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We study analytically the relaxation phase of perturbed, rapidly rotating black holes. In particular, we

derive a simple formula for the fundamental quasinormal resonances of near-extremal Kerr black holes.

The formula is expressed in terms of the black hole physical parameters: ! ¼ m�� i2�TBHðnþ 1
2Þ,

where TBH and � are the temperature and angular velocity of the black hole, and m is the azimuthal

harmonic index of a corotating equatorial mode. This formula implies that the relaxation period ��
1==! of the black hole becomes extremely long as the extremal limit TBH ! 0 is approached. The

analytically derived formula is shown to agree with direct numerical computations of the black hole

resonances. We use our results to demonstrate analytically the fact that near-extremal Kerr black holes

saturate the recently proposed universal relaxation bound.
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The radiative perturbations of a complete gravitational
collapse decay with time leaving behind a ‘‘bald’’ black
hole. This is the essence of the no-hair conjecture intro-
duced by Ruffini and Wheeler [1] more than 30 years ago.
It asserts that perturbation fields left outside the collapsing
star would either be radiated away to infinity, or be swal-
lowed by the newly born black hole.

According to the uniqueness theorems [2–6], the metric
outside the black hole should relax into a Kerr-Newman
spacetime, characterized solely by the black hole mass,
charge, and angular momentum. This relaxation phase in
the dynamics of perturbed black holes is characterized by
‘‘quasinormal ringing,’’ damped oscillations with a dis-
crete spectrum (see e.g. [7] for a detailed review). At late
times, all perturbations are radiated away in a manner
reminiscent of the last pure dying tones of a ringing bell
[8–11].

The black hole quasinormal modes (QNMs) correspond
to solutions of the perturbations equations with the physi-
cal boundary conditions of purely outgoing waves at spa-
tial infinity and purely ingoing waves crossing the event
horizon [12]. Such boundary conditions single out a dis-
crete set of black hole resonances f!ng (assuming a time
dependence of the form e�i!t). In analogy with standard
scattering theory, the QNMs can be regarded as the scat-
tering resonances of the black hole spacetime. They thus
correspond to poles of the transmission and reflection
amplitudes of a standard scattering problem in a black
hole spacetime.

The characteristic quasinormal frequencies are complex.
This reflects the fact that the perturbations fields decay
with time, in accord with the spirit of the no-hair conjec-
ture. It turns out that there exist an infinite number of
quasinormal modes, characterizing oscillations with de-
creasing relaxation times (increasing imaginary part)
[13]. The mode with the smallest imaginary part (known
as the fundamental mode) determines the characteristic
dynamical time scale � for generic perturbations to decay.

Quasinormal resonances are expected to play a promi-
nent role in gravitational radiation emitted by a variety of
astrophysical scenarios involving black holes. Being the
characteristic ‘‘sound’’ of the black hole itself, these free
oscillations are of great importance from the astrophysical
point of view. They allow a direct way of identifying the
spacetime parameters, especially the mass and angular
momentum of the black hole. This has motivated a flurry
of research during the last four decades aiming to compute
the quasinormal mode spectrum of various types of black
hole spacetimes [7].
It is well known that realistic stellar objects generally

rotate about their axis, and are therefore not spherical.
Thus, an astrophysically realistic model of wave dynamics
in black hole spacetimes must involve a nonspherical
background geometry with angular momentum. In this
work, we determine analytically the fundamental (least-
damped) resonant frequencies of such rapidly rotating Kerr
black holes. (For a recent progress in the study of the
highly damped resonances, see [14,15].) The spectrum of
quasinormal resonances can be studied analytically in the

near-extremal limit ðM2 � a2Þ1=2 � a & M, whereM and
a are the mass and angular momentum per unit mass of the
black hole, respectively.
Before going on we would like to summarize what is

already known about these fundamental, slowly damped
Kerr QNMs:
(i) In the extremal limit (a ! M) one finds <! ’

m=2M, where m> 0 is the azimuthal harmonic in-
dex of a perturbation field corotating with the black
hole. This fact has been found in many numerical
computations (see e.g. [13,16–18]) and is well
understood analytically [19–21].

(ii) Numerical computations [13,16–18] have indicated
that, for corotating modes, =! ! 0 in the extremal
limit. This implies that these modes are long lived.
Detweiler [19] presented a semianalytical formula
for the long-lived black hole resonances in the ex-
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tremal limit. It is important to emphasize that
Detweiler’s result assumes that =!=TBH � 1
and is not appropriate for the most long-lived modes
in the nonextremal case, where it might be that

=!� TBH, where TBH ¼ ðM2�a2Þ1=2
4�M½MþðM2�a2Þ1=2� is the

Bekenstein-Hawking temperature of the black hole.
(iii) Motivated by the recently proposed time-

temperature universal relaxation bound (TTT)
[22], we have recently reexamined the role played
by the imaginary parts of the black hole quasinor-
mal resonances. It has been observed [22,23] that
the numerically computed equatorial resonances of
near-extremal Kerr black holes are well approxi-
mated by the simple analytical relation ! ¼
m�� i2�TBHðnþ 1=2Þ, where n ¼ 0; 1; 2; . . . .
The successfulness of this conjectured formula is
demonstrated in Table I. The numerical results
therefore imply=! ¼ OðTBHÞ in the near-extremal
limit. A similar relation which is valid only for the
fundamental mode was obtained in [24] for equa-
torial modes. Table II demonstrates the fact that the
predictions of the formula improve as the extremal
limit is approached.

In order to determine the black hole resonances, we shall
analyze the scattering of massless waves in the Kerr space-
time. The dynamics of a perturbation field� in the rotating
Kerr spacetime is governed by the Teukolsky equation

[25]. One may decompose the field as (we use natural units
in which G ¼ c ¼ @ ¼ 1)

�slmðt; r; �; �Þ ¼ eim�Sslmð�; a!Þc slmðrÞe�i!t; (1)

where ðt; r; �;�Þ are the Boyer-Lindquist coordinates,! is
the (conserved) frequency of the mode, l is the spheroidal
harmonic index, and m is the azimuthal harmonic index
with �l � m � l. The parameter s is called the spin
weight of the field, and is given by s ¼ �2 for gravita-
tional perturbations, s ¼ �1 for electromagnetic perturba-
tions, s ¼ � 1

2 for massless neutrino perturbations, and

s ¼ 0 for scalar perturbations. (We shall henceforth omit
the indices s, l, m for brevity.) With the decomposition (1),
c and S obey radial and angular equations, both of con-
fluent Heun type [26,27], coupled by a separation constant
Aða!Þ.
The angular functions Sð�; a!Þ are the spin-weighted

spheroidal harmonics which are solutions of the angular
equation [25,27]
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The angular functions are required to be regular at the
poles � ¼ 0 and � ¼ �. These boundary conditions pick
out a discrete set of eigenvalues Al labeled by an integer l.
[In the a! � 1 limit, these angular functions become the
familiar spin-weighted spherical harmonics with the cor-
responding angular eigenvalues A ¼ lðlþ 1Þ � sðsþ
1Þ þOða!Þ.]
The radial Teukolsky equation is given by

��s d

dr

�
�sþ1 dc
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�
þ

�
K2 � 2isðr�MÞK

�
� a2!2

þ 2ma!� Aþ 4is!r

�
c ¼ 0; (3)

where � � r2 � 2Mrþ a2 and K � ðr2 þ a2Þ!� am.

The zeroes of �, r� ¼ M� ðM2 � a2Þ1=2, are the black
hole (event and inner) horizons.
For the scattering problem one should impose physical

boundary conditions of purely ingoing waves at the black
hole horizon and a mixture of both ingoing and outgoing
waves at infinity (these correspond to incident and scat-
tered waves, respectively). That is,

c �
�
e�i!y þRð!Þei!y as r ! 1ðy ! 1Þ;
T ð!Þe�ið!�m�Þy as r ! rþðy ! �1Þ; (4)

where the ‘‘tortoise’’ radial coordinate y is defined by dy ¼
½ðr2 þ a2Þ=��dr. Here� � a

2Mrþ
is the angular velocity of

the black hole horizon. The coefficients T ð!Þ and Rð!Þ
are the transmission and reflection amplitudes for a wave
incident from infinity. The discrete quasinormal frequen-
cies are the scattering resonances of the black hole space-

TABLE I. Quasinormal resonances of a near-extremal Kerr
black hole with a=M ¼ 0:9999. The data shown is for the
equatorial mode l ¼ m ¼ 2; see also [17]. The proposed ana-
lytical formula is ! ¼ m�� i2�TBHðnþ 1=2Þ. (Here m� ’
0:9859.) The agreement between the numerical data and the
proposed formula is of �2%.

n <! =! (numerical) =! (analytical)

0 0.993 24 0.003 41 0.003 48

1 0.993 22 0.010 20 0.010 45

2 0.993 21 0.016 99 0.017 43

3 0.993 20 0.023 85 0.024 40

4 0.993 17 0.030 67 0.031 37

5 0.993 13 0.037 49 0.038 34

TABLE II. The ratio between the relation ! ¼ m�� i�TBH

for the fundamental equatorial black hole resonance, and the
numerically computed value. The data shown is for the mode
l ¼ m ¼ 2. The agreement between the numerical data and the
analytical formula improves as the black hole approaches its
extremal limit.

a=M <!ana=<!num =!ana==!num

0.9 0.933 1.170

0.96 0.977 1.106

0.9999 0.993 1.022
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time. They thus correspond to poles of the transmission and
reflection amplitudes. (The pole structure reflects the fact
that the QNMs correspond to purely outgoing waves at
spatial infinity.) These resonances determine the ringdown
response of a black hole to outside perturbations.

The transmission and reflection amplitudes satisfy the
usual probability conservation equation jT ð!Þj2 þ
jRð!Þj2 ¼ 1. Teukolsky and Press [28] and also
Starobinsky and Churilov [29] have analyzed the black
hole scattering problem in the double limit a ! M and

! ! m�. Detweiler [19] then used that solution to deter-
mine the long-lived black hole resonances in the extremal
limit. Define

� � rþ � r�
rþ

; � � Mð!�m�Þ; !̂ � !rþ:

(5)

Then the resonance condition obtained in [19] for � � 1
and � � 1 is

� �ð2i�Þ�ð1þ 2i�Þ�ð1=2þ s� 2i!̂� i�Þ�ð1=2� s� 2i!̂� i�Þ
�ð�2i�Þ�ð1� 2i�Þ�ð1=2þ s� 2i!̂þ i�Þ�ð1=2� s� 2i!̂þ i�Þ ¼ ð�2i!̂�Þ2i� �ð1=2þ 2i!̂þ i�� 4i�=�Þ

�ð1=2þ 2i!̂� i�� 4i�=�Þ ;
(6)

where �2 � 4!̂2 � 1=4� A� a2!2 þ 2ma!. In the ex-
tremal limit, Detweiler solved this equation with the as-
sumption that �=� ! 1. For near-extremal black holes, it
should be emphasized that the numerical data presented
above is consistent with the limit �=� ! const as � ! 0.
Thus, the quasinormal frequencies obtained in [19] do not
include the most long-lived, fundamental resonances of
near-extremal black holes. We now derive analytically
the fundamental resonances of rapidly rotating, near-
extremal Kerr black holes.

The left-hand side of Eq. (6) has a well-defined limit as
a ! M and ! ! m�. We denote that limit by L. In the
limit ! ! m�, where ! is almost purely real, one finds
from Eq. (2) that the separation constants fAg are also
almost purely real. This in turn implies that the �2’s are
almost purely real. For some modes, including most of the
equatorial l ¼ m modes (and also other modes with m
close enough to l), �2 is found to be positive, which implies
that in these cases � is almost purely real and positive
[28,30]. For the rest of the modes one finds �2 < 0, which
implies that � is almost purely imaginary with positive
imaginary part [28,30].

If � is almost purely real and positive then one

has ð�iÞ�2i� ¼ e�2i� lnð�iÞ ¼ e�2i� lne�i�=2 ¼ e�2i�ð�i�=2Þ ¼
e��� � 1. Here we have used the fact that � > 2 for all
gravitational equatorial modes [28,30]. (In fact, this is also
true for many other modes for which l�m � 1.) If � is
almost purely imaginary with a positive imaginary part
then one has ��2i� ! 0 in the near-extremal limit � !
0. In both cases, one therefore finds � � ð�2i!̂�Þ�2i� �
1. Thus, a consistent solution of the resonance condition,
Eq. (6), may be obtained if 1=�ð1=2þ 2i!̂� i��
4i�=�Þ ¼ Oð�Þ [31]. Suppose

1=2þ 2i!̂� i�� 4i�=� ¼ �nþ ��þOð�2Þ; (7)

where n 	 0 is a non-negative integer and � is an unknown
constant to be determined below. Then one has

�ð1=2þ 2i!̂� i�� 4i�=�Þ ’ �ð�nþ ��Þ
’ ð�nÞ�1�ð�nþ 1þ ��Þ
’ 
 
 
 ’ ½ð�1Þnn!��1�ð��Þ;

(8)

where we have used the relation �ðzþ 1Þ ¼ z�ðzÞ [32].
Next, using the series expansion 1=�ðzÞ ¼ P1

k¼1 ckz
k with

c1 ¼ 1 [see Eq. (6.1.34) of [32]], one obtains

1=�ð1=2þ 2i!̂� i�� 4i�=�Þ ¼ ð�1Þnn!��þOð�2Þ:
(9)

Substituting this into Eq. (6) one finds � ¼
L=½ð�1Þnn!�ð�nþ 2i�Þ�.
Finally, recalling that 4�=� ¼ ð!�m�Þ=2�TBH, we

obtain from Eq. (7) the resonance condition

ð!�m�Þ=2�TBH ¼ i½�nþ ��� 1=2þ ið��mÞ�;
(10)

where we have substituted 2i!̂ ’ im for ! ’ m� ’
m=2M. The black hole quasinormal resonances of equato-
rial l ¼ m 	 0 modes (and, in general, corotating modes
for which �2 > 0) are therefore given by the leading-order
formula

! ¼ m�� i2�TBHðnþ 1=2Þ þOðTBHÞ; (11)

where n ¼ 0; 1; 2; . . . . One thus finds that <! ! m� and
=! ! 0 in the near extremal. These analytical findings are
in accord with direct numerical computations; see Tables I
and II [33].
The black hole quasinormal resonances of nonequatorial

l � m 	 0 modes (and, in general, corotating modes for
which �2 < 0) are given by the leading-order formula [see
Eq. (10)]

! ¼ m�� i2�TBHðnþ 1=2� i�Þ þOðTBHÞ; (12)

where n ¼ 0; 1; 2; . . . . It is worth pointing out that, in this
case, =!> 2�TBHðnþ 1=2Þ (recall that =� > 0). This
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implies that for these modes=! approaches zero slower as
compared to the equatorial ones for which =! ¼
2�TBHðnþ 1=2Þ. We have therefore established the fact
that nonequatorial modes decay faster than the equatorial
ones.

In summary, we have studied analytically the quasinor-
mal spectrum of rapidly rotating Kerr black holes. The
main results and their physical implications are as follows:

(1) We have shown that the fundamental resonances can
be expressed in terms of the black hole physical
parameters: the temperature TBH, and the angular
velocity � of the horizon.

(2) It was found that for all corotating modes (modes
having m> 0) <! ! m� in the near-extremal
limit. This conclusion is in agreement with, and
generalizes, the l ¼ m result obtained in [19].

(3) We find that, in the near-extremal limit =! ap-
proaches zero linearly with the black hole tempera-
ture. Namely, =! ¼ OðTBHÞ. This conclusion holds
true for all modes corotating with the black hole.
Thus, all corotating modes become long lived as the
black hole spins up. Moreover, it is realized that
equatorial l ¼ m modes (and in general, modes for
which the quantity � is real) decay slower than other
nonequatorial perturbations.

(4) It is worth mentioning that a fundamental bound on
the relaxation time � of a perturbed thermodynam-

ical system has recently been suggested [22], � 	
@=�T, where T is the system’s temperature. Taking
cognizance of this relaxation bound, one deduces an
upper bound on the black hole fundamental (slowest
damped) frequency

minf=!g � �TBH: (13)

Thus the relaxation bound implies that a black hole
must have (at least) one quasinormal resonance
whose imaginary part conform to the upper bound
(13). This mode would dominate the relaxation
dynamics of the perturbed black hole and will de-
termine its characteristic relaxation time scale.
Taking cognizance of Eq. (11) for the equatorial
modes, and substituting n ¼ 0 for the fundamental
resonance, one obtains minf=!g ¼ �TBH þ
OðT2

BHÞ [22–24,34,35]. One therefore concludes
that rapidly rotating Kerr black holes actually satu-
rate the universal relaxation bound.
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