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Spherically symmetric expansion-free distributions are systematically studied. The entire set of field

equations and junction conditions are presented for a general distribution of dissipative anisotropic fluid

(principal stresses unequal), and the expansion-free condition is integrated. In order to understand the

physical meaning of expansion-free motion, two different definitions for the radial velocity of a fluid

element are discussed. It is shown that the appearance of a cavity is inevitable in the expansion-free

evolution. The nondissipative case is considered in detail, and the Skripkin model is recovered.
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I. INTRODUCTION

The problem of general relativistic gravitational col-
lapse of massive stars has attracted the attention of re-
searchers for many years, starting with the seminal paper
by Oppenheimer and Snyder [1]. The motivation for such
interest is easily understood: the gravitational collapse of
massive stars represents one of the few observable phe-
nomena, where general relativity is expected to play a
relevant role. Ever since that work, much was written by
researchers trying to provide models of evolving gravitat-
ing spheres (see [2] and references therein). However, this
endeavor proved to be difficult, with different kinds of
obstacles appearing, depending on the approach adopted
for the modelling.

Thus, numerical methods allow for considering more
realistic equations of state, but the obtained results, in
general, are restricted and highly model dependent. Also,
specific difficulties, associated to numerical solutions of
partial differential equations in presence of shocks, com-
plicate further the problem. Therefore, it seems useful to
consider nonstatic models, which are relatively simple to
analyze, but still contain some of the essential features of a
realistic situation. For doing so, we need to appeal to a
simple equation of state and/or to additional physically
meaningful heuristic assumptions. In this work, we shall
assume the fluid to be expansionfree.

As is well known, the motion of a fluid may be charac-
terized by the four acceleration vector (a�), the shear
tensor (���), the expansion scalar (�), and the vorticity

tensor (which vanishes in the spherically symmetric case).
The relevance of the shear tensor in the evolution of self-
gravitating systems and the consequences emerging from

its vanishing has been brought out by many authors (see [3]
and references therein).
In this work, we shall study the properties of an

expansion-free spherically symmetric self-gravitating
fluid.
Since the expansion scalar describes the rate of change

of small volumes of the fluid, it is intuitively clear that the
evolution of an expansion-free spherically symmetric dis-
tribution should necessarily imply the formation of a vac-
uum cavity within the distribution (see a more rigorous
argument on this in Sec. V). Thus, in the case of an overall
expansion, the increase in volume due to the increasing
area of the external boundary surface must be compensated
with the increase of the area of the internal boundary
surface (delimiting the cavity) in order to keep � vanish-
ing. The argument in the case of collapse is similar.
For sake of generality, we shall start our discussion by

considering an anisotropic dissipative viscous fluid (argu-
ments to justify such kind of fluid distributions may found
in [4–6] and references therein). For this kind of distribu-
tion, we shall write the field equations, the junction con-
ditions, at, both, the inner and the external boundary
surface (Sec. II), as well as the dynamical equations
(Sec. III). Next, we shall integrate the expansion-free
condition and find the general form of the metric for the
anisotropic dissipative viscous fluid (Sec. IV).
In order to understand better the physical meaning of the

expansion-free motion, we shall discuss two different defi-
nitions of radial velocity of a fluid element, in terms of
which both the expansion and the shear can be expressed
(Sec. V).
We shall next consider the nondissipative case, and we

shall specialize further to the isotropic fluid. In this latter
case, we shall recover as a particular example the Skripkin
model [7], assuming the energy density to be constant
(Sec. VI).
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Finally, a discussion on the results is presented in the last
section.

II. THE ENERGY-MOMENTUM TENSOR, THE
FIELD EQUATIONS, AND THE JUNCTION

CONDITIONS

We consider a spherically symmetric distribution of

collapsing fluid, bounded by a spherical surface �ðeÞ. The
fluid is assumed to be locally anisotropic (principal stresses
unequal) and undergoing dissipation in the form of heat
flow (to model dissipation in the diffusion approximation),
null radiation (to model dissipation in the free streaming
approximation) and shearing viscosity.

Choosing comoving coordinates inside �ðeÞ, the general
interior metric can be written

ds2� ¼ �A2dt2 þ B2dr2 þ R2ðd�2 þ sin2�d�2Þ; (1)

where A, B, and R are functions of t and r and are assumed
positive. We number the coordinates x0 ¼ t, x1 ¼ r, x2 ¼
�, and x3 ¼ �. Observe that A and B are dimensionless,
whereas R has the same dimension as r.

The matter energy-momentum T�
�� inside �ðeÞ has the

form

T�
�� ¼ ð�þ P?ÞV�V� þ P?g�� þ ðPr � P?Þ����

þ q�V� þ V�q� þ �l�l� � 2	���; (2)

where � is the energy density, Pr the radial pressure, P?
the tangential pressure, q� the heat flux, � the energy
density of the null fluid describing dissipation in the free
streaming approximation, 	 the coefficient of shear vis-
cosity, V� the four velocity of the fluid, �� a unit four
vector along the radial direction, and l� a radial null four
vector. These quantities satisfy

V�V� ¼ �1; V�q� ¼ 0; ���� ¼ 1;

��V� ¼ 0; l�V� ¼ �1; l�l� ¼ 0:
(3)

The acceleration a� and the expansion � of the fluid are
given by

a� ¼ V�;�V
�; � ¼ V�

;�; (4)

and its shear ��� by

��� ¼ Vð�;�Þ þ að�V�Þ � 1
3�ðg�� þ V�V�Þ: (5)

We do not explicitly add bulk viscosity to the system
because it can be absorbed into the radial and tangential
pressures Pr and P? of the collapsing fluid [8].

Since we assumed the metric (1) comoving, then

V� ¼ A�1
�
0 ; q� ¼ qB�1
�

1 ;

l� ¼ A�1
�
0 þ B�1
�

1 ; �� ¼ B�1
�
1 ;

(6)

where q is a function of t and r.

From (4) with (6) we have for the acceleration and its
scalar a

a1 ¼ A0

A
; a2 ¼ a�a� ¼

�
A0

AB

�
2
; (7)

and for the expansion

� ¼ 1

A

� _B

B
þ 2

_R

R

�
; (8)

where the prime stands for r differentiation and the dot
stands for differentiation with respect to t. With (6) we
obtain for the shear (5) its non zero components

�11 ¼ 2

3
B2�; �22 ¼ �33

sin2�
¼ � 1

3
R2�; (9)

and its scalar

������ ¼ 2

3
�2; (10)

where

� ¼ 1

A

� _B

B
� _R

R

�
: (11)

A. The Einstein equations

Einstein’s field equations for the interior spacetime (1)
are given by

G�
�� ¼ 8�T�

��; (12)

and its non zero components with (1), (2), and (6) become

8�T�
00 ¼ 8�ð�þ �ÞA2

¼
�
2

_B

B
þ _R

R

� _R

R
�

�
A

B

�
2
�
2
R00

R
þ

�
R0

R

�
2

� 2
B0

B

R0

R
�

�
B

R

�
2
�
; (13)

8�T�
01 ¼ �8�ðqþ �ÞAB ¼ �2

� _R0

R
� _B

B

R0

R
� _R

R

A0

A

�
;

(14)

8�T�
11 ¼ 8�

�
Pr þ �� 4

3
	�

�
B2

¼ �
�
B

A

�
2
�
2
€R

R
�

�
2

_A

A
� _R

R

� _R

R

�

þ
�
2
A0

A
þ R0

R

�
R0

R
�

�
B

R

�
2
; (15)
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8�T�
22 ¼

8�

sin2�
T�
33 ¼ 8�

�
P? þ 2

3
	�

�
R2

¼�
�
R

A

�
2
� €B

B
þ €R

R
�

_A

A

� _B

B
þ _R

R

�
þ _B

B

_R

R

�

þ
�
R

B

�
2
�
A00

A
þR00

R
�A0

A

B0

B
þ

�
A0

A
�B0

B

�
R0

R

�
: (16)

The component (14) can be rewritten with (8) and (10) as

4�ðqþ �ÞB ¼ 1

3
ð�� �Þ0 � �

R0

R
: (17)

Next, the mass function mðt; rÞ introduced by Misner
and Sharp [9] (see also [10]) reads

m ¼ R3

2
R 23
23 ¼ R

2

�� _R

A

�
2 �

�
R0

B

�
2 þ 1

�
: (18)

Thus, in the most general case (locally anisotropic and
dissipative) we have available four field Eqs. (13)–(16) for
eight variables, namely A, B, R, �, Pr, P?, �, and q. Since
we are going to consider expansion-free systems, we have
the additional condition � ¼ 0. Evidently, in order to find
specific models (to close the system of equations), we need
to provide additional information, which could be given in
the form of constitutive equations for q and �, and equa-
tions of state for both pressures.

B. The exterior spacetime and junction conditions

Outside �ðeÞ we assume we have the Vaidya spacetime
(i.e. we assume all outgoing radiation is massless), de-
scribed by

ds2 ¼ �
�
1� 2MðvÞ

r

�
dv2 � 2drdvþ r2ðd�2

þ sin2�d�2Þ; (19)

where MðvÞ denotes the total mass, and v is the retarded
time.

The matching of the full nonadiabatic sphere (including
viscosity) to the Vaidya spacetime, on the surface r ¼
r�ðeÞ ¼ constant, was discussed in [11]. From the continuity

of the first and second differential forms it follows (see [11]
for details)

mðt; rÞ ¼�ðeÞ
MðvÞ; (20)

and

2

� _R0

R
� _B

B

R0

R
� _R

R

A0

A

�
¼�ðeÞ �B

A

�
2
€R

R
�

�
2

_A

A
� _R

R

� _R

R

�
þ A

B

�
��

2
A0

A
þ R0

R

�
R0

R
�

�
B

R

�
2
�
;

(21)

where ¼�ðeÞ
means that both sides of the equation are eval-

uated on �ðeÞ (observe a misprint in Eq. (40) in [11] and a
slight difference in notation).
Comparing (21) with (14) and (15), one obtains

q ¼�ðeÞ
Pr � 4

3
	�: (22)

Thus, the matching of (1) and (19) on �ðeÞ implies (20) and
(22), which reduces to Eq. (41) in [11] with the appropriate
change in notation. Observe a misprint in Eq. (27) in [5]
(the � appearing there is the one defined in [11], which is
�1=3 of the one used here and in [5]).
As we mentioned in the introduction, the expansion-free

models present an internal vacuum cavity. If we call �ðiÞ
the boundary surface between the cavity and the fluid, then
the matching of the Minkowski spacetime within the cavity
to the fluid distribution, implies

mðt; rÞ ¼�ðiÞ
0; (23)

q ¼�ðiÞ
Pr � 4

3
	�: (24)

III. DYNAMICAL EQUATIONS

To study the dynamical properties of the system, let us
introduce, following Misner and Sharp [9], the proper time
derivative DT given by

DT ¼ 1

A

@

@t
; (25)

and the proper radial derivative DR,

DR ¼ 1

R0
@

@r
; (26)

where R defines the areal radius of a spherical surface

inside �ðeÞ (as measured from its area).
Using (25), we can define the velocity U of the collaps-

ing fluid (for another definition of velocity see Sec. VI) as
the variation of the areal radius with respect to proper time,
i.e.

U ¼ DTR < 0ðin the case of collapseÞ: (27)

Then (18) can be rewritten as

E � R0

B
¼

�
1þU2 � 2m

R

�
1=2

: (28)

With (26) we can express (17) as

4�ðqþ �Þ ¼ E

�
1

3
DRð�� �Þ � �

R

�
: (29)

Using (13) and (14) and with (25) and (26) we obtain
from (18)

DTm ¼ �4�

��
Pr þ �� 4

3
	�

�
Uþ ðqþ �ÞE

�
R2; (30)
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and

DRm ¼ 4�

�
�þ �þ ðqþ �ÞU

E

�
R2; (31)

which implies

m ¼ 4�
Z R

0

�
�þ �þ ðqþ �ÞU

E

�
R2dR (32)

(assuming a regular center to the distribution, so mð0Þ ¼
0).

Expression (30) describes the rate of variation of the
total energy inside a surface of areal radius R. On the right-
hand side of (30), ðPr þ �� 4	�=3ÞU (in the case of
collapse U < 0) increases the energy inside R through
the rate of work being done by the ‘‘effective’’ radial
pressure Pr � 4	�=3 and the radiation pressure �.
Clearly, here the heat flux q does not appear, since there
is no pressure associated with the diffusion process. The
second term �ðqþ �ÞE is the matter energy leaving the
spherical surface.

Equation (31) shows how the total energy enclosed
varies between neighboring spherical surfaces inside the
fluid distribution. The first term on the right-hand side of
(31)�þ � is due to the energy density of the fluid element
plus the energy density of the null fluid describing dissi-
pation in the free streaming approximation. The second
term, ðqþ �ÞU=E is negative (in the case of collapse) and
measures the outflow of heat and radiation.

The nontrivial components of the Bianchi identities,

T���
;� ¼ 0, from (12) yield

T���
;� V� ¼ � 1

A

�
ð�þ �Þ� þ

�
�þ Pr þ 2�� 4

3
	�

� _B

B

þ 2

�
�þ P? þ �þ 2

3
	�

� _R

R

�

� 1

B

�
ðqþ �Þ0 þ 2ðqþ �Þ ðARÞ

0

AR

�
¼ 0; (33)

T���
;� �� ¼ 1

A

�
ðqþ �Þ� þ 2ðqþ �Þ

� _B

B
þ _R

R

��

þ 1

B

��
Pr þ �� 4

3
	�

�0

þ
�
�þ Pr þ 2�� 4

3
	�

�
A0

A

þ 2ðPr � P? þ �� 2	�ÞR
0

R

�
¼ 0;

(34)

or, by using (7), (8), (25), (26), and (28), they become,
respectively,

DTð�þ �Þ þ 1

3
ð3�þ Pr þ 2P? þ 4�Þ�

þ 2

3
ðPr � P? þ �� 2	�Þ�þ EDRðqþ �Þ

þ 2ðqþ �Þ
�
aþ E

R

�
¼ 0; (35)

DTðqþ �Þ þ 2

3
ðqþ �Þð2�þ �Þ þ EDR

�
Pr þ �� 4

3
	�

�

þ
�
�þ Pr þ 2�� 4

3
	�

�
aþ 2ðPr � P? þ �

� 2	�ÞE
R
¼ 0: (36)

This last equation may be further tranformed as follows:
The acceleration DTU of an infalling particle inside � can
be obtained by using (7), (15), (18), and (28), producing

DTU ¼ � m

R2
� 4�

�
Pr þ �� 4

3
	�

�
Rþ Ea; (37)

and then, substituting a from (37) into (36), we obtain

�
�þ Pr þ 2�� 4

3
	�

�
DTU

¼ �
�
�þ Pr þ 2�� 4

3
	�

�

�
�
m

R2
þ 4�

�
Pr þ �� 4

3
	�

�
R

�

� E2

�
DR

�
Pr þ �� 4

3
	�

�
þ 2ðPr � P?

þ �� 2	�Þ 1
R

�
� E

�
DTðqþ �Þ þ 2ðqþ �Þ

�
�
2
U

R
þ �

��
: (38)

The physical meaning of different terms in (38) has been
discussed in detail in [4–6]. Suffice to say in this point that
the first term on the right-hand side describes the gravita-
tional force term.

IV. SHEARING EXPANSION-FREE MOTION

If the fluid has no expansion, i.e. � ¼ 0, then from (8)
we have

_B

B
¼ �2

_R

R
; (39)

or, by integrating

B ¼ gðrÞ
R2

; (40)

where gðrÞ is an arbitrary function of r.

L. HERRERA, N.O. SANTOS, AND ANZHONG WANG PHYSICAL REVIEW D 78, 084026 (2008)

084026-4



Substituting (39) into (14), we obtain

_R0

R
þ 2

_R

R

R0

R
� _R

R

A0

A
¼ 4�ðqþ �ÞAB; (41)

which can be integrated for _R � 0 producing

A ¼ R2 _R

�1
exp

�
�4�

Z
ðqþ �ÞABR

_R
dr

�
; (42)

where �1ðtÞ is an arbitrary function of t. With (40) and (42)
then (1) becomes

ds2 ¼ �
�
R2 _R

�1
exp

�
�4�

Z
ðqþ �ÞABR

_R
dr

��
2
dt2

þ
�
g

R2

�
2
dr2 þ R2ðd�2 þ sin2�d�2Þ; (43)

which is the general metric for a shearing expansion-free
anistropic dissipative fluid.

In the nondissipative case q ¼ � ¼ 0, we can write (43)
as

ds2 ¼ �
�
R2 _R

�1

�
2
dt2 þ 1

R4
dr2 þ R2ðd�2 þ sin2�d�2Þ;

(44)

where without loss of generality (by reparametrizing r) we
put g ¼ 1 (observe that a unit constant with dimensions
½r4� is assumed to multiply dr2). Then we have that (44) is
the general metric for a spherically symmetric anisotropic
perfect fluid undergoing shearing and expansion-free evo-
lution (observe that it has the same form as for the isotropic
fluid [12]).

V. ON THE PHYSICAL MEANING OF
EXPANSION-FREE MOTION

We shall now analyze under which conditions a time-
dependent spherically symmetric configuration may
evolve without expansion. For doing so we shall try to
develop more our understanding of the different speeds
that involve the description of expansion as well as shear in
the evolution of a self-gravitating fluid. The following
discussion heavily relies on the kinematic quantities char-
acterizing the motion of a medium presented in [13], with
slight changes in notation.

In Gaussian coordinates, the position of each particle
may be given as

x� ¼ x�ðya; sÞ; (45)

where s is the proper time along the world line of the
particle, and ya (with a running from 1 to 3) is the position
of the particle on a three-dimensional hypersurface (say
�). Then for the unit vector tangent to the world line (the
four-velocity) we have

V� ¼ @x�

@s
; (46)

and observe that

@

@s
¼ DT: (47)

Next, for an infinitesimal variation of the world line we
have


x� ¼ @x�

@ya

ya; (48)

from which it follows

DTð
x�Þ ¼ V�
;�
x

�: (49)

Introducing the projector h�� on � by

h�� ¼ 
�
� þ V�V�; (50)

we can define the position vector of the particle ya þ 
ya

relative to the particle ya on �, as


?x� ¼ h��
x
�: (51)

Then the relative velocity between these two particles, is

u� ¼ h��DTð
?x�Þ; (52)

and considering (49) and (51), it follows that

u� ¼ V�
;�
?x�: (53)

Now, the infinitesimal distance between two neighbor-
ing points on � is


l2 ¼ g��
?x�
?x�; (54)

then


lDTð
lÞ ¼ g��
?x�DTð
?x�Þ; (55)

or, by using (49) and (52),


lDTð
lÞ ¼ V�;�
?x�
?x�: (56)

Then, taking into consideration the expression for the
irreducible components of a timelike vector

V�;� ¼ ��� � a�V� þ 1

3
�h��; (57)

where we assumed zero rotation, and substituting into (56),
we obtain


lDTð
lÞ ¼ 
?x�
?x�
�
��� þ 1

3
h���

�
; (58)

or, introducing the spacelike unit vector

e� ¼ 
?x�


l
; (59)

it becomes

DTð
lÞ

l

¼ e�e���� þ�

3
: (60)
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Let us now consider, the spherically symmetric case, and
apply (60) to two neighboring points along the radial
direction. In this case, we have e� � ��, and using (6),
(9), and (10) in (60) we obtain

DTð
lÞ

l

¼ 2�

3
þ�

3
; (61)

or, by using (8) and (11)

DTð
lÞ

l

¼ _B

AB
: (62)

Then with (27) and (62) we can write

� ¼ DTð
lÞ

l

�DTR

R
¼ DTð
lÞ


l
�U

R
; (63)

and

� ¼ DTð
lÞ

l

þ 2DTR

R
¼ DTð
lÞ


l
þ 2U

R
: (64)

Thus, we see that in general there are two different con-
tributions to the shear (63) and to the expansion (64). One
is due to the ‘‘circumferential’’ velocity U [14], which is
related to the change of areal radius R of a layer of matter,
whereas the other is related to DTð
lÞ, which has also the
meaning of ‘‘velocity,’’ being the relative velocity between
neighboring layers of matter, and can be in general differ-
ent from U.

From (63) we see that, if the spherical distribution of
matter is collapsing,U < 0, the shear can vanish only if the
relative distance between different layers of matter dimin-
ishes, DTð
lÞ< 0, and cancels the circumferential
velocity.

From (64), we see that the evolution of the fluid will be
expansionfree, whenever the circumferential term cancels
the term related to the variation of distance of neighboring
particles. Thus, the collapse will proceed expansionfree, if
the decrease of the perimeter of a comoving sphere (U <
0) is compensated by an increase in the distance of neigh-
boring particles (along the radial direction) according to
(64). Alternatively, if the fluid is moving outward (U > 0)
neighboring particles will get closer (DTð
lÞ< 0). These
observations clarify further the origin of the cavity in
expansion-free models. Indeed, consider two concentric
fluid shells in the neighborhood of the center. As it follows
from (74), close to the center we have U� R. Now, in the
process of expansion (increasing of R), the � ¼ 0 condi-
tion implies as mentioned before that DTð
lÞ< 0, i.e. both
shells become closer; however this would not be so as long
as U� R, implying thereby that the � ¼ 0 condition
requires that the innermost shell of fluid should be away
from the center, initiating therefrom the formation of the
cavity.

Let us see this from another perspective. Consider the
infinitesimal volume of the shell between two concentric
spheres of radii r and rþ 
r,


V ¼ 4�BR2
r; (65)

then it follows

DTð
VÞ ¼ 4�ðDTBÞR2
rþ 8�BRðDTRÞ
r; (66)

or, dividing (66) by 
V and using (62),

DTð
VÞ

V

¼ DTð
lÞ

l

þ 2
U

R
: (67)

Which of course coincide with (64), since we know that
DTð
VÞ=
V is the definition of the expansion.
Thus, in the process of contraction (expansion), the

elementary volume 
V decreases (increases) by two fac-
tors: on the one hand, by the decreasing (increasing) of the
areal radius R, and on the other hand, by the decreasing
(increasing) of the proper radial distance between the two
concentric surfaces. Again, we have an expansion-free
evolution (the elementary volume 
V remains constant)
whenever the two contributions on the right hand of (67)
cancel each other, in spite of the fact that neither of them
vanishes.
We shall now see how these two different definitions of

radial velocity considered above are related.
Let us first assume that U ¼ 0. Then from (63) and (64)

it follows � ¼ �, feeding this back into (29) we get at
once

DTð
lÞ ¼ � 4�Rðqþ �Þ
E


l; (68)

thus,U ¼ 0 impliesDTð
lÞ ¼ 0 only in the dissipationless
case, q ¼ � ¼ 0.
Next, let us assume DTð
lÞ ¼ 0. Then it follows from

(63) and (64) that � ¼ �2�, feeding this back into (29)
we get

DR�þ �

R
¼ � 4�ðqþ �Þ

E
; (69)

whose integration with respect to R yields

� ¼ 

R
� 4�

R

Z
ðqþ �ÞR

E
dR; (70)

where  is independent of R (for any layer of fluid, char-
acterized by r ¼ constant,  may depend on t. In general,
however, it may depend on (t and r). On the other hand,
(70) with (63) implies

U ¼ � þ 4�
Z
ðqþ �ÞR

E
dR: (71)

Since U ! 0 as R ! 0, we must put  ¼ 0 (if only the
center of the fluid distribution is covered by the coordinate
system). Thus, in the nondissipative case U ¼ 0.
Therefore, only in the nondissipative case U ¼ 0 $

DTð
lÞ ¼ 0 (with the condition mentioned above).
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Finally, we can write (29) as

DR

�
U

R

�
¼ 4�

E
ðqþ �Þ þ �

R
; (72)

which after integration with respect to R becomes

U ¼ �Rþ R
Z R

0

�
4�

E
ðqþ �Þ þ �

R

�
dR; (73)

or,

U ¼ U�ðeÞ

R�ðeÞ
R� R

Z R
�ðeÞ

R

�
4�

E
ðqþ �Þ þ �

~R

�
d ~R: (74)

In the shearfree nondissipative case, we have from (74) that
U� R, which is characteristic of the homologous evolu-
tion [15]. This implies that for two concentric shells of
areal radii R1 and R2, we have in this case

R1

R2

¼ constant: (75)

The second term on the right of (74) describes how the
shear and dissipation deviate the evolution from the ho-
mologous regime.

It is worth noticing that in the shearfree nondissipative
case, the sign of U for any fluid element is the same as that
of U�ðeÞ . However, if we relax any of those conditions, that

might not be true. Thus, it would be possible, for example,
to have an expanding outer shell with an imploding inner
core. Such possibility was brought out before, but re-
stricted to the quasistatic regime [16]. Here, we see that
such an scenario is also possible in the general dynamic
regime.

VI. SHEARING EXPANSION-FREE PERFECT
FLUID

We shall now restrict our study to a shearing expansion-
free fluid without dissipation, q ¼ � ¼ 0 and 	 ¼ 0, then
the metric reduces to (44) and the field Eqs. (13)–(16),
using (29), become

8�� ¼ �2R3R00 � 5R2R02 þ 1

R2
� 3

�21
R6

; (76)

1

3
DR�þ �

R
¼ 0; (77)

8�Pr ¼ �21
R5 _R

�
3

_R

R
� 2

_�1
�1

�
þ R3R0

�
2

_R0
_R
þ 5

R0

R

�
� 1

R2
;

(78)

8�P? ¼ � �21
R5 _R

�
6

_R

R
� _�1

�1

�
þ R4

� _R00
_R
þ 7

_R0
_R

R0

R

þ 3
R00

R
þ 10

�
R0

R

�
2
�
; (79)

while the Bianchi identities (33) and (34) read

_�þ 2ðP? � PrÞ
_R

R
¼ 0; (80)

P0
r þ ð�þ PrÞ

_R0
_R
þ 2ð�þ 2Pr � P?ÞR

0

R
¼ 0: (81)

From (80) we have that if the fluid is isotropic, Pr ¼ P?,
then the energy density � is only r dependent.
We can now integrate (76) under the assumption � ¼

�ðrÞ, to obtain

R02 ¼ 1

R4
þ �2 � 2m

R5
þ �21

R8
; (82)

where �2ðtÞ is an arbitrary function of t and (32) has been
used.
We shall now specialize further our model to the case of

constant energy density [7]

A. The Skripkin model

In [7], it is not explicitly assumed that � ¼ 0, instead it
is assumed that the fluid is nondissipative, has its energy
density � ¼ �0 ¼ constant and the pressure isotropic. Of
course, these conditions imply, because of (35), that � ¼
0. Thus, we have only one physical variable (Pr), and the
system of field equations is closed and can be integrated.
From the condition � ¼ �0 ¼ constant, (82) becomes

R02 ¼ � k

R2
þ 1

R4
þ �2

R5
þ �21

R8
; (83)

with

k ¼ 8��0

3
: (84)

It should be observed that (83) imposes a maximum to
the value of R (Rmax), for which R0 ¼ 0. The physical
origin of this maximum for the areal radius may be ex-
plained as follows:
In the Skripkin picture, the fluid is initially at rest, then

there is a sudden explosion at the center producing the
outward ejection of the fluid, always keeping the condi-
tions of nondissipation, � ¼ �0 ¼ constant and isotropic
pressure (i.e. � ¼ 0). Under these conditions, (38) be-
comes

ð�þ PÞDTU ¼ �ð�þ PÞ
�
m

R2
þ 4�PR

�
� E2DRP;

(85)

with Pr ¼ P? ¼ P. Now, as the fluid moves outward and
R approaches Rmax, R

0 tends to zero, which implies, be-
cause of (28), that E approaches zero. Furthermore, this
implies that the gravitational (negative) term in (85) will
prevail leading to a negative DTU, producing a reversal of
the motion at (or before) Rmax.
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As mentioned above, Skripkin assumes the pressure to
be isotropic. However, if we assume the evolution to be
expansionfree (and� ¼ �0 ¼ constant), then the isotropy
of pressure follows from (80), and using (83) in (78) or (79)
yields

8�P ¼ _�2
R2 _R

� 3k; (86)

which, of course, satisfies (81). From the matching condi-
tion (22) we have for (86)

8�P ¼�ðeÞ _�2
R2 _R

� 3k ¼ 0; (87)

which gives

�2 ¼ kR3
�ðeÞ þ c1; (88)

where c1 is an arbitrary constant.
The mass function (18) with (44) and (83) becomes

m ¼ 1

2
ðkR3 � �2Þ ¼ k

2
ðR3 � R3

�ðeÞ Þ � c1
2
; (89)

where we used (88). Measuring m on �ðeÞ we obtain the
total mass of the configuration M

m ¼�ðeÞ
M ¼ � c1

2
: (90)

Thus,

�2 ¼ kR3
�ðeÞ � 2M; (91)

and

m ¼ k

2
ðR3 � R3

�ðeÞ Þ þM: (92)

As mentioned before, it should be clear from physical
considerations that the assumption of vanishing expansion
(with the constant energy density condition) in the evolu-
tion of the fluid distribution, implies the formation of a
vacuum cavity within the sphere.

Applying matching conditions (23) and (24) on the

boundary surface �ðiÞ, delimiting the cavity, we obtain

M ¼ k

2
ðR3

�ðeÞ � R3
�ðiÞ Þ; (93)

and using (93) in (91)

�2 ¼ kR3
�ðiÞ : (94)

Because of the constancy of M, we obtain from (93)

_R �ðeÞ ¼
�
R�ðiÞ

R�ðeÞ

�
2
_R�ðiÞ ; (95)

and from (44) and (95)

A�ðeÞ ¼ A�ðiÞ ; (96)

producing, because of (95),

U�ðeÞ ¼
�
R�ðiÞ

R�ðeÞ

�
2
U�ðiÞ ; (97)

which implies, as expected, that the inner boundary surface

�ðiÞ moves faster than the outer boundary surface�ðeÞ. This
result can also be deduced from the very definition of U.
Indeed, using (44) in (27) we obtain

U ¼ �1
R2

; (98)

which evaluated on �ðiÞ and �ðeÞ produces

�1 ¼ U�ðeÞR2
�ðeÞ ¼ U�ðiÞR2

�ðiÞ ; (99)

implying (97).
Observe that from (63), (64), and (98) it follows

� ¼ � 3�1
R3

; (100)

which is the solution of (77).
It should be observed that since the pressure vanishes on

�ðiÞ and �ðeÞ, it should have a maximum somewhere be-
tween the two, i.e the pressure gradient must vanish on
some spherical surface (S) within the fluid. If we denote the
areal radius of such surface by R ¼ RS, then it follows
from (81)

ðR2R0Þ� ¼S 0 (101)

and after integration

R0S ¼ c2
R2

; (102)

where c2 is a constant. Substituting (102) into (83), we
have

kR6 þ ðc22 � 1ÞR4 � �2R
3 � �21 ¼S 0: (103)

Thus, the surface RS, which is the root of (103), divides the
fluid into two regions. The inner one, with a positive
pressure gradient, and the outer one with a negative pres-
sure gradient.
We are now able to prescribe the strategy to determine

the Skripkin models. First of all let us recall that without
loss of generality Skripkin chooses �1 ¼ R�ðeÞ _R2

�ðeÞ and,

consequently, �1 ¼ R�ðiÞ _R2
�ðiÞ and A�ðeÞ ¼ A�ðiÞ ¼ 1.

Then, the integration of (83), which can only be ex-
pressed in terms of elliptic functions, produces

R ¼ Rðr; R�ðiÞ ; _R�ðiÞ Þ: (104)

Evaluating (85) on�ðiÞ we obtain a differential equation for
R�ðiÞ whose integration provides its time dependence, and

therefore of Rðr; tÞ.
If we deviate from the Skripkin model and relax the

condition � ¼ constant, allowing for r dependence of �,
then we need to integrate (82) instead of (83), which of
course requires the specific r dependence of � or m.
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Also, we could consider the anisotropic case, which
allows for a t dependence of �, in this case, of course, a
specific equation of state for the anisotropic pressures is
required (or an equivalent ansatz).

Finally, the integration in the general dissipative case
would require a thorough knowledge of the energy pro-
duction within the fluid (or a set of equivalent ansätze).

VII. CONCLUSIONS

We have seen so far that expansion-free condition allows
for the obtention of a wide range of models for the evolu-
tion of spherically symmetric self-gravitating systems.
Ranging from nondissipative spheres, with constant energy
density and isotropic pressure (Skripkin model), to general
dissipative anisotropic models.

Observe that even if the Skripkin model is the simplest,
from the physical point of view, it might not be so from the
mathematical point of view. Indeed, we could in principle
choose a mass function, such that (82) could be integrated
in terms of elementary functions; obviously, it remains to
be seen if such models are endowed with any physical
interest.

One of the most interesting features of the models, is the
appearance of a vacuum cavity within the fluid distribution.
It is not clear at this point if such models might be used to
describe the formation of voids observed at cosmological
scales (see [17] and references therein).

The two concepts of radial velocity discussed in Sec. V
allows to understand the meaning of the expansion-free
evolution. As a byproduct of such discussion, the shearfree
flow (in the nondissipative case) appears to be equivalent to

the well-known homologous evolution. Particularly re-
markable is the fact that the expansion-free ejection (col-
lapse) implying an increase (decrease) in the areal radius of
a layer of matter, proceeds with a decrease (increase) in the
distance of neighboring particles along the radial direction.
Also, the possibility of a ‘‘splitting’’ of the fluid distribu-
tion (change of sign in U) due to dissipation and/or shear,
as indicated by (74), deserves to be explored further.
Finally, it is worth noticing that in the locally anisotropic

case, the expansion-free evolution, due to the second term
on the left of Eq. (80), does not imply that energy density
remains time independent. This situation becomes intelli-
gible when it is remembered, that in the limit of hydrostatic
equilibrium, when U ¼ q ¼ � ¼ 0, we obtain from (36),

DRPr þ 2ðPr � P?Þ
R

¼ � �þ Pr

RðR� 2mÞ ðmþ 4�PrR
3Þ;
(105)

which is just the generalization of the Tolman-
Oppenheimer-Volkoff equation for anisotropic fluids, ob-
tained in comoving coordinates [8]. Thus, the term 2ðPr �
P?Þ=R represents a force associated to the local anisotropy
of pressure, and therefore the second term on the left of
Eq. (80), is the rate of work done by that force, resulting in
a change of �.
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