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Reheating induced by competing decay modes
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We address the problem of studying the decay of the inflaton field ¢ to another scalar field y through
parametric resonance in the case of a coupling that involves several decay modes. This amounts to the
presence of extra harmonic terms in the perturbation of the y field dynamics. For the case of two
frequencies we compute the geometry of the resonance regions, which is significantly altered due to the
presence of noncuspidal resonance regions associated to higher harmonics and to the emergence of
instability “pockets.” We discuss the effect of this change in the efficiency of the energy transfer process
for the simplest case of a coupling given by a combination of the two interaction terms of homogeneous
degree usually considered in the literature. We find that the presence of higher harmonics has limited

cosmological implications.
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I. INTRODUCTION

The success of the inflationary paradigm depends to a
great extent on the corresponding success of the reheating
stage that takes place after inflation [1,2] through which all
elementary particles that exist in the universe were created.
During inflation the universe expands exponentially, its
matter content is diluted, and the temperature decreases
as the inverse of the exponential of the number of e-folds
expN,. Unless some different mechanism is considered for
the inflaton decay (as in warm inflation [3,4]) there has to
be some process to raise the temperature to the levels
required for the nucleosynthesis of the light elements to
take place according to the standard thermal history of the
big bang universe [5].

In most post-inflationary scenarios reheating occurs due
to particle production by an oscillating scalar field ¢. In the
simplest models this field is the inflaton field that drives
inflation. After inflation the scalar field ¢ oscillates near a
minimum of its potential and this triggers a sequence of
processes that produces elementary particles and eventu-
ally restores the temperature [6—12].

Since the beginning of the 90’s a considerable effort has
been devoted to model the reheating process [6,13,14] (a
general account can be found in [2]). In most models, the
first stage of this complicated sequence involves the exci-
tation by parametric resonance of a second scalar field,
here denoted Yy, giving rise to an exponential increase in
the number of y boson particles [15,16] (for a comprehen-
sive review see also [17]).
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Despite the many contributions regarding the preheat-
ing/reheating mechanism itself [18-27] and its observatio-
nal implications [28-31], some general questions remain to
be completely answered. In particular, how does the reso-
nant energy transfer depend on the coupling between ¢
and y and on the inflaton asymptotic dynamics? The latter
issue has been studied in depth for a large variety of
polynomial potentials [16,32-34]. The former issue is
less well studied and has been the subject of some recent
work [35-37].

In the simplest of the preheating scenarios the inflaton
couples to the y field through interaction terms of the form
heo x* or g2¢? x? that correspond to two different decay
modes of the scalar field ¢ into another boson [1,2]. These
two coupling terms give rise to the same qualitative effects
and are considered as alternative models. Indeed, in both
cases the equation for the scalar field y can be reduced to a
Mathieu equation, and thus the parametric resonance fol-
lows similar patterns (even though the numerical values of
the model’s outcome may be slightly different). There are
two regimes, a broad resonance regime, in which the
amplitude of the periodic perturbation of the y-field fre-
quency is of the same order as or larger than the frequency
of the ¢ scalar field, and a narrow resonance regime where
the amplitude of the perturbation is small. The broad
resonance region of parameter space includes, for suffi-
ciently large values of the perturbation, the tachyonic
resonance regime which has been shown in [35] to be
extremely effective in transferring most of the energy of
the inflation to the y field.

The main feature that emerges from these studies of
preheating is that the broad and tachyonic resonance re-
gimes give the predominant contribution to the y field
energy density. However, there is always the possibility
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of a contribution to the total particle production in the
narrow resonance regime when the coupling parameters
characterizing the interaction between ¢ and y are small
and/or in the decay of residual inflaton oscillations. In the
particular case of parametric resonance modeled by a
Mathieu equation, this contribution is indeed small. The
growth of the modes of y is exponential in the resonance
bands or tongues in parameter space, and the first reso-
nance band is the only band wide enough to give rise to
significant y excitations. However, this need not be so
when there are more frequencies of excitation of the y
field. Here we show that in this case resonance is governed
by a general Hill equation and that other resonances be-
yond the first may contribute to the amplification of the y
modes. Therefore, there is the possibility that these higher
frequency excitations contribute significantly to the overall
creation of y particles. This analysis is the subject of the
present work, in the case when the y field is parametrically
forced by two frequencies in a 1:2 ratio. For this case, we
show that the contribution for the y field energy density of
the higher harmonic is a small fraction of that of the
fundamental frequency.

The outline of the paper is as follows. In Sec. II we
review the parametric frequency preheating mechanism
and the method to compute the particle production rate in
the general framework of Hill’s equation. In Sec. III we
apply this method to compare the reheating efficiency of
two different couplings of the inflaton field to the y field. In
Sec. IV we sum up the conclusions of this analysis.

II. PARTICLE PRODUCTION BY PARAMETRIC
RESONANCE

We start by reviewing some properties of the parametric
resonance mechanism for a general periodic perturbation
of the frequency of the oscillator, which corresponds to
Hill’s Eq. (3).

Reheating models in inflationary universes start by con-
sidering that, at the end of inflation, the inflaton ¢ is in a
coherent oscillatory state described by a space-
independent expectation value, governed by the equation
of motion for the inflaton

¢ +3Hp + a2V + V/(p) =0, (1)

where H is the Hubble parameter of a Friedmann-
Robertson-Walker metric with scale factor a(z), and
V/(¢) is the derivative of the inflaton’s potential V()
with respect to ¢. It is assumed that V(¢) has a vanishing
minimum for the oscillations to take place, and also that
the inflaton couples to another scalar field y which is then
periodically perturbed by the inflaton. The equation of
motion of y is given by

d
¥ +3Hy+a?Vx+U(y)+ avim((bv X) =0 (2

where Vi, = Vin (&, x) is the interaction potential between
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x and ¢, and where U(y) is a potential that gives mass to
X- At the onset of the process of energy transfer from ¢, y
is assumed to be at the vanishing minimum of this poten-
tial. The oscillations of ¢ around the minimum of its
potential are faster than the expansion rate of the universe,
so it is meaningful in a relatively short time scale to work
within the simplifying assumption that the actual space-
time can be approximated with a Minkowski metric. For
reasonable choices of a single interaction potential Vi,
namely, cubic interactions of the form g¢ y?, or quartic
interactions h¢?y?, the resulting y Eq. (2) is that of an
oscillator with a harmonically perturbed frequency. This
yields a Mathieu type equation and provides a well-known
mechanism for the parametric resonance of y and for the
exponential amplification of its particle number [17,25].

For more general coupling terms, in particular, nonho-
mogeneous couplings involving different powers of ¢, the
perturbation equation for y is parametrically forced by a
periodic function (for the quasiperiodic case see for in-
stance [38]) and the equations of motion for the y modes
are of the form (more details in Sec. III)

Xi T (07 + eF(t)x, =0, 3)

where F(r) is a periodic function with period 277, and we
may set F(t) = F(—1), [3"F(t)dt =0, and € a small
positive parameter related with the amplitude of the infla-
ton oscillations.

For the general Hill Eq. (3), Floquet’s theorem states that
the solutions are of the form

xi(1) = e O (), 4)

where Xfco)(t) is a periodic function with the same period as
F(f) and w; is one of the two characteristic exponents,
which are both real or complex conjugate.

Clearly, the lines Re(u;) = 0 divide the (w;, €) parame-
ter plane in unstable regions and stable ones, defining
instability bands which become narrow close to the € =
0 axis, producing what is often called a structure of tongues
[39]. For a perturbation of period 27 these tongues end on
the e = 0 axis at the points w; that satisfy the parametric
resonance condition w; = n/2 [see Fig. 1(a)]. These
modes are amplified by an arbitrarily small parametric
forcing of period 2.

To determine the characteristic exponent of the solutions
of Eq. (3) we follow Hill’s method of solution. Given that
the function F is periodic we write it as

<&
F() =5 k:zﬂ cre’™, 5

where ¢, = 0 (due to the parity of F) and s € N|J{co}.
This (finite or infinite) Fourier series expansion of F(z), (5),
together with Floquet’s theorem suggests looking for a
solution of (3) of the form
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(a) Instability diagram for Mathieu equation (26); (b) Instability diagram for Hill equation (32). Notice the emergence of an

instability pocket in the second band in Fig. 1(b) and the modifications in the level curves of the characteristic exponent w. These plots

were obtained using Hill’s method of solution.

+ 00
XlD) = et Y by, (6)
n=-—o0
Inserting this expression and Eq. (5) in (3) and equating the
coefficients of e« we derive a homogeneous system
with infinitely many linear equations

+o00
€
(g + in)’b, + = Cnbyu—m =0,
2 m;w (7
n=...,-2,-1012,...

Eliminating the coefficients b, in (7), a nontrivial solution
exists if the characteristic exponent satisfies an infinite
determinantal equation (called Hill’s determinantal equa-
tion),

A(e, uy) = Bl =0, 3
where the elements B,, of A(e, w;) are given by
B, = {1 o LTS )
Grinttar if r#s

Here an infinite determinant D = |B,,|, (m, n=
—09, ..., +00) is defined as the limit of D,, = det(B,»j) X
(i, j=—m,...,m) as m — +oo, if it exists.

Equation (8) can be reduced to the simpler form of a
transcendental equation in u; [40]

sin?(imu;) = A(e, 0)sin*(mwy). (10)

This determines a characteristic exponent wu;, which in
turn determines the b, coefficients of (7), and hence, a
formal solution (6) of Hill’s equation. The real part of u,
determines the growth factor of the solutions (6).

In the narrow resonance regime the phenomenon of
parametrically resonant excitations, where € << 1, it is
possible to derive an approximate expression in closed
form for w, as a function of e. First, notice that A(0, 0) =
1. Second, we see from (9) that the values of B,
depend linearly on € and that A(e, 0) = 1 + O(€?). This
means A(e, 0) ~ 1 + ae?, where a depends on ¢ =
(C_gy Cogiire-erC_1,Clyvnn, Co—1, Cs) and ON wy.

Inverting (10) using arcsinz = In(iz + +/1 — z?) and ex-
panding in powers of €, yields for the growth factor

1D

This expression will be used later to determine numerically
the resonant tongues for a particular function F(z).

For periodic perturbations with finite Fourier expansions
(5), s € N, it can be shown that the asymptotic form of the
width L, of the nth interval of instability is given by [40]

Re (uy) = €al(c, wy)| sin(mwy)l.

852 lc. el \r
L,= )+ o(ert), =sp (12
et o€ nmp a2
|el” +1
L,= an47p + O(EP )» S(P - 1) <n<sp, (13)

where p is the integer defined in these equations and where
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a, is a constant independent of €. One of the remarkable
consequences of these formulae is that the widths of all the
resonant bands up to the sth band depend linearly on the
perturbation amplitude, while the resonances of order
higher than s are associated with thinner instability
regions.

This has direct impact in the computation of the energy
production by parametric resonance. For small € the main
contributions to the energy density of the y field

1
o) =5 [ @Kol + 16P1 a4

- [ Pro? (1) (15)

come from the bands with widths depending linearly on the
perturbation amplitude e, since the other have relatively
negligible widths due their nonlinear cuspidal form.

This yields

py(D) =4 > KRwiL,|x (0)7e*! . (16

m=1 wr=m/2

where the value of y;(0) is evaluated at the center of the
resonances bands.

If all the modes start out with an amplitude | y;(0)| then,
by the virial theorem, or assuming that there is one y
particle on each mode,

1
X (0] = o a7

and so

N
p,(t) = 4m Z ko, L;eH!

i=1

(18)

w=i/2

The growth of the y field modes persists in an expanding
universe, if the time scale for the resonance is much shorter
than the expanding time scale [14]. If we change the field
to

Y = axy (19)

and introduce conformal time %), defined by dn =
ma~'dt, then Eq. (2) for ¢, becomes

K2 a
"t (W+ eF(n)a® — —

1z
Ju=0. o
m-a
where the prime denotes the derivative with respect to 7.
Assuming that m >> H, we can treat the expansion of the
universe adiabatically, and thus, at any given time, its effect
is a shift in the oscillatory frequency

Cl”

K-k ——, 21
a
and also an adiabatic increase of the amplitude of the

driving force. In the expanding universe the parametric
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resonance analysis is only applicable if several conditions
are satisfied: (i) e/m? < 1 (perturbative regime), (ii) the
expansion of the universe can be neglected, thatis H << m,
(iii)) we also need the time scale on which the instable
solution grows to be smaller than H, so that expansion is
unimportant, H/m < €, and finally, (iv) that the frequency
does not redshift out of the resonance band in a time
interval shorter than the amplification period m/(2u;).
This latter condition, for the i band, can be written in the
form

Ii A, | <L, (22)
2uy dn

where w; and w; are evaluated at the center of the reso-
nance ith band.

The regime where these conditions can be easily satis-
fied is the period after inflation where naturally one has
H/m < 1 and where the equation of motion, in conformal
time, for ¢ = ad, is given by

d"+ (1 —6)=0, (23)

with

1

1
s=—% «1. (24)
m a

III. INSTABILITY POCKETS IN HIGHER ORDER
RESONANCES

We now apply the results of the previous section to the y
dynamics in preheating, by considering two cases: (i) a
cubic interaction term, g¢ x2, between the ¢ and y fields,
and (ii) the more general case of a cubic plus a quartic
interaction, g¢ x> + h? x*. The former case is one of the
models that yield a Mathieu equation for the y modes, and
is here only briefly considered for the purpose of illustrat-
ing the usual analysis and for comparison with our ex-
tended model (ii), in which the y field equation is of the
form (3) with F(z) given by (5) and s = 2, the simplest
possible extension of the usual single frequency Mathieu
model. According to (13) and (18) one would expect that,
for comparable cubic and quartic terms, the efficiency of
the energy transfer process should approximately double in
the more general case.

Assume that the background field ¢ oscillates with
frequency large compared with the Hubble expansion
rate, which is always satisfied asymptotically [14,41]. If
we neglect the expansion in the ¢ dynamics then the
solution of (1) can be given by, with a specific set of initial
conditions,

@(1) = Acos(mi). (25)
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A. Single frequency interaction: the Mathieu equation
case

Consider the interaction potential g¢ y?. This yields for
the k-mode equation, using 7 = mt,

gA
)

k2
x{+ I:W + COS(’T):IXk = 0. (26)

In this case one has s = 1, and

k2
= 27)
c; =1, (28)

A
e==%ﬁ, (29)

and thus the width of the first instability band, when it is
linear on € as given by (12), is

L =—. 30
1 4m2 ( )

Using (18), the energy density in this case is given by
T
PRT) = S gAeki™, (31)

where u! is the characteristic exponent of the first band,
evaluated at the center of the band at height €.

B. Multifrequency interactions: the Hill equation case

For the interaction potential g¢p x> + he?x? the equa-
tion for the kth y mode is, with 7 = mt,

K> hA*  gA hA?
7+ I:W + ) + el cos(7) + ) cos(27')])(k =0.
(32)
In this case one has (3) and (5) with s = 2, and
k> hA?
c =1, 34
hA
=—, 35
(%) 2¢ (35)
A
e=52. (36)
m

Equations (13) for the widths of the first and second
instability bands are given by (12) and (13) in the regions
where they are linear in €, and yield

gA

L, =——, 37
1 4m2 ( )
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hA?
L, = Fp (38)

The energy density in this case is given by, using (18),
py(1) = ggAe“(l)T/’” + ghAze“gT/m, (39)

where u? and w9 are the characteristic exponents of the
first and second bands, evaluated at the center of the bands
at height e.

C. Reheating efficiency of the two couplings

To proceed further in the comparison of the growth of
the y field energy density generated by the two different
couplings considered in this section, we must compute the
relevant characteristic exponents in both cases.

In order to determine the value of the real part of the
characteristic value we use Eq. (11), where the matrix [B,,]
was truncated at a size of 11 X 11 after numerical accuracy
tests. Then we have for the value of « as a function of w;
and of ¢,

cron=-3(3 :
2 Ok 2\ &, (w% - nz)(w% —(n+1)?
3 C%
P 2N e )Yy e 2)2))

2
>

- 40
4wy — 1) “40)

and for the value for the growth factor
Re (1) = easin(mwy). 41

Notice that if we set ¢, = 0 in the latter expressions we
recover the Mathieu case.

In Fig. 1 we show the stability diagrams for the two
cases given above. Notice the appearance of an ““instability
pocket” in the second resonance band of Eq. (32) in Fig. 1
(b). This phenomenon, which is much less well known than
the appearance of additional noncuspidal instability
tongues associated with higher harmonics of the paramet-
ric forcing term, was studied in depth in [42,43]. It plays a
major role in explaining why the contributions of higher
order resonances may be neglected and why the y field
excitations are essentially single mode.

As shown in Fig. 1, there are two major differences when
comparing the bifurcation diagram of the two-frequencies
Hill case with the Mathieu case. On the one hand, the width
of the first instability band is slightly larger and its level
curves of constant wu are slighted tilted when compared to
the Mathieu case [Fig. 1(a)]. On the other hand, the shape
of the second instability band is distorted giving rise to the
emergence of a pocket, and its level curves of constant u
are lifted up. Also, the values of u crossed by straight lines
of fixed € in the first instability band are significantly larger
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than those crossed in the second band, with the exception
of the small region close to € = 0.

In order to compare systematically the efficiency of the
two couplings in transferring energy from the inflaton to
the y field, we have computed the time that it takes to reach
an e-fold increase of the total number of particles as a
function of the coupling strength €, for ¢, = 0.5. Instead of
Egs. (31) and (39), which are valid only in the limit of
small €, we use the general Egs. (18) with L, taken as the
numerical value of the band widths for each model.

In Fig. 2(a), we see that the e-fold time is essentially
determined by the contribution of the first instability band,
except in the region of very small values of e. In this
region, the multifrequency coupling becomes more effi-
cient than the Mathieu model because of the contribution
of an additional linear instability band, but the effect has no
cosmological implications since the energy transfer
achieved by both couplings is negligible for these parame-
ter values.

In Fig. 2(b) the overall behavior of the e-fold time as a
function of € is shown for the two models. The kinks that
can be seen in the two curves correspond to the values of €
where the first band hits the w;, = 0 axis. Because of the
formation of the pocket in the second instability band, the
multifrequency model becomes actually less efficient than
the single frequency excitation for moderate and large
values of the coupling.

This effect is also of limited cosmological relevance,
since the e-fold times of the two models are of the same
order of magnitude for similar values of the coupling
strength. However, it is somehow unexpected that an addi-
tional linear (as opposed to cuspidal) instability band may
translate into a less efficient resonance mechanism for
most parameter values. This is of course a consequence
of the pocket formation phenomenon, and it shows that the

1x10°

— Mathieu
-- Hill

8x10°

6x10°F

efold time

4x10°F

2x10°
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conclusions based on the analytic expressions for the
asymptotic behavior of the instability bands for small
values of € cannot be extrapolated.

D. Reheating efficiency in the expanding universe

We now take into consideration the expansion of the
universe and discuss how this affects the contribution of the
resonant bands found for the case of the two different
couplings.

The condition which should be satisfied for the reso-
nance mechanism to work is given by Eq. (22). As dis-
cussed in Sec. II (see [14]), it translates the requirement
that the frequency of the y particles should not be red-
shifted out of the resonance band in a time interval shorter
than the amplification period m/(2u;).

Using Egs. (21) and (22) can be recast as

1 /a’\/ 2
—2(—) |<|wkl<ﬂ)Li 42)
a m

m

for the ith instability band.

According to the analysis of this section, significant
particle production occurs, for either model, only for val-
ues of € such that the asymptotic approximations (13) no
longer hold, and that the instability pockets of Fig. 1(b) are
instead fully formed. Therefore, for a given €, the two-
frequency model will exhibit a combination of lower val-
ues of w; and smaller width L, than the single frequency
model. Both effects contribute to making condition (42)
harder to meet. For the same coupling strength and increas-
ing the expansion rate, the drift across the second insta-
bility band will become swifter than the amplification time
for the two-frequency model first.

Therefore, when the expansion of the universe is taken
into consideration, the conclusion that the reheating

— Mathieu

efold time

(b)

FIG. 2. Time of one e-fold increase in the total number of particles of the y field as a function of the coupling strength €, for

Cy = 0.5.
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mechanism is weaker in the multifrequency case than in
the Mathieu case is reinforced. Since, however, only the
contribution of the first instability band is accounted for in
the efficiency estimates found in the literature, these esti-
mates remain valid for the multifrequency model.

Now Egs. (31) and (39) are valid as long as any given
mode remains in the resonance band. Because of the
expansion, the time interval A7 during which a mode
remains in the band is

L
AT =~

=g (43)

As long as the total time is small compared with H~!/m,
the total energy produced during the time interval NAT is
approximately given by Np . In this scenario, reheating is
efficient if the ratio

Np,

44
Py (44)

becomes of order one after a time smaller than the Hubble
time. Otherwise a significant fraction of the original energy
density is redshifted away.

For the first band (as we have seen, the only one that
might contribute), the latter quantity (44) reaches the value
one for

P¢ - m2A2

L P
Py %gAe“AT/’"

(45)

Therefore the condition for sufficient reheating NA7 <
H~'/m becomes

At Ar/m 24
o > g (46)
or
AT 24

where W is Lambert function [44]. Equations (43) and (47)
establish a relation between the free parameters for suffi-
cient reheating to take place that holds for both models
considered in this section.

IV. CONCLUSIONS

We have shown how the consideration of extra frequen-
cies in the y equation of motion can be found in a simple
model with V(¢) = m?¢?/2 for the inflaton potential and
the interaction potential V(¢, x) = g x> + hep>x>. In the
narrow resonance regime the phenomenon of parametri-
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cally resonant excitations of the scalar field y by the
inflaton’s oscillations is then governed by a Hill equation,
where the forcing term in the y equation has two distinct
and commensurable frequencies.

As a result of the presence of various harmonics in the
equation of motion of the y field, the geometrical features
of the resonant bands in the bifurcation parameter space are
modified. Two main changes take place with respect to the
single frequency (Mathieu) case. On the one hand, for
small amplitudes of excitation, there are two resonant
tongues with linear dependences on the amplitude, rather
than just one as in the Mathieu case. On the other hand,
closely related to the previous effect, there is a distortion of
this additional band which gives rise to the formation of
instability pockets. Because of the simultaneous presence
(and interference) of two excitation frequencies, the lines
in parameter space that correspond to the periodic solu-
tions (. = 0) and define the boundary of the instability
band cross each other for values of the forcing amplitude of
order one.

For the two cases under consideration we have evaluated
and compared the particle production rates. We have con-
sidered first that the inflaton field ¢ oscillates around the
minimum of its potential much faster than the expansion
rate of the universe, m, > H, so that the expansion of the
universe may be neglected. We have shown that, in general,
the presence of an additional excitation frequency hinders,
rather than favors, the efficiency of parametric resonance
as an energy transfer mechanism, and that this is a con-
sequence of the instability pockets in the bifurcation dia-
gram of the general Hill’s equation. The enhancement of
particle production due to the presence of a second linear,
as opposed to cuspidal, instability band is shown to occur
only for extremely small coupling strengths, for which
both models yield negligible rates of y particle creation.
We then argue that the effects of an expanding universe
further justify the approximation of neglecting the contri-
bution of the second noncuspidal instability band.

In conclusion, our detailed analysis of two different
coupling terms supports and justifies the usual approach
in the literature, where the efficiency of reheating by para-
metric resonance is evaluated by considering the simplest
form of the parametrically forced equation, and only the
dominant contribution of the first instability band.
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