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The walls of bubbles in a first-order phase transition can propagate either as detonations, with a velocity

larger than the speed of sound, or deflagrations, which are subsonic. We calculate the gravitational

radiation that is produced by turbulence during a phase transition which develops via deflagration bubbles.

We take into account the fact that a deflagration wall is preceded by a shock front which distributes the

latent heat throughout space and influences other bubbles. We show that turbulence can induce peak

values of �GW as high as �10�9. We discuss the possibility of detecting at LISA (Laser Interferometer

Space Antennae) gravitational waves produced in the electroweak phase transition with wall velocities

vw & 10�1, which favor electroweak baryogenesis.
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I. INTRODUCTION

One of the possible outcomes of a cosmological phase
transition is gravitational radiation. Although it is difficult
to detect, gravitational radiation provides a direct probe of
the phase transition dynamics, since it propagates freely
until the present epoch. Studies of the gravitational waves
due to phase transitions at the electroweak scale and be-
yond [1] show that the signal may be within the sensitivity
range of LISA (Laser Interferometer Space Antennae) and
the second generation of space-based interferometers.

In a first-order phase transition, bubbles of the stable
phase nucleate and expand, converting the high-
temperature phase into the low-temperature one.
Gravitational waves (GWs) are generated either by the
collisions of bubbles [2–5] or by the turbulence that is
produced in the plasma due to the motion of bubble walls
[3–10]. As bubbles expand, latent heat is released at the
phase boundary. Part of this energy raises the temperature
of the plasma, and another part is converted to bulk mo-
tions of the fluid. For phase transitions in the early uni-
verse, the Reynolds number is large enough for the wall
motion to produce turbulence. In general, the amplitude of
GWs coming from turbulence dominates over bubble
collisions.

The bubble wall can propagate via two modes, namely,
detonation and deflagration. For a detonation, the phase
transition front moves faster than the speed of sound cs,
whereas a deflagration front is subsonic. GWs produced by
detonations have been extensively investigated [1–8]. In
this case, the bubble wall velocity vw depends only on the
ratio of the latent heat to the total energy density, � [11].
Since vw > cs, no signal precedes the detonation front.
Hence, the dynamics of a wall is not influenced by other
bubbles’ walls (except in the collision regions).
Furthermore, the kinetic energy injected into the fluid is

concentrated in a thin region behind the wall. This sim-
plifies the integration of the kinetic energy density profile.
Besides, the temperature in the supercooled phase outside
the bubbles decreases due to the expansion of the Universe.
As a consequence, the nucleation rate � increases expo-
nentially. This justifies modeling it by � ¼ �0e

�t, which
corresponds to linearizing the time dependence of the
exponent. Hence, ��1 is the only time scale in the problem
and determines the duration of the phase transition, �t�
��1, and the mean bubble separation, d� vw�

�1. Thus,
the final result depends only on the parameters � and �.
These features simplify the calculation of GWs.
The case of deflagrations is more difficult. In contrast to

detonations, the deflagration front velocity depends on the
viscosity of the plasma and on the pressure difference
between phases, which in turn depends on the amount of
supercooling. The wall propagates at a subsonic velocity
and is preceded by a supersonic shock front which affects
other bubbles. The shock wave distributes the latent heat
injected by the wall throughout space, causing a reheating
of the Universe and bulk motions of the fluid far away from
thewall. For these reasons, the case of deflagrations has not
received as much attention as the detonation case. In
Ref. [4] an analytic expression is derived for the signal
from bubble collisions. However, in that work the fluid
velocity is left as a free parameter. Deflagrations have also
been considered numerically in Ref. [5].
The spectrum of GWs for the deflagration case thus

depends on several parameters, which are difficult to esti-
mate in a specific model. As a consequence, the results for
detonations have often been used to investigate the GW
production in different phase transitions (see e.g. [1]),
disregarding the fact that the phase transition may actually
proceed via deflagration bubbles. Notice, indeed, that this
is likely the general case. For instance, for the electroweak
phase transition, estimations of the wall velocity give in
general subsonic values vw � 10�2–10�1 [12], which are
favorable for electroweak baryogenesis [13].*megevand@mdp.edu.ar
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The aim of this work is to address the case of deflagra-
tion bubbles with a realistic approach. Thus, we take into
account the fact that the shock waves coming from a
bubble wall influence other bubbles. In Sec. II we describe
the dynamics of deflagration bubbles. One important fea-
ture is that, as a consequence of reheating, the nucleation
rate turns off and the bubble wall decreases during bubble
expansion. Therefore, the approximation � / e�t cannot
be used in this case. Furthermore, the smaller velocities at
the collision time make bubble collisions to be suppressed
relative to turbulence as a source of GWs. In Sec. III we
consider the velocity spectrum of the turbulent fluid that
arises from the motion of deflagration walls, and in Sec. IV
we follow the approach of Ref. [8] to derive the gravita-
tional radiation produced by turbulence in the deflagration
case. In Sec. V we estimate the dependence of the ampli-
tude and peak frequency on the latent heat, the bubble size,
and the wall velocity. We show that for a strong enough
electroweak phase transition, GWs from deflagration bub-
bles may be detected at LISA. Our conclusions are sum-
marized in Sec. VI.

II. PHASE TRANSITION DYNAMICS

A phase transition of the Universe occurs when the free
energy of a system depends on an order parameter � (in
general a Higgs field), which develops a nonzero value. For
a first-order phase transition, there is a temperature range
in which the free energy F ð�; TÞ has two minima sepa-
rated by a barrier. Generally, the high-temperature mini-
mum is � ¼ 0, corresponding to the symmetric phase, and
the low-temperature one is �mðTÞ � 0, corresponding to
the broken symmetry phase. At the critical temperature Tc,
the two minima � ¼ 0 and � ¼ �m have the same free
energy. Below this temperature,�mðTÞ becomes the global
minimum. At a certain temperature T ¼ T0, the barrier
disappears and � ¼ 0 becomes a maximum of the free
energy.

The energy density � and entropy density s are related to
the free energy density by � ¼ TsþF and s ¼
�dF =dT. We assume that the phase with � ¼ 0 is com-
posed of radiation and false vacuum, i.e., F ð0; TÞ �
FþðTÞ ¼ �� � �R=3, where �� is the zero-temperature
energy density of the false vacuum, �� ¼ F ð� ¼ 0; T ¼
0Þ ¼ Vð� ¼ 0Þ, with Vð�Þ the zero-temperature effective
potential, and �R is the energy density of radiation, �R ¼
g��2T4=30, where g� is the number of relativistic degrees
of freedom. Thus, for the high-temperature phase we have
�þ ¼ �� þ �R, and for the low-temperature phase we
have �� ¼ �TF 0� þF�. The pressure is given by p ¼
�F . Hence, at T ¼ Tc both phases have the same pres-
sure. The latent heat l is defined as the energy density
discontinuity l ¼ �� ¼ �þðTcÞ � ��ðTcÞ. Thus, l ¼
Tc�s ¼ �Tc�F 0. We note that in previous works on
GW generation the latent heat is sometimes confused
with the false vacuum energy density (or even with the

free energy density). In fact, notice that in general l can be
anywhere in the range 0< l < �� þ �RðTcÞ. On the other
hand, it can be shown that �� is bounded by 0<�� <
�RðTcÞ=3 (assuming that the vacuum energy vanishes at
T ¼ 0) [14].
The nucleation and growth of bubbles has been exten-

sively investigated (see e.g. [11–21]). According to the
standard picture, bubbles of the stable phase nucleate
with a rate [15]

� � T4e�S3=T; (1)

where S3ðTÞ is the three-dimensional instanton action,
which coincides with the free energy of a critical bubble.
The nucleation rate is extremely sensitive to the tempera-
ture in the range T0 < T < Tc. At the critical temperature
the radius Rc of the critical bubble becomes infinite, so
S3 ¼ 1 and � ¼ 0. In contrast, at T ¼ T0 the radius
vanishes, so S3 ¼ 0 and �� T4

c , which is an extremely
large rate in comparison to H4 � ðT2

c=MPÞ4. Thus, bubbles
begin to nucleate at an intermediate temperature T� for
which � � H4. To get an idea of the dependence of � on T,
consider the thin-wall approximation, which is valid near
the critical temperature. In this case we can write S3 ¼
��F 4�R3

c=3þ �4�R2
c, where � is the surface tension of

the bubble wall. Then we obtain the critical radius Rc ¼
2�=�F and the action S3 ¼ 16��3=3ð�F Þ2. For T � Tc

we can also approximate the free energy difference by
�F � lðTc � TÞ=Tc. Thus, we obtain

S3ðTÞ
T

� 16��3Tc

3l2ðTc � TÞ2 : (2)

Once a bubble is nucleated, it begins to grow. The bubble
radius rapidly becomes much larger than Rc. Because of
the viscosity of the plasma, the bubble walls immediately
reach a terminal velocity vw which is determined by the
pressure difference �p ¼ ��F and the friction with the
surrounding particles. It can be approximated by vwðTÞ ¼
�F ðTÞ=�, where � is a friction coefficient. Using again
the linear approximation for �F we obtain

vw � lðTc � TÞ=�Tc: (3)

For strong phase transitions, the latent heat l and the
amount of supercooling ðTc � T�Þ=Tc will be consider-
able. Notice, however, that the velocity depends also on
the viscosity and can be subsonic even in this case.
We shall assume that the wall propagates as a deflagra-

tion front. Therefore, the wall velocity is lower than the

speed of sound in the relativistic plasma, cs ¼
ffiffiffiffiffiffiffiffi
1=3

p
. In

this case, a shock front precedes the wall with a velocity
vsh * cs. Consequently, the shock front of a bubble soon
influences other bubbles. For vw � cs, the latent heat is
transmitted away from the wall and is quickly distributed
throughout space. This effect can be taken into account by
considering a homogeneous reheating of the plasma as
latent heat is being injected [18]. Even with this simple
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approximation, the evolution of the phase transition must
be computed numerically. Therefore, it is not straightfor-
ward to find relations between thermodynamic parameters
such as l or � and the quantities that characterize the
dynamics, such as the duration of the phase transition or
the bubble number density.

Nevertheless, as we shall see, the general features of the
dynamics of slow bubble walls provide a good deal of
information for the computation of gravitational waves.
As a consequence of reheating, the free energy difference
�F ðTÞ decreases and, according to Eq. (3), the bubble
expansion slows down. This effect will be important if the
latent heat is comparable to the difference �� ¼ �RðTcÞ �
�RðT�Þ. Thus, if l � ��, the temperature will get very
close to the critical one.1 Then, the velocity will decrease
significantly and a long phase coexistence stage will take
place before the transition completes [14,19,20]. In any
case, due to the exponential dependence of the nucleation
rate on temperature, bubble nucleation turns off as soon as
the temperature begins to rise [20,21]. Indeed, notice that
the temperature TðtÞ has a minimum, which separates the
supercooling and reheating stages. According to Eqs. (1)
and (2), the nucleation rate has a maximum at that time,
and due to the extreme dependence of � on Tc � T, the
maximum must be a sharp peak. Hence, the minimum
temperature gives the nucleation temperature T�. Most
bubbles are created in a very short time interval �t� around
the time t� corresponding to this temperature.

For t > t�, the number density of bubbles nb remains

constant. The final size of bubbles is given by d� n�1=3
b .

Most bubbles begin to expand at t � t� with velocity vw �
vi. During reheating the wall velocity decreases, and by the
time bubbles percolate vw will be in general much smaller
than the initial velocity vi. As a consequence, the GW
signal from bubble collisions will be too low. Therefore,
we will consider only GWs from turbulence. The main
turbulence will be generated during the reheating stage,
when vw is still close to vi. The frequency and amplitude
of the GWs will depend on the dynamics of the phase
transition, which is involved. However, as we shall see,
the result will be essentially determined by a few
parameters.

III. TURBULENCE FROM DEFLAGRATION
BUBBLES

Turbulence from stirring in cosmological phase transi-
tions has been extensively studied [5–10]. When turbu-
lence is fully developed, a cascade of energy is established
from larger to smaller length scales, as eddies of each size
break into smaller ones. We define the energy dissipation
rate per unit enthalpy for a given momentum scale k ¼

2�=L,

"k � 1

w

d�turb

dt

��������in
; (4)

where w ¼ �þ p is the enthalpy density, � is the total
energy density of the fluid, p is the pressure, and �turb ¼
whv2i=2 is the kinetic energy density of turbulence. Since
the phase transition occurs in the radiation dominated
epoch, we will make for simplicity the usual assumption2

� � �R. Hence, p � pR ¼ �R=3 and w � wR ¼ 4=3�R.
If the process is stationary, "k gives the rate at which
turbulent energy is received at the scale k from higher
length scales (and transferred to smaller length scales). If
the external source stirs the fluid at a single scale kS ¼
2�=LS, we have a constant rate "k � " for scales L < LS

[7]. In this case the turbulent energy in the cascade is
characterized by the Kolmogoroff spectrum

EðkÞ � 1

w

d�turb

dk
� "2=3k�5=3: (5)

The cascade stops at the damping scale kD ¼ 2�=LD, with
LD � LS, at which the fluid viscosity dissipates the in-
jected energy into heat.
As usual, we assume that the fluid is incompressible and

statistically isotropic and homogeneous. Then, the Fourier
transform of the velocity has the two-point correlation
function

hviðkÞv�
j ðqÞi ¼ ð2�Þ3�3ðk� qÞð�ij � k̂ik̂jÞPðkÞ; (6)

where the angular brackets mean a statistical average.
Notice that hv2ðxÞi gives the kinetic energy density per
unit enthalpy density of the fluid. Therefore, the velocity
spectrum PðkÞ can be related to the energy spectrum EðkÞ.
The relation is EðkÞ ¼ k2PðkÞ=2�2 [22]. From Eq. (5), we
have

PðkÞ � �2"2=3k�11=3 (7)

in the inertial range kS � k � kD. The power spectrum
PðkÞ beyond this range was obtained in Ref. [8] from an
ansatz for the real-space correlation function. We have

PðkÞ � 2�hv2i
8><
>:

2
765L

5
Sk

2 for k� kS
55
81

ffiffiffi
3

p
�ð23ÞL�2=3

S k�11=3 for kS � k� kD
0 otherwise;

(8)

and the normalization of the spectrum is given by

hv2i � ð"LSÞ2=3; (9)

1This is quite generally the case. For strong phase transitions,
we have l� � � ��. For weaker phase transitions, the latent
heat is smaller, but so is ��.

2In fact, the energy density at the beginning of the phase
transition is �þ ¼ �R þ ��. For a thermal phase transition the
false vacuum energy is bounded by �� < �R=3 and is in general
�� � �R [14]. Part of �þ is liberated as latent heat, so that at
the end of the transition we have �� ¼ �þ � l.
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which corresponds to the fluid velocity on the largest scale
LS (see below).

For stationary turbulence, the energy dissipation rate in
Eq. (4) must equal the power that is injected by the source.
Thus, for the case of expanding bubbles we have

" ¼ 1

w
	l

dfb
dt

; (10)

where fb is the fraction of volume occupied by bubbles and
	 is an efficiency factor which quantifies the fraction of
latent heat that goes into kinetic energy of the fluid (a
fraction 1� 	 goes into thermal energy and causes reheat-
ing of the plasma). The shock wave in front of the wall sets
the fluid moving outward with a velocity vf. Hence, the

injected kinetic energy density is

�kin ¼ 1
2wv

2
f: (11)

As the phase transition front moves a distance vw�t, the
energy released is proportional to lvw�t. Assuming for
simplicity a constant fluid velocity up to a distance �cst,
the kinetic energy injected in the time �t will be propor-
tional to �kincs�t. Thus, we have

	 ¼ �kincs
lvw

: (12)

We still need to determine the fluid velocity vf appearing

in Eq. (11). The conservation of energy and momentum
@
T


� ¼ 0 can be applied to the wall discontinuity to

obtain relations for the quantities on both sides of the
wall. Assuming a stationary solution and nonrelativistic
velocities, one obtains the equation (see e.g. [17,22])

wþvþ ¼ w�v�; (13)

where w is the enthalpy, v is the velocity of the fluid in the
rest frame of the phase transition front, and the plus and
minus signs stand for the high- and low-temperature phase
regions, respectively. In the rest frame of the center of the
bubble, the fluid inside the bubble is at rest, the wall
velocity is vw ¼ �v�, and the fluid velocity in front of
the wall is vf ¼ vþ � v�. Using Eq. (13) we obtain

vf ¼ wþ � w�
wþ

vw � ��þ �p

wR

vw; (14)

where �� and �p are the energy density and pressure
differences across the wall. Notice that, even if the tem-
perature is homogeneous, �ðTÞ and pðTÞ are different in
each phase. ��ðTÞ and �pðTÞ depend on the amount of
supercooling. For simplicity, we will assume that the tem-
perature remains close to the critical one, so that �p � 0
and the energy density discontinuity is given by the latent
heat, ��ðTcÞ � l. Therefore, we have

vf � ðl=wRÞvw: (15)

From Eqs. (11), (12), and (15) we obtain

	 ¼ 1
2ðl=wRÞvwcs: (16)

Thus, Eq. (10) gives

" ¼ ð	l=wÞ _fb ¼ ð1=2Þvwcs�
2 _fb; (17)

where we have defined the ratio of the latent heat to the
enthalpy density, � � l=wR.
For the validity of the Kolmogoroff spectrum, it is

important that the energy is injected at a single scale LS.
For the kind of phase transitions we are interested in, all the
bubbles are formed in a short interval �t� around the time
t�. Hence, the number of density of bubbles nb is set at t �
t�. For t > t�, the number of bubbles remains constant, and
the wall velocity vwðTðtÞÞ is the same for all bubbles. The
bubble radius is RðtÞ ¼ R

t
t�
vwðt0Þdt0, and the distribution

of sizes has a small width �R � vwðt�Þ�t� � R. At the
moment of collision the bubble size is given by the distance

between bubble centers, d� n�1=3
b .

In fact, turbulence begins as soon as the shock fronts
collide. The first shocks are emitted at t � t� and collide
when they reach the size d, after a time�d=cs. This time is
much smaller than the total duration �t of the phase
transition. Indeed, for deflagrations the wall velocity is
vw < cs. In addition, as explained in Sec. II, vw decreases
significantly from its initial value vi. Therefore, we have
�t � d=vi > d=cs. Moreover, as mentioned in Sec. I, in
the general case the initial velocity may be already vi �
cs, as suggested by the electroweak case. When shock
fronts collide, they lose their spherical symmetry.
Bubbles continue expanding, and their walls continue in-
jecting energy into the fluid until all space is filled up.
Thus, turbulence begins very soon, at t � t�, and remains
until the phase transition is complete. As bubbles expand,
the latent heat is taken away at the speed of sound, always
stirring the fluid at the same scale LS � d. Hence, it is
reasonable to assume a Kolmogoroff spectrum with kS �
2�=d. Notice that in the detonation case, in contrast, there
will be much more small bubbles (with L � d) than large
ones (with L� d), due to the exponentially increasing
nucleation rate � ¼ �0e

�t. Thus, the small bubbles will
in principle modify the Kolmogoroff spectrum in the deto-
nation case.
It is important to estimate the turnover time scale of an

eddy, �L � L=vL, where vL is the characteristic fluid
velocity on a length scale L. The rate at which an eddy
breaks into smaller ones is usually assumed to be roughly
���1

L . Thus, the rate at which energy is transferred in the

cascade is "� v2
L�

�1
L . Therefore, we have vL � ð"LÞ1=3

and �L � "�1=3L2=3. The turnover frequency is given by

!k ¼ !Sðk=kSÞ2=3, with !S ¼ vLS
=LS.

Both vL and �L increase with L. The maximum length
scale is the characteristic scale of the source LS � d. In
general, d is well inside the horizon [14,18,21]. Hence, the
time scale for the establishment of a cascade, which is on
the order of the maximum turnover time �d, will be at most
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on the order of the Hubble time. This justifies neglecting
the expansion of the Universe in the description of turbu-
lence. On the other hand, it is important to compare the
characteristic turnover time with the duration of the phase
transition. For the case of detonations, it has been shown
that �d is always larger than �t (see e.g. [6,8]). This result
is more general. Indeed, since �d � d=vd, �t� d=vw, and
the fluid velocity is always smaller than the wall velocity,
we have �d > �t. Since the stirring source lasts less than
�d, turbulence is not stationary. Nevertheless, the cascade
of energy develops, and it was argued [6] that, for the
generation of gravitational waves, we can assume station-
ary turbulence with a duration ��LS

¼ �d.

IV. RELIC GRAVITATIONALWAVES

We aim to calculate the spectrum we would observe
today for GWs originated in a cosmological phase transi-
tion at time t ¼ t� and temperature T ¼ T�. As explained
in Sec. II, in the deflagration bubble scenario the wall
velocity is in general considerably smaller at the time of
percolation than at the beginning of bubble expansion.
Therefore, we expect a weak signal from bubble collisions.
In view of that, we shall only consider the source provided
by turbulence. The calculation of the GW spectrum from
primordial turbulence has been improved in the last years
[8,9]. Here we will use the results of Ref. [8] (see the
discussion in Sec. VI). In this section we briefly review
the derivation and write down the results in terms of
variables that are suitable for the deflagration bubble
scenario.

For a stochastic background of gravitational waves, the
spectrum is characterized by the quantity [23]

�GWðfÞ ¼ 1

�c

d�GW

d logf
; (18)

where �GW is the energy density of the GWs, f is the
frequency, and �c is the critical energy density today, �c ¼
3H2

0=8�G. Thus, the gravitational wave energy density per

unit logarithmic frequency is defined by the relation

�GW ¼
Z df

f

d�GW

d logf
: (19)

For a stochastic background, d�GW=d logf is given by the
ensemble average of the Fourier amplitudes of the tensor
metric perturbation hij. The energy density of gravitational

waves is

�GWðx; tÞ ¼
h@thijðx; tÞ@thijðx; tÞi

16�G
; (20)

where the brackets denote the ensemble average. The
source of hijðx; tÞ is the transverse and traceless piece of

the stress-energy tensor, which for a turbulent plasma is
given by Tijðx; tÞ ¼ wviðx; tÞvjðx; tÞ. Thus, the source for
tensor perturbations on each mode k is the anisotropic

stress �ijðkÞ, which involves a convolutionR
d3qviðq; tÞvjðk� q; tÞ (see [8] for details). Therefore,

the energy density spectrum, which involves the average
h�ijðkÞ��

ijðqÞi, can be related to the velocity spectrum

PðkÞ by means of Eq. (6).
Notice that the velocity correlation function (6) does not

oscillate in time. However, the gravitational radiation is
produced by the turbulent eddies, which have a turnover
frequency !k ¼ vL=L, with k ¼ 2�=L. The oscillatory
behavior of the source, which is relevant for the generation
of GWs, is lost in the statistical average. One can account
for the turnover frequency by replacing viðkÞ ! viðkÞei!kt

for kS < k < kD. As a consequence, the source for hijðk; tÞ
can be modeled as ei2 �!t�ijðkÞ�ðt� tinÞ�ðtfin � tÞ, where
�! ¼ !k for k > kS, �! ¼ !S for k < kS, and the Heaviside
functions limit the source to the interval tin < t < tfin. We
set tfin � tin ¼ �LS

and tfin ¼ t�. For t > t�, the gravita-

tional wave propagates freely, with the dispersion relation
! ¼ k. Hence, the frequency f in Eq. (18) is given by the
wave number k of the source. The amplitude of the wave is
proportional to �ijðkÞ and depends on the frequency �! of

the source.
The spectrum of GWs is obtained from the quantity

h _hijðk; tÞ _hijðq; tÞi. It is proportional to the dimensionless

function

Að �!; kÞ ¼ jeið2 �!�kÞ=!S � 1j2
ðk� 2 �!Þ2L2

S

þ jeið2 �!þkÞ=!S � 1j2
ðkþ 2 �!Þ2L2

S

(21)

and to h�ijðkÞ��
ijðqÞi. The latter is a four-point spectral

function of the velocity and must be reduced in order to use
the two-point function (6). This is usually done by using
Wick’s theorem, although the velocity field is not
Gaussian. We have

h�ijðkÞ��
ijðqÞi ¼ w2�ðk� qÞ

Z
d3pPðpÞ

� Pðjk� pjÞð1þ 2Þð1þ �2Þ; (22)

where  ¼ k̂ 	 p̂, � ¼ k̂ 	 dk� p. Analytical approxima-
tions exist for the integral in Eq. (22) for large and small
scales [6,24]. It can then be evaluated using Eqs. (8) and
(9). Assuming radiation domination at T ¼ T�, the en-
thalpy w in Eq. (22) can be approximated by wR ¼
4�R=3, and the Hubble rate is given by H2� ¼ 8�G�R=3.
Finally, at t ¼ t� we have

3

3In Ref. [8] the calculations were done using conformal time �
and comoving variables k, x, L, etc. Dimensionless combina-
tions such as HL are readily translated to physical variables,
since the scale factor a cancels out.
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�GWðk; t�Þ ¼ �Rðt�Þ
4�

ðH�LSÞ2ð"LSÞ4=3

�

8>><
>>:

2
13Að!S; kÞðkLSÞ3 for k < kS

Að!k; kÞðkLSÞ�2=3 for kS < k < kD

0 otherwise:

(23)

The function Að �!; kÞ gives a different spectral depen-
dence whether the largest eddy velocity vLS

is below or

above 1=2, but the GW spectrum always peaks at k ¼ kS.
For deflagrations the velocity of the fluid is smaller than the
bubble wall velocity, which is smaller than that of sound
(cs � 0:58). Thus, only in the limit in which both vLS

�
vw and vw � cs, we will have vLS

> 1=2. We shall deal

with wall velocities vw & 0:1. Therefore, we only consider
the case vLS

< 1=2, for which the energy spectrum can be

approximated by

�GWðk; t�Þ ¼ �Rðt�Þ
2�

ðH�LSÞ2ð"LSÞ4=3

�

8>>>><
>>>>:

ðk=kSÞ3=v2
LS

for k < 2vLS
kS

4ðk=kSÞ for 2vLS
kS < k < kS

4ðk=kSÞ�8=3 for kS < k < kD

0 otherwise:

(24)

The GWs generated at time t� redshift due to the expan-
sion of the Universe. The energy density scales like a�4,
and the frequency like a�1. Therefore, the spectrum today
is given by Eq. (24), with �Rðt�Þ replaced with �Rðt0Þ and
the wave numbers replaced with the corresponding fre-
quencies. Hence,

�GWðf; t0Þ ¼ �Rðt0Þ
2�

�
LS

H�1�

�
10=3

�
"

H�

�
4=3

�

8>>>>>><
>>>>>>:

ðf=fpÞ3=v2
LS

for f < 2fS

4ðf=fpÞ for 2fS < f < fp

4ðf=fpÞ�8=3 for fp < f < fD

0 otherwise;

(25)

where�Rðt0Þ ¼ �R=�c � 4:6� 10�5 [25], and fS, fp, fD
are the redshifted frequencies corresponding, respectively,
to the frequency of the largest eddies fS� ¼ vLS

L�1
S , the

peak frequency fp� ¼ L�1
S , and the dissipation frequency

fD� ¼ L�1
D . A frequency f� redshifted to today is given by

f0 ¼ f�a�=a0. The ratio of the scale factor at t� to the scale
factor today is

a�
a0

� 8� 10�16

�
100

g�

�
1=3 100 GeV

T�
: (26)

It is useful to express f0 in terms of f�=H�. The Hubble

rate H� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G�R=3

p
can be written as

H� � 2� 1010Hz

�
g�
100

�
1=2

�
T�

100 GeV

�
2
; (27)

where we have used the relations G ¼ M�2
Pl , with MPl¼

1:22�1019 GeV, and 1 GeV � 1:5� 1024 Hz. Therefore,
the frequency today is given by

f0 ¼ 1:6� 10�5 Hz
T�

100 GeV

�
g�
100

�
1=6 f�

H�
: (28)

V. GRAVITATIONAL RADIATION FROM THE
PHASE TRANSITION

As we have seen, the scale LS is given by the bubble
separation. Therefore, the peak frequency is

fp ¼ 1:6� 10�2 mHz

�
g�
100

�
1=6 T�

100 GeV

H�1�
d

: (29)

The distance d depends on the dynamics of the phase
transition. It can vary from values d=H�1� � 10�5 for
weakly first-order phase transitions, to values d=H�1� �
10�1 for strongly first-order phase transitions (see e.g.
[14,18,21]). For T� * 100 GeV, we see that millihertz
frequencies (corresponding to the peak sensitivity of
LISA) are obtained for relatively large values of the bubble
size, d=H�1� * 10�2 (for g� � 100).
Setting LS ¼ d in Eq. (25) we obtain, for the maximum

of the spectrum today,

�GWjpeak ¼ 3� 10�5

�
d

H�1�

�
10=3

�
"

H�

�
4=3

; (30)

According to Eq. (17), the rate " at which energy is

injected into the fluid is proportional to vw
_fb. The speed

of bubble expansion may vary considerably due to reheat-
ing during the phase transition. Nevertheless, we have seen
that the turbulence which sources the gravitational radia-
tion lasts longer than the phase transition. Hence, the
generation of GWs is not affected by the details of the
time dependence of ", and we can use in Eq. (30) a mean

value �" which involves a time average of vwðtÞ _fbðtÞ. A
precise calculation of the parameters d and �" requires a
numerical computation of the phase transition. We will
address such computation elsewhere [26]. Below, we find

an approximation for _fb as a function of vw and d. The
bubble separation d also depends on the wall velocity. The
larger the initial velocity vi, the quicker the reheating and
the sooner the turn-off of the nucleation rate. Roughly, we

have d� n�1=3
b / vi [20]. Unfortunately, the number den-

sity of bubbles nb is extremely sensitive to the dynamics of
the phase transition. This prevents any sensible analytical
approximation for d as a function of the parameters of the
model.
The bubble expansion rate depends on the wall velocity

and the bubble size. Roughly, _fb � Fd2 �vw=d
3 ¼ F �vw=d,
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where F is a geometrical factor (for a spherical bubble,
F ¼ 4�), and �vw is the average wall velocity. In general, it
will not be a good approximation to take a plain time
average over the entire duration of the phase transition.
The bubble expansion will slow down significantly due to
reheating. Therefore, the turbulence that is generated while
the wall velocity vw is close to its initial value vi will give
the main contribution to �GW. Hence, we can use vi

instead of �vw in the approximations above. Inserting

Eq. (17) in Eq. (30) and using vw � vi, _fb � Fvi=d, we
have

�GWjpeak � 6� 10�6ð�viÞ8=3F4=3

�
d

H�1�

�
2
: (31)

Again, we see that strong phase transitions favor detection
at LISA, since the amplitude is maximized for large values
of d=H�1� (which also give millihertz frequencies). Weak
phase transitions give smaller values of d=H�1� , and also
smaller values of vi and �. Therefore, we will have very
low values of �GWðfpÞ, together with high values of the

frequency, fp >mHz. In that case, the generated GWs will

not be detected by LISA, but may be detected by space-
based interferometers of second generation, such as the Big
Bang Observer.

Let us consider an electroweak phase transition at T� �
100 GeV, with g� � 100, and set F� 10. The bubble
separation d depends on the extension of the standard
model. For the frequency to be in the band that LISA is
sensitive to, the phase transition should be strongly first
order, so that d=H�1� � 10�2. Thus, for a wall velocity
vi � 10�1 Eq. (31) gives �GW � 10�11, provided that
the latent heat is large enough (i.e., �� 1). A large latent
heat is consistent with a strongly first-order phase transi-
tion. This value of�GW is just at the detection threshold of

LISA. Notice, however, that this is an order-of-magnitude
estimate, and the result is sensitive to several parameters.
For instance, the enthalpy difference wþ � w� in Eq. (14)
will give a larger efficiency factor if it is evaluated at the
supercooling temperature T� < Tc. For a phase transition
at T� ¼ 1 TeV, Eq. (29) gives the required frequency fp �
mHz for a value d=H�1� � 10�1. In this case, for�� 1 and
vi � 10�1 we have �GW � 10�9. In Fig. 1 we plot the
minimum value of � that is needed to achieve a peak value
�GWðfpÞ 
 10�11 with a peak frequency fp ¼ 1 mHz for

a phase transition that takes place at T ¼ T�.

VI. CONCLUSIONS

We have considered the production of gravitational
waves in a first-order phase transition, due to the turbu-
lence that arises from the motion of deflagration fronts. As
we have seen, the dynamics of the phase transition is
completely different from the case of detonations. The
main difference is the fact that deflagration walls are
preceded by shock fronts, which move much faster than
them and influence other bubbles. This affects both the
bubble expansion and the generation of GWs. First, as soon
as bubbles begin to nucleate and expand, the shock fronts
collide and the spherical symmetry is lost. Hence, gravita-
tional radiation can be emitted before percolation occurs.
Second, the quick distribution of latent heat causes a global
reheating. As a consequence, the nucleation rate turns off
after a very short time, and the bubble growth slows down.
We have taken these facts into account to calculate the
spectrum of GWs in a realistic scenario for deflagrations.
We have shown that the usual assumptions for the tur-

bulent fluid, namely, the validity of the Kolmogoroff spec-
trum and the short duration of turbulence in comparison to
the Hubble time, apply to the case of deflagration bubbles.
We have also derived an analytical approximation for the
efficiency factor 	ð�; vwÞ for the deflagration case. In
previous works this factor was either calculated numeri-
cally or by using rough estimations. This analytical ap-
proximation makes the treatment of the deflagration case
simpler, and will be particularly helpful for including the
GW calculation in numerical computations of the phase
transition.
We have used the results of Ref. [8] for the GW spec-

trum from primordial turbulence. There, it is assumed that
the frequency ! of a gravitational wave is determined by
the wave number of the source mode that generates it, i.e.,
! ¼ k, rather than being determined by the characteristic
frequency of that mode, !L ¼ 2�=�L. As a consequence,
the GW spectrum inherits the characteristic wavelength of
the source, and the peak is at !p � L�1

S . This is correct for

a stochastic and statistically homogeneous source of short
duration. Recently [9], it was argued that the turbulent
source lasts long enough so that it can be treated as sta-
tionary. In that case, the resulting GW spectrum would be
imprinted with the characteristic frequency of the source,

0.1 0.2 0.3 0.4 0.5 0.6 0.8 1
0.0

0.2

0.4
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1.0

T (T eV)

FIG. 1. The values of � and T� that give fp ¼ 1 mHz and
�GWðfpÞ ¼ 10�11, for vi ¼ 0:1 (solid line), vi ¼ 0:05 (dashed

line), and vi ¼ 0:02 (dotted line).
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and we would have !p �!S. However, the duration of

turbulence is on the order of the characteristic turnover
time �S �!�1

S (since the duration of the stirring source is

shorter). Therefore, the characteristic frequency and the
duration of the source of GWs are related by!S�S ¼ Oð1Þ,
and the typical frequency of the GWs is given by the
typical wave number of the source [27].

The GW spectrum depends on quantities such as vw, _fb,
and d, which require a numerical computation of the phase
transition for a more accurate evaluation. We will address
such computation elsewhere [26]. Nevertheless, our esti-
mations show that GWs generated in a strongly first-order
electroweak phase transition might be detected by LISA.
The parameter values for which this is possible are roughly

constrained by T� * 100 GeV, d * 10�2H�1� , vw *
10�2, � * 0:1. Weakly first-order phase transitions corre-
spond in general to smaller values of d=H�1� , vw, and �. In
that case, the spectrum will have a smaller amplitude and
the characteristic frequency will be away from the peak
sensitivity of LISA.
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[26] A. Mégevand and A.D. Sánchez (work in progress).
[27] C. Caprini, R. Durrer, and R. Sturani, Phys. Rev. D 74,

127501 (2006).
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