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We study evolution of gravitational perturbations of black strings. It is well known that for all wave

numbers less than some threshold value, the black string is unstable against the scalar type of gravitational

perturbations, which is named the Gregory-Laflamme instability. Using numerical methods, we find the

quasinormal modes and time-domain profiles of the black string perturbations in the stable sector and also

show the appearance of the Gregory-Laflamme instability in the time domain. The dependence of the

black string quasinormal spectrum and late-time tails on such parameters as the wave vector and the

number of extra dimensions is discussed. There is numerical evidence that at the threshold point of

instability, the static solution of the wave equation is dominant. For wave numbers slightly larger than the

threshold value, in the region of stability, we see tiny oscillations with very small damping rate. While, for

wave numbers slightly smaller than the threshold value, in the region of the Gregory-Laflamme instability,

we observe tiny oscillations with very small growth rate. We also find the level crossing of imaginary part

of quasinormal modes between the fundamental mode and the first overtone mode, which accounts for the

peculiar time domain profiles.
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I. INTRODUCTION

Unlike four-dimensional Einstein gravity, which allows
the existence of black holes, higher-dimensional theories,
such as the braneworld scenarios and string theory, allow
the existence of a number of ‘‘black’’ objects: higher-
dimensional black holes, black strings and branes, black
rings and saturns and others. In higher than four dimen-
sions we lack the uniqueness theorem, so that stability may
be the criteria which will select physical solutions among
this variety of solutions. Up to now, we know that higher-
dimensional Reissner-Nordström-de Sitter black holes are
stable [1] in the Einstein gravity. On the contrary, black
holes in Gauss-Bonnet (GB) gravity are unstable for large
GB coupling for D ¼ 5, 6 [2], where D is the total number
of space-time dimensions. Kaluza-Klein black holes with
squashed horizon are stable against lowest zero mode
perturbations [3]. Unlike, Kaluza-Klein black holes, the
black string metric is a solution of the Einstein equations in
five or higher-dimensional gravity that has a factorized
form consisting of the Tangherlini black hole and an extra
flat dimension [4]. According to the braneworld scenarios,
if the matter localized on the brane undergoes gravitational
collapse, a black hole with the horizon extended to the
transverse extra direction will form. This object looks like
a black hole on the brane, but is, in fact, a black string in the
full D-dimensional theory.

It is well known that such black strings suffer from the
so-called Gregory-Laflamme instability, which is the long
wavelength gravitational instability of the scalar type of
the metric perturbations [5,6]. The Gregory-Laflamme in-
stability has been intensively studied during the recent
decade [4] and the threshold values of the wave vector k
at which the instability appears are known [7]. In the
present paper we are aimed at studying the evolution of
linear perturbations of D-dimensional black strings in time
and frequency domains. This task is motivated mainly by
two reasons: first to realize what happens on the edge of
instability of black strings and how the perturbations will
develop in time. Second, the so-called quasinormal modes
of a stable black string might be an observational charac-
teristic for the future Large Hadron Collider experiments,
if such objects as black strings exist.
The latter needs some more explanation. In this re-

search, we shall show that if a stable D-dimensional black
string is gravitationally perturbed, it will undergo damped
oscillations, called quasinormal ringing, similar to that of a
black hole [8]. At asymptotically late time, this quasinor-
mal ringing goes over into the power-law tails. The quasi-
normal modes and asymptotic tails are very well studied
for D-dimensional black holes [9] and for black holes
localized on the brane [10]. We find here that the quasi-
normal ringing of black strings has a number of differences
from that of D-dimensional black holes [9], especially
when approaching the edge of instability. In particular,
we find numerical evidence that in the threshold point of
instability, the static solution of the wave equation is
dominant. In the region of the stability, for k slightly larger
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than the threshold value, we see modes with tiny oscillation
frequencies and damping rates. In the region of the
Gregory-Laflamme instability, for k slightly smaller than
threshold value, we observe tiny oscillations and instability
growth. We also find the level crossing of imaginary parts
of quasinormal modes between the fundamental mode and
the first overtone mode.

The paper is organized as follows. Section II gives basic
formulas for the black string perturbations and the wave
equation for the scalar type of gravitational perturbations.
Section III analyzes quasinormal modes of black strings in
frequency domain with the help of the Frobenius method,
and in time domain by the Gundlah-Price-Pullin method.
We also discuss features of the Gregory-Laflamme insta-
bility using the obtained results. The final section is de-
voted to the conclusion.

II. BASIC FORMULAS

In this section, we shall briefly review the results of the
paper [7], where the wave equation for the scalar type of
gravitational perturbations was obtained. This wave equa-
tion will be our starting point for numerical investigation.

For the static string in D ¼ nþ 4 space-time dimen-
sions, the background metric can be written as

ds2 ¼ g��dx
�dx� ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�2
nþ1 þ dz2;

(1)

where

fðrÞ ¼ 1�
�
rþ
r

�
n
;

and d�2
nþ1 is the metric on a unit ðnþ 1Þ-sphere. Various

properties of black strings have been extensively studied in
recent years and we refer a reader to the papers [11–26] for
more detailed information on black strings.

The z-direction is periodically identified by the relation
z ¼ zþ 2�R. We study perturbations of an ðnþ
1Þ-spherically symmetric solution with the Killing vector
in z-direction. Therefore, we can write perturbations in the
form

�g�� ¼ eikza��ðt; rÞ; k ¼ m

R
; m 2 Z:

The perturbed vacuum Einstein equations have the form

�R�� ¼ 0: (2)

The perturbations can be reduced to the form, where the
only nonvanishing components of a�� are

att ¼ ht; arr ¼ hr; azz ¼ hz;

atr ¼ _hv; azr ¼ �ikhv:

The linearized Einstein equations give a set of coupled
equations determining the four radial profiles above.

However, we may eliminate hv, hr, and ht from these
equations in order to produce a single second order equa-
tion for hz:

€h z ¼ fðrÞ2h00z þ pðrÞh0z þ qðrÞhz; (3)

where

pðrÞ ¼ fðrÞ2
r

�
1þ n

fðrÞ �
4ð2þ nÞk2r2

2k2r2 þ nðnþ 1Þðrþ=rÞn
�
;

qðrÞ ¼ �k2fðrÞ 2k
2r2 � nðnþ 3Þðrþ=rÞn

2k2r2 þ nðnþ 1Þðrþ=rÞn
:

Defining

hzðt; rÞ ¼ r�ðn�1Þ=2

2k2r2 þ nðnþ 1Þðrþ=rÞn
�ðt; rÞ;

we can reduce the Eq. (3) to the wavelike equation

�
@2

@t2
� @2

@r2?
þ VðrÞ

�
� ¼ 0; (4)

where dr? ¼ dr
fðrÞ is the tortoise coordinate. Here, the ef-

fective potential VðrÞ is given by

VðrÞ ¼ fðrÞ
4r2

UðrÞ
ð2k2r2 þ nðnþ 1Þðrþ=rÞnÞ2

;

where

UðrÞ ¼ 16k6r6 þ 4k4r4ðnþ 5Þð3fðrÞ � 2nþ 3nfðrÞÞ
� 4k2r2nðnþ 1Þðnðnþ 5Þ þ fðrÞð2n2 þ 7nþ 9ÞÞ
�

�
rþ
r

�
n � n2ðnþ 1Þ3ðfðrÞ � 2nþ nfðrÞÞ

�
rþ
r

�
2n
:

The above effective potential does not vanish at asymp-
totic infinity but has an effective ‘‘mass’’ term, containing
k, at the spatial infinity.

III. EVOLUTION OF PERTURBATIONS
ANALYZED WITH THE FROBENIUS METHOD

AND TIME-DOMAIN INTEGRATION TECHNIQUE

First of all, let us briefly describe the two methods which
we used here: the Frobenius method (frequency domain)
and the Gundlach-Price-Pullin method (time domain).
In time domain, we study the black string ringing using a

numerical characteristic integration method [27], that uses
the light-cone variables u ¼ t� r? and v ¼ tþ r?. In the
characteristic initial value problem, initial data are speci-
fied on the two null surfaces u ¼ u0 and v ¼ v0. The
discretization scheme we used, is

�ðNÞ ¼ �ðWÞ þ�ðEÞ ��ðSÞ

� �2 VðWÞ�ðWÞ þ VðEÞ�ðEÞ
8

þOð�4Þ; (5)

where we have used the following definitions for the
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points: N ¼ ðuþ �; vþ �Þ, W ¼ ðuþ �; vÞ, E ¼
ðu; vþ �Þ and S ¼ ðu; vÞ.

In frequency domain we used the well-known Frobenius
method [28]. In order to study the QN spectrum in fre-
quency domain, we have separated time and radial coor-
dinates in (3)

hzðt; rÞ ¼ e�i!th!ðrÞ:
Here h!ðrÞ satisfies the quasinormal mode boundary con-
ditions, which are purely ingoing wave at the event horizon
and purely outgoing wave at the spatial infinity. Thus, the
appropriate Frobenius series are

h!ðrÞ ¼
�
1� rþ

r

��i!rþ=n
ei

ffiffiffiffiffiffiffiffiffiffiffi
!2�k2

p
rrðnþ3þ�Þ=2yðrÞ; (6)

where � ¼ ið2!2�k2Þrþffiffiffiffiffiffiffiffiffiffiffi
!2�k2

p for n ¼ 1 and � ¼ 0 for n > 1. It is

crucial that yðrÞmust be regular at the event horizon and at
the spatial infinity and can be expanded as

yðrÞ ¼ X1
i¼0

ai

�
1� rþ

r

�
i
:

Substituting (6) into (3), we have found that the coeffi-
cients ai satisfy a ð3nþ 5Þ-term recurrence relation. We
found the coefficients of the recurrence relation, and then
we obtained the equation with the infinite continued frac-
tion, which is algebraic equation with respect to the QN
frequency !. Numerical solutions of this algebraic equa-
tion give us the QN spectrum.

Now let us discuss the obtained results for QN modes
and time-domain profiles. The Frobenius method for the
considered cumbersome potential gives rise to a number of
technical difficulties: first, the convergence of the
Frobenius series is rather slow. Second, when searching
for the solutions of the algebraic equation in the region
close to the threshold of instability, one needs very good
initial guess for ! to ‘‘fall’’ into the minimum of the
continued fraction equation. This can be easily understood.
As we shall see from the time-domain integration, the
dominant solution in the threshold point corresponds to
some static solution with ! ¼ 0, so that the nearby funda-
mental mode has tiny real and imaginary parts. The
Frobenius method naturally requires slow convergence
and excellent initial guess for ! for such small !.

In Tables I, we have listed fundamental mode !0, first
!1, and second !2 overtones of spherically symmetric
black string perturbations in the case of n ¼ 1. First, we
notice the level crossing of imaginary part of quasinormal
modes between the fundamental mode and the first over-
tone mode. This level crossing is peculiar to the black
strings. As k grows, the first overtone !1 decreases its
imaginary part, becoming the fundamental mode, reaching
purely real frequency (quasiresonance) at k � 0:94 and
then disappearing. The second overtone, as well as the

fundamental purely imaginary mode, increases its damping
rate with k.
In Table II, we listed dominant QNMs of spherically

symmetric black string perturbations in the case of n ¼ 2.
We can see that the fundamental mode near the threshold
of instability has no real part. Yet, higher overtones have
detectable real parts.
In Table III, we listed dominant QNMs of spherically

symmetric black string perturbations in the case of n ¼ 3.
We can see the level crossing of imaginary part of quasi-
normal modes between the fundamental mode and the first
overtone mode.
The real part of the second mode (!1 in Tables I and III)

asymptotes to k at large k, while the imaginary part mono-
tonically decreases when k is increasing. The third mode
does not asymptote to k, but has monotonically decreasing
real and imaginary parts as can be seen from Fig. 1.
Because of the risk of falling into another overtone, in
order to obtain the higher overtones we had to start from
the D-dimensional black holes with k ¼ 0, for which the
QN frequencies are known [29], and then to ‘‘move’’
towards higher k in the Frobenius method with a very small
step (see Fig. 1).

TABLE I. Fundamental mode (!0) found by the time-domain
integration, first (!1) and second (!2) overtones of spherically
symmetric black string perturbations (n ¼ 1) found by the
Frobenius method. As k grows, the first overtone decreases its
imaginary part, becoming the fundamental mode, reaching
purely real frequency (quasiresonance) at k � 0:94 and then
disappearing. The second overtone, as well as the fundamental
purely imaginary mode, increases its damping rate with k.

k !0 (t-d) !1 (Frob.)

0.84 þ0:011i 0:802� 0:0173i
0.85 þ0:008i 0:810� 0:0157i
0.86 þ0:005i 0:818� 0:0140i
0.87 þ0:002i 0:827� 0:0124i
0.88 �0:001i 0:835� 0:0107i
0.89 �0:004i 0:844� 0:0090i
0.90 �0:007i 0:852� 0:0074i
0.91 �0:011i 0:861� 0:0058i
0.92 �0:014i 0:870� 0:0042i
0.93 �0:017i 0:879� 0:0025i
0.94 �0:021i 0:888� 0:0007i

k !2 (Frob.)

0.8 0:361� 0:632i
0.9 0:373� 0:679i
1.0 0:378� 0:724i
1.1 0:374� 0:767i
1.2 0:364� 0:806i
1.3 0:347� 0:841i
1.4 0:324� 0:870i
1.5 0:294� 0:894i
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An essential advantage of the time-domain method in
comparison with the Frobenius method is that we do not
have any decreasing of the convergence or loss of accuracy
when approaching the point of instability. Therefore our
time-domain method is more complete than the frequency
one, at least for the dominant mode, which can always be
extracted from the time-domain picture. In Fig. 2, one can
see examples of time-domain profiles for various n and a
fixed k. There one can see that for n � 3 the intermediate
late-time asymptotic is a power law like

� / t�ðnþ6Þ=2; n � 3;

while for other n, the asymptotics are

� / t�0:93; for n ¼ 1; � / t�1:2 for n ¼ 2:

Let us note that this asymptotic apparently should be
considered as intermediate. It is expected to go over into
other power law ones at very late times, as it takes place for
massive fields in general [30–33].

Let us note, that k plays the role of the effective mass. At
asymptotically late time we observe power-law damped
tails, which have an oscillation frequency equal to k,
resembling asymptotical behavior of massive fields near

Schwarzschild black holes. The first overtone’s behavior is
qualitatively similar to that of the fundamental mode for
massive fields of higher-dimensional Schwarzschild black

TABLE II. Dominant QNMs of spherically symmetric black
string perturbations (n ¼ 2) found with the time-domain and the
Frobenius method. For k � 1:4 the !0 mode is not dominating
anymore and is difficult for detection by the time-domain
integration.

k !0 (t-d) !1 (t-d) !1 (Frobenius)

1.3 �0:012i 1:418� 0:141i 1:396� 0:118i
1.4 �0:047i 1:491� 0:099i 1:483� 0:107i
1.5 n/a 1:584� 0:095i 1:570� 0:096i
1.6 n/a 1:674� 0:088i 1:659� 0:086i
1.7 n/a 1:763� 0:081i n/a

1.8 n/a 1:852� 0:077i n/a

1.9 n/a 1:936� 0:054i n/a

2.0 n/a 2:032� 0:046i n/a

FIG. 2 (color online). Time-domain profiles of black string
perturbations for k ¼ 2:5 n ¼ 2 (red, top), n ¼ 3 (orange), n ¼
4 (green), n ¼ 5 (blue, bottom). Late-time decay of perturba-
tions for n � 3 is / t�ðnþ6Þ=2. For lower n the law of decay is
different: / t�0:93 for n ¼ 1 and / t�1:2 for n ¼ 2.

TABLE III. Dominant QNMs of spherically symmetric black
string perturbations (n ¼ 3) found with the time-domain
method. For k � 2 the !1 mode is a dominating one.

k !0 !1

1.6 �0:007i 1:869� 0:214i
1.7 �0:043i 1:930� 0:211i
1.8 �0:082i 2:013� 0:212i
1.9 �0:130i 2:106� 0:185i
2.0 �0:250i 2:223� 0:179i
2.1 n/a 2:309� 0:172i
2.2 n/a 2:400� 0:167i
2.3 n/a 2:472� 0:161i

0.2 0.4 0.6 0.8 1.0
k

0.2

0.4

0.6

0.8

1.0

Re w

0.2 0.4 0.6 0.8 1.0
k

1.2

1.0

0.8

0.6

0.4

0.2

Im w

FIG. 1 (color online). Real and imaginary part of first two
overtones for n ¼ 2 black string perturbations as a function of
k. The first overtone !1 (blue) approaches ! ¼ k (red line). The
second overtone !2 (green) becomes pure imaginary in stable
region (k� 1).
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holes [34]: we can see long-lived oscillations, which can be
infinitely long-lived modes called the quasiresonances
[32]. The analytical explanation of existence of the quasir-
esonances was found in [33].

(i) ForD ¼ 5 (n ¼ 1), as k grows, the imaginary part of
the first overtone quickly decreases and vanishes for
some threshold value of k, while its real part stays
smaller than the threshold value (see Table I). After
the threshold value of k is reached, the first overtone
‘‘disappears.’’

(ii) For D � 6 (n � 2), the imaginary part of the first
overtone becomes small for large k, while the real
part asymptotically approaches k (see Fig. 1).

Even though the first overtone of the spherically sym-
metric black strings behaves similarly to the fundamental
mode of massive fields near higher-dimensional
Schwarzschild black holes, the other modes have a com-
pletely different behavior. The fundamental mode of a
black string perturbation is purely imaginary. It grows for
small values of k, leading to instability of the black string.
This behavior is common for the unstable modes.

Indeed, let us multiply the Eq. (4) by the complex
conjugated function �? and assume that the dependence
on time is�ðt; r?Þ ¼ e�i!t�ðr?Þ. Let us study the integral
of the obtained equation

I¼
Z 1

�1

�
�?ðr?Þd

2�ðr?Þ
dr2?

þ!2j�ðr?Þj2 �Vj�ðr?Þj2
�
dr?:

Integration of the first term by parts gives

I ¼ �?ðr?Þ d�ðr?Þ
dr?

��������
1

�1
þ

Z 1

�1

�
!2j�ðr?Þj2 � Vj�ðr?Þj2

�
��������
d�ðr?Þ
dr?

��������
2
�
dr? ¼ 0:

Taking into account the boundary conditions (6), we find
that the imaginary part of the integral is

ImðIÞ ¼ Reð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � k2

p
Þj�ð1Þj2 þ Reð!Þj�ð�1Þj2

þ 2Reð!Þ Imð!Þ
Z 1

�1
j�ðr?Þj2dr? ¼ 0:

Since the sign of Reð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � k2

p
Þ coincides with the sign of

Reð!Þ, the nonzero real part of the quasinormal frequency
implies that the imaginary part is negative. Therefore, the
unstable modes (Imð!Þ> 0) must have zero real part. In
other words, unstable modes cannot be oscillating.

In the stability region, the fundamental mode is also
purely imaginary, but it is a damped mode, whose damping
rate grows quickly with k. Because of its quick growth, this
mode cannot be considered as the fundamental one for
large k. In fact, for larger k (see Tables I, II, and III), the
first overtone turns out to be the fundamental mode (the

mode with the largest lifetime). The real part of the second
overtone decreases, as k grows, and reaches zero for some
value of k, while the imaginary part remains negative.
Let us now look at Fig. 3. At moderately large values of

k, sufficiently far from instability, the profile has the same
form as that for massive fields, yet, when approaching the
instability point the real oscillation frequency (Re!) and
the decay rate (Im!< 0) decrease considerably. After
crossing the instability point we observe that starting
from some tiny values, Im!> 0 are slowly increasing
(while Re! is still zero for the fundamental mode and
tiny oscillations, observed in the time domain, come
from the next decayed mode). Therefore we conclude,
that the there is some static solution ! ¼ 0 of the wave
equation (4), which shows itself exactly in the threshold
point of instability. We would say that this picture of
instability is natural, if the instability develops on the
fundamental mode. However, if instability occurs at higher
multipoles ‘, as it takes place for instance in the Gauss-
Bonnet theory [2], the picture of instability is quite differ-
ent: growing modes appear only after rather long period of
decaying oscillations (see [2]). Note also, that here we
confirmed the threshold values of k found in [7] with a
very good accuracy by the time-domain integration (see for
instance Fig. 3 for n ¼ 1). Thus the threshold values are:
k ¼ 0:876 for n ¼ 1, k ¼ 1:269 for n ¼ 2, k ¼ 1:581 for
n ¼ 3, k ¼ 1:849 for n ¼ 4.
Finally, in Fig. 4, we can see the region of the profiles

where the period of the quasinormal ringing goes over into
the power-law tail behavior. Close to the critical point,
there exists a period where the oscillation ceases. This is
because the pure damping mode becomes the fundamental
mode near the critical point.

FIG. 3 (color online). Time-domain profiles of black string
perturbations for n ¼ 1 k ¼ 0:84 (magenta, top), k ¼ 0:87
(red), k ¼ 0:88 (orange), k ¼ 0:9 (green), k ¼ 1:1 (blue, bot-
tom). We can see two concurrent modes: for large k the oscillat-
ing one dominates, near the critical value of k the dominant
mode does not oscillate (looks like exponential tail), for unstable
values of k the dominant mode grows. The plot is logarithmic, so
that straight lines correspond to an exponential decay.
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IV. CONCLUSION

We have numerically studied the Gregory-Laflamme
instability through quasinormal modes. Let us stress three
main results obtained here:

(1) We have found the quasinormal modes and late-time
tails for the scalar type of gravitational perturbations
of D-dimensional black strings for various D, that is
for the type of perturbations where the Gregory-
Laflamme instability forms in the long wavelength
regime.

(2) The time-domain profiles indicate that the threshold
instability value of k corresponds to dominance of
some static solution ! ¼ 0.

(3) Near the instability point (in k) the fundamental
mode is pure imaginary (nonoscillating), and, as k
is increasing, the lifetime of the second mode is
increasing, so that at some moderate k both modes
are dominating at the late time of the ringing. At
larger k, the dominance goes over to the second
(oscillating) mode, as to the longer lived one.

Our research could be improved in a number of ways.
First of all, one could compute QNMs for higher multipole
numbers, starting from the effective potential derived in

[35] and also for other types of gravitational perturbation.
Though vector and tensor types of perturbations do not
contain instabilities, such investigation would give us com-
plete data on QNMs and evolution of gravitational
perturbations.
The main limitation of our analysis is that we cannot say

what happens with unstable black strings for some time
since the moment of initial perturbations: the perturbations
will grow and become large, so that the linear approxima-
tion will not be valid anymore. However, it is beyond the
scope of this paper.
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FIG. 4 (color online). Time-domain profiles of black string perturbations for n ¼ 4 k ¼ 2:2 (red, left top), k ¼ 2:3 (orange, right
top), k ¼ 2:4 (green, left bottom), k ¼ 2:5 (blue, right bottom). Quasinormal ringing and tails have the same frequency of oscillation
which is close to k. One can see a period where the oscillation ceases close to the critical point.
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