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The strong equivalence principle is extended in application to averaged dynamical fields in cosmology

to include the role of the average density in the determination of inertial frames. The resulting

cosmological equivalence principle is applied to the problem of synchronization of clocks in the observed

universe. Once density perturbations grow to give density contrasts of order 1 on scales of tens of

megaparsecs, the integrated deceleration of the local background regions of voids relative to galaxies must

be accounted for in the relative synchronization of clocks of ideal observers who measure an isotropic

cosmic microwave background. The relative deceleration of the background can be expected to represent a

scale in which weak-field Newtonian dynamics should be modified to account for dynamical gradients in

the Ricci scalar curvature of space. This acceleration scale is estimated using the best-fit nonlinear bubble

model of the universe with backreaction. At redshifts z & 0:25 the scale is found to coincide with the

empirical acceleration scale of modified Newtonian dynamics. At larger redshifts the scale varies in a

manner which is likely to be important for understanding dynamics of galaxy clusters, and structure

formation. Although the relative deceleration, typically of order 10�10 ms�2, is small, when integrated

over the lifetime of the universe it amounts to an accumulated relative difference of 38% in the rate of

average clocks in galaxies as compared to volume-average clocks in the emptiness of voids. A number of

foundational aspects of the cosmological equivalence principle are also discussed, including its relation to

Mach’s principle, the Weyl curvature hypothesis, and the initial conditions of the universe.
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I. INTRODUCTION

The strong equivalence principle (SEP) stands at the
conceptual core of general relativity, as a physical principle
which limits the choice of our physical theory of gravita-
tion among all possible metric theories of gravitation one
can construct. In this paper I will argue that the ramifica-
tions of this principle have not been fully explored, and that
its physical interpretation requires further clarification to
deal with the dynamical properties of spacetime inherent in
Einstein’s theory when the nonequilibrium situation is
considered. In particular, the problem of how to synchro-
nize clocks in the absence of a spacetime background with
specific symmetries does not have a general solution in
general relativity. In this paper I will show that at least for
universes which began with a great deal of symmetry, as
ours did, the reasoning of the equivalence principle can be
extended: the average regional density provides a clock in
expanding regions. This has particular consequences for
cosmological models and the definition of gravitational
energy. It underlies the author’s proposal that dark energy
is a misidentification of cosmological gravitational energy
gradients in an inhomogeneous void-dominated universe
[1–3]. Broader foundational consequences may also
follow.

To set the scene, it pays to recall that, historically, the
equivalence principle [4], and indeed general relativity [5],
was formulated at a time before the dynamical properties
of spacetime were understood. The conceptual route that
Einstein took began with theweak equivalence principle or
the principle of uniqueness of free fall, known since the
experiments of Galileo, that all bodies (subject to no forces
other than gravity) will follow the same paths given the
same initial positions and velocities. Realizing that this
observational statement embodies a feature of universality
of the gravitational interaction, Einstein created a theory in
which gravity is a property of spacetime itself.
Einstein’s identification of what the true gravitation field

should be began 101 years ago with first identifying what it
is not, based on thought experiments with elevators, con-
cerning what motions of particles cannot be distinguished
operationally. His 1907 principle of equivalence [4] may be
translated as follows: All motions in an external static
homogeneous gravitational field are identical to those in
no gravitational field if referred to a uniformly accelerated
coordinate system. A uniformly accelerated reference
frame may be found operationally in empty Minkowski
spacetime by firing rockets; if matter is the source of the
true gravitational field, then such choices of frame cannot
represent gravity.
More generally, since special relativity with nongravita-

tional forces appears to always be valid in small regions,
one should always be able to get rid of gravity near a point.

*David.Wiltshire@canterbury.ac.nz
+Permanent address.

PHYSICAL REVIEW D 78, 084032 (2008)

1550-7998=2008=78(8)=084032(18) 084032-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.084032


This is embodied in the SEP: At any event, always and
everywhere, it is possible to choose a local inertial frame
such that in a sufficiently small spacetime neighborhood all
nongravitational laws of nature take on their familiar
forms appropriate to the absence of gravity, namely, the
laws of special relativity. This means that gravity is made
to be universal, as it is contained in spacetime structure.
The true gravitational field strength is encoded in the
Riemann curvature tensor, and is determined regionally
by the tidal effects of geodesic deviation.

One of the most profound and difficult consequences of
the SEP is that gravitational energy and momentum cannot
be described by a local density, and so are not local
quantities. General relativity overcomes the nonlocality
problem of Newtonian gravity: there is no action at a
distance. General relativity is an entirely local theory in
the sense of propagation of the gravitational interaction,
which is causal. However, the background on which the
interaction propagates may contain its own energy and
momentum, when integrated over sufficiently large re-
gions, and this has to be understood in the calibration of
local rods and clocks at widely separated events.

Whereas the calibration of rods and clocks is mathe-
matically determined by invariants of the local metric, and
the spacetime connection which relates local invariants at
widely separated events, in practice we cannot analytically
solve Einstein’s equations for the most general distribution
of matter to unambiguously determine the metric and its
connection. A slicing of spacetime into hypersurfaces, and
a threading of these hypersurfaces by timelike worldlines
of observers or by null geodesics, is inevitable for any
operational description of spacetime in terms of rods and
clocks. Such splittings of space and time, together with
additional symmetry assumptions, are also necessary for
analytically solving Einstein’s equations in particular
cases, or more generally, for numerical modeling.

The definition of quasilocal gravitational energy and
momentum [6] then turns out to depend on the choice of
slicing, associated surfaces of integration, and the identi-
fication of observers that thread the slices. These proce-
dures are inherently noncovariant and nonunique, and
many questions of naturalness of any particular definition
inevitably arise. (See Ref. [7] for a recent discussion.) We
have the dilemma that a spacetime split inevitably breaks
any given particle motion into a motion of the background
and a motion with respect to the background; and this may
involve a degree of arbitrariness. The viewpoint that will be
adopted here is that since quasilocal gravitational energy
gradients have their origin in the equivalence principle, the
primary criterion for making canonical identifications of
physically relevant classes of observer frames is that the
equivalence principle itself must be properly formulated,
and respected, when making macroscopic cosmological
averages.

If the SEP is applied to macroscopic objects, then,
strictly speaking, we can only apply it to systems in which

the gravitational interaction is ignored. Yet we implicitly
apply the SEP to scales at least as large as galaxies which
are treated as particles of dust in an expanding fluid—with
an expansion rate given by a Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) model—subject to additional
Newtonian gravitational interactions. The Newtonian ap-
proximation, which is made in present-day numerical
simulations of structure formation, must, by the rules of
general relativity, presuppose that a sufficiently large static
Minkowski frame can be found.
I shall argue in this paper that to correctly derive a

Newtonian limit, without prior assumptions about the cos-
mological background geometry, we must first correctly
apply the SEP. If galaxies are to be treated as particles of
dust, we must address the following question: given that
the background is not static, what is the largest scale on
which the SEP can be applied? An attempt to answer this
question, which is unavoidable if we are to consistently
apply the principles of general relativity to cosmology,
means that we have to deal with the relationship of inertial
frames to averages of matter fields and motions. In other
words, we must address Mach’s principle, which may be
stated as [8,9] follows: ‘‘Local inertial frames are deter-
mined through the distributions of energy and momentum
in the universe by some weighted average of the apparent
motions.’’ The leading questions in this statement are what
is to be understood by ‘‘local,’’ and what is the ‘‘suitable
weighted average’’?
The problem with any process of averaging in general

relativity is that by coarse graining we can lose information
about the calibration of local rods and clocks within the
coarse-grained cells relative to average quantities. Rods
and clocks are related to invariants of the local metric, can
vary greatly within an averaging cell, and will not, in
general, coincide with some average calibration of rods
and clocks once averaging cells become sufficiently large
in the nonlinear regime of general relativity. Galaxies, for
example, contain supermassive black holes, in whose local
neighborhood the determination of proper lengths and
times for typical observers differs extremely from typical
observers in the outskirts of a galaxy.
It is commonly believed that as long as we are ‘‘in the

weak-field limit’’ we do not have to worry about compli-
cations such as the extreme ones posed by black holes.
However, the weak-field limit is always taken about a
background, and once inhomogeneities develop in the
universe there are no exact symmetries to describe the
background. One set of uniformly calibrated rods and
clocks is no longer sufficient to describe the background
itself. Given an initially homogeneous isotropic universe
with small scale-invariant density perturbations, once one
is within the nonlinear regime of structure formation,
homogeneity and isotropy are only defined in a statistically
average sense.
Within a cell of statistical homogeneity—which can be

taken to be [1] of the same order as the baryon acoustic
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oscillation (BAO) scale, 100h�1 Mpc, h being the dimen-
sionless parameter related to the Hubble constant by
H0 ¼ 100h km sec�1 Mpc�1—there are density contrasts
of order unity over scales of tens of megaparsecs. Since the
universe is inhomogeneous over these scales not every
observer is the same average observer. Different classes
of canonical observers are required to interpret cosmologi-
cal parameters [1]. In particular, we and the objects we see
are typically in galaxies in locally nonexpanding regions
which formed from density perturbations which were
greater than the critical density. In such regions local
spatial curvature can differ markedly from the volume-
average location in voids, where space is freely expanding.
Small differences of spatial curvature and rates of clocks
can accumulate to give large differences over the lifetime
of the universe [1]. Dynamical gradients in the curvature of
space are a physical reality which must be properly
understood.

In this paper I will estimate the scale of the small relative
deceleration of the background in regions of different
density, by proposing an extension of the SEP to cosmol-
ogy. I will demand an equivalence between the particular
example of geodesic flow of a congruence of particles ‘‘at
rest’’ in a dynamically expanding universe, whose average
volume expansion is governed by an average over all
masses and motions of the particles, and the equivalent
‘‘volume-expanding’’ motion of point particles in a
Minkowski space. In other words, the local Ricci scalar
curvature due to the volume average of pressureless dust
can always be ‘‘renormalized away’’ on sufficiently small
scales, but in a way which may lead to relative recalibra-
tions of local rods and clocks between different spacetime
regions.

Equivalently, for volume expansion we cannot locally
distinguish between particles at rest in a dynamic space-
time and particles moving in a static spacetime: the two
situations are equivalent in a sense which deserves the
designation cosmological principle of equivalence. This
might be viewed as a further Machian style refinement of
the notion of inertia. Although we measure geodesic de-
viation, in terms of the scalar curvature part of the Riemann
tensor and volume expansion, we are unable to distinguish
whether the geodesics are deviating because of local accel-
erations of particles in a static space, or whether the
particles are at rest in an expanding space which is decel-
erating due to the gravitational attraction of the average
density of matter.

Historically, it might be said that although Einstein was
conceptually guided by Mach’s principle, he never quite
succeeded in fully implementing it in general relativity,
because when he first formulated the theory he did not fully
appreciate the dynamical nature of spacetime. His first
attempt to study cosmology indicated that for any usual
source of matter the theory was not stable, but intrinsically
dynamical [10]. Famously, he invoked the cosmological

constant—his ‘‘größte Eselei’’—to avoid the issue. This
paper attempts to lay the conceptual groundwork for an
alternative first principles route to the physical interpreta-
tion of cosmological general relativity, taking account of
observational evidence that is immeasurably better now
than it was in 1917.
The plan of the paper is as follows. Preliminary defini-

tions, motivations, and a statement of the cosmological
equivalence principle (CEP) are presented in Sec. II. In
Sec. III the thought experiments introduced in Sec. II are
generalized to the case of regions of different density, and
an estimate of clock rate variance is given based on pres-
ently observed density contrasts. The definition of the
cosmic rest frame, and its relation to other frames used in
cosmological averaging, is clarified in Sec. IV. In Sec. V a
numerical estimate of the time-varying relative decelera-
tion of voids relative to walls, where galaxies are located, is
computed over the lifetime of the universe, and its cosmo-
logical implications discussed. The role of initial condi-
tions and a possible conceptual relationship to Penrose’s
Weyl curvature hypothesis are discussed in Sec. VI. The
paper concludes with a summary discussion, including
some further speculations, in Sec. VII.

II. AVERAGING AND THE EQUIVALENCE
PRINCIPLE

The SEP addresses physics on relatively small scales in
which matter can be treated by field theories in a local
inertial frame (LIF). In a LIF fundamental nongravitational
interactions are described by Lagrangian field theories, and
in four spacetime dimensions the mass m and spin s are
given by the Casimir invariants of representations of the
local Lorentz group, P�P� ¼ �m2c2 and W�W� ¼
sðsþ 1Þm2c2@2, where P� is a particle 4-momentum and
W� the Pauli-Lubanski pseudovector. To make a transition
to macroscopic scales we have to take averages of these
quantities to obtain a hydrodynamic limit: a fluid descrip-
tion with an effective energy-momentum tensor, not deriv-
able from a field Lagrangian.
Following the end of the radiation dominated epoch, on

cosmological scales of averaging, we largely deal with
situations in which the massive matter fields form conden-
sates for which the average spin is zero, and can be treated
as pressureless dust described by one scalar parameter, the
density �. Neutrinos, on account of their ultralight masses,
near relativistic speeds, and their interesting property that
mass eigenstates do not coincide with flavor eigenstates,
are an exception to this rule. However, neutrinos are so
light that from the point of view of the cosmological
background they can be effectively treated as a massless
species.
Massless particles which are relevant for cosmology will

be considered. Gravitational waves will not be considered
here, as their cosmological contribution at late epochs is
negligible. Electromagnetic waves are considered, as they

COSMOLOGICAL EQUIVALENCE PRINCIPLE AND THE . . . PHYSICAL REVIEW D 78, 084032 (2008)

084032-3



are the means by which almost all our information about
the universe is transmitted. For the purpose of cosmologi-
cal averages it is sufficient that light propagation can be
treated in the geometric optics limit, and that the cosmic
radiation background has a perfect fluid equation of state
P ¼ 1

3�c
2.

The question of the largest scale on which the SEP can
apply has not, to the best of my knowledge, been addressed
in a fundamental way. Taken literally, as soon as we are
dealing with scales on which particle masses must be
treated as an integrated density, then the SEP can only
apply if we ignore the gravitational interaction. Of course,
in practice, for many practical purposes we can treat the
gravitational interaction by Newtonian gravity on the scale
of the solar system, and the scale of galaxies. However, the
true nature of general relativity is to replace the Newtonian
gravitational force by a dynamical spacetime, not to re-
place spacetime by Newtonian gravity in the limit of weak
fields.

It must be recalled that, whereas Newtonian gravity is a
nonlocal interaction on a static space, general relativity is a
local dynamical theory of spacetime. The curvature of the
spacetime background is not local, and the Newtonian limit
picks up the aspect of the nonlocal curvature of the back-
ground generated by slowly moving point particles, but in
full general relativity, changes in the curvature of the
background can only be built up over time by locally
propagating processes. This means that even in the weak-
field limit there exist circumstances in which Newtonian
gravity on a static background is not an appropriate limit.
In cosmology the background is not static, and thus clearly
the Newtonian approximation may break down. While
much has been achieved numerically by assuming
N-body Newtonian interactions on a preexisting FLRW
background, the universe is clearly inhomogeneous on
scales of at least tens of megaparsecs at the present epoch.
To consider the dynamical gravitational processes which
lead to macroscopic variations of the spacetime back-
ground over these scales, we need to go back to first
principles.

A. The cosmological equivalence principle

My proposed answer to the question of the largest scale
on which the SEP can apply is to deal with the average
effects of density by extending the SEP to potentially
larger scales while removing the time-translation and boost
symmetries of the background as follows:

At any event, always and everywhere, it is possible to
choose a suitably defined spacetime neighborhood, the
cosmological inertial frame, in which average motions
(timelike and null) can be described by geodesics in a
geometry which is Minkowski up to some time-dependent
conformal transformation,

ds2CIF ¼ a2ð�Þ½�d�2 þ dr2 þ r2d�2�; (1)

where d�2 is the metric on a 2-sphere.

The standard SEP is obtained in the limit that að�Þ is
constant, which physically corresponds to virialized sys-
tems that can be effectively thought of as asymptotically
flat. Alternatively, during very short time intervals over
which the time variation of the scale factor can be ne-
glected, the standard SEP is also retrieved. The idea here is
that even when spacetime is dynamical in cosmology, one
can always find a spacetime neighborhood whose average
volume expansion can be characterized by a metric of the
form (1) for time intervals over which að�Þ varies. The
metric (1) is of course that of the spatially flat FLRW
geometry in conformal coordinates.
The rationale for the statement of the CEP is twofold.

First, if we are to demand a smooth Newtonian gravita-
tional limit in all circumstances, we have to deal with the
fact that Newtonian gravity deals with just one scalar
source, the density, whereas general relativity is tensorial.
This means that we must be dealing with an average space-
time with symmetries in taking a Newtonian gravity limit.
Since gravitation with matter is dynamical, it is the sym-
metries involving time that should be removed from the
SEP to account for the average density of matter. The
metric (1) does this while preserving the isotropy and
homogeneity of space regionally within a cosmological
inertial frame (CIF).
Second, at the core of the equivalence principle is the

notion that we can always choose a LIF, for example, by
specifying Riemann normal coordinates. However, in the
case of the volume-expanding and contracting motions of
the metric (1), as illustrated by Fig. 1, it is impossible to
locally distinguish between the case of comoving particles
at rest in an expanding metric (1) and the case of particles
in motion in the static Minkowski space of the relevant LIF,
a point which has been emphasized by a number of authors
recently from various points of view [11]. On local scales,
both yield the Hubble law redshift

z ’ H0‘r
c

; H0 ¼ _a

a

��������t0

where ‘r is the radial proper distance from an observer at
the origin to a source, and an overdot denotes a derivative
with respect to twhere cdt ¼ ad�. This is true whether the
exact relation, zþ 1 ¼ a0=a, is used or the radial Doppler

formula, zþ 1 ¼ ½ðcþ vÞ=ðc� vÞ�1=2, of special relativ-
ity is used, before making a local approximation [12].
Mathematically, the equivalence of the two situations
might be viewed as a consequence of @=@� being a con-
formal Killing vector of (1).
The aim of the CEP is to go beyond the limit of the static

special relativistic LIF, to consider arbitrarily long time
intervals over which the motion of the particles is decel-
erated, €a < 0, by the average density of matter. As Einstein
himself stated [10], ‘‘In a consistent theory of relativity
there can be no inertia relatively to ‘space,’ but only an
inertia of masses relatively to one another.’’ Since the
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deceleration of the volume expansion is due to the back-
reaction of the average density of the matter particles in
defining their average background, the CEP thus represents
a refinement in the definition of inertial frames. To dem-
onstrate this at a conceptual level, we will first show that
for localized regions a suitable equivalent of decelerated
Minkowski particles can always be found for the motion of
a congruence of comoving particles in (1), even for arbi-
trarily long time intervals.

B. Thought experiment: The semi-tethered lattice

Given a spatial point, taken to coincide with the origin of
the coordinates (1), we might be tempted to think that we
can mimic the situation of an arbitrary decelerating expan-
sion of (1) in Minkowski space by attaching rockets to a set
of test particles initially chosen to be equidistant from the
given center and with identical radial velocities. The rock-
ets could then be fired in unison at the same rate to give an
inward radial acceleration while maintaining equidistance
of the particles from the center and equality of instanta-
neous radial velocities as seen from the frame of the central
observer with global Minkowski time, t.

The rocket analogy is flawed, however. To see the flaw,
let us consider a second Minkowski space thought experi-
ment which is directly equivalent to the cosmological
situation of comoving particles moving in the geometry
(1), even in the case of deceleration of the volume flow. Let
us construct what I will call the semi-tethered lattice by the
following means. Take a lattice of Minkowski observers,
initially moving isotropically away from each nearest
neighbor at uniform initial velocities [13]. The lattice
observers are chosen to be equidistant along mutual ori-
ented x̂, ŷ, and ẑ axes. Now suppose that the observers are
each attached to six others by strings of negligible mass
and identical tension along the mutually oriented spatial
axes, as in Fig. 2. The string in each observer’s negative x̂,
ŷ, and ẑ directions is held fixed and extends to the observ-
er’s nearest neighbor in those directions. The string ex-
tending towards each nearest neighbor in the positive x̂, ŷ,
and ẑ directions unreels freely from a spool at the observ-
er’s site on which an arbitrarily long supply of string is
wound. The strings initially unreel at the same uniform
rate, representing a ‘‘recession velocity.’’ Each observer
carries synchronized clocks [14], and at a prearranged local
proper time, all observers apply a braking mechanism, the
braking mechanisms having been preprogrammed to de-
liver the same impulse as a function of local time.
The semi-tethered lattice is directly analogous to the

case of the decelerating volume expansion of (1) due to
some average homogeneous matter density, because it
maintains the homogeneity and isotropy of space over a
region as large as the lattice. In the case of the firing of
rockets, the act of firing a rocket means that each observer
with a rocket feels a net force in a particular direction,
while also breaking the symmetry of the homogeneity of

FIG. 2 (color online). The semi-tethered lattice. Point particle
observers in a homogeneous spatial lattice, initially expanding
with uniform velocity, are attached to nearest neighbors by
strings. Each string is fixed at one end. The arrowheads denote
the free end of each string wound on a spool at a neighboring
particle, to which the observers apply brakes in a synchronized
fashion according to a predetermined plan. The time evolution of
the lattice follows a course similar to that of the spatial grid in
Fig. 1, but with deceleration.

t

FIG. 1 (color online). A set of particles undergoes an isotropic
spatial 3-volume expansion in a spatially flat local region. For
the same initial conditions, provided that we consider time
intervals over which deceleration of the expansion is negligible,
it is impossible to locally distinguish the case of particles at rest
in a dynamically expanding cosmological space from particles
moving isotropically in a static Minkowski space. One spatial
dimension is suppressed.
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space. In the case of the semi-tethered lattice, work is done
in applying the brakes, and energy can be extracted from
this. However, since brakes are applied in unison (accord-
ing to local proper time at each lattice site), there is no net
force on any observer in the lattice. Although the rate at
which the brakes are applied can be an arbitrary prear-
ranged function of local proper time, provided the braking
function is applied uniformly at every lattice site, the
clocks will remain synchronous in the comoving sense,
as all observers have undergone the same relative
deceleration.

The semi-tethered lattice is also a useful analogy be-
cause the kinetic energy of the particles is converted di-
rectly to heat in the brakes, which might then be converted
to other forms. It is a direct analogue for the conversion of
kinetic energy of particles in the expansion of the universe
to other forms of energy via gravitational collapse. Apart
from the energy of massless and near massless species
released during recombination and earlier phase transi-
tions, all the useful forms of energy in the present observ-
able universe have undergone such a process of
transformation: from the kinetic energy of expansion to
gravitational energy, and then to other forms.

The semi-tethered lattice and the CEP might be said to
extend the elevator thought experiments and the 1907
Einstein equivalence principle [4] in a natural fashion to
the case of a homogeneous isotropic nonstatic gravitational
field [15]. The important point in the present situation is
that, in both the cosmological case and the semi-tethered
lattice analogy, the observers feel no net force from the
relative deceleration, which justifies the description of (1)
as a cosmological inertial frame.

C. Cosmological inertial frames and averaging

Although (1) is simply the standard spatially flat FLRW
geometry, the important physical difference from the usual
treatment of cosmology is that here it is not to be viewed as
a global metric of spacetime, but as an average cosmologi-
cal frame over some region. The FLRW geometries with
spatial sections of positive and negative spatial Gaussian
curvature, k,

ds2FLRW ¼ ~a2ð~�Þ
�
�d~�2 þ d~r2 þ ~r2d�2

ð1þ 1
4 k~r

2Þ2
�
; (2)

can of course also be brought into the form (1) over small
spatial domains as compared to the radius of curvature.
This follows directly from the fact that the FLRW geome-
tries are conformally flat and coordinates can be found to
bring (2) into the form [16]

ds2FLRW ¼ a2ð�; rÞ½�d�2 þ dr2 þ r2d�2�: (3)

The new physical interpretation is that no single FLRW
geometry (2) is to be taken as a global average geometry
for the whole universe for all times. However, with an
extension of the SEP to account for the cosmological

average effects of the density of matter, regional cosmo-
logical inertial frames with average geometry (1) can al-
ways be found. It should also be emphasized that since
these are average frames, with differing regional scale
factors and local coordinates, no metric of the form (2) is
substituted into the Einstein equations and solved. Rather,
an appropriate average of the full inhomogeneous Einstein
equations, such as a Buchert average [17], should be
applied to solve for the background average of the inho-
mogeneous geometry. One can solve the Buchert equations
for a realistic approximation to the observed universe [2],
but care must be taken in interpreting the solution, as we
must account for where the observers are within the in-
homogeneous structure when it comes to the relative cali-
bration of their rods and clocks [1].
In the case of a semi-tethered lattice which is confined to

a finite region, the relative deceleration of the region would
give a local proper time to comoving observers in the
lattice different from that of a global Minkowski observer,
even if this observer had a synchronous clock before the
volume deceleration began. By the CEP the average ho-
mogeneous density in different regions likewise sets a
standard of local time for CIFs, and this may vary signifi-
cantly when regional density contrasts grow.
Since any CIF (1) is an average, the relationship of the

average to the inhomogeneous geometry needs to be stated.
For example, in terms of the proper time, cdt ¼ ad�, of an
observer ‘‘comoving’’ with the CIF, the uniform expansion
of the CIF should be viewed as an average only:

_a

a
� 1

3
h�iCIF ¼ HCIF; (4)

where � is the volume expansion, angle brackets denote the
appropriate average, and an overdot denotes a derivative
with respect to t. In relation to the averaging scheme, the
specification of a CIF should incorporate a notion of
‘‘center-of-mass motion’’ in the sense that the variance in
the CIF volume expansion is an average of shear and
vorticity fluctuations for which the net backreaction within
a CIF vanishes. In the notation of Buchert and Carfora [18],

�2HCIF ¼ 1
9ðh�2iCIF � h�i2CIFÞ ¼ 1

3h�2iCIF; (5)

in Buchert’s scheme with vanishing vorticity, where �2 ¼
1
2����

�� is the scalar shear. The condition (5) ensures that

the average kinematic backreaction within a CIF vanishes
in Buchert’s scheme. For CIFs containing galaxies, vortic-
ity will be important, and so Buchert’s scheme needs to be
generalized to include vorticity before a precise statement
can be made. As the contributions of vorticity and shear are
of opposite sign in the Raychaudhuri equation, their aver-
age contributions may even be largely self-canceling, for
virialized systems at least. However, a precise formalism
including vorticity remains to be developed. It is possible
that ideas could be incorporated from Zalaletdinov’s aver-
aging scheme [19], though the physical content of that
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scheme first needs to be more clearly elucidated in a
cosmological setting [20].

For the present paper it is sufficient that the backreaction
can be neglected in characterizing the average properties
within a CIF. Thus a CIF is characterized by a single scalar,
the volume expansion (4). In an expanding universe with
collapsing substructure, this volume expansion is best
viewed as a macroscopic property of a given CIF, but often
not of its more finely grained subregions. In particular, if a
CIF contains a galaxy or a galaxy cluster it will contain
virialized regions and may also contain collapsing regions.
For cosmological averages, when one is interested in com-
paring deceleration rates in expanding regions of different
density, the notion of a finite infinity cutoff scale [1,21] is
suggested as a minimum region for a CIF in relevant
averages.

III. THOUGHT EXPERIMENT: RELATIVE
HOMOGENEOUS ISOTROPIC DECELERATION

The beauty of the equivalence principle is that it allows
one to quantitatively deduce the order of magnitude of
simple effects, such as the leading order of gravitational
redshift [4], by simple thought experiments alone. The
basic physical effect that is of interest here—the gravita-
tional energy cost of a spatial curvature gradient—can
likewise be understood by a simple thought experiment.

From the evidence of the cosmic microwave background
(CMB) radiation, we know that, apart from tiny fluctua-
tions of order ��=�� 10�5 in photons and the baryons
they couple to, and density fluctuations perhaps an order of
magnitude larger in nonbaryonic dark matter particles, the
observable universe was close to spatially flat, homogene-
ous, and isotropic at the epoch of last scattering. Assuming
the Copernican principle, it was sufficient to describe the
universe by a single frame (1) at that epoch. However,
since a CIF is a local regional frame, we should be careful
never to construct a CIF with spatial extent larger than the
particle horizon at any epoch. Rather, it is better physically
to think of a class of local CIFs at disjoint spatial locations
at the surface of last scattering, in which there exist geo-
desic congruences of observers like those depicted in
Fig. 1, which all have an identical uniform expansion
away from each other, on account of the initial uniformity
of the Hubble flow at that epoch.

Let us first analogously consider two sets of disjoint
semi-tethered lattices, with identical initial local expansion
velocities, in a static background Minkowski space. [See
Fig. 3(a).] The observers in the first congruence apply
brakes in unison to decelerate homogeneously and iso-
tropically, with inward 4-acceleration of magnitude,
�1ð	1Þ, as measured by the force applied to the brakes in
the frame of any of the observers, where 	1 is the proper
time measured by any of them. From the viewpoint of a
global Minkowski observer, members of the congruence
will agree on their measurements of time, 	1, though this

time of course differs from the global Minkowski observ-
er’s time, t.
Now take a second semi-tethered lattice, with the same

initial expansion speed, where brakes are applied with a
force corresponding to a 4-acceleration of magnitude
�2ð	2Þ. At any global Minkowski time t, we will assume
that when transformed from their proper frames to that of
the global Minkowski observer, at each time step �1ðtÞ>
�2ðtÞ> 0. It is then the case that the members of the first

t

more deceleration
less deceleration

t i

t0

(a)

less dense
more dense

t last−scattering

t

gradient in <R>

average t = const

(b)

FIG. 3. Two equivalent situations: (a) in Minkowski space
observers in separate semi-tethered lattices, initially expanding
at the same rate, apply brakes homogeneously and isotropically
within their respective regions but at different rates; (b) in the
universe which is close to homogeneous and isotropic at last
scattering, observers in separated regions initially recede from
each other at the same rate, but experience different locally
homogeneous isotropic decelerations as local density contrasts
grow. In both cases there is a relative deceleration of the observer
congruences, and those in the region which has decelerated more
will age less.
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congruence decelerate more than the members of the sec-
ond congruence, and at any time t the proper times satisfy
	1 < 	2. The members of the first congruence age less
quickly than members of the second congruence.

By the CEP, the case of volume expansion of two regions
of different average density at late times is entirely analo-
gous. The fact that we are able to apply the equivalence of
the two circumstances rests on the fact that the expansion
of the universe was extremely uniform at the time of last
scattering, by the evidence of the CMB. At this epoch all
regions effectively have the same density—apart from
negligible fluctuations—and the same uniform Hubble
flow. At late epochs, suppose that in the frame of any
average cosmological observer there are regions of differ-
ent density which have decelerated by different amounts by
a given time, t, according to that observer. Then, by the
CEP, the local proper time of the isotropic observers in the
denser region, which has decelerated more, will be less
than that of the equivalent observers in the less dense
region which has decelerated less. [See Fig. 3(b).]
Consequently the proper time of the observers in the
more dense CIF will be less than that of those in the less
dense CIF, by equivalence of the two situations.

The fact that a global Minkowski observer does not exist
in the second case does not invalidate the argument. The
global Minkowski time is just a coordinate label, and in the
cosmological case the only restriction on the t ¼ const
slices is that the expansion of both average congruences
must remain homogeneous and isotropic in local regions of
different average density in the global t ¼ const slice. Of
course, we need to be careful to patch together different
CIFs continuously to specify the slice, as we will further
discuss in Sec. IV. In this way the equivalence to the
Minkowski space case is maintained. Thus in the cosmo-
logical case, provided that we refer to local homogeneous
isotropic expansion in different regions on any average t ¼
const slice (where t is some coordinate label), then if such
regions are still expanding and have a significant density
contrast, we can expect a significant clock rate variance.

This equivalence directly establishes the idea of a gravi-
tational energy cost for a spatial curvature gradient, since
the existence of expanding regions of different density
within an average t ¼ const slice implies a gradient in
the average Ricci scalar curvature, hRi, on one hand, while
the fact that the local proper time varies on account of the
relative deceleration implies a gradient in gravitational
energy on the other.

A. Order of magnitude estimate of clock rate variance

An order of magnitude estimate of present epoch clock
rate variances due to gravitational energy gradients in-
duced by relative volume deceleration of the background
can now be made by directly using observationally mea-
sured density contrasts. Although a CIF is a frame (1)
within which backreaction can be neglected, to determine

its scale factor over long periods of time one must consider
the evolution of the universe within which the CIF is
embedded. Such evolution will, in general, include the
effects of backreaction. However, if the backreaction is
small, an order of magnitude estimate of the clock rate
variance can be made assuming that regions with observed
strong density contrasts evolve independently by solutions
of the local Friedmann equation for regions of different
density. There will be a relative deceleration of the local
background of such regions, which via equivalence to the
Minkowski space semi-tethered lattices, will accumulate
clock rate differences.
Galaxies formed from perturbations which were greater

than critical density and if space is negatively curved on
average, they must always be bounded by a region which is
spatially flat. These on-average spatially flat locally ex-
panding bounding regions are called finite infinity regions
[1,21], and a union of such regions is called a wall. Since
they are spatially flat, neglecting backreaction, the evolu-
tion of the wall CIFs can be approximated by spatially flat

Einstein-de Sitter regions with local scale factor aw ¼
aið32Hi	wÞ2=3, where Hi is the common initial Hubble

parameter at last scattering, and ai is a constant. On the
other hand, CIFs within voids can be approximated by
portions of spatially open FLRW solutions, given para-
metrically by

av ¼ ai ~�i

2ð1� ~�iÞ
ðcosh~�� 1Þ; (6)

Hi	v ¼
~�i

2ð1� ~�iÞ3=2
ðsinh~�� ~�Þ; (7)

where cd	v ¼ avd~�, ~�i ¼ 1� 
i is an initial density
parameter at last scattering, 
i � 1, and ai is a constant.
Using (6) and (7) in the Friedmann equation, one obtains a
standard parametric relation for the density parameter,

~�ð~�Þ ¼ 2ðcosh~�� 1Þ
sinh2 ~�

; (8)

which is to be viewed here as a regional parameter in a CIF
inside a void.
We now follow the analysis of Ref. [22], where the

author’s proposal was first advanced. There an attempt
was made to estimate cosmological parameters by making
the approximation that the evolution of the observable
universe was entirely due to the voids. In fact, backreaction
between the walls and voids must be included to obtain
more reliable estimates of cosmological parameters [1,23].
However, if we confine attention to small regional CIFs,
then the argument of Ref. [22] can give an estimate of
clock rate variance from observed density contrasts. In
particular, since the critical density also defines the
Einstein-de Sitter standard of time of the wall CIFs, it
also follows that
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~� ¼ ~�i

�
aw
av

�
3 ¼ 18Hi

2ð1� ~�iÞ3	2w
~�2
i ðcosh~�� 1Þ3 : (9)

Combining (8) and (9) we find

Hi	w ¼
~�iðcosh~�� 1Þ2

3ð1� ~�iÞ3=2 sinh~�
: (10)

Differentiating both (7) and (10) we find a relative clock
rate, which we will call the lapse function, given by

�ð~�Þ � d	v
d	w

¼ 3ðcosh~�þ 1Þ
2ðcosh~�þ 2Þ : (11)

A relative clock rate variance due to the relative volume
deceleration between CIFs in walls and voids can now be

estimated since ~� ¼ 1þ ~�, where ~� is the density con-
trast, and inverting (8) we have

cosh~� ¼ 2� ~�
~�

¼ 1� ~�

1þ ~�
: (12)

Hoyle and Vogeley [24] estimate that 40%–50% of the
present-epoch universe is in voids of diameter about
30h�1 Mpc, with the statistics summarized in Table I.
The density contrasts quoted are an average, and are of
greater magnitude in the centers of the voids which are
extremely empty. Taking these values as indicative, if we

assume ~� ¼ �0:9 then (11) and (12) give � ¼ 1:42, while

if we assume ~� ¼ �0:95 then � ¼ 1:46. For larger density
contrasts, in the center of the void the lapse would ap-
proach the limiting value � ! 1:5, which represents the
relative local expansion rates of an empty Milne universe
[25] to an Einstein-de Sitter one.

These clock rate variances of 42%–46% are large, and
counterintuitive given we usually encounter large clock
rate differences only for large local boosts or for density
contrasts from extremely compact sources in static back-
grounds, such as black holes. However, the effect described
is neither of these familiar situations, as the background is
not static. Rather, it is the clock rate variance due to the
cumulative effect of a very small relative deceleration of
the background. The above variances are simply those
demanded by the CEP taking present epoch density con-
trasts observed in the actual universe.

Taking backreaction into account to determine a full
present epoch average [1,2], the present epoch lapse dif-
ference between walls and a volume-average location in a
void based on luminosity distance data fits is �� ¼ 1:38þ0:06

�0:05

[23]. This is an average value; the relative lapse would be
larger in the void centers. Thus the estimates made without
backreaction are reasonably accurate, showing that the
effect is not a direct consequence of backreaction in the
evolution equations but rather of relative volume decelera-
tion alone. From (11) and (12) without backreaction the
density contrast estimate for a local CIF at the volume-

average position is ~� ¼ �0:83 for a lapse of � ¼ 1:38. If
such a clock variance were produced by a uniform accel-
eration in Minkowski space, a simple calculation shows it
would require a tiny relative acceleration of order 5:5�
10�10 ms�2 over the lifetime of the universe. Of course,
such a relative acceleration is not uniform: a better estimate
is presented in Sec. V.
The argument above relies on it being possible to choose

a locally uniform Hubble flow gauge, as will be discussed
in the next section. Such a gauge can be maintained outside
finite infinity regions, but not within them where collapsing
regions are located, and where vorticity and tidal torques
become important. Thus there are no obvious inferences
analogous to those above that can be made with respect to
bound structures from observations of the magnitude of
their positive density contrasts.

IV. AVERAGE FRAMES

A. The cosmic rest frame

In taking cosmological averages with inhomogeneous
structures, the question arises as to which average frames
have the most utility. One must generally make a choice of
gauge in specifying such frames. One way of viewing the
SEP is that we can always set the first derivatives of the
metric to zero near a point. In particular, the volume
expansion �, which involves first derivatives of the metric,
can always be set to zero. The CEP extends this by the
statement that in the dynamical situation a gauge can be
chosen in which the volume expansion in a CIF is spatially
uniform, but varying with time.
As was pointed out in Sec. III in order to compare CIFs

in regions of different densities, we need to specify suitable
spacelike slices [26] by patching together different CIFs in
a continuous manner. Operationally, the way to do this is
first to choose an orientation of the 4-velocity fields, @=@	I,
of comoving observers in a CIF such that the CMB radia-
tion is isotropic in each frame. In terms of the local proper
time 	I of such observers, the metric (1) is rewritten

ds2CIF ¼ �c2d	2I þ a2I ð	IÞ½dr2I þ r2I d�
2�; (13)

where the index I runs over CIFs. Second the spacelike
slice is specified by the demand that the locally measured
value of the volume expansion remains uniform as one

TABLE I. Dominant void statistics in the Point Source
Catalogue Survey (PSCz), the Updated Zwicky Catalogue
(UZC), and the 2 degree Field Survey (2dF) North Galactic
Pole (NGP) and South Galactic Pole (SGP), from Refs. [24].

Survey Void diameter Density contrast

PSCz ð29:8� 3:5Þh�1 Mpc ~� ¼ �0:92� 0:03
UZC ð29:2� 2:7Þh�1 Mpc ~� ¼ �0:96� 0:01
2dF NGP ð29:8� 5:3Þh�1 Mpc ~� ¼ �0:94� 0:02
2dF SGP ð31:2� 5:3Þh�1 Mpc ~� ¼ �0:94� 0:02
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moves from the patch of one CIF to the next. In other
words, the ‘‘local Hubble flow’’ remains uniform in this
gauge even though the proper lengths and proper time
scales will change as one moves between CIFs of different
density. As discussed in Ref. [1], although the proper
volume of voids increases faster than that of wall regions,
this is compensated for locally by the faster relative rate of
the void clocks. Relative to any one set of clocks, such as
our own, it will always appear that voids expand faster than
walls. So the average Hubble flow over both walls and
voids—by one set of clocks—will generally differ from the
underlying uniform flow. Its value is a choice of gauge
depending on the choice of fiducial observer.

The uniform Hubble flow slices defined in this manner
constitute the cosmic rest frame: surfaces within which the
CMB is isotropic, even though the mean value of the CMB
temperature, and angular scale of CMB anisotropies, will
vary from point to point as spatial volumes vary in relation
to proper radius with changes in spatial curvature. The
proper times of CIF observers within the slice will also
vary. We can choose the clocks of a canonical set of
observers in expanding regions with the same average local
density to label the slices, provided we realize that this
time labeling is only a proper time in particular locations
on the slice and is just a coordinate label elsewhere.

The uniform Hubble flow gauge is one of the standard
gauges of perturbation theory in FLRW models [27], and
has been further refined with the addition of a minimal shift
distortion condition by Bičak, Katz, and Lynden-Bell [9].
These authors recognize the resulting ‘‘Mach 1 gauge’’ as
one of three possible gauges which best incorporates
Mach’s principle, and within which there is a minimal
amount of residual gauge freedom. Bičak, Katz, and
Lynden-Bell work within the framework of perturbations
of a global FLRW geometry. The viewpoint of the present
paper is that there is no single global FLRW geometry.
However, on account of the CEP the spatially flat and
negatively curved FLRW geometries can be considered
as local regional geometries on spacelike slices as the
density varies relative to the critical density. Thus a modi-
fication of the formalism of Bičak, Katz, and Lynden-Bell
may be an appropriate starting point to deal with an aver-
aging formalism for the full nonlinear inhomogeneous
problem, as an alternative to Buchert’s scheme.

B. Buchert averaging

Buchert’s averaging scheme [17] is based on the starting
point that, in the case of an energy-momentum tensor for
irrotational dust particles in the presence of inhomogene-
ities, one can choose Gaussian normal coordinates

ds2 ¼ �c2dt2 þ 3gijdx
idxj; (14)

comoving with the dust. The scalar density appearing in
the energy-momentum tensor,

T�� ¼ �c2 �n� �n�

where �n� ¼ dX�

dt , then represents the rest mass density of

the dust, and one averages over spatial slices of constant t
orthogonal to the flow, over regions which conserve the rest
mass of a portion of the fluid in a domain, D, with con-
tinuity equation

@th�i þ
_�a

�a
h�i ¼ 0; (15)

where �aðtÞ � ½V ðtÞ=V ðt0Þ�1=3 with V ðtÞ �R
D d3x

ffiffiffiffiffiffiffiffiffiffiffiffi
det3g

p
. Here angle brackets denote the spatial

volume average of a quantity, so that hRi �
ðRD d3x

ffiffiffiffiffiffiffiffiffiffiffiffi
det3g

p
Rðt;xÞÞ=V ðtÞ is the average spatial curva-

ture, for example. The Buchert equations consist of (15)
and

3 _�a2

�a2
¼ 8�Gh�i � 1

2
c2hRi � 1

2
Q; (16)

€�a

�a
¼ �4�Gh�i þQ; (17)

@tð �a6QÞ þ �a4c2@tð �a2hRiÞ ¼ 0; (18)

where Q ¼ 2
3 ðh�2i � h�i2Þ � 2h�2i is the kinematic back-

reaction. Equation (18) is an integrability condition which
ensures closure of the other equations.
Since the backreaction term Q includes variance in

volume expansion, and this is to be evaluated on a constant
t slice, it is clear that as compared to the cosmic rest frame
of Sec. IVA, different physical premises underlie the in-
terpretation implicitly assumed by Buchert’s scheme. My
approach is therefore different from other approaches to
cosmological building that have been adopted in the con-
text of Buchert averaging [28–31]. The differences may be
understood from the fact that, in talking about the ‘‘rest
mass density of the dust,’’ one is actually dealing with a
concept which depends on the manner in which dust ‘‘par-
ticles’’ are coarse grained. Since all forms of energy have a
rest mass equivalent, the kinetic energy of particles within
a dust particle is included as rest mass. Similarly, since
Ricci curvature affects spatial volumes relative to their
diameter, the concept of a rest density depends on the scale
of coarse graining relative to the curvature scale.
In general, the notion of ‘‘comoving with the dust’’

implicit in Buchert’s scheme can be very distinct from
‘‘comoving with the background,’’ although the notions
coincide for FLRW models. This is well illustrated by the
exact spherically symmetric Lemaı̂tre-Tolman-Bondi
(LTB) models [32] for pressureless dust, with a prescribed
inhomogeneous density �ðt; rÞ. These can be written in
Gaussian normal form (14), making it straightforward to
compute a Buchert average [33–35]. At fixed comoving
proper time t, as the radial coordinate r varies the LTB dust
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shells have different densities, different spatial curvature,
nonzero shear, and, in general, observers at r > 0 would
not expect to see an isotropic CMB. Since the solution is
completely dynamical, there is no average homogeneous
isotropic background with respect to which one could be
comoving, unless one puts in such a background by hand
by making the model asymptotic to an FLRW model at
large r.

With respect to fixed FLRW backgrounds an alternative,
simple way to treat spherical inhomogeneities is by the
spherical top hat model, using concentric spherical shells
[36,37]. In the case of a void in a background Einstein-de
Sitter universe, for example, a spherical underdense shell
will acquire a peculiar velocity with respect to the back-
ground which tends to 50% of the background Hubble rate
at late times [38]. One can account for the kinetic energy of
the shell, but in view of the large peculiar velocity of the
shell, there is a limit to the extent to which it can be
considered comoving with respect to the background
with a synchronous clock.

Once one averages on the scale of statistical homoge-
neity, as in (15), one wants to have a sense of ‘‘comoving
with the background’’; i.e., different observers in different
averaging cells should have a notion of determining the
same average density at the same cosmological epoch, and
one should be able to talk about motion with respect to
canonically defined observers.

In general, when the background is only statistically
homogeneous and isotropic, there is an ambiguity in dis-
tinguishing between motion of the background and motion
with respect to the background. The spirit of the CEP is
that in the case of volume expansion, this is because there
is a fundamental indistinguishability: the Hubble parame-
ter is a gauge choice. The definition of the uniform Hubble
expansion gauge of Sec. IVA makes an unambiguous
separation of the ‘‘kinetic energy of the volume expansion
of space’’ for regions which are locally spatially flat from
other forms of energy. In the standard interpretation of
Buchert averaging, depending on the choice of averaging
volume and the manner in which one coarse grains over
dust cells, the kinetic energy of the volume expansion of
space can be intermingled with other forms of energy.

The view that I adopt is that one can either use Buchert
averaging in defining CIFs on small scales by the require-
ment that the kinematic backreaction can be neglected, as
in (5), or alternatively, on dust cells of at least the scale of
statistical homogeneity, of about 100h�1 Mpc, at which
scale the volume expansion is statistically uniform. In both
cases the time parameter and hRi can be regarded as
relevant parameters which describe the collective degrees
of freedom of the cell. However, they should not be re-
garded as representative for observers in finer partitions
within the cell. For CIFs containing galaxies with black
holes, this imperative is obvious. In the case of statistically
homogeneous cells in cosmology, the case has been less

obvious, but I believe it is equally imperative on account of
the density contrasts that are observed between voids and
walls below the scale of homogeneity, together with the
arguments of Sec. III.
I will take the view that the Buchert time parameter is

the relevant one for an observer at a volume-average
position in a statistically homogeneous cell. As the present
universe is dominated by voids, this will be in a void but
not at the void centers. Kinematic backreaction between
voids and walls from the volume-average perspective must
be included in determining the average evolution.
Einstein’s equations are causal and depend on all events
within the past light cone. Thus some sort of spatial aver-
aging, such as Buchert averaging, is required to determine
cosmic evolution. Buchert’s equations should thus be
viewed as evolution equations.
Observations are made on null cones, however. Thus a

Buchert average is not the one we perform operationally in
determining cosmic averages. Instead, a radial null geode-
sic average of a solution to the Buchert equations, com-
bined with an operational identification of relevant classes
of observers within the inhomogeneous structure, is re-
quired to make comparisons with observations. This is
the approach adopted in Refs. [1,2,23].

V. RELATIVE DECELERATION OF THE
BACKGROUND AND THE WEAK-FIELD LIMIT

In Refs. [1,2] a model universe was constructed based on
a regional division of cells of average homogeneity into
voids, and the bubble walls that surround them, assuming
that backreaction within the walls and voids can be ne-
glected, but not in the combined average [39,40]. Space
within the walls is assumed to be spatially flat on average,
and space within the voids is negatively curved.
Technically a ‘‘wall’’ is understood to be a union of con-
nected finite infinity regions [1], namely, CIFs in regions of
average critical density. Observationally, the walls would
include all morphological types of extended structures
containing galaxy clusters: namely, ‘‘sheets,’’ ‘‘filaments,’’
and ‘‘knots’’ [41].
Qualitatively, the regional division into voids and walls

may well be a consequence of the evolution of the scales
with statistical excesses of power in the primordial angular
power spectrum. The 100h�1 Mpc scale of statistical ho-
mogeneity would correspond to the first Doppler peak
(BAO scale): on account of the finite sound speed in the
primordial plasma, no structures in excess of this scale are
expected statistically, with the exception of those random
structures that arise by percolation. The scale of the
30h�1 Mpc dominant voids would correspond to the evo-
lution of the second Doppler peak, namely, the first rare-
faction peak, which is well within the nonlinear regime of
structure formation. The third Doppler peak, which is the
first compression peak within the nonlinear regime, would
give the scale of the largest bound structures that have
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broken from the Hubble flow, namely, clusters of galaxies.
Finite infinity represents a demarcation scale of on-average
spatially flat regions between clusters of galaxies and
voids. The fourth Doppler peak, the next rarefaction
peak, may possibly give an independent scale correspond-
ing to minivoids. In the two-scale approximation [42] of
Refs. [1,2], we assume that the average curvature of mini-
voids and dominant voids is the same. A further refinement
might separate these scales. Ultimately these qualitative
speculations about the correspondence of the Doppler
peaks to the observed scales of present epoch structures
should be verified from a numerical model of structure
formation.

An exact solution to the Buchert evolution equations of
the two scales was found [2], which by a Bayesian analysis
fits the Riess07 gold supernovae data set [43] at a level
which is statistically indistinguishable from the standard
spatially flat�CDMmodel [23]. The same best-fit parame-
ters also fit the angular scale of the sound horizon seen in
CMB data, and the effective comoving baryon acoustic
oscillation scale seen in angular diameter tests of galaxy
clustering statistics [1,23].

Those sceptical of the proposal sometimes question how
the relatively large present lapse of �� ¼ 1:38 between wall
observers and the volume average can have possibly arisen.
As pointed out already in Sec. III A a relatively small
relative deceleration of the background for the lifetime of
the universe is sufficient to achieve this. Since the accu-
mulated average lapse function �� is not uniform in time,
the equivalent relative deceleration of the background is
not uniform. In this section we will estimate the relative
deceleration which would produce the tracker solution
mean lapse function [2].

In principle, one is trying to compare the relative decel-
eration of regions of different density as a function of the
expansion age of the universe of some fiducial observer
such as ourselves. Ideally, if sources did exist freely falling
in voids unbound to condensed structures, then by the
assumptions of Ref. [1] they would have different redshifts
to sources in bound structures that coexist ‘‘at the same
epoch’’ on account of the accumulated gravitational energy
differences. We would have

1þ zw ¼ ð�k � UwÞ
ð�k � UobsÞ (19)

for the redshift of a wall source with 4-velocity Uw as seen
by an observer with 4-velocity Uobs, where k is the 4-
velocity of a radial null geodesic. Similarly

1þ zv ¼ ð�k � UvÞ
ð�k � UobsÞ (20)

where Uv is a volume-average void source, and zv � zw. In
general [1],

1þ zw ¼ ð1þ zvÞ= �� (21)

where similarly to (11) dt ¼ ��d	w represents the relative
clock rates of volume-average observers to wall observers
of emission. Unfortunately, we have a mass biased view of
the universe and only observe sources in bound systems in
regions which are locally spatially flat on average; other-
wise the relative blueshift �1þ ���1 of a volume-average
void clock relative to a wall one would have an obvious
observational signature nearby.
To determine the relative deceleration, we will invoke

the CEP by considering the Minkowski space equivalent
semi-tethered lattice analogy of Fig. 3. Ideally, we should
have to calculate the difference in the rate of extraction of
energy in applying brakes at different rates, to represent
regions of different density in the actual universe.
However, this should be equivalent to asking what relative
volume deceleration would be required to produce ��ð	wÞ at
any epoch, if ��ð	wÞ is treated as a Lorentz gamma factor in
special relativity, beginning from two regions with the
same initial expansion velocity (which is the situation at
last scattering). In relation to (21), this is equivalent to
treating the blueshift �1þ ���1 of voids relative to walls
as if it were a standard transverse Doppler shift in special
relativity. Since we are dealing with an isotropic volume
deceleration, there is no directional significance associated
with a ‘‘direction of motion’’ in the special relativistic
analogy.
We assume equivalence to the special relativistic 4-

acceleration � ¼ dU
d	 , where U� ¼ �ðc; viÞ, which has a

magnitude [44]

�

c
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1
p d�

d	
¼ d

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

q
; (22)

with dt ¼ �d	. Of course, in the present case we are not
really dealing with a proper acceleration in a single direc-
tion, as the appropriate analogy is that of two semi-tethered
lattices in which all directions contribute. Assuming
equivalence of the situations the relative acceleration of
the background here has a magnitude

�

c
¼ d

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 � 1

q
¼ ��ð �� �H�HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��2 � 1
p (23)

where, following the notation of Refs. [1,2], t is the time
parameter of the volume-average observer in a void, and
dt ¼ ��d	w, where 	w is the time for an observer at finite
infinity in a wall, which will be close to the time in an
average galaxy. Furthermore, �H is the bare or locally
measured Hubble parameter, while on account of
Eq. (42) of Ref. [1], H ¼ �� �H� _�� is the dressed Hubble
parameter obtained by averaging over both walls and voids
on the past light cone.
Using the tracker solution of Ref. [2],

�� ¼ 3
2t
�HðtÞ (24)

¼ 1þ 1
2fvðtÞ (25)
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¼ 9fv0 �H0tþ 2ð1� fv0Þð2þ fv0Þ
2½3fv0 �H0tþ ð1� fv0Þð2þ fv0Þ�

; (26)

where �H0 is the present epoch value of the bare Hubble
parameter �HðtÞ, fvðtÞ is the void fraction, and fv0 its
present epoch value. The void fraction here is that of all
voids, including minivoids [45], and not just the dominant
voids of Table I. The dressed Hubble parameter satisfies

H ¼ 2

3t
þ fvðtÞ½4fvðtÞ þ 1�

6t
¼ �HðtÞ þ fvðtÞ½4fvðtÞ � 1�

6t
;

(27)

while the time parameter 	w of wall observers is related to
that of volume-average ones by

	w ¼ 2

3
tþ 4�M0

27fv0 �H0

ln

�
1þ 9fv0 �H0t

4�M0

�
; (28)

where �M0 ¼ 1
2 ð1� fv0Þð2þ fv0Þ is the present epoch

dressed matter density. From (23)–(26) we find

�

c
¼ 3ð1� fv0Þð2þ fv0ÞfvðtÞ �HðtÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3fv0 �H0t½15fv0 �H0tþ 4ð1� fv0Þð2þ fv0Þ�

p :

(29)

A. Estimate of relative deceleration scale

Using the estimates of Ref. [23], at the present epoch the
void fraction is fv0 ¼ 0:76þ0:12

�0:09, while the dressed Hubble

constant is H0 ¼ 61:7þ1:2
�1:1 km sec�1 Mpc�1, where the un-

certainties are 1� uncertainties from a fit to the Riess07
gold data set [43]. The bare Hubble constant is then �H0 ¼
48:2þ2:0

�2:4 km sec�1 Mpc�1. From these values the present

epoch magnitude of the relative deceleration (29) is �0 ¼
6:7þ2:4

�3:4 � 10�11 ms�2. Furthermore, since � is a time-

varying quantity, its best-fit value is plotted as a function
of redshift for recent epochs in Fig. 4.

It is interesting to note that over the range of redshifts
z & 0:25 in Fig. 4, the curve for the best-fit parameters
with present epoch void fraction fv0 ¼ 0:76 precisely tra-
verses a range of values for � that has been used for the
empirical acceleration scale of the modified Newtonian
dynamics (MOND) scenario [46]. In particular, using a
range of recently quoted values [47], the MOND accelera-
tion scale is �mond ¼ 1:2þ0:3

�0:2 � 10�10h275 ms�2, where

h75 ¼ H0=ð75 km sec�1 Mpc�1Þ. Using our best fit H0 ¼
61:7þ1:2

�1:1 km sec�1 Mpc�1, this range corresponds to
�mond ¼ 8:1þ2:5

�1:6 � 10�11 ms�2.

The fact that � is larger at higher redshifts reflects the
property that it scales in proportion to the bare Hubble
parameter �HðtÞ, as can be seen from (29). Both the bare
Hubble parameter and dressed Hubble parameter are of
course larger at earlier epochs at higher redshift, since the
universe is always decelerating in the present model. (As
demonstrated in Refs. [1,2] cosmic acceleration is a purely
apparent effect related to clock rate variance.) From (29)

one sees that � also scales in proportion to fvðtÞ which is
smaller at earlier times, contributing a term in competition
with both the term �HðtÞ in the numerator of (29) and with
terms in the denominator. As a proportion of the Hubble
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FIG. 4 (color online). The magnitude of the relative decelera-
tion scale, �, as a function of redshift: (a) for redshifts z < 0:25;
(b) for redshifts z < 2. The central curve shows the value for the
best-fit parameters fv0 ¼ 0:76, H0 ¼ 61:7 km sec�1 Mpc�1

( �H0 ¼ 48:2 km sec�1 Mpc�1) from Ref. [23]. The dashed curves
show the corresponding results with 1� uncertainties, which are
largely due to the large uncertainty on fv0, which is not tightly
constrained by supernovae data. The upper dashed curve corre-
sponds to fv0 ¼ 0:67 and the lower dashed curve to fv0 ¼ 0:88.
In panel (a) the horizontal dotted lines indicate the bounds of the
empirical acceleration scale of MOND when normalized for
H0 ¼ 61:7þ1:2�1:1 km sec�1 Mpc�1.
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flow at any epoch, the relative deceleration is suppressed at
higher redshifts, as is shown in Fig. 5, where the dimen-
sionless ratios �=ð �HcÞ and �=ðHcÞ with respect to the bare
and dressed Hubble parameters are plotted. At last scatter-

ing, z ’ 1100, �=ð �HcÞ � 6� 10�6. As t ! 0, �=ð �HcÞ /
t1=2.

The object of estimating the relative deceleration scale
was to determine whether its magnitude is physically
acceptable. This is the case. Although the physical magni-
tude of the relative deceleration is larger at earlier epochs,
over most of the history of the universe � is of the order of
10�10 ms�2, which is tiny. From Fig. 4, at z ¼ 2 we have
� ’ 4:5� 10�10 ms�2, which corresponds to an expan-
sion age of 4 Gyr, 27% of the current age of the universe
in wall time. By comparison, the Pioneer anomaly in the
solar system [48] occurs at an acceleration scale of ð8:74�
1:33Þ � 10�10 ms�2 [49], a value which � attains only at a
redshift of 3.85 equivalent to an expansion age of 2.1 Gyr in
wall time. Furthermore, the relative deceleration scale
should largely affect dynamics in the transition zones
between walls and voids. At earlier epochs the void frac-
tion is less: at z ¼ 2 it is 44%, and at z ¼ 3:85 it is 28%. At
z ¼ 10, when � ’ 2� 10�9 ms�2, it is 10%.

In the absence of an exact timelike symmetry of the
background, there is no obvious solution to the problem of
how to keep two clocks synchronized in general relativity.
The CEP proposes a solution to this conundrum: the evolv-
ing average density provides the relevant regional clock.
Even though we are talking about weak fields in cosmol-
ogy, and small relative decelerations between expanding
regions of different densities, the fact that the relative

decelerations are integrated over the lifetime of the uni-
verse means that the cumulative clock variance can be
large for the density contrasts that are observed.

B. Modified Newtonian dynamics?

The fact that the present epoch value of � turns out to
coincide with the MOND scale [46,47] is intriguing. To
start thinking about possible connections, it pays to recall
that � is an estimate of the relative deceleration of wall
regions, at finite infinity where space is still expanding,
with respect to the cosmological volume average at any
epoch. It is certainly an acceleration scale at which dy-
namical gradients in the Ricci curvature of space are likely
to affect dynamics of particles between walls and void
regions.
Since we are no longer dealing with asymptotically flat

geometries with exact timelike Killing vectors, it is quite
possible that the solution to the Kepler problem for bound
geodesics in galaxies should be modified. Therefore the
possibility that the MOND phenomenon is related is a
reasonable hypothesis. However, the estimate we have
made of the relative deceleration scale, �, refers specifi-
cally to the finite infinity scale relative to the volume
average. Given that the outskirts of galaxies are expected
to lie within finite infinity, it means that no detailed quan-
titative comparisons can be made until the transition zone
around finite infinity is more directly modeled.
I will not attempt to look at the problem of the rotation

curves of galaxies in the present paper, but will make a few
observations that would follow if the effects of MOND are
simply a modification of Newtonian dynamics in a static
background which arise from dynamical density gradients
affecting the Ricci curvature of space.
The first important point is that, since we are dealing

with an effect which is most pronounced between walls
and voids, then the distance of a galaxy to a finite infinity
boundary should play a role, at least naı̈vely. One might
expect more pronounced effects for galaxies in filaments
[50] as compared to rich clusters of galaxies in thick walls,
where the distance to finite infinity is greater. In fact, rich
clusters of galaxies often tend to harbour elliptical galaxies
for which the MOND results differ little from Newtonian
expectations. But apart from this, it appears that for the
nearby redshifts over which it is tested, the MOND scale
[46] is uniform for many different galaxy environments.
This runs counter to naı̈ve intuition about the distance to
finite infinity, and suggests that some key physical insight
remains to be found.
The second point is that, although the magnitude of the

relative deceleration is larger at higher redshifts, the fre-
quency of voids is also less. There may be a trade-off
between these two competing factors as to an optimal
redshift at which dynamical effects would be most evident.
For the best-fit parameters [23], the void fraction reaches
50% at a redshift z ¼ 1:52 when � ’ 3:4� 10�10 ms�2. It
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FIG. 5 (color online). The magnitude of the dimensionless
ratios �=ðc �HÞ (solid curve) and �=ðcHÞ (dashed curve), where
�ðzÞ, �HðzÞ, and HðzÞ are varied with redshift, for best-fit values
of H0, fv0.
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is possible that effects resulting from the relative decelera-
tion of the background may be important for structure
formation. Toy model calculations based on exact inhomo-
geneous solutions of Einstein’s equations show that the
nonlinear treatment of inhomogeneities in general relativ-
ity can considerably enhance the rate of structure forma-
tion [51].

Given that the expected distance between finite infinity
and the outskirts of a galaxy does not suggest a direct link
between �0 and �mond, the close match between �0 and
�mond may be purely coincidental, even if both effects are
related to Ricci curvature gradients which are typically of
the same order of magnitude. As no direct link to MOND
has yet been established, it is not possible to say whether
the redshift dependence of � should be linked to a redshift
dependence in the MOND scale. MOND is purely empiri-
cal and the fitting of rotation curves requires both an
acceleration scale and an empirical function, �ðxÞ, which
interpolates between the Newtonian and ‘‘modified dy-
namics’’ regimes. Any first principles treatment would
need to describe the transition zone between finite infinity
and its interior, which might conceivably be related em-
pirically to the interpolating function. We are at an early
stage of gathering the pieces of a puzzle, where all obser-
vations have to be treated with rigorous scrutiny, and where
no firm conclusions should be drawn until a compelling
theoretical case is assembled.

Finally, it should be noted that the best-fit parameters of
Ref. [23] indicate that nonbaryonic dark matter is likely to
be the dominant component of matter in the universe by
mass, even if the relative fraction is generally somewhat
lower than in the �CDM model. If there is any link to
MOND, then it is the phenomenology of MOND that one
might hope to explain, rather than an alternative to non-
baryonic dark matter.

VI. WEYL CURVATURE AND INITIAL
CONDITIONS

The cosmological equivalence principle has been ap-
plied here principally on the scale of macroscopic cosmo-
logical averages. A question remains as to what extent we
should take it as a universal principle? Given that the
universe is well approximated by frames of the sort (1) at
the earliest epochs which are observationally tested, such
as the epochs relevant to big bang nucleosynthesis, it is
certainly tempting to try to apply the CEP on arbitrarily
small scales within the past light cone at the earliest
epochs. For any perfect fluid the pressure is determined
by the density and no modification of the CEP is required.
However, if one is dealing with spinning fluids or gravita-
tional waves which cannot be treated by a single collective
scalar degree of freedom, then modifications to the stated
principle would be necessary. Is the process of ‘‘getting rid
of local Ricci curvature’’ to recalibrate rods and clocks so
that the effects of gravity disappear in a small region, as the

equivalence principle demands, related to the mathemati-
cal problem of Ricci flow? This is certainly a possibility,
which has been discussed in the context of cosmological
averaging by Buchert and Carfora [52].
As far as the rest of the curvature degrees of freedom are

concerned, the CEP in fact incorporates a strong statement
about average Weyl curvature, since the CIF (1) has van-
ishing Weyl curvature. Of course, Weyl curvature does not
vanish everywhere identically—it is nonzero in the vicinity
of collapsed structures such as stars and black holes, or in
gravitational wave ripples. However, the statement of the
CEP means that average effects of Weyl curvature need not
be considered in the calibration of rods and clocks of
generic cosmological frames. This ‘‘average Weyl curva-
ture condition’’ may, at first sight, seem stronger than
Penrose’s ‘‘Weyl curvature hypothesis’’ [53] that the uni-
verse began in an initial state with total Weyl curvature
exactly zero. However, at the epoch of last scattering the
universe was very close to a standard FLRWmodel, and all
FLRW models have vanishing Weyl curvature. Thus the
‘‘average Weyl curvature condition’’ incorporated within
the CEP could be viewed as a relatively weak phenome-
nological statement about the evolution of a universe
whose initial state at last scattering is consistent with the
predictions of inflation. Alternatively, it is also consistent
with any other cosmological scenario which solves the
flatness and horizon problems to give a close to spatially
flat FLRW universe with near scale-free perturbations by
the epoch of big bang nucleosynthesis, whether such a
scenario satisfies Penrose’s Weyl curvature hypothesis or
not.
It is my view, however, that in searching for potential

scenarios for initial conditions, Penrose’s Weyl curvature
hypothesis needs to be taken seriously, and could be related
to a generalized cosmological equivalence principle, if it
can be formulated to apply at earlier epochs in the very
early universe. To understand my rationale let us recall that
the Weyl curvature tensor includes any nonlocal curvature
in a manifold, whereas the Ricci tensor encodes purely
local curvature since it is directly related to the energy-
momentum tensor via the Einstein equations.
Since general relativity is a local causal theory, given

that the observable universe was in a global state very close
to a FLRW geometry with zero Weyl curvature at last
scattering, then the only Weyl curvature we are allowed
today is that which has accumulated by local causal pro-
cesses within the past light cone at any event: in particular,
by gravitational collapse and production of gravitational
waves. The Weyl tensor encodes tidal curvature informa-
tion on local scales which grows as matter clumps. On the
large scales where the universe is still expanding, Weyl
curvature cannot be important in defining the average
geometry, since the universe has only had a finite time
over which to evolve from its state at last scattering. This is
also the reason why there is a statistical scale of average
homogeneity.
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If a version of the CEP can be taken to apply at even the
earliest epochs, then it amounts to the statement that even
throughout its earliest history the background universe
contains no ‘‘nonlocal curvature’’ that cannot have evolved
causally within the past light cone at any event. For as far
back as a 4-dimensional spacetime continuum has any
meaning, it would then make sense to be able to choose
a CIF in which the average effects of density are volume-
contracting. Large classes of models, such as Bianchi
models with anisotropic flows, would be cosmologically
irrelevant. If such a CEP should survive through the epoch
of inflation or any other very early universe scenario, then
it would coincide with Penrose’s Weyl curvature hypothe-
sis. Ultimately these conceptual issues might inform quan-
tum gravity and quantum cosmology.

VII. DISCUSSION

In this paper I have extended the strong equivalence
principle to account for the average effect of the density
of matter in the definition and relative calibration of clocks
in inertial frames on cosmological scales. Since the result-
ing cosmological equivalence principle relates the single
scalar degree of freedom of Newtonian gravity to the
framework of general relativity, it may provide a means
to better understand the calibration of cosmological weak
fields once density perturbations have grown large to form
a universe that is very inhomogeneous on scales of tens of
megaparsecs. It should thereby give a setting for better
understanding the Newtonian limit in the dynamical situ-
ation of cosmology. The numerical estimate of the relative
deceleration between observers in the walls around galaxy
clusters and volume-average observers in voids, typically
of order 10�10 ms�2, is acceptably small for weak-field
scales and yet leads cumulatively to the present epoch
clock rate variance of 38% found in Refs. [1,23].
Intriguingly, at redshifts z & 0:25 the relative deceleration
required by the CEP coincides precisely with the empirical
acceleration scale of MOND [46,47].

At a conceptual level I have attempted to present a
framework for the consistent definition of average inertial
frames in relation to average dynamically varying matter
densities in cosmological general relativity. The hope is
that the cosmological equivalence principle is thereby a
key step to the incorporation of Mach’s principle into
general relativity, in the way that Einstein intended but
never quite realized. Mach’s principle is most commonly
invoked in distinguishing inertial frames from rotating
frames [9,54–56]. What is studied here is a different aspect
of Mach’s principle: the role of the average volume decel-
eration of the local geometry in defining the standard of
time of inertial frames. In the absence of a timelike Killing
vector, the evolution of the average density provides a
relevant clock. To fully incorporate Mach’s principle in
general relativity, it is of course necessary to deal with the
other dynamical gravitational degrees of freedom which

can affect the distinction of inertial frames from rotating
ones, such as gravitational waves [56].
In this paper I have expounded the view that to deal with

the volume-contracting average dynamical effects of mat-
ter density, a reduction to a frame (1) is the relevant step in
the normalization of gravitational energy before the final
step to a static Minkowski space. It is quite possible that
when average degrees of freedom in addition to the scalar
Ricci curvature are considered, in order to deal with gravi-
tational waves and spinning matter fluids, there are other
steps in the relevant relative calibrations of rods and
clocks. After all, energy, momenta, and angular momenta
are only defined with respect to a frame. In the dynamical
regime of general relativity the question arises as to which
collective average frames have physical utility in the ab-
sence of exact symmetries described by Killing vectors.
My view is that a truly deep understanding of quasilocal
gravitational energy and momentum is still to be found, but
the path to such enlightenment requires a better conceptual
understanding of the equivalence principle in application
to collective dynamical degrees of freedom of matter fields.
Historically speaking, in the early stages of the develop-

ment of general relativity Einstein did not fully appreciate
the dynamical importance of the energy and momentum of
spacetime itself. Spacetime is inevitably dynamical for
matter obeying the strong energy condition. Einstein’s first
journey through the conceptual landscape of cosmological
general relativity had him worrying about boundary con-
ditions at spatial infinity [10], as he overlooked the possi-
bility that the universe had a beginning.
Since general relativity is causal the geometry at any

event can only depend on events within its past light cone,
and is independent of what lies beyond the particle hori-
zon. Thus boundary conditions at spatial infinity beyond
the particle horizon are physically irrelevant if the universe
had a beginning, a possibility that Einstein did not consider
when he first formulated his static universe [10]. For a
universe like ours which had a beginning, the initial con-
ditions are of vital importance in determining the relevant
weighted average of the apparent motions, as I have dis-
cussed in Sec. VI.
The conceptual journey discussed in this paper arose in

an effort to model the universe more realistically [1,2,23],
to account for the structure we actually observe, by realiz-
ing that the quasilocal gravitational energy of a dynamical
spacetime geometry—which has real effects on the cali-
bration of clocks—should be an essential feature of a
universe with large dynamical density gradients. If suc-
cessful, this will eliminate the need for a cosmological
constant or other fluidlike vacuum energy as the source
of ‘‘dark energy,’’ but it still leaves the other cosmological
problem, why � ¼ 0, unsolved. If we take the strong
equivalence principle literally then � must be zero since
otherwise we could not have a vacuum Minkowski space-
time for our local inertial frames. My own personal view is
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that quantum field theoretic calculations based in a flat
spacetime which suggest that ��M4

Planck miss the mark,

because the spacetime vacuum cannot be understood with-
out accounting for the intrinsically dynamic nature of
spacetime. It is not a problem for flat space quantum field
theory. While the cosmological constant problem is no
doubt a problem for quantum gravity, I believe that quan-
tum gravity research might benefit from a more physical
understanding of dynamical gravitational energy and the
equivalence principle.
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