range of applicability of crypto-Hermitian
models in quantum theory.
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APPENDIX: QUASISTATIONARITY CONSTRAINT

One of the unexpected mathematical benefits of the form
of operator (20) is that it is the same for both its left and
right action. Still, its decisive appeal lies in the universality
of its description of physics where the crypto-Hermitian
(CH) observables and, in particular, crypto-Hermitian

Hamiltonian operators H ¼ HðCHÞ are allowed to be arbi-
trary (or at least arbitrary analytic) functions of time t,

HðCHÞðtÞ ¼ Hð0Þ þ tHð1Þ þ t2Hð2Þ þ . . . : (A1)

Several aspects of the underlying idea of having the man-
ifestly time-dependent metric � ¼ �ðtÞ (i.e., the time-
dependent representation of our Hilbert space of states)
may look slightly counterintuitive [20]. For this reason,
several authors [19,22] tried to restrict the class of the
crypto-Hermitian time-dependent models by the so-called
quasistationarity (QS) constraint

� ¼ �ðQSÞ � �ðtÞ: (A2)

Such a postulate is in fact rather unfortunate. In an attempt
of leaving the form of Eq. (1) unchanged, it practically

eliminates the possibility of a consistent application of
quantum mechanics to the majority of systems with a
sufficiently nontrivial time dependence of its observables
�jðtÞ.
In the light of empirical results of Ref. [18], the latter

statement can even be strengthened and made more quan-
titative since in the generic quasistationary case the infinite
Taylor series of Eq. (A1) must degenerate to the linear
polynomial

HðQSÞðtÞ ¼ Hð0Þ þ tHð1Þ: (A3)

The preliminary, two-by-two matrix illustration of such a
key drawback resulting from assumption (A2) can be
found in Ref. [19]. Here, we just intend to complement
this example by a less model-dependent demonstration that
the linearity constraint (A3) is generic, for the finite-
dimensional models at least.
In the first step of our proof we accept the assumption

that a given N by N crypto-Hermitian Hamiltonian HðCHÞ
(with N � 1) is quasistationary, time dependent, and
crypto-Hermitian, i.e.,

½HðCHÞðtÞ�y ¼ �ðQSÞHðCHÞðtÞ½�ðQSÞ��1: (A4)

With a constant, time-independent metric �ðQSÞ this re-
quirement can be rewritten as an infinite family of equa-
tions to be satisfied by the coefficients in Eq. (A1),

Hy
ðmÞ�

ðQSÞ ¼ �ðQSÞHðmÞ m ¼ 0; 1; . . . : (A5)

Up to exceptional cases which will not be discussed here,

all of the individual N by N matrix coefficients HðmÞ �
Hy

ðmÞ in Eq. (A1) may be assumed diagonalizable,

HðCHÞ
m ¼ XN

j¼1

j�m;ji"m;jh�m;jj:

Each choice of m ¼ 0; 1; . . . specifies, in general, a differ-
ent biorthonormalized set of vectors together with a differ-
ent real Nplet of eigenvalues "m;j with j ¼ 1; 2; . . . ; N.

At this moment we remind the readers that at any sub-
scriptm ¼ 0; 1; . . . we may specify and construct theNplet
of the ‘‘left eigenvectors’’ j�n;ji as a set of biorthonormal-

ized eigenvectors of the conjugate matrix Hy
ðmÞ. In terms of

these vectors [23] we may write the Mostafazadeh’s [9]
most general spectral expansion

�ðQSÞ ¼ XN
n¼1

j�0;ni�0;nh�0;nj: (A6)

At any finite N this formula describes all the metrics
compatible with Eq. (A5) at m ¼ 0. They depend on N
free parameters �0;n which must be real and positive [24].

In the next step of our proof we contemplate the overlap
matrix
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A jk ¼ h�0;jj�1;ki;
and deduce that

B jk ¼ h�1;jj�0;ki ¼ ðA�1Þjk:
Then, the insertion of Eq. (A6) and the use of the two
diagonal real matrices T (with elements Tjj ¼ �0;j) and F

(with elements Fjj ¼ "1;j) transform Eq. (A5) into a re-

markably compact matrix relation at the next subscript
m ¼ 1,

TAFA�1 ¼ ðA�1ÞyFAyT: (A7)

The first line of this relation has the form of a vectorial
identity

ðM11�0;1;M12�0;1; . . . ;M1N�0;1Þ
¼ ðM�

11�0;1;M
�
21�0;2; . . . ;M

�
N1�0;NÞ

where all the matrix elements Mjk are known. In the

generic case and up to an irrelevant overall factor this

relation defines all the parameters �0;n in the metric (A6),

therefore. The rest of Eq. (A7) is redundant. This observa-
tion may be read either as a proof of the nonexistence of

�ðQSÞ for a general ‘‘dynamical input’’ Hð1Þ or, alterna-

tively, as a set of nontrivial compatibility conditions which
must be imposed upon the ‘‘acceptable’’ matrices Hð1Þ in
Eq. (A3).
We see that even the linear time dependence of the

Hamiltonian characterized by the matrix coefficient Hð1Þ
is not arbitrary. Moreover, once we choose its most general
form we are left with no free parameters which could
guarantee the compatibility between our quasistationary

metric�ðQSÞ and any higher-order coefficientHðmÞ at some

m � 2 in Taylor series (A1). Wemay summarize that in the
crypto-Hermitian quantum models restricted to the quasi-
stationary regime the quadratic and higher-power time
dependence of its observables can only occur as a very
exceptional, fine-tuned phenomenon.
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