
Topological susceptibility in SU(2) Yang-Mills theory in the Hamiltonian approach
in Coulomb gauge

Davide R. Campagnari and Hugo Reinhardt
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The topological susceptibility is calculated within the Hamiltonian approach to Yang-Mills theory in

Coulomb gauge, using the vacuum wave functional previously determined by a variational solution of the

Yang-Mills Schrödinger equation. The numerical result agrees qualitatively with the predictions of lattice

simulations.
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I. INTRODUCTION

At the classical level, quantum chromodynamics (QCD)
with massless fermions is chirally symmetric; that is to say,
the QCD Lagrangian is invariant under separate global
flavor rotations of the left- and right-handed quarks. For
Nf massless quark flavors the chiral symmetry group is

SUVðNfÞ � SUAðNfÞ �UVð1Þ �UAð1Þ; (1)

where the vector (axial vector) symmetry groups denoted
by a subscript VðAÞ rotate left- and right-handed fermions
in the same (opposite) way. The chiral symmetry is a good
starting point for the Nf ¼ 3 light quark flavors u, d, s. In

the quantum theory, the SUAðNfÞ is spontaneously broken

by the dynamical condensation of quarks, h �qqi � 0, which
results in the generation of a constituent quark mass and
gives rise to N2

f � 1 Goldstone bosons, which can be

identified with the octet of light pseudoscalar mesons.
Further, the small but finite (current) quark masses break
the axial SUAðNfÞ explicitly and induce a mass for the

pseudoscalar mesons. Moreover, the SUVðNfÞ is softly

broken by the differences in the current quark masses,
which lifts the mass degeneracy of the pseudoscalar me-
sons. The UVð1Þ symmetry corresponds to baryon number
conservation and remains unbroken in the QCD vacuum.
The UAð1Þ symmetry, however, has been an issue for quite
some time. If the UAð1Þ were intact, the light hadrons
would occur in degenerate parity doublets, which is not
the case. Furthermore, if UAð1Þ were spontaneously bro-
ken, there should be a (nearly) massless (or at least light)
pseudoscalar flavor singlet meson, the ‘‘would-be’’
Goldstone boson of spontaneous UAð1Þ symmetry break-
ing. The only candidate is the �0, which, however, is by far
too heavy to qualify for this particle.

It was first shown by Adler [1], Bell and Jackiw [2] that
the UAð1Þ is anomalously broken, i.e., broken by quantum
effects. The anomalous breaking of the global UAð1Þ sym-
metry manifests itself in the noninvariance of the fermionic
integration measure [3,4] and results in the well-known
axial anomaly, which for massless quarks reads

@�j
�
5 ðxÞ ¼ 2NfqðxÞ: (2)

Here, j�5 ðxÞ ¼ � ðxÞ���5 ðxÞ is the axial current and

qðxÞ ¼ g2

32�2
Fa��ðxÞ ~F��a ðxÞ (3)

is the topological charge density in Minkowski space, with

Fa�� ¼ @�A
a
� � @�A

a
� þ gfabcAb�A

c
� (4a)

~F��a ¼ 1

2
"����Fa�� (4b)

being the field strength tensor and its dual (fabc are the
structure constants of the suðNcÞ algebra and g is the
coupling constant; we use color sub- and superscripts
indiscriminately). Adler and Bardeen showed [5] that
Eq. (2) does not receive corrections from higher-order
diagrams. Although qðxÞ is a total divergence

Fa�� ~F
��
a ¼ 2@�K

�; (5)

where

K� ¼ "����
�
Aa�@�A

a
� þ 1

3
gfabcAa�A

b
�A

c
�

�
(6)

is the topological current, there are topologically nontrivial
field configurations (in Euclidean space) such as instantons
[6,7], magnetic monopoles [8] or center vortices [9,10], for
which the topological charge

Q ¼
Z

d4xEqðxÞ (7)

is nonzero (for smooth field configurations of finite
Euclidean action, Q is integer-valued). As a consequence
of the existence of these field configurations, the axial
charge

Q5 ¼
Z

d3xj05ðxÞ (8)

is not conserved [11,12].
Using large-Nc arguments, Witten [13] and Veneziano

[14] showed that the axial anomaly provides a mass term
for the pseudoscalar flavor singlet meson given by
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m2
�0 þm2

� � 2m2
K ¼ 2Nf

F2
�

�; (9)

where F� ’ 93 MeV is the pion decay constant and

� ¼
Z

d4xEh0jqðxÞqð0Þj0i (10)

is the topological susceptibility, which is a purely gluonic
quantity (in Minkowski space Eq. (10) has an additional
factor �i). Since this quantity is defined as a vacuum
expectation value it is clear that its evaluation requires
nonperturbative methods. Indeed, in perturbation theory
the topological susceptibility vanishes to all orders. This
quantity has been calculated on the lattice (see
Refs. [15,16] for recent calculations) and the results are
compatible with the prediction of the Witten-Veneziano
formula Eq. (9)

� ’ ð180 MeVÞ4 (11)

using the experimental data for the meson masses and F�
as input.

Like the string tension [17], the topological susceptibil-
ity seems to be dominated by center vortices [18]. In fact, a
center vortex model of the infrared sector of Yang-Mills
theory [19] yields a value for � compatible with lattice
results [20].

Topologically nontrivial Euclidean field configurations
such as instantons and center vortices describe quantum
tunneling between topologically different Yang-Mills va-
cua [21], see Eq. (12) below. Like in quantum mechanics,
this quantum tunneling is fully accounted for by the solu-
tion of the Yang-Mills Schrödinger equation. Recently,
progress has been made in determining the vacuum wave
functional by a variational solution of the Yang-Mills
Schrödinger equation in Coulomb gauge [22–30]. There
is good evidence to believe that the obtained wave func-
tional contains the essential infrared physics: the absence
of gluons from the physical spectrum in the infrared [25], a
linearly rising potential for static color charges [27] and a
perimeter law for the ’t Hooft loop [28]. In the present
paper we use the Yang-Mills wave functional determined
in Refs. [25,27] to calculate the topological susceptibility
given by Eq. (10).

The organization of the paper is as follows: In the next
section we briefly review the 	-vacuum in the Hamiltonian
approach. In Sec. III we derive the expressions for the
topological susceptibility in the Hamiltonian approach in
Coulomb gauge and evaluate the relevant matrix elements.
Our numerical results are presented in Sec. IV. Some
concluding remarks are given in Sec. V.

II. THE �-VACUUM IN THE CANONICAL
QUANTIZATION APPROACH

Consider Yang-Mills theory in the Weyl gauge Aa0 ¼ 0.
The classical (time-independent) vacuum configurations

are pure gauge spatial fields

Ai ¼ Aai ta ¼
i

g
U@iU

y; (12)

where ta are the Hermitian generators of the gauge group.
Imposing the usual boundary condition that the gauge
function UðxÞ 2 SUðNcÞ approaches a unique value for
jxj ! 1 (independent of the direction x̂) compactifies R3

to S3 and consequently the UðxÞ can be classified accord-
ing to the winding number n½U� 2 �3ðS3Þ [21]. The clas-
sical vacuum configurations Eq. (12) belonging to different
winding numbers are separated by infinite potential bar-
riers. In the quantum theory, tunnelling between the differ-
ent classical vacua occurs and in a semiclassical picture,
the barrier penetration is described by instantons, (space-)
time-dependent solutions of the classical Euclidean Yang-
Mills equation of motion, which interpolate between vac-
uum configurations differing in the winding number by
�1. We will not resort here to a semiclassical description
but instead approximately solve the Schrödinger equation,
which fully accounts for the quantum tunnelling.
In Weyl gauge the physical coordinates are the spatial

gauge fields Aai ðxÞ and the corresponding canonical con-
jugate momenta are given by the chromoelectric field
Eai ðxÞ ¼ Fa0iðxÞ. In canonical quantization the electric field
is promoted to the momentum operator �a

i ðxÞ ¼�i
=
Aai ðxÞ satisfying canonical commutation relations,
and the Yang-Mills Hamiltonian reads

H ¼ 1

2

Z
d3x½ð�a

i ðxÞÞ2 þ ðBai ðxÞÞ2�; (13)

where

Bai ¼
1

2
"ijkF

a
jk ¼ "ijk

�
@jA

a
k þ

g

2
fabcAbjA

c
k

�
(14)

is the non-Abelian magnetic field.
In Weyl gauge, Gauss’s law is lost from the equations of

motion and has to be imposed as a constraint on the wave
functional

D̂ ab
i �b

i ðxÞ�½A� ¼ �g�aextðxÞ�½A�: (15)

Here,

D̂ ab
i ¼ 
ab@i þ gÂabi ; Âab ¼ facbAc (16)

is the covariant derivative in the adjoint representation of
the gauge group and �aextðxÞ denotes the ‘‘external’’ color

charge density of the matter fields. The operator D̂� on the
left-hand side of Eq. (15) is the generator of time-
independent small gauge transformations (n½U� ¼ 0). In
the absence of external charges, �aextðxÞ ¼ 0, Gauss’s law
requires the wave functional to be invariant under small
gauge transformations only, while under large gauge trans-
formation it needs to be invariant only up to a phase [31,32]

�	½AU� ¼ e�i	n½U��	½A�: (17)
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Here, 	 is a free real parameter, which characterizes the
vacuum wave functional and is called the vacuum angle.
Since n½U� 2 Z, the wave functional of the 	-vacuum
Eq. (17) has the property

�	þ2�½A� ¼ �	½A�; (18)

which qualifies 	 as an angle variable. 	 is not known
a priori and is not determined by the theory itself but
must be fixed by experiment. One measurable effect of 	
would be a nonvanishing neutron electric dipole moment
[33]. Current measurements [34] restrict 	 to the extremely
small value j	j � 10�10.

The transformation property Eq. (17) can be realized by
the ansatz

�	½A� ¼ e�i	W½A��½A�; (19)

where�½A� is a gauge invariant wave functional,�½AU� ¼
�½A�, and

W½A� ¼ g2

16�2

Z
d3xK0ðxÞ

¼ g2

16�2
"ijk

Z
d3x

�
Aai @jA

a
k þ

g

3
fabcAai A

b
jA

c
k

�
(20)

is the Chern-Simons action, which changes under gauge
transformations by the winding number n½U�

W½AU� ¼ W½A� þ n½U�: (21)

The wave functional Eq. (19) does, however, not fulfill
Eq. (18). In the Appendix we show how Eq. (19) has to be
modified to promote 	 to an angle variable. We also show
there that Eq. (19) is a correct wave functional when 	 is
restricted to ½0; 2�Þ. In the following, the cyclic property
Eq. (18) of the vacuum wave functional will be irrelevant,
since we are anyway interested only in infinitesimally
small 	, see Eq. (22) below. Therefore, we can use the
simpler wave functional Eq. (19).

The quantity of interest is the topological susceptibility,
Eq. (10), which in the Hamiltonian approach can be de-
fined by [13]

V� ¼ d2hHi	
d	2

��������
no quarks

	¼0
; (22)

where V is the spatial volume and

hHi	 ¼ h�	jHj�	i; h�	j�	i ¼ 1 (23)

is the expectation value of the Yang-Mills Hamiltonian in
the 	-vacuum. To evaluate the 	-dependence of hHi	, the
following identity will be useful


W½A�

Aai ðxÞ

¼ g2

8�2
Bai ðxÞ; (24)

where Bai is the magnetic field Eq. (14). Obviously, the
	-phase in Eq. (19) can only contribute to the kinetic term

of the Yang-Mills Hamiltonian Eq. (13). With Eq. (24) we
find from Eq. (19)

�a
i�	½A� ¼ e�i	W½A�

�
�a
i � 	

g2

8�2
Bai

�
�½A�: (25)

Inserting this relation into Eq. (15) and using the Bianchi
identity

D̂ ab
i B

b
i ðxÞ ¼ 0 (26)

we find that the wave functional �½A� satisfies the same
Gauss’s law as �	½A�

D̂ ab
i �b

i �½A� ¼ �g�aext�½A�: (27)

To make contact with previous results [25,27] obtained in
the Hamiltonian approach to Yang-Mills theory, it is con-
venient to work with the 	-independent wave functional
�½A� and absorb the 	-dependence into the Hamiltonian by
defining

h�	jHj�	i ¼ h�jH	j�i: (28)

Using Eq. (25) we find

H	 ¼ 1

2

Z �
�a
i � 	

g2

8�2
Bai

�
2 þ 1

2

Z
ðBai Þ2: (29)

An alternative way to arrive at this Hamiltonian is to add
the topological 	-term directly to the original classical
Lagrangian

L ¼ � 1

4
Fa��F

��
a þ 	

g2

32�2
Fa�� ~F

��
a

¼ 1

2
ðE2 � B2Þ þ 	

g2

8�2
E �B: (30)

The 	-term is a total derivative and does not contribute to
the classical equation of motion. It does, however, change
the canonical momentum from �a

i ¼ Fa0i to

�a
i ¼ Fa0i þ 	

g2

8�2
Bai (31)

and after canonical quantization in Weyl gauge one finds
again the Hamiltonian H	 (29).
Instead of working (for �aextðxÞ ¼ 0) with gauge invari-

ant wave functionals �½A�, it is more convenient to explic-
itly resolve Gauss’s law Eq. (27) by fixing the gauge. For
this purpose Coulomb gauge @iA

a
i ¼ 0 is particularly con-

venient and will be used in the following. In Coulomb
gauge, the gauge field is transversal A ¼ A? but this is
not true for the momentum operator. We split the momen-

tum operator into longitudinal and transversal parts � ¼
�? þ�jj, where�? ¼ �i
=
A?. The latter satisfies the
canonical commutation relation for transversal fields

½A?a
i ðxÞ;�?b

j ðyÞ� ¼ i
abtijðxÞ
ðx� yÞ; (32)

where tijðxÞ ¼ 
ij � @i@j=@
2 is the transversal projector.
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Gauss’s law Eq. (27) can be solved for the longitudinal

part �k in the standard fashion yielding

�kj�i ¼ �g@ð�D̂@Þ�1ð�ext þ �gÞj�i; (33)

where �ag ¼ Â?ab
i �?b

i is the color charge density of the

gluons and ð�D̂@Þ is the Faddeev-Popov kernel in
Coulomb gauge. With the aid of Eq. (33), one derives
from Eq. (29) the gauge-fixed Hamiltonian of the
	-vacuum (by considering h�jH	j�i and using integration
by parts in the kinetic term). This yields1

H	 ¼ H0 þ 	
g2

8�2
H1 þ

�
	
g2

8�2

�
2
H2; (34)

where

H0 ¼ 1

2

Z
d3x½J�1�a

i ðxÞJ�a
i ðxÞ þ Bai ðxÞBai ðxÞ�

þ g2

2

Z
d3xd3yJ�1�aðxÞJFab½A�ðx; yÞ�bðyÞ (35)

is the usual Coulomb gauge-fixed Hamiltonian [35] for
	 ¼ 0 and the 	-dependent terms are given by

H1 ¼ � 1

2

Z
d3x½Bai ðxÞ�a

i ðxÞ þ J�1�a
i ðxÞJBai ðxÞ�

þ 1

2

Z
d3xd3yfGab½A�ðx; yÞ@xi Bai ðxÞg�bðyÞ

þ J�1g�aðxÞJGab½A�ðx; yÞ@yi Bbi ðyÞg (36)

and

H2 ¼ 1

2

Z
d3xBai ðxÞBai ðxÞ: (37)

In the above expressions,J ¼ Detð�@iD̂iÞ is the Faddeev-
Popov determinant, G is the Green’s function of the
Faddeev-Popov operator

� @iD̂
ab
i ðxÞGbc½A�ðx; yÞ ¼ 
ac
ðx� yÞ; (38)

F denotes the Coulomb operator

Fab½A�ðx; yÞ ¼ ½ð�@iD̂iÞ�1ð�@2Þð�@jD̂jÞ�1�abx;y (39)

and � is the sum of external and dynamical color charge
densities

�a ¼ �aext þ �ag ¼ �aext þ fabcAbi�
c
i : (40)

For the present purpose, the evaluation of the topological
susceptibility � (which is entirely defined in the gluon
sector), the external charges are not needed and we will
put �aext ¼ 0 in the following. The Faddeev-Popov deter-
minant J represents the Jacobian of the transformation
from the (flat) non-gauge-fixed configuration space to the
(curved) space of the Coulomb gauge-fixed fields. In par-

ticular, this Jacobian enters the integration measure of the
scalar product of wave functions

ð�1;�2Þ ¼
Z

DAJ��
1½A��2½A�: (41)

The integration of transversal field configurations extends
over the first Gribov region � [36], allowing the surface
terms to be discarded in integration by parts. Although the
integration should be restricted to the fundamental modular
region � � � [37], there is evidence that integration over
� yields the same expectation values [38].
Following Ref. [25] we introduce the ‘‘radial’’ wave

functional

~�½A� ¼ J 1=2�½A� (42)

which removes the Faddeev-Popov determinant from the
integration measure of the scalar product. Matrix elements
of observables O½A;�� can then be expressed asZ

DAJ��
1O�2 ¼

Z
DA ~��

1
~O ~�2; (43)

where we have introduced the transformed operator

~O½A;�� ¼ J 1=2O½A;��J�1=2 ¼ O½A; ~��: (44)

An operator O½A� depending only on the field variable
Aai ðxÞ is obviously not changed by this transformation,
while the momentum operator transforms as

~� a
i ðxÞ ¼ �a

i ðxÞ þ
i

2


 lnJ

Aai ðxÞ

: (45)

The transformed Hamilton operator ~H	 ¼
J 1=2H	J�1=2 is obtained from H	 by replacing � by ~�.
~H0 was explicitly given in Ref. [25]. Furthermore, since
Bai ðxÞ is a function of the field variable only, H2 does not
change ( ~H2 ¼ H2). The explicit expression for ~H1 is given
in the next section.

III. MATRIX ELEMENTS FOR THE
TOPOLOGICAL SUSCEPTIBILITY

We are interested here in the topological susceptibility,
Eq. (22). Since this quantity is defined as the second
derivative of hH	i at 	 ¼ 0, it is sufficient to calculate
hH	i up to second order in 	. This requires us to treat H2

in first order and ~H1 up to second order perturbation theory
in 	. We then find

V� ¼ 2

�
g2

8�2

�
2
�
h0jH2j0i �

X
n�0

jh0j ~H1jnij2
En

�
(46)

where fjnig denotes the set of eigenstates of ~H0. We use
here a Dirac notation for the radial wave functionals (42),

hAj0i ¼ ~�0½A�.
For the unperturbed Hamiltonian ~H0, we use the varia-

tional results obtained in Refs. [25,27]. For the (radial)
vacuum wave functional the following Gaussian form was

1In the following, all field and momentum operators are
transversal and we will omit the symbol ? .
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chosen

~� 0½A� ¼ hAj0i

¼ N exp

�
� 1

2

Z
d3xd3yAai ðxÞ!ijðx; yÞAaj ðyÞ

�
;

(47)

where !ijðx; yÞ ¼ tijðxÞ!ðx; yÞ and !ðx; yÞ is an integra-

tion kernel determined by minimization of the energy
density. By means of Wick’s theorem we can express
expectation values of powers of field operators by the gluon
propagator

h0jAai ðxÞAbj ðyÞj0i ¼
1

2

ab!�1

ij ðx; yÞ: (48)

Note that !ðx; yÞ depends only on jx� yj and by Eq. (48)
its Fourier transform represents the single quasigluon
energy.

The vacuum wave functional j0i Eq. (47) is annihilated
aai ðxÞj0i ¼ 0 by the operator

aai ¼
1ffiffiffi
2

p ½!1=2
ij A

a
j þ i!�1=2

ij �a
j �; (49)

which is the annihilation operator of a quasigluon with
energy !. Here and in the following we suppress the
explicit spatial dependence of the involved quantities and
include the spatial coordinates in the Lorentz indices, so
that contracted Lorentz indices imply integration over the
spatial coordinate. The corresponding creation operator
reads

aayi ¼ 1ffiffiffi
2

p ½!1=2
ij A

a
j � i!�1=2

ij �a
j �; (50)

and from Eq. (32) follows that these operators satisfy the
usual Bose commutation relation

½aai ðxÞ; abyj ðyÞ� ¼ 
abtijðxÞ
ðx� yÞ (51)

(temporarily restoring the explicit spatial dependence for
clarity).

By repeated application of the creation operator ay
Eq. (50) on the vacuum Eq. (47) a complete basis for the
gluon Fock-space of quasigluons is generated

jni ¼ N n

Yn
k¼1

aakyik
ðxkÞj0i: (52)

For a proper normalization of these quasiparticle states the
additional normalization factor N n is required when two
or more indices take the same value, which can occur due
to the bosonic character of these quasiparticle excitations.

With a complete basis of the Yang-Mills Hilbert space at
our disposal we can explicitly carry out the perturbative
calculations in Eq. (46). The expectation value of H2 can
be straightforwardly evaluated, yielding

h0jH2j0i ¼ N2
c � 1

2
V
Z d3k

ð2�Þ3
k2

!ðkÞ

þ g2
NcðN2

c � 1Þ
16

V
Z d3k

ð2�Þ3
d3q

ð2�Þ3

� 3� ðk̂ � q̂Þ2
!ðkÞ!ðqÞ : (53)

The second term in Eq. (46) contains a sum over an
infinite number of states with an arbitrary large number of
quasigluons and we have to resort to some approximations.
Motivated by the variational calculation for 	 ¼ 0 [25,27]
we restrict ourselves to terms involving up to two loops in
the energy. Under this assumption, ~H1 (cf. Equation (36))
is given by

~H1 ¼ �
Z

d3x�a
i ðxÞBai ðxÞ þ

Z
d3xd3yGab½A�ðx; yÞ

� @xi B
a
i ðxÞgÂbcj ðyÞ�c

jðyÞ; (54)

and we can use the following factorization in the matrix
elements of the second term of Eq. (54)

h0jG½A�ð@BÞðgÂ�Þjni ’ h0jG½A�j0ih0jð@BÞðgÂ�Þjni;
(55)

where hG½A�i is the ghost propagator. With these approx-
imations, the relevant contributions to the second term in
Eq. (46)

� X
n�0

jh0j ~H1jnij2
En

¼: M2 þM3 (56)

come from two quasigluon states, n ¼ 2

M 2 ¼ � 1

2!

X
1;2

jh0jB�j2i � hGih0j@BgÂ�j2ij2
E2

; (57)

and from the 3-quasi-gluon states, n ¼ 3

M 3 ¼ � 1

3!

X
1;2;3

jh0jB�j3ij2
E3

: (58)

The prefactors 1=2! and 1=3! take the normalization of the
states (52) into account and avoid multiple counting. E2

and E3, respectively, denote the energies of the two- and
three-quasi-gluon states and accordingly are given by sums
of, respectively, two and three !’s.
The matrix elements in Eqs. (57) and (58) can be eval-

uated by means of Wick’s theorem, yielding

M2 ¼ �N2
c � 1

2
V
Z d3k

ð2�Þ3
k2

!ðkÞ
� g2

NcðN2
c � 1Þ
2

V
Z d3k

ð2�Þ3
d3q

ð2�Þ3
k2

!ðkÞGðkþ qÞ

�
�

1

!ðkÞ þ
1

!ðqÞ
��

1þ ðk̂ � q̂Þ2
2

þ k � q
k2

�
(59)
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M3 ¼�g2NcðN
2
c � 1Þ
48

V
Z d3k

ð2�Þ3
d3q

ð2�Þ3
d3p

ð2�Þ3

�!ðkÞ þ!ðqÞ þ!ðpÞ
!ðkÞ!ðqÞ!ðpÞ ½2� 2ðk̂ � q̂Þðk̂ � p̂Þðp̂ � q̂Þ�

� ð2�Þ3
ðkþ qþ pÞ: (60)

Within our approximations the expression in the bracket
in Eq. (46) is given by the sum of Eqs. (53), (59), and (60).
The term involving hGi2 in Eq. (57) does not appear in
Eq. (59) since it involves three loops. It is worth noting that
the first term in Eq. (59) cancels the first term in Eq. (53).
This cancellation is due to the fact that the Gaussian wave
functional is exact in an Abelian theory and the two terms
are actually the leading order contribution to the topologi-
cal susceptibility in perturbation theory in powers of g,
where � vanishes identically. In Ref. [39] it has been
explicitly shown that this cancellation occurs also in
next-to-leading order.

The integrals in Eqs. (53), (59), and (60) are UV-
divergent. Since the topological susceptibility � vanishes
to any (finite) order perturbation theory in g, in principle,
all UV-divergences should cancel. However, the approach
[24,25] we are using is nonperturbative and, due to the
approximations involved, does not include all terms of a
given power in g. As a consequence, there is a mismatch of
UV-singularities and our expression for � is UV-divergent.
To remove these spurious UV-singularities we subtract
from all propagators the corresponding tree-level form,
i.e., we make the following replacements:

!�1ðkÞ ! !�1
s ðkÞ ¼ !�1ðkÞ � 1=

ffiffiffiffiffiffi
k2

p
; (61a)

GðkÞ ! GsðkÞ ¼ GðkÞ � 1=k2: (61b)

This is in the spirit of the zero-momentum subtraction
scheme. The replacement (61) makes the integrals (53),
(59), and (60) convergent. Using the symmetry of the
integrands we can finally cast the expression for the topo-
logical susceptibility into the form

� ¼ g2
�
g2

8�2

�
2
NcðN2

c � 1ÞðI1 þ I2Þ; (62)

where

I1 ¼ 1

4

Z d3k

ð2�Þ3
d3q

ð2�Þ3!
�1
s ðkÞ!�1

s ðqÞ
�
1�k2 1� ðk̂ � q̂Þ2

ðkþ qÞ2
�

(63a)

I2 ¼�
Z d3k

ð2�Þ3
d3q

ð2�Þ3k
2!�1

s ðkÞ½!�1
s ðkÞ þ!�1

s ðqÞ�

�Gsðkþ qÞ
�
1þ ðk̂ � q̂Þ2

2
þ q �k

k2

�
: (63b)

Equation (63a) follows from the sum of Eq. (60) and the
second term in Eq. (53) while Eq. (63b) follows from the

second term in Eq. (59). The angular integration in
Eq. (63a) can be performed analytically.

IV. RESULTS

The expressions for the topological susceptibility,
Eqs. (62) and (63), depend via the gluon and ghost propa-
gators, !�1 and G, on the vacuum properties, i.e., on the
vacuum wave functional. We will use here the ghost and
gluon propagators determined in Ref. [27] as input.
Furthermore, to simplify our calculations the numerical
solutions obtained in Ref. [27] for the gluon and ghost
propagators were fitted by the following Ansätze:

!ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm4

k2

s
; (64a)

GðkÞ ¼ 1

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M2

g2k2

s
; (64b)

(g is the coupling constant). The parametrization (64a) of
the gluon energy was already assumed heuristically by
Gribov [36]. A factor gwas included in the parametrization
of the ghost propagator (64b) in order to facilitate the
fitting to the numerical results of Ref. [27], where a factor
g was included in the definition of the ghost form factor
dðkÞ2

GðkÞ ¼ dðkÞ
gk2

: (65)

The numerical solutions of Ref. [27] and their parametri-
zations by Eq. (64) are shown in Fig. 1. The integrals
Eq. (63) entering the topological susceptibility Eq. (62)
receive their dominant contributions from the infrared
momentum regime, where the parametrizations Eq. (64)
give a perfect fit to the numerical solutions. The infrared
part of the parametrizations Eq. (64)

!IRðkÞ ¼ m2ffiffiffiffiffiffi
k2

p ; dIRðkÞ ¼ Mffiffiffiffiffiffi
k2

p (66)

was fitted to the infrared behavior of the gluon and ghost
propagators found in Ref. [27] by solving the correspond-
ing Dyson-Schwinger equations (DSEs). In the
Hamiltonian approach in Coulomb gauge the physical
scale is the Coulomb string tension �c, i.e., the coefficient
of the linear term in the non-Abelian Coulomb potential. In
units of the Coulomb string tension �c the fit of Eq. (66) to
the numerical solutions of the DSEs yieldsm2 ¼ 0:614 and
M ¼ 4:97, while from the (analytic) infrared analysis of
the DSEs [25,27,41] one extracts the values m2 ¼ 2=� ’
0:637 and M ¼ ffiffiffiffiffiffiffi

8�
p ’ 5:01.

With the definition Eq. (65) of the ghost form factor in
the variational calculation of Refs. [22–27] the coupling

2The inverse ghost form factor gd�1ðkÞ has the meaning of the
dielectric function of the Yang-Mills vacuum [40].
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constant g drops out from the DSEs and the value of the
coupling constant never had to be specified. Contrary to
this, the topological susceptibility Eq. (62) explicitly con-
tains the coupling constant. In principle, after a complete
renormalization procedure, in all physical (renormalized)
quantities the coupling constant should be replaced by the
running one defined in a renormalization group invariant
way. Such a complete renormalization program is not yet
feasible, although some progress in this direction has been
made.3 Fortunately the running coupling constant calcu-
lated in Ref. [27] in the Hamiltonian approach in Coulomb
gauge (see Fig. 2) has a very weak momentum dependence
in the infrared regime. It basically stays constant below the
infrared scale

ffiffiffiffiffiffi
�c

p
. It is this low-momentum regime which

gives the major contribution to the integrals Eq. (63). We
will therefore use the plateau value of the running coupling
constant. Using the definition of the nonperturbative run-

ning coupling given in Ref. [43], its value at zero momen-
tum is [41]

�sð0Þ ¼ g2ð0Þ
4�

¼ 16�

3Nc
: (67)

Numerical (Gauss-Legendre) evaluation of the integrals
Eq. (63) yields

I1 ¼ ð0:077 ffiffiffiffiffiffi
�c

p Þ4; I2 ¼ ð0:021 ffiffiffiffiffiffi
�c

p Þ4: (68)

Then we find for the topological susceptibility for Nc ¼ 2

�1=4ffiffiffiffiffiffi
�c

p ¼ 0:45: (69)

It was shown in Ref. [44] that �c is an upper bound for
the string tension� extracted from theWilson loop. Lattice
calculations performed in Ref. [45] for SUð2Þ show that
�c ’ 1:5�, while Ref. [46] seems to suggest an even larger
value for �c. In Fig. 3 we present our numerical result for
the topological susceptibility as a function of �c=�. For
1<�c=� < 1:33, � is inside the range predicted by the
lattice data [47–50]. Choosing �c ¼ 1:5� we find withffiffiffiffi
�

p ¼ 440 MeV

� ¼ ð240 MeVÞ4: (70)

This value is somewhat larger than the lattice prediction
� ¼ ð200–230 MeVÞ4.

V. SUMMARYAND CONCLUSIONS

We have calculated the topological susceptibility �
within the Hamiltonian approach to Yang-Mills theory in
Coulomb gauge using the gluon and ghost propagators
determined previously by a variational solution of the
Yang-Mills Schrödinger equation as input. To our knowl-
edge this is the first ab initio continuum calculation of the
topological susceptibility, granted the approximations
adopted. The precise numerical value for � depends on

0.1

1

0.001 0.01 0.1 1 10 100 1000

k/σc
1/2

α(k)/α(0)

FIG. 2. Running coupling as calculated in [27].
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FIG. 1. Comparison between the numerical results of Ref. [27]
(crosses) and the parametrizations (64) (lines) for the inverse
gluon propagator (top panel) and the ghost form factor (bottom
panel).

3The counter terms required for the renormalization have been
identified [30,42].
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the relation between the Coulomb string tension and the
one extracted from the Wilson loop. It is therefore very
desirable to perform a sophisticated calculation of the
Wilson loop within the present approach. Adopting the
relation �c ¼ 1:5� as suggested by lattice calculations,
the numerical value obtained for � is in reasonable agree-
ment with the lattice data. The results obtained in the
present paper are quite encouraging for the calculation of
further hadronic quantities within the present approach.
This will require the inclusion of the quarks.
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APPENDIX

In the following we show how the wave functional
Eq. (19) can be modified to fulfill Eq. (18), so that 	
becomes a true angle variable. For this purpose consider
the wave functional

�� 	½A� ¼
Z 2�

0
d	0
½	; 	0��	0 ½A�; (A1)

where


½	; 	0� ¼ 1

2�

X
m

e�imð	�	0Þ (A2)

is the periodic 
-function satisfying 
½	þ 2�; 	0� ¼

½	; 	0�. Inserting Eq. (19) into Eq. (A1) we obtain

�� 	½A� ¼
X
m

e�i	mfðm�W½A�Þ�½A�; (A3)

where

fðxÞ ¼ 1

2�

Z 2�

0
d	0ei	0x: (A4)

The functional ��	½A� satisfies both Eqs. (17) and (18) and
thus can be used as the wave functional of the 	-vacuum.
According to Eq. (A3), it has the form

�� 	½A� ¼
X
m

e�i	m�m½A�; (A5)

where

�m½A� ¼ fðm�W½A�Þ�½A� ¼ 1

2�

Z 2�

0
d	0eim	0�	0 ½A�

(A6)

is a localized wave functional centered at the classical
vacuumU@Uy with winding number n½U� ¼ m. It satisfies
the relation

�m½AU� ¼ �m�n½U�½A�: (A7)

Replacing ��	½A� by �m½A� corresponds to the so-called
‘‘tight binding’’ approximation in solid states physics.
We are not using this approximation. From Eq. (A6) it is

seen that our wave functional �	½A� is the Fourier trans-
form of �m½A�.
Using the Poisson relation, the periodic 
-function

Eq. (A2) can be expressed as


½	; 	0� ¼ X1
l¼�1


ð	� 	0 þ 2�lÞ; (A8)

where 
ðxÞ denotes the ordinary 
-function. Inserting this
representation into Eq. (A1) we find

�� 	½A� ¼ �	þ2�l0½A�; (A9)

where l0 is defined by the condition

	þ 2�l0 2 ½0; 2�Þ: (A10)

This shows that�	½A�, Eq. (19), is a correct representation
of the wave functional of the 	-vacuum for 	 2 ½0; 2�Þ.
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FIG. 3. Value of �1=4=
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p
depending on the ratio �c=�. The

two horizontal lines limit the range of the lattice results.
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