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Rotating black holes on Kaluza-Klein bubbles
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Using the solitonic solution-generating techniques, we generate a new exact solution which describes a
pair of rotating black holes on a Kaluza-Klein bubble as a vacuum solution in the five-dimensional
Kaluza-Klein theory. We also investigate the properties of this solution. Two black holes with topology S°
are rotating along the same direction even though the directions of intrinsic spin of the black holes are
different. The bubble plays a role in holding two black holes. In the static case, it coincides with the

solution found by Elvang and Horowitz.
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L. INTRODUCTION

Solitonic solution-generating methods are powerful
tools to generate exact solutions of Einstein equations.
They are mainly classified into two types. One is called
Bicklund transformation [1,2], which is basically the tech-
nique to generate a new solution of the Ernst equation. The
other is the inverse scattering technique, which Belinski
and Zakharov [3] developed as another type of solution-
generating technique. Both methods have produced vac-
uum solutions from a certain known vacuum solution and
succeeded in generation of some four-dimensional exact
solutions. The relation between these methods was dis-
cussed in Ref. [4] for four dimensions.

Recently, these techniques have been used to generate
five-dimensional black hole solutions. A new stationary
and axisymmetric black ring solution with rotating two-
sphere was found by two of the authors [5] by applying the
former solitonic solution-generating techniques [6] to five
dimensions. They also reproduced a black ring solution
with S'-rotation [7] by this method [8] and constructed a
black di-ring solution [9]. As to asymptotically flat higher-
dimensional black hole/ring solutions, some of solutions
have been generated by using the inverse scattering
method. As an infinite number of static solutions of the
five-dimensional vacuum Einstein equations with axial
symmetry, the five-dimensional Schwarzschild solution
and the static black ring solution were reproduced [10],
which gave the first example of the generation of a higher-
dimensional asymptotically flat black hole solution by the
inverse scattering method. The Myers-Perry solution with
single and double angular momenta were regenerated from
the Minkowski seed [11,12] and an unphysical one [13],
respectively. The black ring solutions with S2-rotation [11]
and S!-rotation [14] were also generated by one of the
authors. Furthermore, Pomerasky and Sen’kov seem to
succeed in generation of a new black ring solution with
two angular momentum components [15] by the latter
method. Elvang and Figueras also generated a black
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Saturn solution which describes a spherical black hole
surrounded by a black ring [16].

However, from a more realistic view point, we need not
impose the asymptotic Minkowski spacetime toward the
extra dimensions. In fact, higher-dimensional black holes
admit a variety of asymptotic structures. Kaluza-Klein
(KK) black hole solutions have the spatial infinity with
compact extra dimensions [17,18]. Black hole solutions on
the Eguchi-Hanson space have the spatial infinity of topo-
logically various lens spaces [19]. The latter black hole
spacetimes have asymptotically and locally Minkowski
structure. In spacetimes with such asymptotic structures,
black holes themselves have different structures from the
one with the asymptotically Minkowski structure. For in-
stance, the Kaluza-Klein black holes [17,18] and the black
holes on the Eguchi-Hanson space [19] admit the horizon
of lens spaces in addition to S*. We expect that the solitonic
methods also help us generate new black hole solutions
which have asymptotic structures different from the
Minkowski spacetime. Remarkably, as a vacuum solution
in five-dimensional Kaluza-Klein theory, there is a static
two black hole solution, which does not have even a
conical singularity [20] since a Kaluza-Klein bubble of
nothing, which was first found by Witten [21], plays a
role in holding two black holes. In Ref. [22], Harmark
and Obers constructed all the sequences of black holes
and Kaluza-Klein bubbles, generalizing the results in
Ref. [20]. In Ref. [23], Harmark et al. discussed how
Kaluza-Klein bubbles and sequences of bubbles and black
holes fit into the general story of Kaluza-Klein black holes.
See also the review [24] on the bubbles.

So far most people have not considered the effect of a
rotation of black holes. For example, since in general, a
rotating black hole has less entropy than a nonrotating
black hole for the same mass, it is nontrivial whether a
black string spontaneously generates a KK bubble which
split the black string with S' X §? topology into two black
holes with an S? horizons connected bubble, while in the
static solutions in Ref. [20] such a transition is not expected
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to occur. Hence it is important to construct such solutions
which describe rotating black holes on a KK bubble and to
investigate the features of such solutions, e.g., the effect of
the frame dragging. In this article, we generate a new exact
solution which describes a pair of rotating black holes on a
Kaluza-Klein bubble by using the two different kinds of
solution-generating techniques whose relation was dis-
cussed in [25]. In the static case, our solution coincides
with the solution found by Elvang and Horowitz [20].

This article is organized as follows: In Sec. 11, we give a
new solution generated by the solitonic methods. We in-
troduce only the construction by the inverse scattering
method in this section, while the other construction is
briefly mentioned in the appendix. In Sec. III, we inves-
tigate the properties of the solution. In Sec. IV, we give the
summary and discussion of this article.

II. SOLUTIONS

Following the techniques in Refs. [11,14,25], we con-
struct a new Kaluza-Klein black hole solution. We consider
the five-dimensional stationary and axisymmetric vacuum
spacetimes which admit three commuting Killing vectors
d/0t,9/d¢, and 9/dy, where 9/t is a Killing vector field
associated with time translation, and 8/d¢ and /0y
denote spacelike Killing vector fields with closed orbits.
In such a spacetime, the metric can be written in the
canonical form as

ds* = gjdx'dx’ + f(dp* + dz?), M

where the metric components g;; and the metric coefficient

f are functions which depend on p and z only. The metric

gi; satisfies the supplementary condition detg;; = — p’.

We begin with the following seed:

ds? — _ano' +z— n0o

= dr’
R‘r]]a' +z— mo

L Ryotz— n,0)p*
R/\(r +Z_ AO’
R,, tz7— Ao

+ 27 = dy? + fdp® + dZ?), (2)
R'rno‘ tz—mo

d¢p?

where R, is defined as R, := +/p? + (z — d)>. The pa-
rameters 77, 77,, and A satisfy the inequality n; < 1, <
—1 <A <1and o > 0. Instead of solving the L-A pair for
the seed metric (2), it is sufficient to consider the following
metric form:

ds* = —di® + g,d$* + gzdy® + f(dp® + d2),  (3)

where g, and g5 are given by
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4 = (Ry,o + 2= mo)’p?

? (anrr 2= mo) Ry, + 27— Ao)’ @)
g = (Ryy +2— AO)(R,;, + 2 — 1y0)

5=

(Ry,e +2— mo)?

Let us consider the conformal transformation of the two-
dimensional metric g45(A, B = t, ) and the rescaling of
the iy-component in which the determinant detg is in-
variant

go = diag(—1, g5, g3) — g( = diag(—Q, Qg,, Q7%¢3),
(5)

where () is the tz-component of the seed (2), i.e.,

R, ,+z— no
Q:u. (6)
Ry ,t+tz—mo

Then, under this transformation, the three-dimensional
metric coincides with the metric (2). On the other hand,
as discussed in [25], under this transformation the physical
metric of two-solitonic solution is transformed as

_ (8 O0\_ _/ _ Ogap O)
8 (0 83) 8 (0 07%g /) @

This is why we may perform the transformation (5) for the
two-solitonic solution generated from the seed (3) in order
to obtain the two-solitonic solution from the seed (2). The
generating matrix ¢ for this seed metric (3) is computed
as follows:

thol A] = diag(—1, [ A], 5[ A])

with
[A] = Ry t2— mo + A p* — 224 — A?)
2 Ry +2— Mo+ VD Rpy +2— Ad + A)
[Nl = Ryg 2= AT+ N(R,,, +2— Mo + A)
3 (Ryo t2— Mo+ A)?

Then, the two-solitonic solution is obtained as

(phys) _ _ OG,
" Ve
g _ Qp* + pi1p2)Gry
0 MitoZ '
I 0Gyy
o0 TRV
hys _
gf}/)l//yg) = Q 2g3’
goy = gty —

where the functions G, G4, G 44, and 2 are given by
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2. (22 2. (2)2
G, = —méf mé)l) ol i Pl o (g — mo)*p* + mgn) mé)z) 82,“«%
22 (1)2 2. (2)2
+ mél) méz) gzM%(Pz + M1M2)2¢2[M2]2 - méz) méz)

+ u)(p? + ud)p o,

_ (12 (2)2 12
Gy = my; mg,
@2 (12

- m m (2)
01 02

2)2
Gy = mf)l1)m(()1) mélz)uz(m — )l o Pl 1(p* + ,U«%)

m2_ () (2)
+ my"mg mg,

12, (2)2 12, (2)2
2= m((n) mgn) ol Pl po Py — w2)*p* + m(()z) mgz) g
12 (2)2 @ 1) (@
+ méz) mél) Sl FP(p* + pypa)® — 2m81)m61)m(()2)m§)2)

Here, @, and u, are given by

pi(p,2) =4p* + @+ o) = (z+ 0),
Ma(p, 2) = \/p2 +(z—0)?—(z— o).
(phy)

We should note that this three-dimensional metric g;;
satisfies the supplementary condition detg;;

12)

—p?. Next,
let us consider the coordinate transformation of the physi-
cal metric such that

t—t=t-C¢, ¢— ¢ =,
where C; is a constant. Under this transformation, the
physical metric becomes

13)

hys h,
g™ — gy = g™,
hys h, hys
gh™ — g1y = B> + Crgf™, (14)

h; h; hys h,
858" = 8gs = 8¢ +2C1g > + Clgit™.

g%:u*%:“%(ﬂl - :“2)2 - 2m01 mgyy My, My,

2)2
p2ud(y — w2l Pl pa 2 + miPm () — w,)?p*

!
a3l ua P (p? + pypa)* + Zm((n)mm Mgy, Mgy

(o = w) ol Pl pa1(p? + 1

%(Ml — wp)?p* + My My,
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(p? + pi o) ol P

m, @ 1 (2

g2¢2[#]]¢’2[ﬂ2](p2
(8)

12 (2)2 2

— my mgy g uin i F(p? + pypa)?

0 ©)

(z)gzﬂlﬂzlﬂz[#z]‘ﬁz[ﬂl](l’z + ud(p? + u3),

(1), (22
+ mgl)mgz)m(()z) gapma(pn — w)alpy1(p? + ui)
b+ e

2 w182l mal(p? + (g — ma), (10)

12, (2)2

Sl F(p? + mipo)?

ool w1 Nl pal(p? + u?)(p? + pd). (11)

[
Here, we should note that the transformed metric also
satisfies the supplementary condition detg = —pZ.
Though the metric seems to contain the four new parame-
ters moll), mg) , mglz), and mézz), it can be written only in terms
of the ratios

(2) 1)

e Moy _ _ 2omy,
L R M (15)
oy, Moy

Using the parameters o and 3, we can write all compo-
nents of the metric. The metric function f(p, z) takes the
following form:

_ CZYU',—O'YU',T][U'

Y—a,nza'Y—u’,/\a'Ym(r,nz(rY)ur,'qler/\(r,nZ(r

QY

f=
4Y_ ;0o

\/Y—o:—a'Ym0',1710'Ynza',nza'Y/\O',/\U'YU,WZO'YU',)\UYU,U' (P2 + ,LLI,LL2)4,U,?,U,2¢2[,U,2]2 '

(16)

where C, is an arbitrary constant, Y,., is defined as Y, 4 := R.R; + (z — ¢)(z — d) + p?, and the function Y is given by

Y = p[—4Buiudvnlpwi Il mal + ago(py — ua)*(p* + mwipa)?F + 4gouin3(p? + pwypa)* (ol pal — a B[ w1

We comment that the constants « and 8 exactly coincide
with the ones that appear in the Bécklund transformation in
the appendix. To assure that the metric asymptotically
approaches M>! X S!, where M>! denotes the four-
dimensional Minkowski spacetime and S' is a Kaluza-
Klein circle, the constants C; and C, are chosen as follows:

_ 20(a — B) _ 1
€= 1+aB ’ ¢ 1+ ap)? (17)
a+ B=0,

which assure the regular behavior in the asymptotic region.

084001-3



SHINYA TOMIZAWA, HIDEO IGUCHI, AND TAKASHI MISHIMA

The third condition of Eq. (17) is needed to assure the
staticity of the asymptotic region. This condition reduces
the number of parameters and imposes some controls on
rotations of black holes.

To avoid a singular behavior of g4, on the ¢ axis, we
also need to impose the following condition on (:

O+ D+ )
(1+7)?

In this article, we study the solution (14) and (16) satisfy-

ing the conditions (17) and (18). As mentioned later, to

assure that the Arnowitt-Deser-Misner (ADM) mass is

positive, we assume that the parameters 7, 77,, and A
satisfy 82 < 1, i.e.,

(1+ ) > =1+ )1+ ). 19)

B> = (18)

I11. PROPERTIES

In this section, we investigate the properties of the
solution satisfying the conditions (17) and (18). We study
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the asymptotic structure, the geometry of two black hole
horizons and a bubble. We also analyze physical properties
of the solution and the limit cases.

A. Asymptotic structure

In order to investigate the asymptotic structure of the
solution, let us introduce the coordinate (r, 8) defined as

p = rsind, z = rcoso, (20)

where 0 = 0 <27 and r is a four-dimensional radial
coordinate in the neighborhood of the spatial infinity. For
the large r — o0, each component behaves as

— = 2= B — 1y +2
g m—1 - M 1—Bﬁ(2m ub )%’ 21
_ ~1_771_2_52(771_)\+2)_Ag
gpp 82 1— :82 r’
(22)
J
_207BQ2n; — My — A —2— 227 — my — A +2))sin’f 23)

81 =

—A—2— B —A+2
g¢¢ ~ rZSin20<1 _ m B (Tll )g)’

1 — B2 r
(24)
gy =1+ L’”}f A). (25)

Hence, the leading order of the metric takes the form
ds* = —dr* + dr* + r*(d0? + sin’0dp?) + dy*.  (26)

Therefore, the spacetime asymptotically has the structure
of the direct product of the four-dimensional Minkowski
spacetime and S'. The S' at infinity is parametrized by ¢
and the size A is given in III C.

B. Mass and angular momentum

Next, we compute the total mass and the total angular
momentum of the spacetime. It should be noted that since
the asymptotic structure is M>! X S', the ADM mass and
angular momentum are given by the surface integral over
the spatial infinity with the topology of §? X S'. In order to
compute these quantities, we introduce asymptotic

Cartesian coordinates (x, y, z, ), where x = p cos¢ and
|

(1= Byr |

[
y = psing. Then, the ADM mass and angular momenta
are given by

1 )
Mypm = —— f H% ,ds,, (27
167 Js2xs ’
JHY = 1 f (x,quonj o= xVH,uan N
167 Js2xs ’ ’
+ HHO — H”jO“)de, (28)

respectively. Here H**# is defined by

H#avB = —(hpvyB 4 peByrv — pavypBu — pBurpar)
(29)

where
E,u,l/ = h;u/ - %haanuw (30)

and 7,,, is the five-dimensional flat metric with compacti-
fied one-dimensional and h,, ‘= g,, — 1,,. The Latin
index j runs x, y, z, and ¢ and the Greek indices u, v, a,
and S label ¢, x, y, z, and ¢s. Then, the ADM mass of the
solution is computed as

Mxpm =

A1 - B%)

The nonzero component of the angular momentum becomes

M2 — A))Alp. 31)
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J=Jv =

B2 -2n + A+ B2+ 20—,
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) Ay

It should be noted that the ADM mass is non-negative
when B2 < 1.

We can also compute the tension 7 from the asymptotic
forms of the metric following the formula given by [26],

_o(—m 2442+ B + 24 +2)
T 4( (1-p8% )

(33)

C. Black holes and bubble

Here, for the solution, we consider the rod structure
developed by Harmark [27] and Emparan and Reall [28].
The rod structure at p = 0 is illustrated in Fig. 1. (i) The
finite timelike rod [n;0, n,0] and [Acg, o] denote the
locations of black hole horizons. These timelike rods

have directions v; = (1, £, 0) and v, = (1, )5, 0), where
|

(1-p%

(32)

|
), and ), mean angular velocities of the horizons. These
are given by

—B(1 - B
Q, = , 34
T T
for nyo <z <m0 and
G, = BU=BI=m)1 =D+ =m)) o

AA =) + g1 = )1 = Vo

for Ao < z < 0. Here, it should be noted that {}; and (),
have the same signature. Therefore, two black holes are
rotating along the same direction. (ii) The finite spacelike
rod [n,0, Aa] which corresponds to a Kaluza-Klein bub-
ble has the direction v = (0,0, 1). In order to avoid a
conical singularity for z € [1,0, Ao] and p = 0, ¢ has
the periodicity of

%= lim

(A =)A= ), + )¢

1

ngpp _ 20 (771 B 1)

2 e\ 8yy 1—B2\n +1

=20

(m + D((n; — D>+ A+ 1)(n — 1) [(A=n)A— 1), + 1)'

(o + DOy — 1),82)

ny — 1 (g — D2+ 1)

(= D((gy + D>+ (A + D(m, + 1))

36
— (36)

(iii) The semi-infinite spacelike rods [—o0, 7,0 ] and [ o, o0] have the direction v = (0, 1, 0). In order to avoid conical

singularity, ¢ has the periodicity of

Ap =2

(37)

Here, we write the induced metrics of the event horizons and the bubble. For ;0 < z < 1,0, the induced metric on the

surface with constant # becomes

4042 — o)z — o) (Ao — (1 — my + 21 + m))*

8¢ = , (38)
Y= B — DX+ o) + B+ m)o — P + 457
T Mo

Y )

/ (1,9,,0) (1,9,.0)
(0,1,0) (0,1,0) FIG. 1. Rod structure of rotating black holes on a Kaluza-Klein
—— - — — — — — — — — — — — —— bubble. The finite timelike rods [n, 0, n,0] and [Ag, o] corre-
spond to rotating black holes with angular velocities ; and Q,,
respectively. The finite spacelike rod [7,0, Acg] denotes a
W (0,0,1) Kaluza-Klein bubble, where Kaluza-Klein circles shrink to zero.

% —— % z
n,o n,o —o Ao o
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(m2 = m)A = n)(0?[(m — D’z + o) + B0 + n)*(0 — )] + 4,82k)
(1= B*(ni — D% — o)z — m0) (1,0 — 2)

where the function k(p, z) is defined as
k(p, 2) i= (z = 1 0)* (0 — 2)(Ao = 2). 1)

Since the ¢ circles shrink to zero at z = 7,0 and ¢ circles shrink to zero at z = 7, o, the spatial cross section of this
black hole horizon is topologically S3. The area of the event horizon is

8z = (40)

A, = 167207 (1 +m)*(, — m)j/z()t — )
(I —=m)
X\/(/\ — ) + D (1= 7)) =1+ DA = m))(1 — 7 — 1+ DA+ n,))° “2)
(my = 1) (1 +n)* + (1 + D+ 7)) '
For Ao < z < o, the induced metric takes the following form:
_160°(0 — )z + o)z — m o)z — mo)l(=1 + n1)* + B(—1 + ) (=1 + NP 43)
§00 (1= V40> (1 + n)*z = m0)(z = Ao) + B7H] ’
—A
8y = ZZ_ 772(:7’ (44)
_ 40*(n — D'z — mo)(z — Ao) + Bk 43)
8 T U= B9 — D2(m — DA — Dz — mo)z — Ao)(o? — 22)
where the function 4 is given by
hp,2) = (z = mo)l(a — (=1 +n)* = (= DA = Dz + o) ]2 (46)

Since the i circles shrink to zero at z = Ao and ¢ circles shrink to zero at z = o, the spatial cross section of this black
hole horizon is also topologically S*. The area of this event horizon is
A, = 327 3(1 + 1)V = DA = 7)A = 91 + )
(m = 1?0 = )
(1= 7 = (1 + D1 = m))((1 = A1 = m3) — (1 = 7))

X 47
(T + 7)) + (1 + )0 + )
For 1,0 < z < Ao, the induced metric on the bubble can be written in the form
4(1 = ¢B*)*(z — m o)z — n0)(0? — 2)(z — A0) 168°p 48)

890 TUBP (. — AoV z - mo) T (2 — mo)z + o+ Bl —2) | (- B (o? — D)z — mo)

_ A =)A= (=1 + )20+ mp) — BHL + )2 (—1 + np)P
82z = ’ (49)

(1= (=1 + n)*(=1+ M)z — n0)(z — Ao)

where the function p is given by

p(p, z) = (z — 1720-)[(2 + o+ ,820(0' _ Z))2 T 4,82d2(Z __)\0')(2 - 7710-)2]
(z = mo)

[ o (z+ o) ]2
-8 (- mo)zt o+ Bllo—2) + 482z — o)z — o)

(50)

with
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_20d(z = Ao)(z — m0)*(1 + B*c)

PHYSICAL REVIEW D 78, 084001 (2008)

. B , o 2\(_otl+ ) (2= o)z — o)
9(p.2): otz (« WT)(IJFB Cz+rr)( T e mo )
(6D
(14 7)*(=1+ ) —1+n
_ , - T 52
G S 1+ 2

The ¢ circle vanishes for z € [1,0, Ao, p = 0, which means that there exists a Kaluza-Klein bubble in this region. Since
the ¢ circle does not vanish at z = 1,0 and z = Ao, this bubble on the time slice is topologically a cylinder S' X R.
Therefore, there exists a Kaluza-Klein bubble between two rotating black holes with the topology of S*. The proper

distance between the two black holes is

(m + 1) [+ DA = 9)A = 90) (1 = 91)* = (1 + DA = 1)

ST 1) (12— 1)

(1+m)? + 1+ )+ ny)) (53)

The Kaluza-Klein bubble is significant to keep the balance of two black holes and achieve the solution without any strut
structures and singularities. This property resembles that of the solution given by Elvang and Horowitz [20].

D. Intrinsic spin of black holes

To consider the intrinsic spin of the black holes and discuss the frame-dragging effects of them, we calculate Komar
angular momenta of the black holes [16,29]. The Komar angular momenta of the left and right black holes are obtained as

o’ p (m — 7)1+ DA + m) — (1 = n7)?

Ay, (54)

J Komar,1 —

(1= 27 (14 7)*(1+ 9)((1+ DA = 1) = (1 = 1))%)

o’ (1 =N +mny) - (1L+ 7)) - )1 —n3) — (1 - 7))

J = —
Komar,2 (1 — Bz)z

respectively. These satisty that Jxomar1 + Jkomar2 = J. We
also observe that the absolute value of the angular momen-
tum of the left black hole is always smaller than that of the
right black hole. Note that although two angular velocities
of the horizons (), and (), have the same signature, the two
Komar angular momenta have the inverse signature. As
shown in Fig. 2, as ), approaches —1, the ratio of the two

| JKomar,l |
| JKomalr,2|

FIG. 2 (color online).

Plot of the ratio |Jxomar, 1/ komar2l- In
this plot, we fix the other parameter as n; = —3.0. This quali-
tative behavior of the ratio for 7, does not depend on the choice
of the parameter 7.

(1+ 7> + 7)1+ 1)1 = 1) — (1 = ny)?)

Ay, (55)

f
angular momenta |Jgomar 1/ komar2! asymptotically ap-

proaches 1. Then the total angular momentum J of two
black holes can become sufficiently small. However it
should be noted that in this limit the periodicity Ay and
the proper distance s between black holes go to zero.
Therefore the case of 17, = —1 is a singular limit of the
solution.

Here we can give a brief statement of the rotation of
black holes of the solution. These two black holes intrinsi-
cally rotate along the opposite directions to each other.
However the weakly spinning black hole is turned to rotate
along the same direction of the strong one because of the
gravitational frame dragging of it. We discuss this effect in
the next subsection. For the singular static limit p, — —1,
the frame-dragging effects by two black holes balance with
each other, and then the spacetime becomes static.

E. Frame dragging

To confirm the frame-dragging effect, we investigate the
ergo regions of black holes. It is expected that the ergo
region of the left black hole becomes smaller as the sepa-
ration s increases or the right black hole rotates slower.

Figure 3 shows the ergo regions for the different values
—2.0, —4.0, —6.0 of n,, where we fix the parameters as
o=10,7n = n, — 1.0,and A = —0.5. We find that the
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=-2 =-4 =-6
’ 2 s 2 ) 2
1.5 1.5 1.5
Q 1 Q 1 Q 1
0.5 0.5 0.5
0l 0= 0l=
-4-3-2-10 1 2 -6 -4 -2 0 2 -8-6-4-20 2
Z Z Z

FIG. 3. Plots of ergo regions for , = —2.0, —4.0, —6.0 on the (p, z) plane, where we fix the other parameters as o = 1.0, n; =
n, — 1.0, and A = —0.5. The regions n; <z < 1n,, p =0, —0.5 <z < 1.0, p = 0 denote the black hole horizon, and the region

1, <z <A, p = 0 denotes the bubble.

A=0.9 A=-0.5 2A=-0.9

4 2 1

0.6
Q2 SUI Q

0.4

1 0.5 0.2

0 0 A 0 2

4-3-2-10 1 2 -4-3-2-10 1 2 -4-3-2-10 1 2
z z z
FIG. 4. Plots of ergo regions for A = 0.9, —0.5, —0.9 on the (p, z) plane, where we fix the other parameters as o = 1.0, 5; = —3.0,

and n, = —2.0. The regions —3.0 <z< —-2.0, p =0, A <z < 1.0, p = 0 denote two black hole horizons, and the region —2.0 <

7 < A, p = 0 denotes the bubble.

ergo region of the left black hole gradually shrinks as the
black holes are away from the each other. Figure 4 shows
the ergo regions for the different values —0.9, —0.5, 0.9 of
A, where we fix the parameters as o = 1.0, n; = —3.0,
and 7, = —2.0. We find that for A = 0.9, an ergo surface
encloses the two black holes and the bubble. For A =
—0.5, two ergo surfaces appear and enclose only each
black hole. For A = —0.9, the ergo surface surrounding
the left black hole becomes small. These facts are consis-
tent with the above expectation.

The left panel of Fig. 4 shows that the KK bubble also
rotates because the bubble is enclosed by an ergo region.
To confirm the rotation of the bubble, we consider the
motion for a zero angular momentum observer (ZAMO)
on the bubble. The angular velocity along 9/d¢ of the
ZAMO measured with respect to time for a distant ob-

server is given by — 5(;‘1 . The ZAMO on the bubble has an

angular velocity by the effect of the frame dragging. As
shown in Fig. 5, the angular velocity of a ZAMO on the
bubble is an increasing function of z, where the parameters
are fixedas o = 1.0, A = 0.5, n; = —3.0,and 1, = —2.0
and we take a minus sign of 8. The angular velocity of the
ZAMO on the bubble takes a maximum on the right black
hole and a minimum on the left black hole. In the choice of
other parameters, this qualitative behavior of the angular
velocity does not change so much. This suggests that the

left black hole is rotating in the same direction as the right
one by the effect of gravitational frame dragging.

We comment on the signs of the Komar masses of two
black holes Moy, (i = 1,2), which are given by the
following integrals over the horizons:

3
= _ *d R
32 ,/;;hl. ¢

where £ = 9/t and * is a Hodge dual operator. Note that

M Komar,i (5 6)

Q2

0.05

Q1

-1.5 -1
z

-0.5 0 0.5

FIG. 5. Angular velocity of the ZAMO on the bubble in the
case of 0 = 1.0, A = 0.5, n; = —3.0, n, = —2.0, and B8 <O.
Near z = —2, the graph is bent down by the dragging of the left
black hole.
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they are related to the ADM mass and tension by

MADM = MKomar,l + MKomar,2 + %TA I,lf, (57)

(See Kastor et al’s discussions [30] about the relation
between ADM mass and tension in black holes—bubbles
systems). The Komar masses of the two black holes satisfy
the Smarr-type formula

MKomar,i = %llAlﬁ + %JKomar,iQi’ (58)

where I, = o(1 — A) and [, = o(n, — 1;). Now we con-
sider the case of 8> 0, where Jxomar1 = 0, Jkomar2 < 0,
Q, <0, and Q, <0. As B2 approaches 1, the absolute
value of Jiomar,1€21(<0) becomes sufficiently large. Then
the left black hole has negative Komar mass. This situation
is similar to the rotational frame dragging in the black
Saturn solution [16,31]. In the five-dimensional Einstein-
Maxwell-Chern-Simons system, a single black hole can be
counterrotating; its horizon rotates in the opposite sense to
the angular momentum [32]. This type of counterrotating
black hole can also posses a negative Komar mass at the
horizon, though the total mass is positive [33].

F. Static case

Let us consider the static case, which can be obtained by
the choice of the parameter 8 = 0. From Eq. (18) this is
achieved by 7, = —lor A = —1. Asin Sec. III D, the case
of m, = —1 corresponds to the singular static limit.
Therefore we concentrate our attention on the case of A =
—1. Let us define the parameters a, b, and c¢ as

_2-A-m _A—m
a=———a0, b=———"=o,
2 2 (59)
_Atm— 2
c=—"-"-—""0.
2
It should be noted that A = —1 is equal to the condition

o = (a — b)/2. Furthermore, let us shift an origin of the z
coordinate such that z — 7 := z — (1, + A)o /2. Then, we

obtain the metric
|

802(1 — m)(1 + mp)*

ds®lpny =

(3 + 27 + ni + 2my)?
(1 +7)?(=1+ (=1 — 27, + 0} + 2m,)?

PHYSICAL REVIEW D 78, 084001 (2008)
(R, —(E—=Db)R_.—(Z+0))

R, —(EZ—a)R_, —(Z+ D))
+ (R, — (E—a)(R_. — (Z+ 0)de?

ds* = dr

R*b - (~Z + b) d¢2 + Ya,*CYb,*b
Ry, — (Z - b) 4R,RyR_,R_,
Y, oY p_o R, —(Z—
a,b b,—c a (Z Cl) (dp2 + dzz)’ (60)

Ya,—be,—c R—c - (Z + C)

where the coordinate z in the definition of R, is replaced
with Z. This coincides with the solution obtained by Elvang
and Horowitz [20], which describes nonrotating black
holes on the Kaluza-Klein bubble.

G. Small black holes

Now we consider the limit of the solutions to small black
holes. We introduce new coordinates 6 and l& defined by

7= 1m0 — esin’A0< e K 1), (61)
v _ a(m + D — D2+ (A + Dy — 1))
7 (mi = D((my + 1> + (A + Dy + 1)
% \/(/\ =)A= 1), + 1)’ (62)
M — 1

where 0 <6 < 7/2, 0 < ) = 2. We also put 7, =
1, — €. Then, the induced metric on the black hole 1,0 <
z < m,0o takes the form of

5 (o + D(my + (A — 1)
(12 — D@2 + my + A)?
X €(d6? + cos20dp? + sin0°).

dszlbhl =40

(63)

This shows that it is a small black hole with topology S°.
On the other hand, for the other black hole Ao < z < 0o, let
us use the coordinate z = Ao + €osin’0(0 < e < 1).
Then,

(cot?0d > + sin’0d6?) + 40°€

This resembles the horizon geometry of the five-
dimensional extremally Myers-Perry black hole solutions
with a single angular momentum.

in?0dy>. 64
(=m0~ )G+ 2m, + o +2m 0 (64)
I
approximately takes the form of
2,2
ds?lony = d? + 40 — 2)zdd* + _ T g2,
2(z = my0)
(65)

H. Big black holes

Next we consider the big black holes limit. For this end,
we take 75 — 17y, | — A << A — 7),. In this limit, 8 van-
ishes. The induced metric on the horizon ;0 < 7z K 17,0

Introducing a new coordinate 6 defined as z = n,0(1 —
cosd)/2, we can rewrite the metric as
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ds?lyn = di? + o?ni(d6? + sin*0dp?).  (66)
For Ao < 7 < o, the metric on the horizon behaves as

1—A
ds?|pny = I

-Mm
dy* +4——
— AT

2
X [(02 — 2)d¢? + o2 O_ZL_ZZ] (67)

In terms of a coordinate z = o cosf, the metric is written
as

1—A
d82|bh2=1_ .
2

d¢z4_4I:£?X[d924—gn20d¢21 (68)

From Egs. (66) and (68), we find that away from the
bubble, the induced metrics on the horizons are the product
of a circle and a round two-sphere with large radius. When
z = m,0 for the left black hole and z = Ao for the right
black hole, the metrics do not take the form of Egs. (66)
and (68). In this region, the KK circles ¢ depend on z and
shrink to zero at z = 7,0 and z = Ao, respectively. This is
how the solutions admit configuration of arbitrarily large
black holes with S3 topology, as is pointed out in the static
case [20]. Hence, it is an interesting issue to consider that
the solutions admit the deformation from a black string
S X $? topology into two large black holes with S3 topol-
ogy. In the next section, we will discuss the entropy of two
black holes on the bubble and that of a black string, and
will compare them. The ratio of the distance between two
black holes to the size of KK circles is given by

(69)

Therefore, the two black holes cannot approach each other
without shrinking the size of the KK circles at infinity.
Thus we find that this limit is singular.

I. Entropy

As mentioned in the above, our solutions describe two
black holes in equilibrium by the existence of the bubble
between them. We compare the total area A,gg = A; + A,
of two black holes with the area of a rotating black string
with the same mass (31), the same angular momentum
(32), and the same circle (36) at infinity. For simplicity,
we consider the five-dimensional rotating black string with
a translationally invariant compactified extra dimension.
The metric of the rotating black string can be written in the
form

ds? = —<ALZSinz§)diz _ 2asin2§(f2 + a2 - )
% 3
2 2)2 _ 2 25
(7 + a?) . Aa?sin 08in25d¢§2 . %djﬂ
RO (70)

did¢
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FIG. 6 (color online). Plot of the ratio A,gy/Ags on the (1, A)
plane. We fix the other parameters as n, = —3.5 and o = 1.0.

where 3 = 2 + a%cos?0, A = P + a® — 2mr. i has the
periodicity of ¢, i.e., Ay = Ay The mass parameter and
the angular momentum parameter of the black string are
given by m = Mapy/Ad and a = J/M zpy, respectively.
Then, the area of the rotating black string is given by

Aps = 4m[(m + Vm? — a?)? + a*]A. (71)

Figure 6 shows the plots of the ratio Apy/Ags on the
(11, A) plane, where we fix the other parameters as 1, =
—3.5 and o = 1.0. The ratio is smaller than 1 within the
range of 1; < 1, < A and 8% < 1; we also find that this
qualitative result does not depend on the choice of the
parameter 7),. Hence like the static case [20], we cannot
expect a rotating black string to spontaneously generate a
Kaluza-Klein bubble and split into two rotating black holes
with topology S3.

IV. SUMMARY AND DISCUSSION

Using the solitonic solution-generating methods, we
generated a new exact solution which describes a pair of
rotating black holes on a Kaluza-Klein bubble as a vacuum
solution in the five-dimensional Kaluza-Klein theory. We
also investigated the properties of this solution, particu-
larly, its asymptotic structure, the geometry of the black
hole horizons and the Kaluza-Klein bubble, and the limit of
the static case. The asymptotic structure is the S' bundle
over the four-dimensional Minkowski spacetime. Two
black holes have the topological structure of S> and the
bubble is topologically S' X R. The solution describes the
physical situation such that two black holes have the
angular velocity of the same direction and the bubble plays
a role in holding two black holes. In the static case, it
coincides with the solution found by Elvang and Horowitz.
We also have studied the physical properties of the solu-
tions. It has been shown that the two black holes have
inverse intrinsic spins of each other even though the angu-
lar velocities are the same sign. This feature is attributed to
the gravitational frame dragging of the faster black hole.
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The counterrotating black hole can have negative Komar
mass. We have also compared the entropy of two black
holes on a bubble with a rotating black string with the same
mass and the same angular momentum. Like the static
solution [20] and the boosted black hole solutions on a
bubble [29], we cannot expect that a black string sponta-
neously generates a Kaluza-Klein bubble and it splits the
horizon with the topology S' X S? into two black holes
with the topology S°.

In this article, we concentrated on the black hole solu-
tion with a single angular momentum component. The
investigation of the solution with two angular momentum
components is enormously challenging. In general, the
inverse scattering method can generate a solution with
two angular momentum components. However, as dis-
cussed in Refs. [11,14], such a solution generated from
our seed would have singular behavior on an axis due to the
issues of the normalization. In order to obtain a solution
with two angular momentum components, we need to
change our seed into another seed which does not satisfy
the condition detg;; = —p*. We will give such a solution
in our future article.
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APPENDIX: SOLUTION BY BACKLUND
TRANSFORMATION

In this appendix we briefly present the solution obtained
by the Bicklund transformation which was developed to
apply the five-dimensional case [5].

The metric of the solitonic solution can be written in the
following form:

ds®> = e T[—e5(dt — wdp)* + e Sp*(d)?

+ 277 S(dp? + dz?)] + ¥ (dy)>. (A1)

The function T is derived from the seed metric (2) as

T=U,,—-U (A2)

207

where the function U is defined as U, := % In[R,; + (z —
d)]. The other metric functions for the five-dimensional
metric (A1) are obtained by using the formulas shown by

(6],

(O)A
oS =2

; (A3)

PHYSICAL REVIEW D 78, 084001 (2008)

(A4)

e = Cy(x® — 1) 'Ae?, (AS)

where C; and C, are constants and A, B, and C are given by

A= x2—= 11+ ab)> — (1 —y*)(b — a)? (A6)
B:=[(x+1)+ (x— DabP + [0+ y)a+ (1 —y)bl,
(AT)

C:=x*— 11+ ab)(1 —y)b—(1+y)a]

+(1—=y)b—-a))x+1—(x—1)ab], (A8)

and x and y are the prolate-spheroidal coordinates: p =
o (x* — 1)(1 — y?), z = oxy. Here the function S© is a
seed function which can be derived from the seed metric
(2) as

sO=0,,-20,,+0 (A9)

20"
The functions a and b, which are auxiliary potentials to
obtain the new Ernst potential for the seed by the trans-
formation, are given by

€2U" —+ eZU/\:r eZU,, —+ eZUlea' < eUTlla' )2

a=aua:- - - —
eUro eUne e2Us 1 er,“,,
(A10)
b= o o
o + ¢2ie L2U- 5 4 p2Un0
2U_ 20
e o + e no 2
[ e I (A11)
U
e -me

where the function U, is defined as U, := % In[R; — (z —
d)]. In addition the function v’ is obtained as
7/ = Fyira' + yLU,—U + VGW,M + 7{’]10,7710' + ’y{"lz"y"h"

- 27”0’,-0’ + 7:;—,,\0— - 27/0',7][0' + yg’,nza - yLU,AU
+ 27L0,n,a - yLU,ﬂzg - ylxlo,nla - ’yl)\a','qzu'
= Ynome (A12)
where

Yig = 3U0c +304 = jIn[RR; + (z = o)(z = d) + p*]
(A13)

084001-11



SHINYA TOMIZAWA, HIDEO IGUCHI, AND TAKASHI MISHIMA

(1]

(2]
(3]

(4]
(5]

B. K. Harrison, Phys. Rev. Lett. 41, 1197 (1978); 41, 1835
(E) (1978).

G. Neugebauer, J. Phys. A 13, L19 (1980).

V. A. Belinskii and V. E. Zakharov, Sov. Phys. JETP 50, 1
(1979); 48, 985 (1978); V. A. Belinski and E. Verdaguer,
Gravitational Solitons (Cambridge University Press,
Cambridge, England, 2001); H. Stephani, D. Kramer, M.
MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions
of Einstein’s Field Equations (Cambridge University
Press, Cambridge, England, 2003), 2nd ed.

C.M. Cosgrove, J. Math. Phys. (N.Y.) 21, 2417 (1980).
T. Mishima and H. Iguchi, Phys. Rev. D 73, 044030
(2006); H. Iguchi and T. Mishima, Phys. Rev. D 74,
024029 (2006).

J. Castejon-Amenedo and V.S. Manko, Phys. Rev. D 41,
2018 (1990).

R. Emparan and H.S. Reall, Phys. Rev. Lett. 88, 101101
(2002).

H. Iguchi and T. Mishima, Phys. Rev. D 73, 121501(R)
(2000).

H. Iguchi and T. Mishima, Phys. Rev. D 75, 064018
(2007).

T. Koikawa, Prog. Theor. Phys. 114, 793 (2005).

S. Tomizawa, Y. Morisawa, and Y. Yasui, Phys. Rev. D 73,
064009 (2006).

T. Azuma and T. Koikawa, Prog. Theor. Phys. 116, 319
(2000).

A. A. Pomeransky, Phys. Rev. D 73, 044004 (2006).

S. Tomizawa and M. Nozawa, Phys. Rev. D 73, 124034
(2000).

A.A. Pomeransky and R.A. Sen’kov, arXiv:hep-th/
0612005.

[16]
(17]
(18]
[19]
[20]

(21]
(22]

(23]

[24]
[25]

[26]

(27]
(28]

[29]
[30]

(31]
(32]

(33]

084001-12

PHYSICAL REVIEW D 78, 084001 (2008)

H. Elvang and P. Figueras, J. High Energy Phys. 05 (2007)
050.

H. Ishihara and K. Matsuno, Prog. Theor. Phys. 116, 417
(20006).

H. Ishihara, M. Kimura, K. Matsuno, and S. Tomizawa,
Classical Quantum Gravity 23, 6919 (2006).

H. Ishihara, M. Kimura, K. Matsuno, and S. Tomizawa,
Phys. Rev. D 74, 047501 (2006).

H. Elvang and G.T. Horowitz, Phys. Rev. D 67, 044015
(2003).

E. Witten, Nucl. Phys. B195, 481 (1982).

T. Harmark and N. A. Obers, J. High Energy Phys. 09
(2004) 022.

T. Harmark, V. Niarchos, and N.A. Obers, Classical
Quantum Gravity 24, R1 (2007).

T. Harmark and Niels A. Obers, arXiv:hep-th/0503020.
S. Tomizawa, H. Iguchi, and T. Mishima, Phys. Rev. D 74,
104004 (2006).

T. Harmark and N.A. Obers, Nucl. Phys. B684, 183
(2004).

T. Harmark, Phys. Rev. D 70, 124002 (2004).

R. Emparan and H.S. Reall, Phys. Rev. D 65, 084025
(2002).

H. Iguchi, T. Mishima, and S. Tomizawa, Phys. Rev. D 76,
124019 (2007).

D. Kastor, S. Ray, and J. Traschen, Classical Quantum
Gravity 25, 125004 (2008).

S.S. Yazadjiev, Phys. Rev. D 76, 064011 (2007).

J. Kunz and F. Navarro-Lerida, Phys. Rev. Lett. 96,
081101 (2006).

J. Kunz and F. N-Lerida, Phys. Lett. B 643, 55 (2006).



