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It was recently proposed by the second author to consider lattice formulations of QCD in which

complete actions, including the gauge part, are built explicitly from a given Dirac operator D. In a simple

example of such theory, the gauge action is proportional to the trace of Ginsparg–Wilson operator D

chosen to define the quark dynamics. This construction relies on the proposition that the classical limit of

lattice gauge operator trDðx; xÞ is proportional to trF2ðxÞ (up to an additive constant). Here we show this

for the case of the overlap Dirac operator using both analytical and numerical methods. We carry out the

same analysis also for the tensor component of D, which is similarly related to the field-strength tensor F,

and obtain results identical to our previous derivation that used a different approach. The corresponding

proportionality constants are computed to high precision for a wide range of the negative mass parameter

values, and it is verified that they are the same in finite and infinite volumes.
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I. INTRODUCTION

To define various versions of lattice QCD (LQCD), one
usually follows a standard route where the gauge part of the
total continuum action is treated independently from the
part involving fermions. Indeed, one normally writes down
a candidate for lattice gauge action as an explicit function
of link variables with appropriate symmetries, such that its
continuum limit on smooth backgrounds coincides with the
continuum expression. On the other hand, the basic entity
in the construction of the fermionic part is the lattice Dirac
operator D, itself a collection of functions in gauge varia-
bles (matrix elements). In a standard treatment, one does
not attempt to functionally relate the gauge action to matrix
elements of D.

It has recently been suggested by one of us [1,2] that
exploring lattice gauge theories with gauge and fermionic
parts of the action explicitly related (coherent LQCD)
could be beneficial for studies of QCD vacuum structure.
This is particularly attractive if D is a chirally symmetric
operator of Ginsparg–Wilson type.1 One unusual feature of
coherent formulations is the possibility of incorporating
explicit relations between gauge and fermionic aspects of
the theory. For example, it was suggested that QCD with
Nf quark flavors can be regularized via lattice formulation

in which the usual gluon kinetic term is traded for addi-
tional quark flavor(s) whose mass controls the gauge cou-
pling (symmetric logarithmic LQCD) [1,2]. It remains to
be seen if one can gain theoretical or computational ad-
vantage by introducing interrelations of this type into the
lattice-regularized theory.

The validity of various coherent versions of LQCD
hinges on conjectures of locality and proper classical limit
for scalar and pseudoscalar gauge densities associated with
operator functions fðDÞ used in the construction. If D is a
Ginsparg–Wilson operator, which we assume from now on,
then these are expected to be technically nontrivial issues
due to the fact thatD is necessarily a nonultralocal operator
in fermionic variables [3], and its dependence on gauge
degrees of freedom is also expected to be generically
nonultralocal.
In this paper, we discuss the issue of classical limit for

coherent LQCD, where the gauge action is based on TrD.
More precisely, we will focus on standard overlap opera-

tors Dð�;rÞ [4] constructed from Wilson–Dirac matrix
(negative mass ��, Wilson parameter r), and show that

the classical limit of trDð�;rÞðx; xÞ is proportional to
trF��ðxÞF��ðxÞ up to an additive constant [1]. It should

be emphasized that in formulations with fðDÞ ¼ D one
does not have to deal with the issue of locality. Indeed, the
required locality properties follow from locality of D,
which is imposed to begin with. For overlap Dirac opera-
tors the locality was studied e.g. in Refs. [5,6], and the
specific issue of locality in gauge variables was indirectly
checked via reflection positivity considerations in Ref. [7].
In addition to justifying simple coherent LQCD as a

valid regulator, the validity of the conjectured classical

limit for trDð�;rÞðx; xÞ will also make possible its use as a
coherent scalar partner to overlap-based pseudoscalar den-
sity (topological density) [8–11]. The associated noise
reduction due to nonultralocality is expected to be useful
for obtaining refined information on the fundamental vac-
uum structure first discovered in overlap-based topological
density [12,13], as well as for conventional uses such as
studies of glueball spectrum [14]. Needless to say, for these
purposes, it would in fact be desirable to have all interest-
ing composite fields defined coherently. Important ex-

1It is worth emphasizing that the notion of coherent LQCD can
be well defined even if D is not chirally symmetric, assuming
that a suitable function fðDÞ is used to define required gauge
operators. For example, the choice fðDÞ ¼ D4 produces coher-
ent LQCD for arbitrary lattice Dirac operator D [1].
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ample is the field-strength tensor F��, which can be con-

structed from tensor component of Dð�;rÞðx; xÞ [1,15,16].
Direct derivation has shown that in this case the required
classical limit is indeed correct [16,17].

In principle, one could employ the methods of Ref. [17]
to derive the classical limit also in the scalar case consid-
ered here. However, the corresponding calculation is tech-
nically rather involved, and we thus take a different
approach. In particular, the classical limit is first calculated
for the class of constant gauge fields in infinite volume.
This derivation is rigorous (even though technically it
relies on a numerical evaluation of certain Brillouin zone
integrals), and allows us to determine the corresponding
proportionality constants cSð�; rÞ in a comparably simple
calculation. Next, we show that our arguments also apply
for constant fields in finite volume, at least for standard
periodic and antiperiodic boundary conditions. Finally, we
perform a direct numerical evaluation of the classical limit
on generic nonconstant backgrounds and find identical
results again. It is thus safe to conclude that the conjectured
classical limit is indeed realized. Simultaneously with the
scalar case, we apply our methods also to the tensor
spinorial component and reproduce the results reported in
Ref. [17], thus cross-checking both approaches. The pro-
portionality constants cS, cT and scalar subtraction con-
stants relevant for practical applications are given.

II. FORMULATION OF THE PROBLEM

Before we formulate the statements that we will be
concerned with in this paper, we wish to fix our notation
and specify few conventions.

(i) Continuum gauge fields. The SU(3) gauge field
A�ðxÞ (traceless Hermitian 3� 3matrices) is related

to the field-strength tensor via2

F��ðxÞ � @�A�ðxÞ � @�A�ðxÞ þ i½A�ðxÞ; A�ðxÞ�;
(1)

while the covariant derivative acts as

D��ðxÞ ¼ ð@� þ iA�ðxÞÞ�ðxÞ
½D�;D���ðxÞ ¼ iF��ðxÞ�ðxÞ: (2)

(ii) Classical fields. By classical continuum fields on R4

(or on a torus) we mean gauge potentials A�ðxÞ
smooth (differentiable arbitrarily many times) al-
most everywhere. If classical backgrounds contain
singularities, the classical continuum limits are as-
sumed to be taken at its nonsingular points. While

our conclusion is expected to be valid for all classical
fields (due to the locality of operators involved), in
what follows we will only consider classical fields
that are smooth everywhere. This avoids various
inessential technical complications related to tran-
scribing singular fields onto the lattice.

(iii) Transcription of classical fields to hypercubic lattice.
Hypercubic lattice is superimposed on R4 via the
correspondence x � naðx 2 R4; n 2 Z4Þ, where a
is the lattice spacing. The smooth continuum field
is then transcribed to the lattice field via

Un;�ðaÞ � P exp

�
ia

Z 1

0
dsA�ðanþ ð1� sÞa�̂Þ

�
;

(3)

where P is the path ordering symbol and �̂ is a unit
vector in direction �.

(iv) Overlap operators. Standard overlap Dirac operators
are defined by [4]

Dð�;rÞ ¼ �½1þXðXyXÞ�ð1=2Þ� X ¼ DW � �

� 2 ð0; 2rÞ r > 0; (4)

where DW � 4rI� 1=2K is the massless Wilson–
Dirac operator and K, the Wilson’s hopping matrix
with Wilson parameter r, is given by

Kn;m ¼ X
�

ðr� ��ÞUn;��nþ�;m

þ ðrþ ��ÞUy
n��;��n��;m: (5)

For calculations in this paper, it is convenient to
work with the rescaled matrix X, namely,

X ! X � 2�X ¼ I� �K � � 1

8r� 2�
:

(6)

The form of the overlap operator (4) in terms ofX is
identical to that in terms of X.

(v) Classical limit conjecture. Our main goal in this
paper is to support the conjecture C3 of Ref. [1] for
the specific case of standard overlap Dirac operators.
In the infinite volume, one can state this as follows.3

Conjecture 1. Let A�ðxÞ be arbitrary smooth SU(3)

gauge potentials on R4. If UðaÞ � fUn;�ðaÞg is the tran-

scription of this field to the hypercubic lattice with classical
lattice spacing a, and I � fUn;� ! Icg is the free gauge

configuration then

tr scðD0;0ðUðaÞÞ �D0;0ðIÞÞ ¼ cSa4trcF��ð0ÞF��ð0Þ
þOða6Þ; (7)

2Note that this differs from conventions of Ref. [1], where
anti-Hermitian gauge potentials were used instead. The equa-
tions used here can be obtained from equations of Ref. [1] via
substitutions A�ðxÞ ! iA�ðxÞ, F��ðxÞ ! iF��ðxÞ. The values of
constants cS, cT are the same in both conventions.

3The subscripts ‘‘s’’, ‘‘c’’ in expressions that follow refer to
‘‘spin’’ and ‘‘color,’’ respectively. Thus, for example, Ic denotes
the identity matrix in color space (3� 3 matrix) and trsc denotes
the trace in both spin and color.
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where D � Dð�;rÞ is the overlap Dirac operator and F��ðxÞ
is the field-strength tensor associated with A�ðxÞ. The

constant cS � cSð�; rÞ is nonzero and independent of
A�ðxÞ at fixed � and r.

We will also discuss classical limits for tensor compo-

nents of Dð�;rÞ. The corresponding statement is obtained
from the above by replacing Eq. (7) with [1,17]

tr s���D0;0ðUðaÞÞ ¼ cTa2F��ð0Þ þOða4Þ; (8)

where ��� � 1
2i ½��; ���.4

We emphasize that the above statements [with identical
proportionality constants cSð�; rÞ, cTð�; rÞ] are also ex-
pected to be true in a finite volume. We will verify this
here for the practically relevant case of a torus. In what
follows, we will frequently skip explicitly denoting depen-
dences of operators/constants on parameters � and r, but
they are implicitly understood.

III. CONSTANT FIELDS IN INFINITE VOLUME

In this section we establish that the leading term of
Eq. (7) is indeed correct for the class of constant gauge
fields A�ðxÞ � A�. This is the simplest class of classical

fields leading to nonzero field-strength tensor (for non-
Abelian gauge fields), while the resulting simplifications
make the calculation reasonably manageable.

For constant classical backgrounds, the transcribed lat-
tice field at lattice spacing a has the simple form5

Un;�ðaÞ ¼ expðiaA�Þ (9)

and the overlap Dirac matrix is translation invariant
Dn;m ¼ Dn�m;0. The calculation of classical limit simpli-

fies in the Fourier space, where the operator is diagonal in
space-time indices. For arbitrary translation invariant op-
erator On;m, we define the diagonal Fourier image OðkÞ via

OðkÞ � X
n

e�iðn�mÞkOn;m;

On;m ¼ 1

ð2	Þ4
Z

d4keiðn�mÞkOðkÞ;
(10)

where the integration over momentum variables runs
through the Brillouin zone. The definition of OðkÞ requires
the convergence of the above infinite sum, for which it is
sufficient that O is local. For arbitrary constant gauge field
A� the overlap Dirac operator D in transcribed lattice

background U�ðaÞ is guaranteed to be local [5] at suffi-

ciently small classical lattice spacing a, and thus its Fourier
transform is well defined.

To evaluate DðkÞ, we start from the expression for D in
terms of matrix X [see Eq. (6)]

1

�
D ¼ Iþ X

1ffiffiffiffiffiffiffiffiffiffi
XyX

p : (11)

The Fourier transform XðkÞ of X can be found straightfor-
wardly and is given by

XðkÞ ¼ Isc � 2�r
X
�

cosðaA� þ k�Þ

þ i2�
X
�

�� sinðaA� þ k�Þ (12)

Moreover, the Hermitian matrix B � XyX is strictly
positive-definite for sufficiently small a in arbitrary con-
stant background [5].6 Consequently, the Fourier image of

B�1=2 is simply given by ðXyðkÞXðkÞÞ�1=2, and thus

1

�
DðkÞ ¼ Isc þ XðkÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XyðkÞXðkÞ
p : (13)

A. Expansion in lattice spacing

For the purposes of conjecture 1, we are interested in the
Taylor expansion (in a) of

1

�
D0;0 ¼ 1

�

1

ð2	Þ4
Z

d4kDðkÞ

¼ Isc þ 1

ð2	Þ4
Z

d4kXðkÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XyðkÞXðkÞ

p ; (14)

which can be obtained term by term from the Taylor

expansion of XðkÞB�1=2ðkÞ due to its analyticity in both k
and a for sufficiently small a.
To fix the notation that we will use for various operators,

we generically write

Oðk; aÞ ¼ X1
n¼0

OnðkÞan � O0ðkÞ þ �Oðk; aÞ; (15)

where the dependence of OðkÞ on a will usually not be
shown explicitly. The leading terms for XðkÞ and BðkÞ are
given by7

X0ðkÞ ¼ 1� 2�r
X
�

cosk� þ i2�
X
�

�� sink� (16)

and

B0ðkÞ ¼
�
1� 2�r

X
�

cosk�

�
2 þ 4�2

X
�

sin2k�: (17)

There are two points to note here. (i) B0ðkÞ is proportional
to identity and is positive-definite for all k, except when

4We use Hermitian �-matrices �y
� ¼ �� throughout this

paper.
5It is worth mentioning at this point that one can use pertur-

bation theory techniques to obtain expansions needed [10,18–
20]. Here we proceed without reference to weak coupling
perturbation theory, as done in [11,17].

6The gap in the spectrum of B tends to zero when excluded
boundary values � ¼ 0 and � ¼ 2r are approached.

7Note that in the formulas that follow we denote Isc simply as
‘‘1’’ with spin-color structure understood.
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�r ¼ 1=8, 1=4 which corresponds to excluded boundary
values of the �-parameter 0, 2r. This means that B0ðkÞ can
be commuted and inverted freely in the expressions that
follow. (ii) The matrices �XðkÞ and �BðkÞ have norms that
can be made arbitrarily small by lowering the lattice spac-
ing sufficiently, and can thus serve as ‘‘perturbations’’ in
matrix expansions around X0ðkÞ and B0ðkÞ.

The expansion of XðkÞB�1=2ðkÞ in lattice spacing,
needed in (14), can now proceed via expanding XðkÞ and
B�1=2ðkÞ separately and then combining the results. In case
of XðkÞ, the expansion is obtained directly from (12), while

for B�1=2ðkÞ we use
B�ð1=2Þ ¼ ðB0 þ �BÞ�ð1=2Þ ¼ B�ð1=2Þ

0 ð1þ ~�BÞ�ð1=2Þ

~�B � B�1
0 �B: (18)

Properties (i) and (ii) guarantee that ~�B is a valid pertur-
bation for the expansion of the inverse square root, yielding

B�ð1=2Þ ¼ B�ð1=2Þ
0 ½1� 1

2
~�Bþ 3

8ð~�BÞ2 � 5
16ð~�BÞ3

þ 35
128ð~�BÞ4� þOðð ~�BÞ5Þ: (19)

Note that we have to keep all the terms up to the 4th order
since we are eventually interested in Oða4Þ contribution
and ~�B is OðaÞ. Indeed, the explicit formula for BðkÞ in
terms of its Clifford decomposition is given by

BðkÞ ¼ Is � SðkÞ þ �� �V�ðkÞ þ ��� �T ��ðkÞ;
(20)

where

SðkÞ ¼
�
1� 2�r

X
�

cosðaA� þ k�Þ
�
2

þ 4�2
X
�

sinðaA� þ k�Þ2 (21)

V �ðkÞ ¼ i4�2
X
�

½sinðaA� þ k�Þ; cosðaA� þ k�Þ� (22)

T ��ðkÞ ¼ i2�2½sinðaA� þ k�Þ; sinðaA� þ k�Þ� (23)

and ½; � denotes the commutator. From this one can inspect
directly that whileV� and T �� are Oða2Þ, the scalar part
contains both the constant and the linear term, and thus ~�B
is indeed OðaÞ.

The equations of this subsection together with Eq. (12)
define the procedure of evaluating various classical limits
completely. The calculation is straightforward, but turns
out to be technically still quite involved if one wants to
obtain a complete expansion of DðkÞ (and thus of D0;0) all

the way up to order a4.

B. Sample computation—first order

To see the characteristic nature of the computations
involved, let us now expand DðkÞ up to order a. For this
purpose, we will need expansions of XðkÞ and BðkÞ up to
OðaÞ. We find

XðkÞ ¼ X0ðkÞ þ a
X
�

A�2�ðr sink� þ i�� cosk�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g�ðkÞ

þOða2Þ

(24)

and

BðkÞ¼B0ðkÞþa
X
�

A�

�
�
4�r

�
1�2�r

X
�

cosk�

�
sink�þ8�2 sink�cosk�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f�ðkÞ

þOða2Þ: (25)

Note that f�ðkÞ comes entirely from SðkÞ. Using the ex-

pansion (19) up to Oð~�BÞ we then obtain DðkÞ ¼ D0ðkÞ þ
aD1ðkÞ þOða2Þ where

1

�
D0ðkÞ ¼ 1þ B0ðkÞ�1=2X0ðkÞ (26)

and

1

�
D1ðkÞ ¼

X
�

A�B0ðkÞ�3=2

�
g�ðkÞB0ðkÞ � 1

2
f�ðkÞX0ðkÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

h�ðkÞ

:

(27)

The leading term D0ðkÞ is the Fourier transform of the free
overlap operator as expected.
Let us now focus on the first-order term which will

determine (after inverse Fourier transform) the first-order
term of D0;0. Using transformation properties, one can

argue that this first-order term should in fact vanish.
Indeed, D0;0 is a gauge covariant operator and this covari-

ance has to be preserved order by order in the Taylor
expansion. Thus, the coefficient of the linear term is ex-
pected to be a dimension one (continuum) gauge covariant
operator (spin-color function of the gauge field), but such
operator does not exist. On the other hand, the result (27)
shows that D1ðkÞ is not identically zero. This does not
imply any contradiction as long as the associated inverse
Fourier expression vanishes. One can see that this is indeed
the case by evaluating h�ðkÞ of Eq. (27) explicitly, yielding

h�ðkÞ ¼ hA�ðkÞ þ i��h
S
�ðkÞ; (28)

where hA�ðkÞ is antisymmetric with respect to k� ! �k�,

while hS�ðkÞ is symmetric, fully diagonal and can bewritten

as a derivative, namely8

8We thank the referee for pointing this out to us.
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hS�ðkÞ ¼ 2�
@

@k�
sink�B

�ð1=2Þ
0 ðkÞ: (29)

Consequently,
R
d4kD1ðkÞ ¼ 0 and we have

D0;0ðUðaÞÞ ¼ D0;0ðIÞ þOða2Þ: (30)

While relatively simple, this calculation fully illustrates the
issues encountered also at higher orders, where the number
of terms to deal with grows rather quickly.

C. Tensor component and the second order

The tensor part of D0;0 first appears at second order in

classical lattice spacing. Using the technique described
above we straightforwardly arrive (see also Appendix A)
at the expression in Fourier space, namely

1

�
D2ðkÞ ¼

X
��

�
1

4

2r

ð4r� �Þ3
t��ðkÞ
B3=2
0 ðkÞ

�
��� � F�� þ . . . ;

(31)

where F�� ¼ i½A�; A��, ��� ¼ 1
2i ½��; ���, and ‘‘. . .’’ rep-

resents terms that are either odd in k� or are partial

derivatives of analytic functions with respect to k�, thus

not contributing upon transition back from Fourier space.
The expression in the bracket is a real-valued function of
the momentum and it should be pointed out that from now
on we use the symbol B0ðkÞ to interchangeably denote a
color-spin matrix proportional to identity, as well as its
diagonal matrix element. The function t��ðkÞ is given by

t��ðkÞ ¼ sin2k� cosk� þ sin2k� cosk�

�
�
4� �

r
�X




cosk


�
cosk� cosk�: (32)

The constant cT ¼ cTð�; rÞ of Eq. (8) is then specified by

cTð�; rÞ ¼ 2r�

ð4r� �Þ3
1

ð2	Þ4
Z

d4k
t��ðkÞ
B3=2
0 ðkÞ (33)

and does not depend on �, � due to hypercubic symme-
tries. One can easily check that this result is identical to the
one we obtained previously in Ref. [17].

The parameter dependence of cT is more transparent if
one introduces a rescaled mass parameter

�̂ � �

r
�̂ 2 ð0; 2Þ (34)

and the rescaled B0ðkÞ, namely

zðkÞ � 1

ð2�Þ2 B0ðkÞ ¼ ð4r� �Þ2B0ðkÞ: (35)

With that we finally have

cTð�̂; rÞ ¼ 2�̂r2
Z d4k

ð2	Þ4
t��ðkÞ
z3=2ðkÞ (36)

where

zðkÞ ¼ X
�

sin2ðk�Þ þ r2
�
4� �̂�X

�

cosk�

�
2

(37)

depends on both �̂ and r, while

t��ðkÞ ¼ sin2k� cosk� þ sin2k� cosk�

�
�
4� �̂�X




cosk


�
cosk� cosk� (38)

only depends on �̂.
For explicit evaluation of cT we study the convergence

of Riemann sums associated with the corresponding
Brillouin zone integral. More precisely, we partition the
integration domain ½0; 2	�4 into N4 cubes of volume
ð2	=NÞ4 � ð�kÞ4 and define the corresponding Riemann
sum cT½N� via

1

2�̂r2
cT½N� � 1

ð2	Þ4
X
k

ð�kÞ4 t��ðkÞ
z3=2ðkÞ ¼

1

N4

X
k

t��ðkÞ
z3=2ðkÞ ;

(39)

where the discrete momenta associated with elementary
cubes have components

k� ¼
� ð�kÞl� for � ¼ 1; 2; 3
ð�kÞðl� þ 1=2Þ for � ¼ 4

l� ¼ 0; 1; . . . ; N � 1:

(40)

Note that this choice of discrete momenta exactly corre-
sponds to the situation on the latticized torus of sizeN with
mixed periodic (spatial) and antiperiodic (time) boundary
conditions, which is frequently a preferred setup in finite
volume.9 Because of the asymmetric choice of the discre-
tization, the value of cT½N� at finite N will depend on
whether the pair �, � chosen for evaluation is of space-
space or space-time kind, but the difference has to vanish in
the N ! 1 limit. In Fig. 1 we show the dependence of
cT½N� on N for both cases, showing that they converge
exponentially inN to the common nonzero limit. The value
labeled as ‘‘exact’’ includes only digits determined to be
stabilized under increasing N in the calculation.

D. Scalar component and the fourth order

Our main goal in this paper is the evaluation of classical
limit for the scalar spinorial component of D0;0, and its

complete trace, in particular. Since the expectation is that
the leading term (up to a constant to be subtracted) will
appear at the 4th order, one has to carry out expansions
described in Secs. III A and III B up to that order. Algebraic
manipulations involved in this are rather extensive and we

9The rationale for this is that it will allow us to argue that, for
constant fields, our results on infinite lattice can be mapped
exactly to this specific finite-volume case.
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have used MATHEMATICA for required symbolic manipula-
tions. The result can be written in the form

tr scD0;0ðUðaÞÞ ¼ trscD0;0ðIÞ þ a4I4 þOða6Þ: (41)

The odd powers are absent in the scalar spinorial compo-
nent (do not contribute upon taking the spinorial trace of
D0;0). The quartic term is given by

I4 ¼
X
�

i4;�trcA
4
� þ X

�<�


��trcA�A�A�A�

þ X
�<�

���trcA�A�A�A�: (42)

To describe the results of calculation for constants i4;�,


��, ��� we now have to introduce few conventions. All

the coefficients to compute will be defined by functions in
the momentum space of the form

F̂ðk; j; ĉÞ ¼ 1

B0ðkÞj
X
n

ĉðnÞ cosðk1Þn1 cosðk2Þn2 cosðk3Þn3

� cosðk4Þn4 ; (43)

where n � ðn1; n2; n3; n4Þ is a four-component vector of
non-negative integers, j is a single half-integer and ĉðnÞ is
real-valued. Each function of interest is thus specified by j
and the finite list of nonzero coefficients ĉðnÞ.

To reduce the amount of information needed for evalu-
ation of the coefficients, we will use the fact that, by means
of the inverse Fourier transform, it is only the mean value

of F̂ that is relevant. More precisely, we are interested only
in

Fðj; ĉÞ �
Z d4k

ð2	Þ4 F̂ðk; j; ĉÞ ¼
X
n

ĉðnÞIðj; nÞ; (44)

where we introduced the notation Iðj; nÞ for integrals of the

form

Iðj; nÞ �
Z d4k

ð2	Þ4
cosðk1Þn1 cosðk2Þn2 cosðk3Þn3 cosðk4Þn4

B0ðkÞj :

(45)

Since Iðj; nÞ is completely symmetric with respect to in-
dices n�, we can restrict the sum over n in (44) only to n

such that n1 � n2 � n3 � n4, and redefine the coefficients
ĉðnÞ ! cðnÞ accordingly. We then have

Fðj; cÞ � X
n1�n2�n3�n4

cðnÞIðj; nÞ (46)

and we specify our results by listing j and cðnÞ for each
case in question.
The last piece of convention we need to specify concerns

the choice of discretization for performing Riemann sums
in the actual evaluation of momentum integrals. While
final results have to be independent of that choice, our
discussion of classical limits in the finite volume (see
Sec. IV) can be mapped directly on the discussion here if
Riemann sums are defined in a particular manner.
Moreover, consistency over different discretizations repre-
sents an additional check on our results. In what follows,
we will refer to the discretization defined by Eq. (40) as
antiperiodic, while the discretization where

k� ¼ ð�kÞl� � ¼ 1; 2; 3; 4 l� ¼ 0; 1; . . . ; N � 1

(47)

will be referred to as periodic. We emphasize that when we
speak of periodic or antiperiodic case, we also imply that
the corresponding reduction ĉðnÞ ! cðnÞ has been per-
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FIG. 1 (color online). Riemann sums for proportionality constant cT of the tensor term. These results were computed at r ¼ 1 and
� ¼ 0:19 (� ¼ 26=19).
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formed in a manner that is consistent with the remnant
symmetries of the Riemann sum used. More precisely, for
the periodic discretization the Riemann sums Iðj; nÞ½N� are
completely symmetric with respect to indices n� and the

reduction is thus as described in previous paragraph.
However, for the antiperiodic case the Riemann sum is
only symmetric with respect to exchange of spatial com-
ponents n1, n2, and n3, and one thus has to keep track of
larger set of coefficients cðnÞ. It is only with this prescrip-
tion that the exact correspondence between the finite and
infinite volume situations is realized in case of antiperiodic
discretization of the integral. One implication of this is
that, for antiperiodic case at finite N, the timelike compo-
nents of vectors and tensors will not be exactly equal to
spacelike components. However, the difference (and re-
covery of full hypercubic symmetries of the infinite lattice)
has to take place in the N ! 1 limit. In what follows, we
will show results for both types of discretization. Perfect
agreement has always been found as expected, and we thus
provide the list of reduced coefficients cðnÞ of the periodic
case only, which is more economic.

1. The results

The first group of terms in Eq. (42) is not gauge invariant
and so constants i4;� are expected to be zero. We have

numerically evaluated these constants using the result for
corresponding coefficients cðnÞ obtained from
MATHEMATICA. Figure 2 shows the typical convergence

of the associated Riemann sums i4;�½N� both in antiperi-

odic and periodic discretizations. For antiperiodic case
both the timelike and the spacelike case is shown to see
that they are different at finite N. For N ! 1 all three
sequences are expected to approach the common limit
which is apparently zero in this case. The convergence is
again exponential in N.

The second and the third group of terms contain combi-
nations that appear in (�, � fixed)

tr cF��F�� ¼ �trc½A�; A��½A�; A��
¼ 2 trcðA�A�A�A� � A�A�A�A�Þ (48)

and thus, in light of conjecture 1, we anticipate that ��� ¼
�
��. Also, due to hypercubic symmetries we must have

that 
�� � 
 and ��� � � are independent of � � �.

Since our results were obtained using a symbolic algebra
software, verifying these relations is not only a consistency
check for the expected result, but also an internal check of
our programs.
The set of reduced coefficients specifying constants 
��

and ��� are given in the Appendix in Tables III and IV

respectively (j ¼ 9=2). In Fig. 3 (top) we show the typical
convergence of Riemann sums for
�� in both periodic and

antiperiodic discretizations of the integral. For periodic
case only 
12 is shown since full hypercubic symmetry
in this case guarantees that, even at finite N, 
��½N� is
independent of �, �. Our results, obtained using symbolic
algebra software, indeed comply with this. In the antiperi-
odic case we show both the representative of space-space
combination (
12) and the representative of space-time
combination (
14). All other possibilities for space-space
and space-time combinations are exactly the same as the
ones shown (even at finite N) as expected from the re-
stricted hypercubic symmetry. The convergence of the
three Riemann sums is exponential, as was in all the
previous cases, and the insert shows that they approach a
common nonzero limit whose value 
 can be easily ex-
tracted. The analogous results in case of ��� are shown in

the bottom plot of Fig. 3, and one can immediately see that,
indeed, � ¼ �
.
Combining all the results for the scalar spinorial com-

ponent of D0;0 together, we have from Eq. (41) that
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tr scD0;0ðUðaÞÞ ¼ trscD0;0ðIÞ þ a4



4

X
��

trcF��F��

þOða6Þ (49)

implying that conjecture 1 [see Eq. (7)] is indeed true for
the class of constant fields. The associated proportionality
constant is given by

cSð�;rÞ ¼ 
ð�; rÞ
4

! cS
�
26

19
;1

�
¼ 0:01672926781; (50)

where the quoted value at � ¼ 26=19 and r ¼ 1 (only valid
digits are given) was extracted from the data shown in
Fig. 3.

IV. FINITE VOLUME AND NONCONSTANT
FIELDS

As already mentioned in the previous section, we have
analyzed the case of constant fields in the infinite volume in
a way that can be directly mapped on to the situation in
finite volume with specific boundary conditions. We now

discuss this correspondence explicitly. Consider a 4-d hy-
percube in the continuum with side Lp (in physical units).

Superimposing a hypercubic lattice with N4 sites implies
the classical lattice spacing a � aN such that

Lp ¼ NaN (51)

and the classical continuum limit is achieved as N ! 1
(aN ! 0). Proper specification of the operator now in-
volves also a choice of boundary conditions, and we will
consider (see below) two standard cases that admit a
diagonal Fourier-space representation for constant fields.
In particular, we will refer to the situation with periodic
boundary conditions in all directions as ‘‘periodic bc,’’ and
to the case with periodic boundary conditions in spatial
(� ¼ 1, 2, 3) directions and antiperiodic in time (� ¼ 4)
as ‘‘antiperiodic bc.’’ The formulas (10) relating the direct
and Fourier representations carry over to these finite-
volume cases except that the infinite sum is replaced by
the finite sum, and the integral of the inverse transform is
replaced by

On;m ¼ 1

ð2	Þ4
Z

d4keiðn�mÞkOðkÞ ! On;m

¼ 1

N4

X
k

eiðn�mÞkOðkÞ (52)

with the sum only running over the associated N4 discrete
momenta.
The relation to the infinite-volume case is based on the

following considerations.
(i) With periodic bc, the N4-dimensional Fourier space

is spanned by plane waves with momenta given by
Eq. (47), namely, those involved in the periodic
discretization (into N4 pieces) of the Brillouin zone
discussed in the case of infinite volume. Similarly,
for antiperiodic bc the associated momenta are given
by Eq. (40) of the antiperiodic discretization.

(ii) The form of Fourier representation DðkÞ of the over-
lap operator for the above finite-volume setups (and
constant fields) is identical to the infinite-volume
case but restricted to the corresponding discrete
momenta.

(iii) Using (i), (ii) and comparing (52) with the rule for
evaluating Riemann sums in case of infinite volume
[see e.g. Eq. (39)] we can immediately see the fol-
lowing correspondence

Dfin
0;0ða; NÞ � Dinf

0;0ðaÞ½N�; (53)

where the superscripts ‘‘inf’’ and ‘‘fin’’ refer to
infinite and finite-volume cases, respectively. In
other words, the matrix Dfin

0;0ða;NÞ (for finite-volume

setups discussed here) is equal to the corresponding
Riemann sum (withN4 terms) for the inverse Fourier
transform representation of Dinf

0;0ðaÞ. The same con-

stant background is of course implicitly assumed in
both cases.
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(iv) Riemann sums in question converge exponentially in
N, as emphasized in previous sections, and we can
conclude from (53) that for large N

Dfin
0;0ða; NÞ ¼ Dinf

0;0ðaÞ þOðexpð�CðaÞNÞÞ (54)

with strictly positive CðaÞ (also at a ¼ 0).
From the last equation it follows that, in the case of

constant background fields, the Taylor expansion (in a) of
D0;0 in infinite volume supplies an asymptotic expansion

for the case of finite volume (with corrections behaving as
expð�CðaÞLp=aÞ. Moreover, considering the continuum

limit at fixed Lp (so that aN � Lp=N) we obtain that

lim
N!1

trscðDfin
0;0ðaN; NÞ �Dfin

0;0ð0; NÞÞ
a4N trcF��F��

¼ lim
N!1

trscðDinf
0;0ðaNÞ �Dinf

0;0ð0ÞÞ
a4N trcF��F��

� cS; (55)

where cS is the constant that we computed in the infinite
volume. The above equation expresses the fact that the
scalar component of D0;0 has the same classical limit in

both finite and infinite volumes, as required and expected
on the basis of locality. Analogous result obviously holds
also for the tensor component.

A. Nonconstant fields

Apart from the fact that the finite-volume setups are
actually those relevant for practical lattice QCD calcula-
tions, their advantage for the present discussion is that one
can evaluate the associated classical limit numerically. In
other words, one can obtain the left-hand side of Eq. (55)
via direct numerical evaluation of Dfin

0;0 for arbitrary clas-

sical background. Performing a sequence of such calcula-
tions with increasing N then allows us to infer the N ! 1
(aN ! 0) limit of the ratio. For the case of constant fields,
such calculations indeed exactly reproduce our results
obtained via the expansion in classical lattice spacing.
The utility of this approach, however, mainly lies in the
fact that it allows us to evaluate classical limits also for
nonconstant backgrounds which were not included in our
considerations up to this point.

To perform such a calculation, we set Lp ¼ 1 and use

arbitrarily selected classical backgrounds. One of the cases
that we studied is specified by

A�ðt; x; y; zÞ ¼
�
1þ sin2	t cos2	x�

12	

�
a�

þ
�
1þ cos2	z

2	

�
a3��; (56)

where we use � 2 f0; 1; 2; 3g and the coordinate-labeling
correspondence 0 $ t, 1 $ x, 2 $ y, 3 $ z for conve-
nience. The constant field a� is specified in Appendix C.

For given N, we evaluated the ratio cSðN ¼ 1=aNÞ at 10
randomly selected points on the unit torus. The same
points, specified in Appendix C, were used for each N. In

Fig. 4 (top) we plot the mean value of cSðNÞ over this
sample with ‘‘error bars’’ representing the square root of
the associated variance. The horizontal line shows the
value of cS obtained via expansion in classical lattice
spacing in infinite volume (50). As can be seen quite
clearly, the mean approaches this predicted value for large
N with variance shrinking toward zero at the same time. To
guide the eye, we also included a fit to N ¼ 1=aN depen-
dence of cS in the form

cSðNÞ ¼ XK
k¼0

ck

�
1

N

�
2k
: (57)

Note that this form is motivated by the fact that the odd
powers of lattice spacing are not present in the expansion
of D0;0 in infinite volume. The above fitting form is ne-

glecting the terms exponentially small in N, which are
present, but their relative contribution decays very fast
with increasing N. The standard fit shown in Fig. 4 uses
all points with N � 12 (treating the associated rooted
variances as error bars) and K ¼ 6. The coefficient c0 of
the fit represents the estimate of cS, and the obtained value
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agrees with that of Eq. (50) to relative precision of about
two parts in 104.

To further check the robustness of the agreement found
above (universality of the classical limit for constant and
nonconstant configurations), let us now examine a different
procedure for estimating cS on background (56). For any
given point on the torus, consider evaluating the ratio (55)
over some range of N (such as one shown in Fig. 4 (top),
and then fitting this dependence to the form (57) with
progressively increasing value of K.10 For each K, the
coefficient c0 � c0ðKÞ of the fit represents the estimate
of cS. Since the expansion (57) is asymptotically valid at
large values of N, the accuracy of such estimates will
depend on the fitting range chosen. In order to be very
conservative, we use the whole range displayed in Fig. 4
(top), i.e. all the points with 8 � N � 44. In Fig. 4 (bot-
tom) we show the average of c0ðKÞ so obtained over the
same sample of random points that we used above. The
‘‘error bars’’ on this plot are the square roots of variance
over this sample, and are decaying rapidly with increasing
K. This is expected since the classical limit has to be
reproduced at each point individually and the estimates
are expected to get better with increasingK. The horizontal
line on the plot represents the value of cS quoted in
Eq. (50). As one can see quite clearly, c0ðKÞ settles ap-
proximately at this expected value. In fact, for the largest
value of K (K ¼ 9) the relative difference between cS and
c0 is about three parts in 105.

V. VALUES OF RELATED CONSTANTS

Given the results presented in Secs. III and IV there is
little doubt that the universal classical limit for the scalar
spinorial part of D0;0 exists in the case of overlap operator,

and that it is proportional to F��ð0ÞF��ð0Þ [1]. Indeed, we
obtained fully consistent results showing this for finite and
infinite volumes, for constant and nonconstant fields, and
for different boundary conditions in finite volume. Since
matrix elements of D are local functions of the gauge field
[5], the lattice operator

Oðn;UÞ � 1

cS
trscðDn;nðUÞ �Dn;nðIÞÞ (58)

represents a valid definition of trcF��F��. For certain

applications, such as those arising in the studies of QCD
vacuum structure, it is necessary to deal with properly
normalized operators in which case it is important that
sufficiently precise values of cS and free-field subtraction
constants are available. In this section, we provide some of
this information both for the scalar and tensor cases.

As is well known, the properties of the overlap Dirac
operator, such as its range of locality [5], are quite sensitive
to the value of the negative mass parameter �. Since
various choices are currently being used in practice, we
computed cSð�; rÞ and cTð�; rÞ for the range of �-values
and the most commonly used case of r ¼ 1. To obtain the
results listed in Table I, we used the expansion method
described in Sec. III. The last column lists the maximal
discretization parameter N used in evaluating the associ-
ated Riemann sums. Note that one needs to use finer
discretization (larger N) close to boundary values � ¼ 0
and � ¼ 2 to achieve given precision.
In Fig. 5, we plot the �-dependence of both cS=� and

cT=�. It is worth pointing out that in the tensor case the
behavior appears to be almost exactly linear in �. However,
closer inspection suggests that the deviations from exact
linearity are in fact larger than the estimated errors of
calculated values. Nevertheless, the purely linear approxi-
mation is very precise in the range of �-values studied.
Finally, we have computed the subtraction constants

trscD0;0ðIÞ for various sizes of a symmetric lattice with

both periodic and antiperiodic boundary conditions. The
results, summarized in Table II, were computed at � ¼
26=19 and r ¼ 1. These are the values of the parameters
used by the Kentucky group in the studies of QCD vacuum
structure (see e.g. [7,13,21]) as well as in the studies of
hadron spectroscopy (see e.g. [22,23]). In the space-time
symmetric geometry considered here, the utility of these
results is mainly for the former. To obtain the constants
quoted in Table II, we directly evaluated trscD0;0ðIÞ from
the finite spectral sum over explicitly available Fourier
modes. The calculation was done in double precision and
we estimate that after rounding errors, these values are
good to at least 13 digits. Note that the convergence to
the infinite-volume value is very fast and that atN ¼ 40 the

TABLE I. The proportionality constants cS and cT for various
values of � at r ¼ 1.

� � cS=� cT=� maxN

0.2 0.131 579 7:276 482 7� 10�3 2:308 237 70� 10�2 160

0.3 0.135 135 7:279 233 9� 10�3 2:783 329 99� 10�2 120

0.4 0.138 889 7:319 851 6� 10�3 3:263 975 80� 10�2 100

0.5 0.142 857 7:405 323 4� 10�3 3:750 153 19� 10�2 100

0.6 0.147 059 7:544 194 4� 10�3 4:241 787 29� 10�2 80

0.7 0.151 515 7:747 004 0� 10�3 4:738 731 53� 10�2 80

0.8 0.156 250 8:026 875 7� 10�3 5:240 742 12� 10�2 80

0.9 0.161 290 8:400 324 4� 10�3 5:747 442 91� 10�2 80

1.0 0.166 667 8:888 382 4� 10�3 6:258 276 34� 10�2 80

1.1 0.172 414 9:518 196 6� 10�3 6:772 434 31� 10�2 80

1.2 0.178 571 1:032 534 6� 10�2 7:288 758 94� 10�2 80

1.3 0.185 185 1:135 728 1� 10�2 7:805 597 70� 10�2 80

1.4 0.192 308 1:267 858 2� 10�2 8:320 587 59� 10�2 80

1.5 0.200 000 1:437 923 4� 10�2 8:830 325 84� 10�2 100

1.6 0.208 333 1:658 816 4� 10�2 9:329 853 00� 10�2 120

1.7 0.217 391 1:949 636 9� 10�2 9:811 814 43� 10�2 120

1.8 0.227 273 2:339 853 4� 10�2 1:026 504 41� 10�1 180

10Note that all the points in the chosen range contribute with
equal weight in such a fit—there are no error bars. Indeed, the
classical limit is not a ‘‘statistical’’ notion and has to be con-
sistently reproduced at all nonsingular points and for all classical
configurations.
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periodic and the antiperiodic cases already agree to 13
digits.

VI. SUMMARY

We have used analytic and numerical techniques to
evaluate the classical limit of the gauge operator

trscD0;0ðUÞ with D � Dð�;rÞ being the overlap Dirac ma-

trix.11 As suggested on general grounds [1], we found that
the limit is proportional to trcF��ð0ÞF��ð0Þ of the associ-

ated classical background after the subtraction of the free-
field constant. Accordingly, the version of coherent LQCD
where TrDðUÞ serves as a basis for the gauge action [1]
represents a valid regularization of QCD. In addition, this
operator is expected to be useful as a natural partner to the
overlap-based definition of pseudoscalar (topological) den-
sity both in studies of QCD vacuum structure and in
standard applications of hadronic physics (such as calcu-
lations of glueball masses). In the former case it is of
interest to explore the relation between the fundamental
structure seen in topological density [12,13,21,24–26], and
the structure in scalar density that is expected to be visible
if the overlap-based definition (58) is used.
Techniques used here for the scalar case were applied in

parallel also to the tensor component of D0;0. In our

previous work [17] we have explicitly derived this classical
limit [proportional to F��ð0Þ] in a general setting, and the

complete agreement found in this work serves as a valuable
cross-check for both types of calculations.
With possible practical applications in mind, we have

computed the proportionality constants cS and cT for a
wide range of negative mass parameter �. One notable
feature of the �-dependence found is that cTð�Þ=� is
surprisingly well described by a purely linear behavior in
the region 0:2 � � � 1:8.

APPENDIX A: ALTERNATIVE DERIVATION TO
SECOND ORDER

The expansion of the overlap operator for constant fields
to the second order in the lattice spacing can be simplified
as follows. We start by noticing that

lim
a!0

@n

@an
X ¼

�X
�

A�

@

@k�

�
n
X0;

lim
a!0

@

@a
B ¼ X

�

A�

@

@k�
B0;

lim
a!0

@2

@a2
B ¼

�X
�

A�

@

@k�

�
2
B0 þ �2;

(A1)

where

TABLE II. The subtraction constants trscD0;0ðIÞ on N4 lattice
with periodic and antiperiodic (in time) boundary conditions.
These results were calculated at � ¼ 26=19 and r ¼ 1.

N periodic bc antiperiodic bc

04 21.435 823 589 480 2 21.401 089 846 312 4

08 21.394 094 919 852 0 21.393 506 278 177 2

12 21.393 141 709 688 0 21.393 110 607 922 9

16 21.393 087 967 698 7 21.393 085 640 019 1

20 21.393 083 848 059 8 21.393 083 642 473 6

24 21.393 083 481 589 0 21.393 083 461 604 4

28 21.393 083 445 951 4 21.393 083 443 880 7

32 21.393 083 442 269 5 21.393 083 442 047 1

36 21.393 083 441 872 6 21.393 083 441 850 5

40 21.393 083 441 835 6 21.393 083 441 830 6
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FIG. 5 (color online). Dependence of rescaled constants cS

(top) and cT (bottom) on the negative mass parameter � at r ¼ 1.

11All the results presented in this manuscript were obtained in
the summer of 2006 and were partially discussed by the second
author in the Lattice 2006 talk that focused on coherent LQCD.
In the summer of 2007 we were informed by David Adams [20]
that he had just computed the constant cSð�; rÞ as well. His
approach leads to an integral expression with integrand different
from ours, but yielding identical final answers after integration.
We hope that his derivation will be publicly available in due
course.
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�2 ¼ 1
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: (A2)

Using the above formulas and the straightforward algebra
one can show that

lim
a!0

@

@a

1

�
D ¼ X

�

A�

@

@k�
X0B

�1=2
0 ;

lim
a!0

@2

@a2
1

�
D ¼

�X
�

A�

@

@k�

�
2
X0B

�1=2
0 � 1

2
X0B

�3=2
0 �2:

(A3)

The derivative terms
P

�A�
@

@k�
fðkÞ vanish upon momen-

tum integration and we have

1

�
D0;0ðUðaÞÞ ¼ 1

�
D0;0ðIÞ þ a2

2

1

ð2	Þ4

�
Z

d4k

�
� 1

2
X0B

�3=2
0 �2

�
þOða3Þ:

(A4)

After expanding �2 and dropping the terms odd in k� we

get

1

�
D0;0ðUðaÞÞ ¼ 1

�
D0;0ðIÞ þ a2

2

� r

ð4r� �Þ3
X
��

���F��

1

ð2	Þ4

�
Z

d4k
t��ðkÞ
B3=2
0 ðkÞ þOða3Þ (A5)

with t�� defined in Eq. (32).

APPENDIX B: REDUCED COEFFICIENTS

The tables in this Appendix (Tables III and IV) specify
the reduced coefficients cðnÞ and powers j defining [via
Eq. (46)] various constants appearing in the expansion of
the scalar part of D0;0 in classical lattice spacing. As

discussed in Secs. III D and IV, these coefficients can
also be used for evaluation of corresponding constants on

TABLE III. Coefficients cðnÞ for constants 
�� of Eq. (42). In this case j ¼ 9=2.

n1 n2 n3 n4 cðnÞ=�
0 0 0 0 48�4 þ 192r2�4 þ 1536�6 � 1536r2�6 � 10 240r4�6 þ 12 288�8 � 73 728r2�8 þ 122 880r4�8

1 0 0 0 �32r�3 � 1152r�5 � 2560r3�5 � 18 432r�7 � 24 576r3�7 þ 245 760r5�7 � 131 072r�9 þ 589 824r3�9 � 983 040r5�9

1 1 0 0 576r2�4 þ 12 416r2�6 � 30 720r4�6 � 14 336r2�8 þ 516 096r4�8 � 1 474 560r6�8

1 1 1 0 �75 264r3�7 þ 368 640r5�7 þ 204 800r3�9 � 1 179 648r5�9 þ 1 966 080r7�9

1 1 1 1 �15 360r4�6 þ 132 096r4�8 � 614 400r6�8

2 0 0 0 �192�4 � 96r2�4 � 5760�6 þ 15 232r2�6 þ 20 480r4�6 � 43 008�8 þ 321 536r2�8 � 319 488r4�8 � 491 520r6�8

2 1 0 0 64r�3 þ 4032r�5 þ 1216r3�5 þ 74 496r�7 � 232 704r3�7 þ 290 816r�9 � 1 503 232r3�9 þ 1 179 648r5�9 þ 2 949 120r7�9

2 1 1 0 �1440r2�4 � 13 824r2�6 � 42 496r4�6 � 198 656r2�8 þ 952 320r4�8 � 1 474 560r6�8

2 1 1 1 6720r3�5 � 18 432r3�7 þ 242 688r5�7 þ 77 824r3�9 � 774 144r5�9 þ 1 966 080r7�9

2 2 0 0 240�4 � 480r2�4 þ 8448�6 � 25 600r2�6 � 23 808r4�6 þ 77 824�8 � 561 152r2�8 þ 861 696r4�8 þ 184 320r6�8

2 2 1 0 �5568r�5 þ 16 896r3�5 � 78 336r�7 þ 170 496r3�7 þ 344 064r5�7 � 282 624r�9 þ 1 835 008r3�9 � 3 336 192r5�9 þ 737 280r7�9

2 2 1 1 24 576r2�6 � 92 928r4�6 þ 110 592r2�8 � 12 288r4�8 � 1 081 344r6�8

2 2 2 0 �3840�6 þ 28 416r2�6 � 37 888r4�6 � 49 152�8 þ 338 944r2�8 � 448 512r4�8 � 433 152r6�8

2 2 2 1 23 040r�7 � 184 320r3�7 þ 310 272r5�7 þ 73 728r�9 � 518 144r3�9 þ 516 096r5�9 þ 1 075 200r7�9

2 2 2 2 7680�8 � 67 584r2�8 þ 241 152r4�8 � 224 256r6�8

3 0 0 0 576r�5 þ 64r3�5 þ 11 520r�7 þ 25 344r3�7 � 122 880r5�7 þ 184 320r�9 � 765 952r3�9 þ 786 432r5�9 þ 327 680r7�9

3 1 0 0 �288r2�4 � 20 224r2�6 þ 27 136r4�6 þ 38 912r2�8 � 509 952r4�8 þ 983 040r6�8

3 1 1 0 4800r3�5 þ 132 096r3�7 � 242 688r5�7 � 397 312r3�9 þ 1 306 624r5�9 � 983 040r7�9

3 1 1 1 �15 360r4�6 � 153 600r4�8 þ 307 200r6�8

3 2 0 0 �2112r�5 þ 3776r3�5 � 69 888r�7 þ 116 736r3�7 þ 76 800r5�7 � 540 672r�9 þ 1 982 464r3�9 � 1 628 160r5�9 � 1 228 800r7�9

3 2 1 0 44 544r2�6 � 105 472r4�6 þ 409 600r2�8 � 657 408r4�8 � 188 416r6�8

3 2 1 1 �156 672r3�7 þ 420 864r5�7 � 260 096r3�9 þ 233 472r5�9 þ 131 072r7�9

3 2 2 0 50 688r�7 � 238 080r3�7 þ 258 048r5�7 þ 432 128r�9 � 1 789 952r3�9 þ 1 687 552r5�9 þ 792 576r7�9

3 2 2 1 �211 968r2�8 þ 1 069 056r4�8 � 1 422 336r6�8

3 2 2 2 �73 728r�9 þ 430 080r3�9 � 964 608r5�9 þ 665 600r7�9

3 3 0 0 8576r2�6 � 11 008r4�6 � 18 432r2�8 þ 132 096r4�8 � 184 320r6�8

3 3 1 0 �130 560r3�7 þ 205 824r5�7 þ 188 416r3�9 � 634 880r5�9 þ 401 408r7�9

3 3 1 1 297 984r4�8 � 528 384r6�8

3 3 2 0 �100 352r2�8 þ 482 304r4�8 � 496 640r6�8

3 3 2 1 237 568r3�9 � 1 124 352r5�9 þ 1 382 400r7�9

3 3 3 0 �20 480r3�9 � 75 776r5�9 þ 133 120r7�9

4 0 0 0 �384�6 � 3328r2�6 þ 3328r4�6 � 10 752�8 � 28 672r2�8 � 109 056r4�8 þ 266 240r6�8

4 1 0 0 384r�5 � 192r3�5 � 3072r�7 þ 140 544r3�7 � 168 960r5�7 þ 111 616r�9 � 188 416r3�9 þ 885 760r5�9 � 1 351 680r7�9

4 1 1 0 �6912r2�6 þ 6912r4�6 þ 52 224r2�8 � 829 440r4�8 þ 1 019 904r6�8

4 1 1 1 23 040r3�7 � 32 256r5�7 � 61 440r3�9 þ 694 272r5�9 � 847 872r7�9
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TABLE IV. Coefficients cðnÞ for constants ��� of Eq. (42). In this case j ¼ 9=2.

n1 n2 n3 n4 cðnÞ=�
0 0 0 0 �5120r4�6 þ 614 40r4�8

1 0 0 0 1024r3�5 � 49 152r3�7 þ 122 880r5�7 þ 98 304r3�9 � 491 520r5�9

1 1 0 0 4480r2�6 � 24 576r4�6 � 71 680r2�8 þ 589 824r4�8 � 737 280r6�8

1 1 1 0 �53 760r3�7 þ 147 456r5�7 þ 286 720r3�9 � 1 179 648r5�9 þ 983 040r7�9

1 1 1 1 107 520r4�8 � 196 608r6�8

2 0 0 0 �96r2�4 þ 128r2�6 þ 7168r4�6 � 45 056r2�8 � 49 152r4�8 � 245 760r6�8

2 1 0 0 1856r3�5 þ 15 360r�7 þ 29 952r3�7 � 55 296r5�7 � 40 960r�9 þ 311 296r3�9 � 294 912r5�9 þ 1 474 560r7�9

2 1 1 0 �6656r4�6 � 87 040r2�8 � 141 312r4�8 � 73 728r6�8

2 1 1 1 �3072r5�7 þ 51 200r3�9 þ 36 864r5�9 þ 245 760r7�9

2 2 0 0 �48�4 þ 96r2�4 � 1536�6 þ 2176r2�6 � 16 128r4�6 � 3328�8 þ 35 840r2�8 þ 59 904r4�8 þ 258 048r6�8

2 2 1 0 960r�5 � 1920r3�5 þ 18 432r�7 � 50 688r3�7 þ 144 384r5�7 þ 33 792r�9 � 28 672r3�9 þ 18 432r5�9 � 737 280r7�9

2 2 1 1 �3840r2�6 þ 7680r4�6 � 36 864r2�8 þ 150 528r4�8 � 190 464r6�8

2 2 2 0 768�6 � 5376r2�6 þ 10 240r4�6 þ 12 288�8 � 80 896r2�8 þ 43 008r4�8 � 248 832r6�8

2 2 2 1 �4608r�7 þ 32 256r3�7 � 61 440r5�7 � 24 576r�9 þ 149 504r3�9 � 184 320r5�9 þ 399 360r7�9

2 2 2 2 �1536�8 þ 12 288r2�8 � 33 792r4�8 þ 76 800r6�8

3 0 0 0 �64r3�5 þ 60 672r3�7 � 67 584r5�7 � 57 344r3�9 þ 294 912r5�9 þ 163 840r7�9

3 1 0 0 �8960r2�6 þ 9728r4�6 þ 117 760r2�8 � 964 608r4�8 þ 712 704r6�8

3 1 1 0 107 520r3�7 � 107 520r5�7 � 542 720r3�9 þ 2 330 624r5�9 � 1 228 800r7�9

3 1 1 1 �215 040r4�8 þ 208 896r6�8

3 2 0 0 960r�5 � 896r3�5 þ 3072r�7 � 70 656r3�7 þ 98 304r5�7 þ 64 512r�9 � 231 424r3�9 þ 374 784r5�9 � 983 040r7�9

3 2 1 0 �15 360r2�6 þ 14 336r4�6 � 96 256r2�8 þ 546 816r4�8 � 524 288r6�8

3 2 1 1 46 080r3�7 � 43 008r5�7 þ 167 936r3�9 � 528 384r5�9 þ 262 144r7�9

3 2 2 0 �13 824r�7 þ 105 984r3�7 � 104 448r5�7 � 94 208r�9 þ 296 960r3�9 � 446 464r5�9 þ 878 592r7�9

3 2 2 1 55 296r2�8 � 423 936r4�8 þ 417 792r6�8

3 2 2 2 12 288r�9 � 73 728r3�9 þ 282 624r5�9 � 352 256r7�9

n1 n2 n3 n4 cðnÞ=�
4 2 0 0 2176r2�6 � 3072r4�6 � 9728�8 þ 251 904r2�8 � 430 080r4�8 þ 64 000r6�8

4 2 1 0 �4608r�7 � 39 936r3�7 þ 70 656r5�7 � 26 624r�9 � 770 048r3�9 þ 2 027 520r5�9 � 997 376r7�9

4 2 1 1 23 040r2�8 þ 79 872r4�8 � 155 136r6�8

4 2 2 0 7680�8 � 117 760r2�8 þ 290 304r4�8 � 156 672r6�8

4 2 2 1 3072r�9 þ 180 224r3�9 � 654 336r5�9 þ 460 800r7�9

4 3 0 0 19 200r�7 � 68 352r3�7 þ 52 224r5�7 þ 10 240r�9 � 33 792r3�9 � 182 272r5�9 þ 332 800r7�9

4 3 1 0 �144 384r2�8 þ 651 264r4�8 � 592 896r6�8

4 3 1 1 125 952r3�9 � 712 704r5�9 þ 721 920r7�9

4 3 2 0 �38 912r�9 þ 417 792r3�9 � 950 272r5�9 þ 563 200r7�9

4 4 0 0 10 240�8 � 80 384r2�8 þ 132 096r4�8 � 64 512r6�8

4 4 1 0 �34 816r�9 þ 303 104r3�9 � 595 968r5�9 þ 337 920r7�9

5 0 0 0 6912r�7 � 768r3�7 � 6144r5�7 � 21 504r�9 þ 131 072r3�9 þ 7168r5�9 � 188 416r7�9

5 1 0 0 �3072r2�6 þ 2816r4�6 � 25 600r2�8 � 181 248r4�8 þ 237 568r6�8

5 1 1 0 41 472r3�7 � 41 472r5�7 � 63 488r3�9 þ 706 560r5�9 � 765 952r7�9

5 1 1 1 �92 160r4�8 þ 98 304r6�8

5 2 0 0 �9216r�7 þ 21 504r3�7 � 10 752r5�7 þ 115 712r�9 � 458 752r3�9 þ 489 472r5�9 � 64 512r7�9

5 2 1 0 64 512r2�8 � 196 608r4�8 þ 107 520r6�8

5 2 1 1 �64 512r3�9 þ 251 904r5�9 � 162 816r7�9

5 2 2 0 �52 224r�9 þ 137 216r3�9 � 58 368r5�9 � 49 152r7�9

5 3 0 0 �6656r2�8 þ 46 080r4�8 � 42 496r6�8

5 3 1 0 63 488r3�9 � 258 048r5�9 þ 247 808r7�9

5 4 0 0 �41 984r�9 þ 156 672r3�9 � 189 440r5�9 þ 76 800r7�9

6 0 0 0 4608�8 � 25 600r2�8 þ 24 576r4�8 � 3584r6�8

6 1 0 0 �2304r�7 þ 6912r3�7 � 4608r5�7 � 35 840r�9 þ 112 640r3�9 � 10 240r5�9 � 66 560r7�9

6 1 1 0 19 968r2�8 � 64 512r4�8 þ 44 544r6�8

6 1 1 1 �21 504r3�9 þ 73 728r5�9 � 52 224r7�9

6 2 0 0 �7680�8 þ 42 496r2�8 � 58 368r4�8 þ 23 552r6�8

6 2 1 0 34 816r�9 � 182 272r3�9 þ 258 048r5�9 � 110 592r7�9

6 3 0 0 23 552r�9 � 62 464r3�9 þ 37 888r5�9 þ 1024r7�9

7 0 0 0 �4096r�9 þ 17 408r3�9 � 22 528r5�9 þ 9216r7�9

7 1 0 0 1536r2�8 � 3072r4�8 þ 1536r6�8

7 1 1 0 �9216r3�9 þ 18 432r5�9 � 9216r7�9

7 2 0 0 5120r�9 � 23 552r3�9 þ 31 744r5�9 � 13 312r7�9

8 1 0 0 �1024r�9 þ 3072r3�9 � 3072r5�9 þ 1024r7�9

TABLE III. (Continued)
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a finite symmetric torus with periodic boundary conditions in all directions.

APPENDIX C: SAMPLE CONSTANT FIELD AND SAMPLE POINTS

The constant field a� used in numerical calculations of Sec. [see Eq. (56)] is specified by

a0 ¼
0:333 027 0:438 189þ 0:318 128i 0:374 405þ 0:222 978i

0:438 189� 0:318 128i �0:154 498 0:378 804þ 0:227 51i
0:374 405� 0:222 978i 0:378 804� 0:227 51i �0:178 529

0
@

1
A;

a1 ¼
0:230 383 0:202 411þ 0:030 092i 0:384 110� 0:364 239i

0:202 411� 0:030 092i �0:162 558 0:448 044� 0:138 645i
0:384 110þ 0:364 239i 0:448 044þ 0:138 645i �0:067 824

0
@

1
A;

a2 ¼
�0:254 314 0:490 871� 0:296 415i 0:709 724� 0:352 729i

0:490 871þ 0:296 415i 0:330 503 0:970 160þ 0:109 804i
0:709 724þ 0:352 729i 0:970 160� 0:109 804i �0:076 189

0
@

1
A;

a3 ¼
�0:055 155 0:502 826þ 0:023 544i 0:435 721� 0:074 859i

0:502 826� 0:023 544i 0:159 857 0:581 485þ 0:032 500i
0:435 721þ 0:074 859i 0:581 485� 0:032 500i �0:104 703

0
@

1
A:

n1 n2 n3 n4 cðnÞ=�
3 3 0 0 640r2�6 � 512r4�6 � 82 944r2�8 þ 337 920r4�8 � 202 752r6�8

3 3 1 0 �7680r3�7 þ 6144r5�7 þ 475 136r3�9 � 1 404 928r5�9 þ 679 936r7�9

3 3 1 1 15 360r4�8 � 12 288r6�8

3 3 2 0 91 136r2�8 � 353 280r4�8 þ 229 376r6�8

3 3 2 1 �182 272r3�9 þ 706 560r5�9 � 458 752r7�9

3 3 3 0 �108 544r3�9 þ 260 096r5�9 � 114 688r7�9

4 0 0 0 �2432r2�6 þ 1792r4�6 þ 37 888r2�8 � 167 424r4�8 þ 151 552r6�8

4 1 0 0 �15 360r�7 þ 85 248r3�7 � 56 832r5�7 þ 51 200r�9 � 456 704r3�9 þ 1 276 928r5�9 � 860 160r7�9

4 1 1 0 122 880r2�8 � 506 880r4�8 þ 325 632r6�8

4 1 1 1 �122 880r3�9 þ 448 512r5�9 � 282 624r7�9

4 2 0 0 768�6 � 2176r2�6 þ 2048r4�6 � 5632�8 þ 1536r2�8 þ 61 440r4�8 � 134 656r6�8

4 2 1 0 �9216r�7 þ 26 112r3�7 � 24 576r5�7 þ 2048r�9 � 22 528r3�9 � 110 592r5�9 þ 309 248r7�9

4 2 1 1 18 432r2�8 � 52 224r4�8 þ 49 152r6�8

4 2 2 0 �7680�8 þ 71 680r2�8 � 175 104r4�8 þ 156 672r6�8

4 2 2 1 15 360r�9 � 143 360r3�9 þ 350 208r5�9 � 313 344r7�9

4 3 0 0 10 752r�7 � 28 416r3�7 þ 12 288r5�7 � 50 176r�9 þ 347 136r3�9 � 727 040r5�9 þ 404 480r7�9

4 3 1 0 �86 016r2�8 þ 227 328r4�8 � 98 304r6�8

4 3 1 1 86 016r3�9 � 227 328r5�9 þ 98 304r7�9

4 3 2 0 51 200r�9 � 245 760r3�9 þ 495 616r5�9 � 331 776r7�9

4 4 0 0 7424�8 � 44 032r2�8 þ 62 976r4�8 � 21 504r6�8

4 4 1 0 �29 696r�9 þ 176 128r3�9 � 251 904r5�9 þ 86 016r7�9

5 0 0 0 2304r3�7 � 1536r5�7 � 20 480r3�9 þ 91 136r5�9 � 106 496r7�9

5 1 0 0 25 600r2�8 � 86 016r4�8 þ 51 200r6�8

5 1 1 0 �102 400r3�9 þ 288 768r5�9 � 167 936r7�9

5 2 0 0 �4608r�7 þ 9984r3�7 � 6144r5�7 þ 1024r�9 � 11 264r3�9 � 22 528r5�9 þ 113 664r7�9

5 2 1 0 36 864r2�8 � 79 872r4�8 þ 49 152r6�8

5 2 1 1 �36 864r3�9 þ 79 872r5�9 � 49 152r7�9

5 2 2 0 15 360r�9 � 81 920r3�9 þ 141 312r5�9 � 116 736r7�9

5 3 0 0 �7168r2�8 þ 18 432r4�8 � 8192r6�8

5 3 1 0 28 672r3�9 � 73 728r5�9 þ 32 768r7�9

5 4 0 0 �19 456r�9 þ 67 584r3�9 � 71 680r5�9 þ 20 480r7�9

6 0 0 0 �6656r2�8 þ 12 288r4�8 � 5632r6�8

6 1 0 0 �10 240r�9 þ 44 032r3�9 � 51 200r5�9 þ 17 408r7�9

6 2 0 0 �1536�8 þ 17 408r2�8 � 29 184r4�8 þ 13 312r6�8

6 2 1 0 6144r�9 � 69 632r3�9 þ 116 736r5�9 � 53 248r7�9

6 3 0 0 13 312r�9 � 38 912r3�9 þ 35 840r5�9 � 10 240r7�9

7 0 0 0 7168r3�9 � 14 336r5�9 þ 7168r7�9

7 2 0 0 3072r�9 � 16 384r3�9 þ 23 552r5�9 � 10 240r7�9

TABLE IV. (Continued)
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The classical limit on nonconstant backgrounds was evaluated at the following randomly generated points on the unit
symmetric torus.

x y z t

0.103 172 983 143 503 0.945 871 900 095 732 4 0.956 116 383 180 309 0.438 505 993 255 755

0.248 194 925 172 178 0.089 343 127 178 615 4 0.336 764 036 419 274 0.118 409 829 321 844

0.174 820 791 004 537 0.752 996 695 514 672 9 0.984 186 866 641 149 0.265 965 702 089 591

0.450 532 157 114 747 0.795 810 116 855 233 3 0.274 186 255 621 803 0.321 281 009 101 127

0.416 208 702 090 845 0.628 643 531 752 111 7 0.459 165 616 384 016 0.356 014 499 573 743

0.295 893 446 617 454 0.059 076 330 161 904 2 0.678 511 201 131 179 0.781 239 724 758 651

0.192 720 463 473 952 0.113 204 430 066 171 8 0.722 394 817 950 870 0.342 733 731 502 896

0.944 525 538 301 774 0.023 861 302 887 556 4 0.385 630 781 531 596 0.224 323 902 181 052

0.769 704 747 297 237 0.270 864 607 372 883 5 0.401 443 914 890 447 0.958 358 200 091 461

0.319 172 590 182 490 0.475 054 490 517 650 3 0.127 257 659 268 644 0.637 077 190 990 334
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