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We present an extension of the velocity-dependent one-scale model for cosmic string evolution, which
is suitable for describing the evolution of local and global monopole networks. We discuss the key
dynamical features that need to be accounted for, in particular, the fact that the driving force is due to the
other monopoles (rather than being due to local curvature as in the case of extended objects) and new
forms of energy-loss terms due to monopole-antimonopole capture and annihilation. For the case of local
monopoles we recover and generalize the results of Preskill, suggesting that the scaling law for the
monopole correlation length is very sensitive to the annihilation rate. On the other hand, for global
monopoles the long-range forces generically lead to linear scaling (just like in the case of local cosmic
strings). In this case we also find good qualitative agreement between our results and the numerical
simulations of Bennett and Rhie and Yamaguchi, although future high-resolution simulations will be

needed for quantitative comparisons.
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L. INTRODUCTION

Since the pioneering work of Kibble [1] it has been
known that topological defects necessarily form at cosmo-
logical phase transitions if they are stable. The details of
the phase transition, in particular, the specific symmetry
being broken, will determine what kind of defect network
is formed, and whether or not the network is long lived.
Understanding defect formation, dynamical properties, and
evolution is therefore a key part of any effort to understand
the early universe. A thorough overview of the subject can
be found in the book by Vilenkin and Shellard [2].

In the past three decades, most of the work on defects
has focused on cosmic strings, for the good reason that they
are usually cosmologically benign and are a generic pre-
diction of inflationary models based on grand unified theo-
ries (GUT) [3,4] or branes [5,6]. On the other hand, domain
walls and monopoles are cosmologically quite dangerous,
so any models in which they arise are subject to very tight
bounds. Nevertheless, understanding their detailed proper-
ties is still important. On the one hand, in order to con-
fidently impose bounds on models which form them one
must know in detail how they evolve. On the other hand it
is becoming increasingly clear, particularly in the context
of models with extra dimensions such as brane inflation,
that hybrid defect networks will often be produced. Two
examples are semilocal strings and cosmic necklaces [7—
9]. To understand the evolution of these hybrid systems one
needs to understand not only the dynamics of the strings
but also that of the monopoles. This article is a first con-
tribution to this task.
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The existence of magnetic monopoles was first sug-
gested by Dirac in 1931 [10], but first demonstrated in a
field theory context only in 1974 by ’t Hooft and Polyakov
[11,12]. It soon became apparent that they are cosmolog-
ically disastrous, and indeed this has been given the status
of a “problem”—the monopole problem [2,13]. For this
reason, their study has been comparatively neglected rela-
tive to that of cosmic strings and even domain walls.

Global monopoles have logarithmically divergent en-
ergy due to the slow falloff of angular gradients, which
makes some of their properties counterintuitive. Even their
stability was the subject of some debate because a global
monopole with its core position fixed has an angular zero
mode [14] and a finite energy barrier between topologi-
cally distinct sectors [15]. In reality, any angular deforma-
tion away from spherical symmetry leads to a displacement
of the core and the only decay channel left is monopole
annihilation [16,17]. Global monopoles are known to have
scaling solutions [18-20], and could play a role in structure
formation that can be constrained with cosmic microwave
background data [21-23] (see, also, [24]).

In this paper we propose an extension of the velocity-
dependent one-scale model for string evolution [25,26] that
can be used to study the evolution of local or global
monopole networks. In future work we shall discuss how
this can be applied to the study of hybrid defect networks.

The rest of the article is organized as follows. We start in
Sec. II by presenting a simplified derivation of the evolu-
tion equations for the two dynamical quantities of our
model, a length scale that can be thought of as a correlation
length and a root-mean squared (RMS) velocity. We then
focus on the specific case of monopoles, first by providing
(in Sec. III) a brief overview of previous work on mono-
pole properties and dynamics and then by discussing (in
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Sec. IV) how these features can be encapsulated in our
model. In Sec. V we use the model to discuss the evolution
of networks of local monopoles; we shall see that our
results agree with but generalize those of Preskill [27].
Similarly, the evolution of global monopole networks is
discussed in Sec. VI; here we find good qualitative agree-
ment with previous numerical simulations by Bennett and
Rhie [19] and by Yamaguchi [20], although the relatively
low resolution of these simulations does not allow quanti-
tative comparisons (which must be left for future work). In
Sec. VII we revisit some of our modeling assumptions on
the energy-loss terms and driving forces, and discuss how
these affect our results. Finally in Sec. VIII we summarize
our results and discuss some open issues.

II. ANALYTIC MODELING GENERALITIES

Broadly speaking, the key idea behind the analytic
modeling of defect networks is that one gives up the idea
of studying their “statistical physics” (which to a large
extent can only be done numerically) and instead concen-
trates on its ‘“‘thermodynamics.” In other works, one or
more macroscopic quantities are chosen to describe the
network, and the knowledge of the microphysics is used to
derive evolution equations for these macroscopic quanti-
ties. This has the advantage of leading to relatively simple
models which can in principle encapsulate most of the
relevant physics, but it also has an associated cost: in going
from the microphysics to the macrophysics one is forced to
introduce phenomenological parameters, which can only
be calibrated by direct comparison with numerical
simulations.

The first effort along these lines is Kibble’s one-scale
model of string networks [28] (extended in [29]), which
has a single macroscopic parameter: a length scale that can
be identified as the string correlation length, the string
curvature radius, or the interstring distance—in the mod-
el’s approximation they should be seen as identical or at
least comparable. This was later generalized to a three-
scale model by Austin, Copeland, and Kibble [30] where
there are three distinct length scales: the first two are again
the string correlation length and the interstring distance,
while the third is a typical scale for small-scale “wiggles.”

A different approach recognizes that in order to be able
to quantitatively describe the whole cosmological history
of these networks one must be able to describe the evolu-
tion of the defect velocities, not the least because depend-
ing on the cosmological epoch and on their own properties,
the defects may be moving at nonrelativistic or at ultra-
relativistic speeds. This is the basis for the velocity-
dependent one-scale model of Martins and Shellard
[25,26], which retains Kibble’s assumptions on the exis-
tence of a single length scale but adds the RMS velocity as
a second macroscopic quantity. This model can be accu-
rately derived starting from the Goto-Nambu action, and it
has also been successfully tested against high-resolution
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field theory [31] and Goto-Nambu numerical simulations
[32,33]. More recently, it has also been extended to domain
walls [34]. In what follows we provide a simplified deri-
vation of the dynamical equations of the model, along the
lines of [34].

Consider a network of defects with n-dimensional world
sheets (n = 1 for monopoles) evolving in (3 + 1) space-
time dimensions. Temporarily assume them to have veloc-
ity v, to be noninteracting and (for extended objects)
planar. Then the momentum per unit comoving defect
volume—simply the momentum, for monopoles—goes as

pral=vyxa” (1)

from which we get by differentiation

dv +nH(l —v?)v =0. 2)
dt

On the other hand, under the above hypotheses the average
number of defects in a fixed comoving volume should be
conserved, which implies

p o ya 4 (3)

and again, differentiating and using the velocity equation,
we get

dp + H[(4 — n) + nv*]p = 0. 4
dt
The hypotheses so far are, of course, widely unrealistic.
However, we can use this as a starting point to build a
reasonable model. As has been pointed out above, the
validity of this process can be checked for the case of
cosmic strings, where a more rigorous derivation has
been done.
Let us start by defining a characteristic length scale
L4—n — % , (5)
p
where M will have dimensions appropriate for the defect in
question (i.e., monopole mass, string mass per unit length,
or wall mass per unit area), and can also be written

M~ 7" (6)

with 7 being the symmetry breaking scale. Also, we
interpret the velocity as being the RMS velocity of the
defect network, and allow for energy losses due to inter-
actions, which for extended defects can usually be modeled
(purely on dimensional grounds) by

dp _ _ v |

7 P (7)
we shall show below that this p dependence also applies to
global monopoles while for local monopoles the energy
loss is proportional to p>. More importantly, defects will be
slowed down by friction due to particle scattering. This can
be characterized by a friction length scale
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M
f=-— 8
0 v ®)
where we are defining
M
€f = eTn+1 *a ! (9)

and 6 is a parameter counting the number of particle
species (or degrees of freedom) interacting with the defect.
We can also define an overall damping length which

includes both the effect of Hubble damping and that fric-
tion due to particle scattering

! H + ! (10)

— =n —.

£y O
It is important to compare the relative importance of the
two effects. Since the friction length scale will in most
circumstances grow faster than the Hubble length, it is
expected that friction will be dominant at early times,
while Hubble damping will dominate at sufficiently late
times. This is easy to confirm. Using the relations [13]

m
-~ (11)
for the radiation era, and
Mpy
t ‘T3/2Té42 (12)
for the matter era, we find that the ratio of the Hubble and
friction length scale is given by

o ()G @

in the radiation era, and

I [0 o B
f Y Mmpy Teq

in the matter era, where again 7 is the scale of the phase
transition producing the defects. In the interest of simplic-
ity, these estimates neglect couplings as well as numbers of
interacting species (which may not necessarily be of order
unity). For defects formed at the GUT phase transition, the
friction length scale is ~103 times smaller than the Hubble
length. Note that the ratio is constant for monopoles in the
radiation era—hence monopoles will always be friction
dominated in the radiation era (but not in the matter era).
Apart from this special case, friction domination ends at

l _ (i)n/(nl) (15)

Mpy Mpy

if in the radiation era, otherwise at

l _ <l)2n/(2nl)<&)l/(2nl) (16)

npj mpy mpy

in the matter era.
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Putting together all of the above effects, we find the
following evolution equation for the characteristic length
scale L and RMS velocity v

(4—n)d—L=(4—n)HL+v2£+cv (17)
dt €,

®—n- v2)<f—€—vd> (18)

where in the latter we have included the possibility of
further driving forces affecting the defect dynamics. Note
that f has the units of acceleration, i.e., it is the force per
unit mass. For extended objects (walls and strings) that
have been extensively studied in the past, this driving force
is obviously the local curvature, and we have
k

f=1s (19)
we are implicitly assuming that our characteristic length
scale is the same as the defect curvature radius. For mono-
poles the situation is more complicated, since there are
forces due to other monopoles. This will be discussed
below.

III. OVERVIEW OF MONOPOLES

We now provide a brief overview the properties of local
and global monopoles. This is by no means exhaustive—
we shall only focus on the dynamical properties that will
turn out to be relevant for our analytic model. We shall
follow the more extensive reviews in [2,35,36], and refer
the interested reader to them for a more detailed
discussion.

The local monopole solution has two characteristic
length scales, r,; and r,, identifying the radii of regions
in which the scalar and vector fields depart significantly
from their asymptotic behavior. The monopole mass is
approximately given by

4 4
M~y ~ . (20)
e e

Their initial separation, &;, can range from the monopole
thickness (for a second-order phase transition) to the hori-
zon size (for a strongly first-order phase transition). The
expansion of the Universe will dilute the monopoles, so
naively we might expect a solution of the form & o« 77! «
a.

The force between local monopoles is just electromag-
netic attraction,

2
Femg(r) Nf_z (21)

where the magnetic charge is given by g =4m/e. A
monopole moving through a plasma also experiences a
drag force due to its interaction with charged particles;
the corresponding force is
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F ~ —0T?yv (22)

plasma

in agreement with Eq. (8). The initial monopole density is
ny % &3, though note that due to the Coulomb forces the
positions of monopoles and antimonopoles are strongly
anticorrelated: except, possibly, for a short transient, the
nearest neighbor to a monopole is likely to be an antimono-
pole. The Kibble mechanism (or alternative scenarios [37])
would naturally produce such an anticorrelation already at
formation. On the other hand, for slow transitions there is a
competing mechanism in which the monopoles are the
result of thermal fluctuations of the gauge field [38,39]
and they form in same-charge clusters. However, even in
this case the typical number of monopoles per cluster is of
order unity at the relevant energy scales around the GUT
scale [39]. Then the attractive forces between monopoles
and antimonopoles will dynamically establish the anticor-
relations very quickly.

One might naively expect monopole motion in a plasma
to be like Brownian motion of heavy dust particles in a gas
or liquid. If this is so, then they would typically move with

thermal velocities
T\1/2
vr=(;) 23)
m

with mean-free path

1 (m\1/2

However, the Coulomb forces will again introduce a bias in
the random walks, and so the defects gradually drift to-
wards each other. The average drift velocity may be simply
estimated from the balance between the electromagnetic
and drag forces, leading to

2
8
v~ 25
0T%r? 25)
This dissipates some energy and leads to the formation of
bound monopole-antimonopole states, at a capture radius

r. ~=. (26)

Once the bound pair is formed, the monopole and anti-
monopole spiral in, losing energy to the plasma drag and
radiation, and eventually annihilate into gauge bosons. The
rate of radiative energy loss into gauge bosons can be
estimated using the classical electromagnetism radiation
formula

2
P (ga) 27
6
(a being the monopole acceleration), which leads to
6 4
: 8 8
& ~——~ - 28
gauge 2 o (28)
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The lifetime of the bound state is
mr AP

g g’

T~ (29)
Notice that radiation losses increase strongly as the sepa-
ration decreases, and indeed almost all the energy is lost
after capture.

These bound states are generically short lived, although
if desired one could design models where the annihilation
would occur much later than the capture. In any case, this
subtlety can in practice be neglected, since a captured pair
is doomed to annihilate anyway—it can therefore be con-
sidered as decoupled from the rest of the network from the
moment of capture onwards.

This, together with the fact that most radiation losses
occur in bound pairs, means that we need not model these
effects explicitly. All we require is an adequate account of
the ““pair losses,” that is we need to keep track of the rate at
which bound pairs are forming and leaving the ““free”
monopole network. This is analogous to neglecting the
effect of the small string loops when modeling the dynam-
ics of a network of ““infinite” strings—there one also does
not need to explicitly account for losses to gravitational
radiation (which occur mostly in the loops rather than in
the infinite strings).

Finally, note that the diffusive capture is only effective if
the monopole mean-free path in the plasma is smaller than
the capture radius, which corresponds to

T> 49%4 ~ 02—;‘ (30)
At lower temperatures the monopoles and antimonopoles
can only capture each other by emitting radiation. For
thermal incident velocities we have already seen that the
energy losses are very small, so the annihilation time is
much larger than the expansion rate and the monopole to
entropy ratio becomes effectively frozen.

More interesting still is the case of global monopoles.
The total energy of a monopole out to a given distance
grows linearly with distance, so in some sense global
monopoles are similar to local strings. The energy of a
monopole-antimonopole pair at a distance R is

E ~4mn°R, (31

and the corresponding attractive force is therefore

o€
Fglobal -~ a_R -~ 477772 (32)

which is independent of distance. This is analogous to
monopoles connected by strings. But unlike that case, a
global monopole is not paired with any particular antimo-
nopole, and so it is not a priori clear how efficiently it can
find a partner. Still, the existence of long-range forces
means that capture and annihilation will be more efficient
than in the local case, and therefore no ‘““monopole prob-
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lem” is expected here. The rate of energy loss of a
monopole-antimonopole bound state into Goldstone bo-
sons has been estimated to be [40]

E gola ~ —M? (33)

and its lifetime is 7 ~ R. The pair is expected to move at
ultrarelativistic speeds and annihilate within a Hubble
time. Again, this allows us to model the energy losses as
going into bound pairs as opposed to modeling radiation
losses explicitly.

Finally, let us note that there is some previous numerical
work on global monopole networks. Numerical simula-
tions in the nonlinear sigma model approximation by
Bennett and Rhie [19] suggest that a scaling solution is
reached with a few monopoles per horizon volume, namely

an%, =35=*15 (34)
in the radiation era and
anz =40=*1.5 (35)

in the matter era. More recently, Yamaguchi [20] gives for
the quantity & = nt’,

£,=043 £0.07 (36)
&, =0.25+0.05 (37
and also attempts to measure velocities, finding
v, =10=x03 (38)
v, = 0.8 =0.3. (39)

Note that for a scale factor a(f) « A
t
1—2
so the two sets of simulations agree with each other re-

markably well in the radiation era, and broadly so in the
matter era.

dy(t) = (40)

IV. MODELING MONOPOLES

We are now in a position to bring together the results of
the two previous sections and discuss how the velocity-
dependent one-scale model can be extended to describe the
evolution of monopole networks. From the above discus-
sion, it is clear that the force between a pair of local
monopoles has the following form

k
Sioca ~ —5 (41)

nL*
For global monopoles the situation is slightly more subtle,
but also more interesting. The force between a pair of them
is independent of distance, but recall that their mass grows
proportionally to the distance. Therefore the acceleration is
in fact inversely proportional to distance,
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k
Satobar ~ i 42)

Again we see that they are in some sense like local strings.
This is not too difficult to understand: a monopole will be
effectively heavier when seen on larger scales, and its
acceleration should therefore be correspondingly smaller.

The next issue is the fact that there can be many mono-
poles and antimonopoles in a given Hubble volume, so the
various forces acting on a given one will partially cancel
each other. A simple way in which one can try to model this
isas a1/ \/ﬁ effect. In other words, the acceleration f
becomes f/ \/ﬁ , where the number of defects N in a
Hubble volume d3; is given by

d.\3
N, = (TH) : (43)

This should be fine for global monopoles (although it is an
issue that warrants testing in numerical simulations). On
the other hand, in the local case the situation is again more
subtle due to the existence of anticorrelations in the posi-
tions of monopoles and antimonopoles. The analysis of
[41] indicates that the number of defects in that case is
instead approximately given by

N, ~ (‘%’)2. (44)

This is to be expected: since the nearest neighbor to a
monopole is likely to be an antimonopole (and vice versa),
then typically the attractive forces between neighboring
pairs will be larger than in the uncorrelated case. In other
words, the cancellation mechanism is less strong, which is
equivalent to saying that the effective number of neighbors
is smaller.

Finally, there is the issue of energy losses due to mono-
pole annihilations. The generic form given by Eq. (7), a
natural extension of those that can be derived for strings
and domain walls, is valid for the case of global monopoles
(again, these are in some sense like local strings). For a
single monopole-antimonopole pair p/p ~ &£/E, and
Egs. (31) and (33) lead to p « —p/R. This is another
way of saying that the time scale for energy losses corre-
sponds (in the fundamental units we are using) to the
length scale R. On the assumption that the two length
scales are comparable R ~ L and this matches Eq. (7) apart
from the allowance for generic velocities. Note that here
we are assuming that the separation between monopole-
antimonopole pairs is comparable to the network’s charac-
teristic length scale. Although the two need not be the
same, this is a valid assumption in the context of the simple
one-scale model we are considering, and additionally any
discrepancy could to some extent be absorbed by a rede-
finition of the numerical coefficient c.

On the other hand, in the local case the Coulomb forces
between the monopoles and antimonopoles lead to a differ-
ent energy-loss rate. Early work of Zel’dovich and
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Khlopov [42] assuming that the monopole-antimonopole
annihilations were purely determined by the Coulomb
attraction of the magnetic charges found that the number
density n;, should evolve as

dny, nﬁ,l

—= +3Hny = —A—%; 45
dt ny T3 ( )
a subsequent more detailed study by Preskill [27], which
implicitly allows for the effect of the anticorrelations, leads
to the more generic form

2

dny _ 4y
" + 3Hn, = Aﬁ, (46)

where the proportionality constant has the form A =
Cn?~2, and C is a dimensionless constant.

On physical grounds we should expect that p = 3. In
terms of the correlation length this has the form

39 _apr+
dt LTr’

47)

This may seem very different from the standard term given
by Eq. (7), but the difference is actually less than it appears.
For example, there should be a velocity dependence in this
term (for the obvious reason that if all monopoles have zero
velocities there will be no annihilations). This is explicit in
the standard term, but implicit in the Preskill term. An easy
way to see it is to assume that monopoles have thermal
velocities. In this case one can use Egs. (23) and (24) to put
in a phenomenological but explicit velocity dependence.
We then find

A n p—5/2
277 CU<T> (48)

though we caution that the above assumption of thermal
velocities is, at best, a crude approximation. In any case,
we will use the Preskill loss term, Eq. (47), for the local
monopoles, and comment of the differences we would
obtain otherwise.

As for the specific values of p, Preskill argues for a
short, transient high-temperature regime where p = 2, and
a longer low-temperature regime with p = 9/10. This is
important because if p < 1 annihilations are expected to
“turn off” (that is, become unimportant), in which case we
expect n o T3, which corresponds to L o r'/2. On the other
hand, if p > 1 then annihilations are always relevant, and
in that case one expects n T7%2, which corresponds to
L o 1(P+2)/6_(Notice that this analysis is for the radiation
dominated epoch.) It is therefore important to see if we can
recover these results using the model in the local case. For
the global case, a good benchmark will be the simulations
discussed above.
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V. EVOLUTION OF LOCAL MONOPOLES

We can now use our newly derived analytic model
equations to look for scaling solutions for the characteristic
length scale and RMS velocity of the monopoles. Starting
with the case of local monopoles, the evolution equations
have the general form

dL L CnP?

3" =3HL+v* -+ — 49

di Ve T I “49)
and

dv k L v

__=1—M(—————) 50

. ( ) 22d, O (50)

We can start by finding solutions in Minkowski space-
time, by setting H = 0. In this case the asymptotic scaling
solution has the form

p—2
3.7
L (51)

L

and the monopoles will freeze, with the precise scaling law
for the velocity depending on the behavior of the friction
length scale. Assuming that we have €, = const we find

voc 43, (52)

while for the arguably more realistic €; « L the freezing
happens more slowly,

voc (53)

In the (unrealistic) frictionless limit €, — oo the correla-
tion length still has the same scaling, but velocities asymp-
tote to the speed of light, v — 1.

For the expanding case, allowing for a generic scale
factor of the form a o A, there are two possible scaling
laws, which depend both on the value of p and on A. For
the case

1
<3 - 54
P 3 (54)
we will have
L« th « q; (55)

this corresponds to the case where energy losses due to
annihilation are unimportant and the monopoles are simply
conformally stretched. Note that in the radiation era we do
recover the result L o ¢/ 2 and in that case the threshold
for this regime is indeed p < 1. This therefore recovers and
generalizes the Preskill results. In the opposite case

1
p>3-+ (56)

annihilations are dynamically important, and the scaling
law for the correlation length is then

L >« t(/\p+l)/3; (57)
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again we recover the expected Preskill result L o ¢((P*+2)/6
for the particular case of the radiation era. Note that for
p>3—1/Awehave (Ap + 1)/3 > A: as expected, in this
regime the evolution is faster than the one above, which
corresponds to conformal stretching. This difference illus-
trates the effect of the annihilations.

It is also worth pointing out that linear scaling (L < 1)
will occur for the case Ap =2, while for Ap > 2 the
correlation length will grow superluminally. This last
case corresponds (at a phenomenological level) to the
situation where annihilations are so efficient that on aver-
age there will eventually be less than one monopole per
Hubble volume, so the monopoles effectively disappear.
Note that since we physically expect p = 3, then Ap = 2
corresponds to A = 2/3. Hence linear scaling can occur in
the matter era but not in the radiation era. On the other
hand, superluminal scaling requires A >2/3 and so it
cannot occur in either epoch—this is a simple manifesta-
tion of the monopole problem in standard cosmology.

Interestingly, in both regimes the scaling law for the
velocities is the same, namely

vt rag T, (58)

This is a nice and simple result, and it disproves the naive
expectation that the monopoles should move with thermal
velocities (which would correspond to v = JT ).

The above solutions hold for decelerating universes
(with 0 < A < 1) but also for power-law inflating universes
(that is, with A = 1). On the other hand, in de Sitter space
(with a = ef'") we have

L xa, p=3 59)

or

L x a?/3, p >3, (60)

although we expect that the latter behavior for p is physi-
cally unrealistic. For the velocity we still have

voegl, (61)

Thus in an inflating universe the monopoles freeze and are
conformally stretched, being pushed outside the horizon.
After the end of inflation there will be much less than one
monopole per horizon and their velocities will be infini-
tesimal, so they will keep being conformally stretched until
they reenter the horizon. So in order to solve the monopole
problem one needs sufficient e-folds of inflation to ensure
that the monopoles have not yet reentered.

VI. EVOLUTION OF GLOBAL MONOPOLES

A similar analysis can now be done for the global case.
We shall see that the different force and energy-loss terms
will lead to very different scaling laws. This case is also
interesting because previous numerical simulations exist
against which we can compare our results. Although the
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simulations have been done several years ago and have
very low resolution by today’s standards, we shall see that
the results of the comparison are very encouraging.

A. Analytic model

In this case the evolution equations will have the general
form

dL L
— =3HL +v*—+ 2
3dt 3 v 0 cv (62)
and
dv k(L\32 v
o (I -2 \a, 7 (63)

Again we can start with the Minkowski space-time case.
In the unrealistic frictionless limit €, — co we now have

asymptotically
L= %ct (64)

v=1 (65)

so global monopoles will become ultrarelativistic. The
case of a constant friction length scale is not relevant for
global monopoles. Because of the linear divergence of
their masses, a more realistic situation in Minkowski
space-time would be that of the friction length scale being
proportional to the correlation length itself, £, « L. In that
case we find the following scaling law

=et = %vo(vo + o)t (66)

v = ke¥/? = const. (67)

This behavior is to be contrasted with the case of local
monopoles, whose velocities always approach zero (except
in the unrealistic frictionless case). Note that in principle
any value of the velocity is a possible solution, including
the limit v = 1. An interesting question is whether the
friction will make the monopole velocities stabilize at
some fixed value (and if so, how small this is) or if they
will still become arbitrarily close to the speed of light.
Incidentally, notice that assuming €, o« ¢” in Minkowski
space, requiring a linear scaling L o« ¢ implies v = const
and o = 1. In other words, no other nontrivial behavior of
the friction length would lead to linear scaling for the
network.

Now let us consider the general expanding case, again
for a generic expansion law a « t*. Here, just as in the
standard case of local strings, the only possible scaling law
is linear scaling

L =c¢t (68)

v = vy = const, (69)

which at least qualitatively is in agreement with the exist-
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ing numerical simulations. Interestingly, just as in the
Minkowski case there are two branches of the solution:
the velocities may or may not be ultrarelativistic. First, the
ultrarelativistic scaling regime will have the following
scaling parameters

Vg = 1 (70)

c

-_° . 71
TS 7

note that this can only hold for A < 3/4, but is in principle
allowed both in the radiation and in the matter eras.
Second, the more standard (subluminal) scaling regime
will be characterized by the following scaling parameters

CVg
e=—— > (72)
3(1 — A) — Avd
Ay = k(1 — 2)3/2€l/2, (73)

These relations could be solved explicitly for € and vy,
but the corresponding expressions would not be too illumi-
nating. However, simplified and physically suggestive so-
lutions can be displayed for both limits of the expansion
power A. In the limit A — 0, we have

€= %cvo. (74)

Not surprisingly, this is similar to the Minkowski space-
time scaling we discussed above. On the other hand, in the
limit A — 1, we find

vy = k(1 — M)~ (75)

Here the scaling velocity becomes arbitrarily small (v —
0) and L =« a = ¢ so asymptotically this is a conformal
stretching regime.

Unlike the ultrarelativistic branch, this nonluminal
branch can exist for any A (that is, for any expansion
law), though note that there is a constraint on the scaling
value of the velocity

V3 < 3(% - 1); (76)

this is trivial for A < 3/4 (meaning that in such cases any
scaling value for the velocity is allowed in principle), but
restrictive for faster expansion rates. Note, in particular,
that it agrees with the above finding that v = 1 is only
allowed for A < 3/4.

In passing we also note that the linear scaling solution
L o ¢t, v = const will also hold if we consider the case
where the friction length varies as € o L instead of the
usual scaling with temperature. Even in that case no other
scaling solutions exist. The only change is that in the
scaling coefficients (e and v, above), we would need to
interpret the parameter A as having a renormalized value,
instead of the value given by the expansion rate.
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We can also find scaling solutions in inflating universes.
Here there is a unique solution, both for power-law infla-
tion and for the de Sitter case, namely

Lxa (77)

voxagl (78)

hence the solution is the same as in the local case, and the
number of e-folds of inflation required to keep the mono-
poles outside the horizon by the present day should be the
same in both cases.

B. Comparing to simulations

Our results suggest that it would be very interesting to
carry out high-resolution numerical simulations of global
monopoles with a range of different expansion rates (say,
radiation, matter and a value of A > 3/4) in order to check
these solutions and provide a good calibration for the
model. In the meantime, however, we can use the results
of Bennett and Rhie [19] and of Yamaguchi [20] for the
correlation length, and also the latter’s for the velocities, in
order to make some simple comparisons.

We start by translating these results into our scaling
parameter €, finding

€, ~132  €,~189 (79)

for the simulations of Bennett and Rhie, and
€, ~ 1.32, €, ~ 1.59 (80)

for Yamaguchi’s. Notice the remarkable agreement in the
radiation era; even in the matter era the difference is small
considering the relatively low resolution and dynamic
range of the simulations. Now, since Yamaguchi’s mea-
surement is consistent with luminal velocities, let us as-
sume that we are in the v = 1 branch, and solve for the
energy-loss parameter ¢. We then find

¢, ~ 1.32, ¢, ~0.63 (81)
for the simulations of Bennett & Rhie, and
¢, ~ 1.32, ¢, ~ 0.53; (82)

notice that there is a factor of 2 difference between the
values of the parameter in the radiation and matter eras,
while we would expect to find similar values in both epochs
if the model is broadly correct and the parameter ¢ is a
constant (or nearly so). On the other hand, if we assume
that we are in the subluminal branch (using in both cases
Yamaguchi’s values for the velocities, since Bennett and
Rhie does not provide a measurement),

c, ~ 1.32, ¢, ~ 1.35 (83)
for the simulations of Bennett and Rhie, and
¢, ~ 1.32, ¢, ~ 1.15; (84)

here we can claim a very good agreement, considering the
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resolution of the simulations in question and the error bars
that each of them has. Also in this branch we can compare
the scaling values of the velocities; according to the model
we expect the ratio between the matter and radiation era
scaling values to be

In _(En) o 85
vr_<6e,) s, (85)

while Yamaguchi finds v,,/v, ~ 0.8; again given the error
bars we would argue that the agreement is encouraging.

VII. REVISITING OUR ASSUMPTIONS

As we discussed in Sec. IV, most of the subtlety in the
analytic description of these defect networks rests in the
way the energy losses, the intermonopole forces, and their
suppression factors are incorporated into the model. In this
section we will revisit these assumptions and discuss the
extent to which they influence the results we presented so
far.

Let us start by commenting on the role of the annihila-
tion term, by considering what would happen if we had
used Preskill’s annihilation term—Eq. (47), which holds
for local monopoles—for the global monopole analysis of
Sec. VI. For scaling laws of the form L o 1%, v o t#, we
find the following scaling powers for the correlation length

1
a = A, p<3—x (86)
and
Ap +1 1
= , >3 —— 87
a 3 P Y (87)

(again annihilations are unimportant in the former case but
not in the latter). Not surprisingly the scaling laws for L
would be similar to those we found in the local case
(Sec. V). On the other hand, for the velocities we have

B=—A A<1/3 (88)
and

a—1

B=——

A>1/3. (89)

Again the first of the above existed in the local case (for all
values of A), while the second branch is new. So there
would in general be no linear scaling solution; indeed the
only possibility of having @ = 1 is for the special case
Ap = 2 (with p > 2). But in any case the velocities will
become arbitrarily small, so as expected this form of
annihilation term seems clearly ruled out even by the
existing, low-resolution numerical simulations.

A more important issue is the suppression factor on the
forces driving the monopoles, to account for the partial
cancellation due to the presence of many monopoles and
antimonopoles in a given Hubble volume. In Sec. IV we
argued that this could be described as a 1/ \/]_V_ effect, but
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with the number N of defects in a Hubble volume calcu-
lated differently for the local and global cases. Here we will
generalize this assumption, by assuming that N is generi-

cally given by
dH 3—s
N, ~|— ; 90
s <L) (90)

recall that in the above analysis it was assumed that s = 0
for the global case but s = 1 for the local case.

Our analysis in Secs. V and VI can now be repeated for
this generic suppression term. The general outcome is that
our previous analysis is fairly robust. Most scaling laws are
not affected or receive s-dependent corrections only in the
prefactors. Corrections in the scaling exponents appear
only for the velocities, not the correlation lengths. On the
other hand, the emergence of genuinely new scaling re-
gimes is only possible for (arguably) unrealistic values of
the parameter s. We now discuss these changes separately
for the local and global cases.

A. Local case

The evolution equations now take the form

dL L Cypr?
— =3HL+ v —+ 1
d Ve ©D
and
dv k (L\G-92 v
R o R
7 (I =% 22 \ay 2 (92)

Recall that our expectation, based on the results of Einhorn
et al. [41] is that s = 1: the suppression factor describing
the partial cancellation of the force term is weaker due to
monopole-antimonopole anticorrelations, which can be
reinterpreted as an reduction in the effective number of
neighbors.

Starting with the Minkowski case (H = 0), there are no
changes in the asymptotic case {; — oo. For £, = const
the scaling law for the length scale L [given in Eq. (51)]
also remains unchanged, for any values s = 7/2. On the
other hand, the power-law of the scaling of the velocities
(v « tP) does have an s dependence

s—=35

3 b
for s =1 we therefore recover our previous result in
Eq. (52), B = —4/3. Something analogous happens for
the arguably more realistic case €, o L: the scaling law for

L is unchanged for s = 3, while the power-law of the
velocities becomes

B = (93)

s—4
3 2
again for s = 1 we recover Eq. (53), 8 = —1. In this case

there is in principle a new scaling branch for s = 3 (even
though we emphasize that such a suppression factor is

B = (94)
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physically unrealistic). In this case we would have B =
—1/s and the characteristic length scale would also scale
differently: L o t* with @« = 1 — (2/s).

For the case of the expanding universe, we again find
that the scaling law for the length scale remains un-
changed, being given by Egs. (55) or (57) as before,
depending on the value of the Preskill factor p. For the
velocities there are two possibilities. If s = 1 the scaling
law is again unchanged, being given by 8 = —A (for a «
") as in Eq. (58). On the other hand, for s > 1 the veloc-
ities will scale differently, with the scaling exponent being
given by

B=—%(s+1)+%(s—l), (95)

where again « is the scaling exponent for L given by
Egs. (55) or (57). Careful measurements of the scaling
laws for L and v in numerical simulations with several
expansion rates can therefore be used to not only test the
analytic model but also to obtain indirect information on
the intermonopole forces.

B. Global case

In this case the evolution equations will have the generic
form
dL

L
3— =3HL+v>—+ 96
7 v 7 cv (96)

and

dv k(L\G-972 v
0oty )
T VAR e, On

where thus far we have assumed s = 0, corresponding to
the expectations that in the absence of any correlation or
anticorrelations the suppression factor should be a simple
1/+/N effect.

Again starting with the Minkowski space case (H = 0),
the case €; — oo is still unchanged. For the case £, o« L the
linear scaling solution L = €f, v = const given by
Egs. (66) and (67) still exists for all values of s, the only
difference being that the relation between the prefactors
becomes s dependent

v =ke® /2 (98)

which trivially reduces to Eq. (67) for s = 0. (In particular,
monopole velocities arbitrarily close to the speed of light
are still possible in principle.) Interestingly, for the case
s = 1 only, there is a second scaling solution: writing L
t* and v o t# as usual, this solution is characterized by

a=1+p=1k, (99)

subject to the constraints that « <1 and B8 <0 which
trivially imply ck < 3. Unlike the generic linear scaling
regime, here the characteristic length scale grows more
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slowly and the velocities become arbitrarily small instead
of being constant.

Something similar occurs in the case of the expanding
Universe. The linear scaling solution still exists for all
values of s (including the branch with v = 1), the only
difference being an s dependence in the relation between
the prefactors for the L and v scaling laws, formerly given
by Eq. (73) and now becoming

Avg = k(1 — 2)B=9/2¢0-9)/2 (100)
which trivially reduces to the previous result when s = 0.
In this case a second, nonrelativistic scaling solution
appears only for the case s = —1. The physical viability
(if any) and interpretation of such a term is somewhat
unclear: this would imply that the suppression factor is
stronger than the naive 1/ \/ﬁ effect, or in other words each
monopole has a larger effective number of neighbors. Just
as in the Minkowski case, the new scaling solution is
characterized by
a=1+p (101)
subject to @ < 1 and B < 0, but the specific values of the
scaling coefficients now depend on the expansion rate,
being given by

(B+ M1+ B—2A)=1(1—N>ck (102)

and subject to the further constraints that both terms in
brackets on the left-hand side of the above equation are
positive.

Although this scaling solution is clearly related to the
one we discussed previously in Minkowski space, one
cannot recover the Minkowski one simply by taking the
limit A — O: this is due to the fact that the behavior of the
damping terms is different in the two cases (£, o« L for the
Minkowski case versus Hubble damping for the expanding
case). This is also the reason why different values of s are
needed in the two cases for the solution to exist. The two
new scaling solutions have the distinguishing feature of
velocities decreasing as the network evolves and becoming
arbitrarily small (as opposed to being constant), which
again highlights the need for careful measurements of
monopole velocities.

VIII. SUMMARY AND OUTLOOK

We have proposed a velocity-dependent one-scale phe-
nomenological description of the evolution of a network of
pointlike defects—monopoles—both in the global and
local (magnetic) cases. In both cases we recover scaling
solutions previously found in the literature and make pre-
dictions for new scaling regimes that have not been con-
sidered before.
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In the global monopole case there are three main as-
sumptions. First, since the force between global monopoles
is approximately independent of distance, a monopole
interacts with every other monopole and antimonopole
within its Hubble volume and this reduces the effective
force it feels. Second, since its mass grows linearly with
distance the acceleration has the same 1/L(r) dependence
as for local cosmic strings. Finally, since radiation losses
occur mainly within bound monopole-antimonopole pairs,
and are therefore decoupled from the rest of the network in
a first approximation, they can be modeled by a single
energy-loss parameter describing the efficiency of pair
formation. Comparison with existing numerical simula-
tions [19,20] supports this overall picture and we recover
scaling solutions with v <1 previously reported in the
literature. The RMS velocity of the monopoles is not
determined by the model. On the other hand, the expected
v =1 scaling solution does not agree so well with the
existing simulations. However the calculation of monopole
velocities from numerical simulations has large uncertain-
ties so it would be important to revisit this point
numerically.

In the case of magnetic monopoles we build on Preskill’s
results [27] for the annihilation rate. The suppression of the
Coulomb force between monopoles due to the presence of
many neighbors is further corrected to account for anti-
correlations (a monopole’s neighbor is more likely to be an
antimonopole).

Mindful of the fact that our modeling relies on a few key
assumptions, we have also discussed how our results
change if some of these assumptions are relaxed. We
have found that our scaling solutions are usually quite
robust, though more so for the defect correlation lengths
than for their velocities. In particular there can be changes
if the suppression factors for the forces driving the mono-
poles are different. A context where this may possibly
happen is that of condensed matter systems such as helium
or liquid crystals. The behavior of monopolelike defects in
these systems deserves further study.

It would be very interesting to extend this analysis to the
case of hybrid semilocal networks (of monopoles con-
nected by strings), for which Ref. [43] found some evi-
dence of scaling. Numerical simulation is computationally
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very demanding for these systems, because one cannot rely
on any thin string or sigma model approximations.

In semilocal networks, the long strings and loops behave
like local cosmic strings but string segments are also
possible and they can dominate the dynamics (see [44]
for a review). At formation the network consists only of
segments [45], with an exponential distribution in length.
But the ends of segments have long-range interactions that
make them behave much like the global monopoles studied
here. Once formed, they will interact and annihilate with
other segment ends even at long distances, causing some
segments to grow into long strings while others will col-
lapse and disappear.

This long-range interaction provides a crucial difference
with the better studied case of hybrid networks of mono-
poles connected by strings in which the strings confine the
magnetic flux of the monopoles [2]. In these networks the
ends of the strings are very light and the dynamics is
dominated by the tendency of the segments to collapse.
In the semilocal case, which of these two effects dominates
the network evolution is controlled by the ratio of the scalar
and gauge couplings (see, also, [46] for a study of the
electroweak case). For large scalar quartic coupling the
strings disappear, leaving behind a scaling network of
texturelike structures. But if the coupling is small the
simulations hint at a scaling network made of local strings
plus a few open segments per horizon volume. If such
structures are indeed formed after, e.g., brane inflation,
an extension of the present study would be the right tool
to confirm or rule out scaling behavior.
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