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The ergoregion instability is known to affect very compact objects that rotate very rapidly and do not
possess a horizon. We present here a detailed analysis on the relevance of the ergoregion instability for the
viability of gravastars. Expanding on some recent results, we show that not all rotating gravastars are
unstable. Rather, stable models can be constructed also with J/M? ~ 1, where J and M are the angular
momentum and mass of the gravastar, respectively. The genesis of gravastars is still highly speculative and
fundamentally unclear if not dubious. Yet, their existence cannot be ruled out by invoking the ergoregion
instability. For the same reason, not all ultracompact astrophysical objects rotating with J/M? < 1 are to

be considered necessarily black holes.
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L. INTRODUCTION

Gravastars have been recently presented by Mazur and
Mottola [1] as a new exact solution to the Einstein equa-
tions. In the original suggestion these are compact, spheri-
cally symmetric, and nonsingular objects that can be taken
to be almost as compact as black holes. In this “three-
layer” model, the high compactness is supported by a de
Sitter core, surrounded by a shell of matter, and the exterior
vacuum spacetime is, of course, that of the Schwarzschild
solution.

According to the original picture proposed in Ref. [1], a
massive collapsing star could go through a phase transition
when its radius approaches R = 2M, forming a gravastar
instead of a black hole. Although the dynamical processes
that would lead to the formation of a gravastar are far from
being understood and could probably be described as rather
exotic, the final state can be described by an exact (and
fairly simple) solution of the Einstein equations. This is
what stimulates our interest in this matter.

The original gravastar model has inspired many subse-
quent works, but always describing stationary solutions
(except from Ref. [2], as we will see below). A related
simplified model with an infinitesimally thin shell was pro-
posed in Ref. [3] and later also generalized in Ref. [4].
Several possibilities for the interior solution have been
considered in Refs. [5-7], among others. More recently, a
solution for electrically charged gravastar configurations
was proposed in Ref. [8] and limits on the existence of
gravastars from astronomical data were considered in
Ref. [9].

Also an effort has been made to assess the properties of
gravastars when these are perturbed [10,11]. The result of
this analysis has lead, among other things, to the evidence
that perturbations in spherical gravastars can be used to
discriminate them from black holes, thus removing one of
the most serious consequences of the existence of such
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ultracompact objects [11]. Note that hereafter we define as
ultracompact any stellar object whose compactness u =
M /R is much larger than that of typical neutron stars of
comparable mass and angular momentum and which is
m ~ 0.15-0.2. This definition is inevitably weak and am-
biguous, but it aims at focussing on the large compactness
of gravastars as the most relevant property. Clearly, black
holes are always more compact than any possible gravastar
model (although their compactness is only infinitesimally
smaller for nonrotating models) but the relevant point to
bear in mind is that gravastars have compactness much
larger than that of standard stars and comparable (although
smaller) to that of black holes.

Further expanding on the perturbative analysis carried
out in Ref. [11], Cardoso et al. [2] have recently considered
the properties of perturbed and rotating gravastars and
assessed, within the slow-rotation approximation, their sta-
bility against the “ergoregion instability.” We recall that
such instability affects rapidly rotating and very compact
stellar objects which do have an ergoregion but do not have
an event horizon [12,13].

The Kerr black hole is a good example of an object that
has an ergoregion. But an ergoregion can also develop in
compact stars that are sufficiently rapidly rotating. In this
region, the relativistic frame dragging is so strong that no
stationary orbits are allowed. All trajectories of particles in
this region must rotate in the same direction of the rotation
of the star.

Because of this effect, some particles in the ergoregion
can be measured by an observer at rest at infinity as having
negative energy. This happens because this observer mea-
sures the energy of the particles by projecting their four-
momentum vectors onto his four-velocity. As the observer
is stationary (and no stationary trajectories are allowed
inside the ergoregion), his four-velocity is outside of the
light cone of the particles in the ergoregion. This causes
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some of these particles to have their energy measured as
negative by the observer at infinity.

The instability occurs then in the following way. From
an initially small perturbation with negative energy trapped
in the ergoregion, one can extract positive energy (that
leaves the star and goes to infinity) by increasing the
negative energy inside the ergoregion (thus conserving
the total energy). As the negative energy trapped in the
ergoregion increases, the star radiates even more positive
energy to infinity and this process leads to the instability.
This process is very general, and scalar, electromagnetic,
and gravitational waves become unstable in a star with an
ergoregion.

This paper is dedicated to reconsidering the analysis
carried out by Cardoso et al. [2] and to extend it to a larger
space of possible models, taking into account the limits on
the thickness of the matter shell and on its compactness.
When doing this, we confirm the results of Cardoso et al.
[2] for their models but also show that the conclusions
drawn were excessively restrictive. In particular we show
that not all rotating gravastars are unstable to the ergore-
gion instability. Rather, we find that models of rotating
gravastars without an ergoregion (and therefore stable) can
be constructed also for extreme rotation rates, namely, for
models with J/M? = 1, where J and M are the gravastar’s
angular momentum and mass, respectively.

The paper is organized as follows: in Sec. II we briefly
review our gravastar model and the slow-rotation approxi-
mation. In Sec. III we develop the equations for scalar
perturbations and present the WKB approximation used. In
Sec IV we present our results and analyze the behavior of
the instability in the space of parameters and in Sec. V we
present our concluding remarks. We use ¢ =G =1
throughout the paper.

II. A ROTATING GRAVASTAR MODEL

We start our analysis by adding a uniform rotation to the
simple fluid gravastar model with anisotropic pressure
presented in Ref. [11]. We recall that the use of anisotropic
pressures was introduced by Cattoen et al. [14] to remove
in part the complications produced by the infinitesimal
shells in the original gravastar model of Mazur and Mot-
tola [1]. In this way, the anisotropic pressure replaces the
surface tension introduced by the matching of the metric in
the infinitesimally thin shells. Although the use of an an-
isotropic pressure is essentially arbitrary, as arbitrary are
the equations of state used to describe such a pressure, it
has the appealing property of being continuous and thus of
allowing one to build equilibrium models without the
presence of infinitesimally thin shells and thus look more
seriously into the issue of stability.

We write therefore the line element for a finite-thickness
rotating gravastar with anisotropic pressures within the
slow-rotation approximation (namely at first order in the
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angular velocity in the small parameter )/, where
is the Keplerian limit), as

ds? = —e"Vds* + eAVdr? + r2d6>
+ r2sin0(d¢p — w(r)dt)?, (1)
together with the energy momentum tensor given by
T#, = (p + pJutu, + pé*, + (p: = p)sts,, (2)

where p is the energy density of the gravastar, p, and p, are
the radial and tangential pressures, respectively. The vector
u,, is the fluid four-velocity,

ubu, = —1, u"=u? =0, u® = Qu',
u' = [—(gy + 2084 + Qg44)17 %
and the vector s* is orthogonal to the fluid four-velocity,
(s, =354=0). (3)

The functions »(r) and A(r) in the line element (1) are
given in terms of the mass m(r) and the radial pressure
p,(r), as in the nonrotating case,

Mg = T —
sHs,, 1, uts, 0

er =120 @
L 2m(r) + 87rip, 5)

r(r — 2m(r))

where a prime denotes a (total) radial derivative. As usual,
we define the gravitational mass within a radius r as
m(r) = [, 4mr’pdr and

Po, O=r=n
p(r)=1arr +br*+cr+d, rn<r<r,, (6
0, rhn=r

with the coefficients a, b, c, d given by

2
= (M)
3po(ry, + 1)
p= —2Po 623 v 8)
6porr
_ P((;Bl 2 9)
(r3 —3r,r3)
d= Po\ 63 172 , (10)
where 6 = r, — ry is the “thickness” of the gravastar and
I5M
Po (11)

B 27 (r; + rz)(Zr% + i+ Zr%)'

The equation of state used for p,(p) serves here only as
a closure relation and is therefore chosen to be in the
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simplest possible form, namely, a polynomial of the type

[10,15]
P =[a—(a+ 1)(%)2](%);),

where o = 2.2135 is determined by demanding that the
maximum sound speed c? at which d?p,/dp? = 0 coin-
cides with the speed of light to rule out a superluminal
behavior. Finally, the tangential pressure p; is given by the
anisotropic Tolman-Oppenheimer-Volkoff (TOV) equation

12)

m(r) + 4mrip,
r(1 = 2m(r)/r)
The function w(r) can be shown to be of first order in the

angular velocity () and it describes the dragging of inertial
frames. Formally, it can be obtained from the ’ 4 €Ompo-

nent of the field equations [16]

r 1

R, =87T,", (14)
which gives, for our anisotropic case,
o' + (i 4ari(p + Pr))w/ _16mrlp +p) s
r r—2m r—2m
where
@(r) = Q — w(r), (16)

for the region of the spacetime interior to the gravastar. It is
easy to see that Eq. (15) is equivalent to Eq. (2.25) of
Ref. [2]. In the exterior region, on the other hand, we have

2J 2J
w(r) = =

@w(r)=Q—— or
r
The definition of @ in Eq. (16) deserves some attention and
it corresponds to the difference between (), the angular
velocity of the gravastar (as seen by an observer at rest),
and w(r), which gives the angular velocity of a zero an-
gular momentum observer (ZAMO). Therefore, w(r) is the
angular velocity of the gravastar as seen by the ZAMO.

As a general result in the asymptotically flat limit, the
dragging must go to zero as @ = 2J/r* + O(r™*) for r —
oo, thus defining J as the angular momentum of the space-
time [17]. Demanding now the exterior equations (17) to be
consistent with this asymptotic limit implies immediately
that the integration constant J in (17) should be identified
as the total angular momentum of the gravastar.

A representative behavior of the frame-dragging func-
tion w(r) is shown in Fig. 1, for a gravastar with thickness
of the shell §/M = 0.4 and compactness u = M/r, =
0.45. The frame dragging is obtained by numerically in-
tegrating Eq. (15), with initial conditions w’(r = 0) = 0
and @w(r = 0) finite. As shown in the figure, the solution
for w(r) in the interior of the gravastar is constant
[cf. Egs. (15) and (16)] and monotonically decreases out-
wards. The two integration constants ) and J can then be
determined by matching the interior and exterior solutions

A7
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FIG. 1 (color online). Typical example for the dragging of
inertial frames w(r), for a gravastar with u = 0.45, §/M =
0.4, and J/M? =1 (Q/Q = 0.82). We can see that @ = const
in the interior (r < ry) and @ — 0 in the exterior region (r > r,).

at the boundary r = r,. Finally, in the exterior of the
gravastar, w(r) goes asymptotically to zero [cf. Eq. (17)].

III. SCALAR PERTURBATIONS AND THE
ERGOREGION INSTABILITY

We recall that if a compact relativistic star rotates suffi-
ciently fast, it will posses an ergoregion, namely, a region
in which the frame dragging is so intense that stationary
orbits are no longer possible. Within this region even
massless particles, such as photons, will be involved in
the “drag” and all trajectories will rotate in the prograde
direction. Mathematically, the boundary of the ergoregion
is defined as where the covariant ff-component of the
metric has a zero, i.e.

gy = —e’ + rPw’sin’6 =0, (18)

and it should be noted that the ergoregion does not need to
be restricted to the exterior of the compact star and, rather,
it can also involve regions interior to the star.

The main interest in the existence of an ergoregion in a
compact star stems from the fact that these regions lead
to a secular instability by means of which any initially
small perturbation will grow exponentially in time [2,12].
Clearly, one expects that nonlinear effects will intervene
to limit the growth of the instability once this has reached
a sufficiently high (saturation) amplitude which, however,
cannot be determined on the basis of a linear perturbative
investigation. While determining such an amplitude is of
great physical interest, we will here limit ourselves to a
simple linear analysis of the problem. On the other hand,
we will determine not only if an instability can or cannot
develop but also, and more importantly, the characteristic
time scale for the growth of the instability. Indeed, as
shown already many years ago in Ref. [12], for ultracom-
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pact uniform-density stars, the time scale for the growth
of scalar perturbations via the ergoregion instability can
sometimes be several orders of magnitude larger than
the age of the universe. When this is case, the instability
grows so slowly that the stars are effectively stable even if
the linear analysis reveals that they are mathematically
unstable.

Hereafter we will concentrate on scalar perturbations
and within the WKB approximation. There are many refer-
ences in the literature where this method is described, but
we suggest for instance Ref. [18]. The WKB method (from
Wentzel, Kramers, Brillouin) is used to approximate the
solution of differential equations of the general form

Y'(x) + 0’r(x)y(x) = 0, 19)

where w? > 1. As we will see below, the scalar perturba-
tions that we are considering are described by Eq. (22),
which has the same form as Eq. (19) above. The same
equation is often found to arise in quantum mechanics, but
also in classical physics problems. The key point of the
approximation is the assumption w? > 1 (high frequency
approximation in quantum mechanics). It allows us to
consider that, for every w,, > 1, then r(x) is approximately
constant between two zeros of y,(x). It is easy to see that
this approximation greatly simplifies the integration of
Eq. (19).

Of course, studying the response of a rotating gravastar
to electromagnetic or gravitational perturbations would be
astrophysically more interesting and realistic. However,
the use of scalar perturbations has the important advantage
that in this case one can decompose the perturbations in
spherical harmonics and reduce the perturbation equation
to a single ordinary differential equation, which can be
integrated with very modest computational costs and high
accuracy. In addition, because the order of magnitude for
the growth of the perturbations is expected to be the same
for scalar, electromagnetic, and gravitational perturbations
[this is indeed the case for the decay of perturbations of
different spins in a Schwarzschild spacetime (see Ref. [19]
for some numerical results)], estimating the growth time of
scalar perturbations allows for a simple and direct exten-
sion also to other types of perturbations.

Bearing this in mind, we next proceed to the study of the
massless scalar wave equation in the slowly rotating
gravastar background that we introduced in Sec. II. We
briefly review here the basic steps usually followed in this
type of analysis; such steps can be found in many papers
and are reproduced here only for completeness. The wave
equation

1 d

d
(R =0

can be separated by using the ansatz
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(0, )

/ /
= x(r) exp{—l f <% + 2 i)dr}eimyem(e, $), (1)
2J\r 2 2

where the eigenfrequency o is in general complex, with
o= o, — i/7. As aresult, 7 > 0 leads to an exponential
growth, while 7 < 0 leads to a decay.

In the high m limit (and taking £ = m), Eq. (20) can be
written using Eq. (21) and keeping only the dominant
terms (i.e. first order in w and 1/m) as

¥+ m2T(r 37 = 0, (22)

where m is here the order of the Y, (6, ¢) spherical
harmonics (not to be confused with the mass function
m(r)), 2 = o/m is the negative of the pattern speed of
the perturbation, and T is given in terms of the two rota-
tionally split “effective potentials” V. and V_,

T=e "3 -V)E - V), (23)
v/2
Viz—w xS (24)
r

It is easy to see that the boundary of the ergoregion given in
Eq. (18) coincides, in the equatorial plane, with V, = 0, so
that the ergoregion is effectively contained in the region
where V, <0.

Our stability analysis translates therefore to finding the
complex eigenfrequencies o of the scalar wave modes that
satisfy Eq. (22). However, because these frequencies gen-
erally have the real part being much larger than the imagi-
nary one, i.e., R(o) > IJ(o) (or, equivalently, o, > 1/7),

0.1} MV-+ ]

FIG. 2 (color online). Typical example for the potentials V.,
for a gravastar with u = 0.45, §/M = 0.4, and J/M?> =1
(Q/Qk = 0.82). The first three unstable modes with negative
energy “‘trapped” in the potential well are depicted, as well as
the points r,, rp,, and r, for the £ = m = 1 mode.
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TABLE 1.
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Typical values of J/M?, Q/Qg, rmi, (inner boundary of the ergoregion), ., (outer

boundary of the ergoregion), R (radius at which V. is minimum), and V (R) for the gravastar

with u = 0.45 and 6/M = 0.4.

]/M2 Q/QK rmin/M rmax/M R/M MV+(R)
1.2 0.98 0.500 2411 1.8789 —0.2661
1.0 0.82 0.591 2.321 1.8797 —0.2164
0.8 0.65 0.721 2.231 1.8806 —0.1668
0.6 0.49 0.917 2.146 1.8815 —0.1172
0.4 0.33 1.225 2.071 1.8824 —0.0068
0.2 0.16 1.683 1.987 1.8834 —0.0018

it is a reasonable approximation to consider o as essen-
tially a real number. It is also more convenient to the
problem to use 3 = o/m instead of o itself (see the
appendix for more details).

Furthermore, when considered within the WKB ap-
proximation, the potentials V. (r) determine four different
regions which are reminiscent of those appearing for waves
trapped in the potential well of V. To illustrate this in
more detail we show in Fig. 2 an example of the two
potentials for some typical parameters. In addition, the
figure shows with dotted horizontal lines the frequencies
of the first three unstable modes, i.e. X,,—;, 2,,—3, s0 that
32 can be viewed as an analog of the energy of a quan-
tum mechanical particle. For each of the unstable modes
there is therefore an inner ‘““forbidden” region 0 <r <r,,
an “allowed” region r, <r <r,, a ‘“potential barrier”
r, <r<r. and an external allowed region r > r.. The
points r,, r;, and r. shown in the figure correspond to the
€ = m = 1 mode.

The WKB matching of the wave functions in the four
regions is shown in the appendix, where we present the
derivation of Egs. (25) and (26) below. The unstable modes
are determined by requiring that

m/rhﬁdr=<n+%)77; n=2012... (25)
and
re  d
T = 4exp<2m f \/ITIdr) f ”Eﬁdn (26)
p Tq
where
d \/— e“”
—NT=(C+ ) 27
S ( w) Nis 27

Equation (25) is the classical Bohr-Sommerfeld rule and
determines 2, while Eq. (26) gives the growing time of the
instability. The limits of the integration interval r,, r,, and
r. have the physical interpretation given above for Fig. 2
and correspond, mathematically, to the turning points as
given by the condition V, =3 (or T = 0) and to the
beginning of the free allowed region as given by the

condition V_ = 3. Note also that the use of the absolute
value for T in the first integral of Eq. (26) is due to the fact
that in the interval r, <r <r. (i.e. inside the potential
barrier) 7 < 0 [cf. Eq. (23)].

It is customary in the evaluation of the integral in
Eq. (25) to use an analytical parabolic approximation for
V. (see Ref. [12]). When this is done, the functions A, v,
and V_ are taken to be constants, with their values set to
A(R), v(R), and V_(R), where R is the radius at which V.
has its minimum. This greatly simplifies the calculations
and is a very useful strategy in general. In the case of a
gravastar, however, the potential well in V, is typically
very asymmetric around the minimum of the potential, so
the usual analytical parabolic approximation is not appro-
priated in this case, for it would introduce too large errors
and it has not been used in the numerical solution of
Eq. (26).

Collected in Table I are some typical numerical values
obtained for the potential V, of the gravastar with u =
0.45 and 6/M = 0.4 and different values of J. With these
data it is possible to confirm that both the size of the
ergoregion (which extends from r;,, the inner boundary
of the ergoregion, to r,,, the outer boundary of the
ergoregion, in the notation of the table) and the depth of
the potential well |V, (R)| increase with J, while R remains
essentially unchanged.

IV. RESULTS

We have first checked our results against the values
obtained by Cardoso ef al in Ref. [2] (for 3 and 7) for a
typical model with r; = 1.8, r, = 2.2, and M = 1, with
very good agreement. Based on their findings for this
typical model, which shows a very rapidly growing insta-
bility, they have concluded that the ergoregion instability
would “rule out” the possibility of rotating gravastars to
exist as alternatives to Kerr black holes. However, drawing
a general conclusion from a specific example can be too
restrictive. In view of this, we have decided to reconsider
the issue of whether all of the rotating gravastars are un-
stable to the ergoregion instability and if so over what time
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scales. As we will show in this section, by considering a
much larger space of parameters we reach conclusions
which are rather different from those of Ref. [2].

We start by showing in Fig. 3 how the size of the
ergoregion (taken at the equatorial plane) depends on the
parameters of the gravastar and, in particular, on its com-
pactness w, on its thickness &, and on its angular velocity
), which we take to range from zero to the Keplerian
(mass shedding) limit Qx = (M/r})"/2.

On the left panel of Fig. 3, in particular, we report the
variation of the size of the ergoregion for models with . =
0.45 and different values of 6, with the vertical line signing
the surface of the gravastar. On the right panel, on the other
hand, we obtain essentially the same behavior, but this time
for models with 6/M = 0.4 and different values of .
These plots are to be interpreted as follows: for a given
value of ()/Q on the vertical axis, each of the curves in
the plot provides the values of the inner and outer bound-
aries of the ergoregion. It is then easy to see that the
ergoregion becomes obviously larger for increasing values
of (), but also for increasing values of § and w. It also
should be noted that the ergoregion is mostly (but not
exclusively) contained in the interior of the gravastar, and
it also extends to the exterior region. Most importantly,
however, the local minima in Fig. 3 indicate the first
important result of this investigation: not all rotating
gravastars possess an ergoregion. Rather, for any choice
of compactness and thickness of the gravastar, there exists
a minimum angular velocity (), above which an ergo-
region of finite size develops. In this respect, and not
surprisingly, gravastars behave like rotating compact stars.
It is then a trivial consequence of the above result that
not all rotating gravastars are unstable to the ergoregion
instability.

This conclusion is summarized in Fig. 4, which shows
the minimum angular velocity necessary for the existence

r/M

FIG. 3 (color online).
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of an ergoregion, as a function of both the compactness w
and thickness & of the gravastar. In other words, for any
couple of values of (u, 8) outside of the shaded regions,
the corresponding gravastar will not possess an ergoregion
if spinning below the value of () ,;, at that point. Note also
that in the gray area at the bottom of the figure, an angular
velocity () larger than the mass-shedding limit {)x would
be required for an ergoregion to develop. Similarly, the
gray area at the top of the figure shows the constraints on
the possible (nonrotating) gravastar solutions found in
Ref. [11]. It is important to remark that, as clearly shown
in Fig. 4, the minimum angular velocity (), increases
with decreasing compactness of the gravastars. This be-
havior sets an additional constraint on the parameters of the
gravastars that will be subject to the ergoregion instability:
less compact gravastars would have to rotate with {3 > Qg
to form an ergoregion and are therefore also free from the
instability.

Interestingly, there is a nonsmall portion of the space of
parameters (u, 6) where very rapidly rotating gravastars
exist, do not possess an ergoregion, and are therefore
stable. We recall, in fact, that while black holes have their
angular momentum bounded by the Kerr limit (i.e.
J/M? < 1), stars (and gravastars) are not subject to this
constraint. As a result, as long as they are spinning below
the mass-shedding limit, gravastar models can be built that
are stable and even have J/M? > 1. This is shown in Fig. 5,
which reports the minimum angular momentum necessary
for the existence of an ergoregion, as a function of both u
and §. Gravastars with parameters (w, 8) given below a
curve labeled with some value of J,;,/M? will be stable if
rotating with angular momentum smaller than J,;, (models
on the curve are marginally stable, i.e. with 7 = oo, for that
value of J;,). This is the second important result of this
paper: not all ultracompact astrophysical objects rotating
with J/M?* ~ 1 must be black holes. This conclusion is thus

r/M

Left panel: Change in the size of the ergoregion for fixed compactness u = 0.45, several different values for

8/M (from top to bottom §/M = 0.1, 0.2, 0.3, and 0.4) and increasing angular velocity (), until the Keplerian limit Q. A given value
of () on the vertical axis determines the inner and outer radii of the ergoregion, while the vertical line shows the location of the radius
of the gravastar for all the models: the ergoregion generally starts in the interior of the gravastar and goes up to a radius exterior to the
radius r, of the gravastar. Right panel: Same as the left panel, but for fixed thickness of the shell §/M = 0.4 and different values for u
(from top to bottom u = 0.42, 0.43, 0.45, and 0.47). In this case we do not show the surface radius, since each model has a different

radius r,.
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FIG. 4 (color online). Minimum angular velocity necessary for
the existence of an ergoregion, as a function of both x and 6. If
an ergoregion is present, the instability will set in for a high
enough value of m. In the gray area at the bottom, an angular
velocity () larger than the mass-shedding limit Qg would be
required for an ergoregion to develop. The gray area at the top
shows a constraint on the possible (nonrotating) gravastar solu-
tions found in Ref. [11].

less restrictive than the one drawn by Cardoso et al. in
Ref. [2].

Note that the () is not constant along the J,;, — const.
lines but, rather, it increases in the direction of the region
labeled Qin(Jmin) > Q k. However, as the angular mo-
mentum is increased, the maximum compactness allowed
for the stable models is also reduced, thus indicating a new
bound on the compactness of stable models. We show this

0.44
0.42

0.4
0.38

0.36 Quin(min) > L

1 1 1 1

0.1 0.2 0.3 0.4 0.5
/M

FIG. 5 (color online). Minimum angular momentum necessary
for the existence of an ergoregion, as a function of both u and 6.
Gravastars with parameters (u, 8) given below a curve labeled
with some value of J,;,/M? will be stable if rotating with
angular momentum smaller or equal to J,;,. Note that the ()
is not constant along the lines and increases in the direction of
the region labeled Q i, (Vi) > Q-
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additional constraint on the gravastar’s compactness in
Fig. 6, which reports the maximum allowed compactness
Mmax as a function of the angular momentum J/M?. [This
figure should be compared with the corresponding Fig. 1 of
Ref. [11] where the constraint on the compactness was
shown as a function of the thickness for nonrotating
gravastars. ]

Focusing on J/M? =~ 1, a case which is astrophysically
very interesting [20,21], Fig. 6 shows that it is possible to
construct stable rotating gravastars with J/M? = 1 as long
as their compactness is less than ., = 0.43. Such a
compactness is clearly smaller than that of a black hole
with the same angular momentum (i.e. w = 1), but much
larger than the typical compactness for compact stars and
neutron stars, i.e. 0.15 = u =< 0.2. (We recall that the
maximum compactness for perfect fluid nonrotating
spheres is given by the Buchdahl-Bondi limit u = 4/9 =~
0.44 [22,23]). It is still unclear whether astronomical elec-
tromagnetic observations will (ever) be able to distinguish
a stable rapidly rotating gravastar with u ~ 0.43 from a
rotating black hole with J/M? ~ 1 (see the discussion in
Ref. [24]). Yet, the constraints emerging from Fig. 6 pro-
vide other means (besides the measurement of quasinormal
modes [11]) in which astronomical observations could be
used to distinguish (rotating) gravastars from (rotating)
black holes.

So far all of the considerations made were on the general
properties of rotating gravastars. However, to fix the ideas
and also provide some reference numbers on the frequen-
cies and time scales for the ergoregion, we now discuss in
more detail one typical case which we will assume to be
our reference model (cf. Table I). More specifically, we
consider a gravastar with mass M = 10M¢ and inner and

0.5
0.48F unstable .
rotating gravastars
0.46 1
5
g 044 :
= stable
0.42f rotating gravastars 1
0.4} )
038002 04 06 08 1 12

JIM?

FIG. 6. Maximum compactness ., that a stable gravastar
can have in terms of the angular momentum J/M?. For a given
value of J, gravastars with u > u.<(J) will be unstable. The
maximum value for the compactness is obtained for § — 0. This
figure should be compared with the corresponding Fig. 1 of
Ref. [11].
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outer radii r; = 1.8M =27 km, r, = 2.2M = 32 km (or,
alternatively, u =~ 0.45, §/M = 0.4). Its mass-shedding
spin frequency will be vg = Qg /27 =990 Hz. Such a
gravastar will be stable (because without ergoregion),
for J/M? < 0.13 (or Q/Qg =< 0.10). Conversely, if the
gravastar is set to rotate at a higher rate, namely, with
J/M? ~0.22 (or Q/Qg ~0.18), an ergoregion will be
present and the instability will develop over a time scale
7~ 107 s, with € = m = 4 being the lowest unstable
mode. Note that such a time scale is comparable with the
Hubble time scale and thus the rotating gravastar will be
physically stable although mathematically unstable (a sim-
ilar result holds true also for compact uniform-density stars
[12]). In practice, it is necessary to spin the same gravastar
up to J/M?=0.61 (or Q/Qg =~0.50) in order for the
instability to develop on a time scale of the order of 1 s,
with the € = m = 1 being the lowest unstable mode.

A more complete picture of the real and imaginary parts
of the eigenfrequencies for our representative rotating
gravastars is shown in Fig. 7, where we have extensively
explored the parameter space (u, 8, J). More specifically,
the top row shows in the left panel the time scale 7 of the
instability (with € = m = 1) as a function of the angular
momentum J of the gravastar, for fixed thickness of the
shell /M = 0.4 and different compactnesses u (from left
toright u = 0.47, 0.45, 0.44, and 0.43). As a reference the
horizontal line shows a time scale of 1 s for gravastars with
M = 10M. Similarly, the right panel of the top row gives
the frequency 2 as a function of J for the same cases in the

6
10 0.47 0.45 0.44 0.43

0.4)

10%k

UM (J,u,6/M

0.45, 9)

M (J, n

3 L L L L L
10 0.2 0.4 0.6 0.8 1
JIM?

FIG. 7 (color online).
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left panel. The bottom row, on the other hand, shows the
same quantities as the top one, but for gravastars with fixed
compactness u = 0.45 and varying thickness of the shell &
(from left to right §/M = 0.6, 0.5, 0.4, 0.3, and 0.2).

Note that the time scale for the growth of the instability
increases overexponentially with decreasing angular mo-
mentum J, and this is why a small spin down of the
gravastar is sufficient to make it “effectively stable”
even if it possesses an ergoregion and is mathematically
unstable. Note also that the frequency 3 increases only
linearly with decreasing J. Finally, to aid those interested
in reproducing our results and for code-testing purposes,
we have collected in Table II some numerical values for the
first unstable mode relative to our reference gravastar
(cf. Table I). Clearly, the values of 7 are very sensitive to
J, but the big difference in 7 seen between the gravastar
with J/M?* = 0.4 and the one with J/M? = 0.2 is also due
to the fact that in the first case the lowest unstable mode
is still € = m = 1, while in the second case it is already
£=m=>5.

The concluding remark of this section should be one of
caution. All of our treatment is based on the slow-rotation
approximation, yet we have stretched it to compute also
models with /Q, = 1. Furthermore, while the WKB
formulas we used were derived in the high-m limit, we
have effectively used them also for very low values of m
and found, in particular, that most rotating gravastars are
unstable already for £ = m = 1 mode, as a result of their
high compactness. Although our approach is not dissimilar

0.47 0.45 0.44 0.43
-0.05

0.4)

-0.1

-0.15

ME (J,1,/M

02+

-0.25
0.2 0.4 0.6 0.8 1

JIM?

-0.05

045, 8)

-0.1

-0.15

ME (J,

-0.2

-0.25

0.2 0.4 0.6 0.8 1
JM?

Top row, left panel: Time scale 7 of the instability (with € = m = 1) as a function of the angular momentum J

of the gravastar, for fixed thickness of the shell §/M = 0.4 and different compactnesses u (from left to right u = 0.47, 0.45, 0.44, and
0.43). The horizontal line shows a time scale of 1 s for gravastars with M = 10M,. Top row, right panel: Frequency 2, of the instability
as a function of J for the same cases in the left panel. Bottom row: The same as in the top row, but for gravastars with fixed compactness
u = 0.45 and varying thickness of the shell & (from left to right §/M = 0.6, 0.5, 0.4, 0.3, and 0.2).
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TABLE II.
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Typical values of J/ M2, Tas Tp» Tes 2, and 7 for the first unstable mode of the

gravastar with u = 0.45 and §/M = 0.4. Note that all values but the last one refer to the € =

m = 1 mode.

J/M? ro/M ry/M r./M M3 /M Unstable mode
1.2 1.24 2.048 4.31 —0.20 1.24 X 103 {=m=1
1.0 1.24 2.052 5.76 —-0.15 2.35 X 103 {=m=1
0.8 1.24 2.056 8.88 —-0.10 5.96 X 103 {=m=1
0.6 1.25 2.061 18.1 —0.052 2.73 X 10* {=m=1
0.4 1.25 2.066 350 —0.0027 1.12 X 107 {=m=1
0.2 1.70 1.982 592 —0.0017 1.19 X 10% £=m=5

to the one made in related works [2,12], it is important to
underline that we expect our estimates to be accurate only
for slowly rotating gravastars. On the other hand, we also
believe that the qualitative (and possibly quantitative) pic-
ture derived here will remain unchanged also when a more
sophisticated analysis is performed.

V. CONCLUSIONS

Motivated by recent work on this subject [2], we have
investigated the ergoregion instability in rotating grava-
stars, exploring a large space of parameters and taking into
account the limits on the thickness of the matter shell and
on the compactness. While we confirm the results of
Cardoso et al. [2] for the models they have considered,
we also draw two conclusions which are less restrictive
than theirs. First, we find that models of rotating gravastars
without an ergoregion (and therefore stable) can be con-
structed even for extreme rotation rates, namely, for
models with J/M? ~ 1. Hence, not all rotating gravastars
possess an ergoregion. Second, because stable gravastar
models with J/M? ~ 1 can be constructed, we conclude
that not all ultracompact astrophysical objects rotating
with J/M? ~ 1 must be black holes.

Besides clarifying these two important aspects of rotat-
ing gravastars, our analysis also helps to further constrain
the properties of these ultracompact objects. Building on
our initial work [11], in fact, we have computed an addi-
tional constraint on the maximum compactness of a grav-
astar which is to be stable to the ergoregion instability.
Such a maximum compactness is still much larger than that
of typical neutron stars but also smaller than that of black
holes with J/M? ~ 1. This should help in the important
effort of distinguishing (rotating) gravastars from (rotat-
ing) black holes.
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APPENDIX

We review the derivation of the WKB formulas (25) and
(26) used in this paper, following closely the treatment
given in Ref. [12]. We have chosen to include this appendix
in the paper, even though the usual WKB approximation is
standard in quantum mechanics textbooks, because the
case in question is somewhat more complicated than the
usual textbook exercises. The equation to be solved is
[cf. Equation (22)]

¢+ m?T(r,2) ¢ =0, (Al)
which has four different regions with distinct physical
behavior, as described in Sec. III. We are interested in
finding the purely outgoing modes of this equation.
These are given as poles of the scattering amplitude § =
Cout/ Cin» where C,,, and Cj, are functions of the complex
frequency o (2 = o/m and we assume a ¢’’’ dependence
for ¢) and denote the amplitude of the outgoing and
incoming waves at infinity, respectively. In a pole of S,
we will have C;;, = 0 and C,,, # 0. For the modes with
small imaginary part, R(o) > J(o), it will be sufficient to
determine the eigenvalue o approximately as a real fre-
quency (on the real axis). In this spirit we define an
auxiliary function (o) = [S(o™)]*, such that if S has a
pole at Ops then S has a pole at o-f,, where (*) denotes
complex conjugation.

If we restrict ourselves now to o € R, we will have
conservation of energy and

S| = 1= S(@)[S()] = 1= S(0) =[S(0)]™", (A2)
where the last result is obtained because o is real. As the
relation above is valid for all real values of o, it is valid
everywhere S and S are analytic functions. Therefore,
returning to the complex plane, we can state that if § has
a pole at o7, then S has a zero at o, (and still a pole at o,
which we assume to be simple), and can be written ap-
proximately as
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o, —1i/7

£ 3

-0
P:S_eZlBO
0'—0'r+1/7'

0'_0'p

s = o6 L (A3)

Now we turn to the specific form of the solutions of
Eq. (Al) in the four different regions as discussed in
Sec. III: region I or inner forbidden region, region II or
allowed region, region III or ““potential barrier”, region IV:
r > r, or external allowed region (cf. Fig. 2). The connec-
tion formulas for the wave function to the left and right of a
turning point can be found in many standard textbooks on
quantum mechanics (e.g. [25]) and amount to

cos(/ kdx — —) T exp( /: kdx), (A4)
j]; sin(j: kdx — g) — = \/LE exp([j kdx) (AS)

for a turning point x = a to the right of the classical re-
gion, and

ﬁ exp(— /Xh kdx) — \/i% cos(ﬁx kdx — g) (A6)

_ ﬁ exp( [ ’ kdx) — % sin( fb " kdx — g) (A7)

for a turning point x = b to the left of the classical region.
In this notation, the equation to be solved is d?/dx* +
K(x)i = 0 or d*¢/dx* — K*(x)¢p = 0, with k% , k? > 0.
We will need this formulas in what follows, to connect
the wave function in the different regions. The form of the
radial function (r) in region I is determined by the
regularity condition at the center (¢ must vanish at r = 0),

Cl Ta
Y = 7r1/2|T|1/4 exp(—m[r \/|T|dr>.

Using now the connection formula (A6), we can obtain the
form of the radial wave function in region II (connecting
through the first turning point r = r,,

(A8)

C, e

_ L : "
= i exe(im [ Tar)
Cie ¥
+ 1/12T1/4 exp( 1mf v dr)

where (= m [ \/Tdr —
solution in regions III and IV as

C r
Y = W CXP(—m/ VITIdr>
rp
C3 r
+ 7r1/2|T|1/4 exp(m[r \/ITIdr>,
b

(A9)

/4. We can now write the

(A10)
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— S oolim [ VTa
v gz xp{im r
Cs
Yy exp( 1m[ \/_dr> (A1)

Combining the expressions for ¢y, ¥y, and ¥y with the
connection formulas (A4)—(A7), we can relate the ampli-
tudes of the waves before and after crossing the potential
barrier. This is done as in a standard scattering exercise,
demanding the continuity of the wave function and its first
derivative across the turning points r;, and r.. The result, as
stated in Ref. [25], is remarkably simple and best expressed
in matrix notation:

<clelf) 1 2n+5  i2n—3) <C4>
Cie ¢ —i@2n — ﬁ 2n + ﬁ Cs )
(A12)

where 1 = exp(m [ e VIT1dr). We can now identify the
amplitudes C, and C5 with the amplitudes C;, and C, of
the incoming and outgoing waves at infinity that we have
introduced in the definition of S. If it is negative, the case in
which we have unstable modes, then C, = C,,; and C5 =
C;,. Inverting now Eq. (A12) in order to obtain C4 and Cs
in terms of C;, they can be substituted in the definition of §
to give

C, (4772

S=—= .
Cs i(4n? — el + (4n?

+1)el¢ —i(dn* — 1)e7 ¢
+ e i

(A13)

As we have discussed above in the beginning of this
appendix, we are interested in finding the purely outgoing
modes, which are poles of the scattering amplitude S. Also,
we made the assumption that these poles will occur for
complex frequencies o, which lie on the complex plane,
but very close to the real axis. But the imaginary part of o,
will only be very small if the “‘barrier penetration” integral
7 is very large. Taking the limit of § as 7 — oo, we have

e —ie ¢

el v e (A1

= —i for n — oo,
unless we have e'¢ —ie™¢ =0, in which case we can
write S as

—47)2(1615 + e %) — (il — e 15)
4172(16lg + e710) — (ield — ™)

(A15)

Therefore we can see that S will have a resonance at a
frequency o, near the frequency for which e¢ — ie™¢ = 0
and thus = nar + 7/4, with n an integer. We can now
write ¢ as a series expansion around o, (o) =nw +
/4 + a,(0c — 0,), where

a, = di'( f:b \/_dr)

a

(A16)

o=0,
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Substituting now (o) into Eq. (A13), we obtain at first
order in (o — o,,) and dropping the index » on «,

¢ = —a(o — o,) + 1/49> +i[a(o — o,) + 1/4797]
 —alo—o,) + 1/492 = i[aloc — o,) + 1/49°]
(A17)

which can then be rewritten in the form of Eq. (A3),

PHYSICAL REVIEW D 78, 084011 (2008)

.o~ o0, —i/4n*a

S (A18)

i .
o— o, +i/4n’a

Combining the definition of { and its expansion and tak-
ing o = o, we finally obtain Eq. (25) and comparing
Egs. (A3) and (A18), we obtain Eq. (26), both presented
in Sec. III.
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