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We generalize the Bekenstein-Sandvik-Barrow-Magueijo model for the variation of the fine-structure

‘‘constant,’’ �, to include an exponential or inverse power-law self-potential for the scalar field ’ which

drives the time variation of �, and consider the dynamics of ’ in such models. We find solutions for the

evolution of ’ or � in matter-, radiation-, and dark-energy-dominated cosmic eras. In general, the

evolution of ’ is well determined solely by either the self-potential or the coupling to matter, depending

on the model parameters. The results are general and applicable to other models where the evolution of a

scalar field is governed by a matter coupling and a self-potential. We find that the existing astronomical

data stringently constrains the possible evolution of � between redshifts z ’ 1–3:5 and the present, and

this leads to a very strong limit on the allowed deviation of the potential from that of a pure cosmological

constant.
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I. INTRODUCTION

For the first time there is a body of detailed astronomical
evidence consistent with the time variation of a traditional
constant of nature. The observational programme of Webb
et al. [1,2] has completed detailed analyses of 128 Keck-
HIRES quasar absorption line systems at redshifts 0:5<
z < 3 using the many-multiplet method to compare sepa-
rations between line separations affected by special-
relativistic effects and found evidence consistent with the
fine-structure constant at redshift z, �ðzÞ, having been
smaller in the past, at redshifts z ’ 1–3:5. The shift in the
value of � between its value �ðzÞ at redshift z and its
present-day value �ð0Þ, for all the data is given provision-
ally by

��=� � ½�ðzÞ � �ð0Þ�=�ð0Þ ¼ ð�0:57� 0:10Þ � 10�5:

Subsequent reduction of another data set of 23 Ultraviolet
and Visual Echelle Spectrograph on the Very Large
Telescope quasar absorption systems 0:4 � z � 2:3 by
Chand et al., [3,4] using a partial version of the many-
multiplet method at first produced a result consistent with
no variation in �, with an unusually small uncertainty,
��=� ¼ ð�0:06� 0:06Þ � 10�5. However, the data re-
duction did not allow �� to be a free parameter in the
data fitting, and a reanalysis of the same data set by
Murphy et al. [5] using the full many-multiplet method
increases the uncertainties sixfold, and leads to a revised
bound of

��=� ¼ ð�0:64� 0:36Þ � 10�5:

Any present-day variation of � can also be constrained by
direct laboratory comparisons of clocks based on different
atomic frequency standards over a period of months or

years. Until recently, the most stringent atomic clock con-
straints on any current temporal variation of � were

_�=� ¼ ð�3:3� 3:0Þ � 10�16 yr�1;

which arose by combining measurements of the frequen-
cies of Sr [6], Hg [7], Yb [8], and H [9] relative to Cs;
Cingöz et al. [10] have also recently reported a less strin-
gent limit of _�=� ¼ �ð2:7� 2:6Þ � 10�15 yr�1. If the
systematic errors can be fully understood, an ultimate
sensitivity of 10�18 yr�1 may be possible with this method
[11]. If a linear variation in � is assumed then the Murphy
et al. quasar measurements equate to _�=� ¼ ð6:4�
1:4Þ � 10�16 yr�1 [1,2]. If the variation is due to a light
scalar field described by a theory like that of Bekenstein
and Sandvik, Barrow and Magueijo (BSBM) [12,13], then
the rate of change in the constants is exponentially damped
during the recent dark-energy-dominated era of acceler-
ated expansion, and one typically predicts a present-day
value of

_�=� ¼ 1:1� 0:3� 10�16 yr�1

by direct extrapolation from the Murphy et al. data [1,2].
This is not ruled out by the atomic clock constraints
mentioned above. For comparison, the Oklo natural reactor
constraints, which are based on the need for the Sm149 þ
n ! Sm147 þ � neutron capture resonance at 97.3 MeV to
have been present 1.8–2 Gyr ago at z ¼ 0:15, as first
pointed out by Shlyakhter [14], are currently [15]��=� ¼
ð�0:8� 1:0Þ � 10�8 or ð8:8� 0:7Þ � 10�8 (because of
the double-valued character of the neutron capture cross
section with reactor temperature) and [16] ��=� > 4:5�
10�8 ð6�Þ, when the nonthermal neutron spectrum is taken
into account. However, there remain significant environ-
mental uncertainties regarding the reactor’s early history
and the relationship between changes in the resonance
energy level and those in the values of any underlying
constants. For reviews of the wider issue of varying con-
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stants in addition to�, see the reviews in Refs. [17], and for
some implications of the unification of fundamental forces
see Refs. [18].

Recently, Rosenband et al. [19] measured the ratio of
aluminum and mercury single-ion optical clock frequen-
cies, fAlþ=fHgþ, at intervals over a period of about a year.

From these measurements, the linear rate of change in this
ratio was found to be ð�5:3� 7:9Þ � 10�17 yr�1 (but see
Ref. [20] for some refinements). These measurements pro-
vide the strongest limit yet on any temporal drift in the
value of �

_�=� ¼ ð�1:6� 2:3Þ � 10�17 yr�1:

This limit is strong enough to exclude theoretical explan-
ations of the change in � reported by Webb et al. [1,2]
based on the slow variation of an effectively massless
scalar field [13], even allowing for the damping by cosmo-
logical acceleration, unless there is a significant effect that
slows the locally observed effects of changing � on cos-
mological scales (for a detailed analysis of global-local
coupling of variations in constants (see Refs. [21]).

Theories in which � varies will in general lead to
violations of the weak equivalence principle. This is be-
cause the � variation is carried by a scalar field, ’, and this
couples differently to different nuclei because they contain
different numbers of electrically charged particles (pro-
tons). The theory discussed here has the interesting con-
sequence of leading to a relative acceleration of order
10�13 [22] if the free coupling parameter is fixed to the
value given in Eq. (6) using a best fit of the theory’s
cosmological model to the quasar observations of
Refs. [1,2]. Other predictions of weak equivalence princi-
ple violations have also been made in Refs. [23–25]. The
observational upper bound on this parameter from direct
experiment is just an order of magnitude larger, at 10�12,
and limits from the motion of the Moon are of similar
order, [26], but space-based tests planned for the STEP
mission are expected to achieve a sensitivity of order 10�18

and will provide a completely independent check on theo-
ries of time-varying e and � [27,28].

In view of this tension between direct local measure-
ments and astronomical measurements of the fine-structure
‘‘constant’’ it is important to explore the widest possible
range of self-consistent theoretical models for the time
evolution of � so as to understand the possible evolutions
of ��=� over the range 0< z < 6 that spans the astro-
nomical, geochemical, and laboratory measurements. In
the remainder of this paper we will present cosmological
extensions to the simple BSBM scalar-field models for
varying � that include a nonzero self-interaction potential,
Vð’Þ for the scalar field, ’, carrying the spacetime evolu-
tion of �. We will consider two representative theories,
where V has exponential and power-law variation, respec-
tively, and determine the solutions for the cosmological

evolution and the time variation of � during the radiation,
dust, and dark-energy dominated eras of the Universe.
The organization of this paper is as follows: in Secs. II

and III we present the theory of varying � based on the
coupling of a scalar field to the electromagnetically
charged matter and list the relativistic equations for the
investigations of this theory. In Secs. IV and V we review,
respectively, the cosmological evolutions of the scalar field
’ for the model with no scalar-field self-interaction poten-
tial ( just coupling with matter) and for quintessence mod-
els with exponential and inverse power-law self-potentials.
Section VI is devoted to an investigation of how the scalar
field ’ evolves if both the matter coupling term and the
bare self-potential are nonzero, which is supplemented by
the numerical examples shown in Sec. VII. Finally, con-
clusions are drawn in Sec. VIII.

II. BSBM SCALAR-FIELD THEORIES FOR
VARYING �

There are a number of possible theories allowing for the
variation of the fine-structure constant, �. In the simplest
cases we take c and @ to be constants and attribute varia-
tions in � to changes in e or the permittivity of free space
(see [29] for a discussion of the meaning of this choice).
This is done by letting e take on the value of a real scalar
field which varies in space and time. Thus e0 ! e ¼
e0�ðx�Þ, where � is a dimensionless scalar field and e0 is
a constant denoting the present value of e. This operation
implies that some well established assumptions, like
charge conservation, must give way [30]. Nevertheless,
the principles of local gauge invariance and causality are
maintained, as is the scale invariance of the � field (under a
suitable choice of dynamics) and there is no conflict with
local Lorentz invariance or covariance.
The dynamics are then constructed as follows. Since e is

the electromagnetic coupling, the � field couples to the
gauge field as �A� in the Lagrangian and the gauge trans-

formation which leaves the action invariant is �A� !
�A� þ �;�, rather than the usual A� ! A� þ �;�. The

gauge-invariant electromagnetic field tensor is therefore

F�� ¼ 1

�
ðð�A�Þ;� � ð�A�Þ;�Þ; (1)

which reduces to the usual form when � is constant. The
electromagnetic part of the action is still

Sem ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p
F��F��; (2)

and the dynamics of the � field are controlled by the kinetic
term

S� ¼ � 1

2

"

l2

Z
d4x

ffiffiffiffiffiffiffi�g
p �;��

;�

�2
; (3)

as in dilaton theories. Here, l is the characteristic length
scale of the theory, introduced for dimensional reasons.
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This constant length scale gives the scale down to which
the electric field around a point charge is accurately
Coulombic. The corresponding energy scale, @c=l; has to
lie between a few tens of MeV and the Planck scale,
�1019 GeV to avoid conflict with the experiment. This
generalization of the scalar theory proposed by Bekenstein
[12] was made by Sandvik, Magueijo, and Barrow [31–34]
and will be referred to as the BSBM theory. It includes the
gravitational effects of ’ and gives the field equations

G�� ¼ 8�GðTmatter
�� þ T’

�� þ Tem
��e

�2’Þ: (4)

The stress tensor of the ’ field is derived from the
Lagrangian L’ ¼ � !

2 @�’@
�’ and the ’ field obeys

the equation of motion

h’ ¼ 2

!
e�2’Lem (5)

where we have defined the coupling constant ! ¼ ðcÞ=l2.
This constant is of order �1 if, as in [13], the energy scale
is similar to the Planck scale. It is clear that Lem vanishes
for a sea of pure radiation since then Lem ¼ ðE2 �
B2Þ=2 ¼ 0. We therefore expect the variation in � to be
driven by electrostatic and magnetostatic energy compo-
nents rather than electromagnetic radiation and with @ ¼
c ¼ 1, the fine-structure constant is given by

�=�0 � e2=e20 ¼ expð2’Þ:
The considerations raised by Duff [35] do not impact

upon well-defined varying constant theories like this, even
if they appear dimensionful. The presence of a new field,
like ’, always requires a second-order energy conservation
equation, like Eq. (5) and the integration of this equation
always leads to a new integration constant, ’0, with the
same dimensions as ’ and so the evolution of the dimen-
sionless quantity ’=’0 involves no ambiguities under re-
definitions of units.

In order to make quantitative predictions we need to
know how much of the nonrelativistic matter contributes to
the right-hand side of Eq. (5). This is parametrized by 	 �
Lem=
, where 
 is the energy density, and for baryonic
matter Lem ¼ E2=2. For protons and neutrons 	p and 	n
can be estimated from the electromagnetic corrections to
the nucleon mass, 0.63 MeVand�0:13 MeV, respectively
[24]. This correction contains the E2=2 contribution (al-
ways positive), but also terms of the form j�a

� (where j�
is the quarks’ current) and so cannot be used directly.
Hence, we take a representative value 	p � 	n � 10�4.

Furthermore, the cosmological value of 	 (denoted 	m)
has to be weighted by the fraction of matter that is non-
baryonic. Hence, 	m depends strongly on the nature of the
dark matter and can take both positive and negative values
depending on which of Coulomb energy or magnetostatic
energy dominates the dark matter of the Universe. It could
be that 	DM � �1 (superconducting cosmic strings, for
which Lem � �B2=2), or 	DM 	 1 (neutrinos) where a

subscript DM means dark matter. BBN predicts an ap-
proximate value for the baryon density of �B � 0:03
(where �B is the density of matter in units of the critical
density 3H2=8�G) with a Hubble parameter of H ¼
60 Km s�1 Mpc�1, implying�DM � 0:3. Thus, depending
on the nature of the dark matter, 	m can be virtually any-
thing between �1 and þ1. The uncertainties in the under-
lying quark physics and especially the constituents of the
dark matter make it difficult to impose more certain bounds
on 	m.
There are a number of conclusions that can be drawn

from the study of the simple BSBM models with 	m < 0.
These models gave a good fit to the varying � implied by
the quasar data of Refs. [1,2]. There is just a single pa-
rameter to fit and this is given by the choice [13]

� 	m
!

¼ ð2� 1Þ � 10�4: (6)

The simple solutions of the BSBM theory predict a slow
(logarithmic) time increase of � during the dust era of k ¼
0 Friedmann universes. The cosmological constant turns
off the time variation of� at the redshift when the Universe
begins to accelerate (z� 0:7) and so there is no conflict
between the � variation seen in quasars at z� 1–3:5 and
the limits on possible variation of � deduced from the
operation of the Oklo natural reactor [14,15] (even assum-
ing that the cosmological variation applies unchanged to
the terrestrial environment). The reactor operated 1.8 bil-
lion years ago at a redshift of only z� 0:1 when no
significant variations were occurring in �. The slow loga-
rithmic increase in � also means that we would not expect
to have seen any effect yet in the anisotropy of the micro-
wave backgrounds [36–38]: the value of � at the last
scattering redshift, z ¼ 1000, is only 0.005% lower than
its value today. Similarly, the essentially constant evolution
of� predicted during the radiation era leads us to expect no
measurable effects on the products of big bang nucleosyn-
thesis (BBN) [39] because � was only 0.007% smaller at
BBN than it is today. This does not rule out the possibility
that unification effects in a more general theory might
require variations in weak and strong couplings, or their
contributions to the neutron-proton mass difference, which
might produce observable differences in light-element nu-
cleosynthesis, and new constraints on varying �, at z�
109–1010. By contrast, varying-alpha cosmologies with
	 > 0 lead to bad consequences unless the scalar field
driving the alpha variations is a ‘‘ghost’’ field, with nega-
tively coupled kinetic energy, in which case there can be
interesting cosmological consequences [40]. The fine-
structure constant falls rapidly at late times and the varia-
tion is such that it comes to dominate the Friedmann
equation for the cosmological dynamics. We regard this
as a signal that such models are astrophysically ruled out
and perhaps are also mathematically badly behaved.
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The earlier analyses of the cosmological solutions of the
BSBM equations considered the situation in which the
scalar-field driving variations in � has no self-interaction
potential, Vð’Þ � 0. In this paper, we are going to explore
some of the consequences for the time variation of � �
expð2’Þ that arise when we introduce a nonzero potential
for the scalar-field driving the variations in �. We will
consider the representative cases of the exponential poten-
tial Vð’Þ ¼ V0 expð��’Þ and inverse power-law potential
Vð’Þ ¼ V
’��, and classify the new behaviors that arise
for �; � � 0. We note that the cases of �; � ¼ 0 corre-
spond to V ¼ V0, which is equivalent to the presence of a
cosmological constant. The solutions for such scenarios
were found in our earlier studies and ’ relaxes quickly to a
constant asymptotic value once the expansion starts to
accelerate.

III. COSMOLOGICAL EQUATIONS

In the BSBM theory, the total action of the Universe is
given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðLgrav þLmatter þL’ þLeme
�2’Þ:

The Universe is described by a homogeneous and isotropic
Friedmann metric with expansion scale factor aðtÞ. The
Friedmann equation is given by

H2 ¼ 1
3½
mð1þ j	je�2’Þ þ 
re

�2’ þ 
’ þ 
��; (7)

where we assume that the Universe is spatially flat; the
quantities 
m, 
r, 
’, 
� are the energy densities in non-

relativistic matter, relativistic matter, scalar field, and cos-
mological constant (so 
� is a constant), respectively. We
will first consider the case where the scalar field ’ has no
potential term, and then consider the cases with exponen-
tial and power-law potentials.

The conservation equations for matter and radiation are
given as

_
m þ 3H
m ¼ 0; (8)

_
 r þ 4H
r ¼ 2
r _’; (9)

and the scalar-field equation of motion is

€’þ 3H _’þ @Vð’Þ
@’

¼ 2j	j
!


me
�2’: (10)

Taking the time derivative of Eq. (7), and using Eqs. (8)–
(10), we get

_H ¼ �1
2½
mð1þ j	je�2’Þ þ 4

3
re
�2’ þ! _’2�: (11)

In a universe filled with nonrelativistic matter and the
scalar field, 
� ¼ 
r ¼ 0 this equation reduces to

2
€a

a
þ

�
_a

a

�
2 ¼ �

�
1

2
_’2 � Vð’Þ

�
:

IV. THE CASE OF � < 0: V CONSTANT

This was the situation analyzed in the original presenta-
tion of the BSBM theory in Refs. [31–34] and extended to
include higher-order corrections in Ref. [41], small pertur-
bations [42], and a linearized potential in Ref. [43]. The
structure of the cosmological solutions has an expected
feature. The cosmological dynamics of the scale factor
aðtÞ, controlled by the Friedmann equation, is not influ-
enced to leading order by the small variations in ’.
However, the cosmological variation of aðtÞ has a signifi-
cant effect on the dynamics of ’, and hence upon the
evolution of the fine-structure constant �ðtÞ. The key re-
sults for a cosmological model that evolves through a
radiation-CDM-vacuum energy-dominated sequence of
three phases are as follows:

During the radiation era in which a ¼ t1=2, there is an
exact solution of

ð _’a3 _Þ ¼ N expð�2’Þ
where N > 0 is a constant defined by

N � � 2&

!

ma

3

given by

’ ¼ 1
2 logð8NÞ þ 1

4 logðtÞ:
For physically realistic choices of the parameters the loga-
rithmic term is never significant during the radiation era of
our Universe and ’ is constant then, which would be
expected since E2 ¼ B2 for the radiation equilibrium
which means that 	 � ðE2 � B2Þ=ðE2 þ B2Þ is effectively
zero and ’ constant.

During the matter-dominated era a ¼ t2=3, and there is a
late-time asymptotic series solution of the form

’� 1

2
ln½2N logðt=t0Þ� þ Ct�1 � 1

2

X1
n¼1

ðn� 1Þ!
½logðt=t0Þ�n ;

’ ! 1

2
log½2N logðtÞ�;

with C and t0 constants, so � / expð2’Þ grows slowly, as
logðtÞ.
During a late-time era dominated by a constant vacuum

energy density, 
� ¼ 3H2
0 , with de Sitter expansion of the

form a ¼ expðH0tÞwe have late-time solutions of the form

’� ’0 þ B expð�3H0tÞ � Nð3H0tþ 1Þ
9H2

0

� expð�2C� 3H0tÞ; ’ ! ’0; (12)

where ’0, B, and C are constants. This case corresponds to
the addition of a constant potential V ¼ V0 for the scalar
field and we see that the effect is to turn off all time
variations in ’, and hence �. A constant asymptote for
’ðtÞ also occurs for any accelerated expansion in which
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a ¼ tn, with n � 1. Any potential of the form

Vð’Þ ¼ V0 þUð’Þ
where U falls off as expð��’nÞ for large ’, with n > 1,
will result in ’ approaching a constant value as t ! 1 so
long as the kinetic energy of the field is negligible com-
pared to the matter density, which is the physically realistic
situation. In contrast, the kinetic energy 1

2 _’2 may dominate

as t ! 0. If it does then it leads to evolution of the scale

factor with a ¼ t1=3 and an exact solution for the scalar-
field evolution of the form [41]

’ ¼ 1

2
log

�
N

4

�
� logðEÞ þ 1

2
logðtÞ

þ log

��
t0
t

�
E þ

�
t

t0

�
E
�
;

where E and t0 are constants; this solution approaches ’ ¼
ð12 � EÞ logðtÞ as t ! 0 and ’ ¼ ð12 þ EÞ logðtÞ as t ! 1,

so the fine-structure constant evolves as � / t1�2E in these
limits if the kinetic energy dominates.

V. THE CASE OF � ¼ 0: � CONSTANT

When 	 ¼ 0, there is no coupling of the scalar field to
the electromagnetic matter, the problem reduces to the
cosmology of a scalar field in the presence of a perfect
fluid and there is no variation of the fine-structure constant
�. In order to include the effects of a self-interaction
potential, we shall assume two popular choices, an expo-
nential potential and an inverse power-law potential for the
scalar field,

Vð’Þ ¼ V0 expð��’Þ; Vð’Þ ¼ V
’��

in which � and � are dimensionless constants and V0 �
0; V
 � 0 are constants with dimensions ½mass�4 and
½mass�4þ�, respectively. These two potentials have been
studied extensively; they can be used to obtain power-law
inflation when the scalar field is the only matter source, and
have scaling solutions where the energy density of the
scalar field evolves in proportion to the density of the
dominant fluid component of the Universe in the presence
of matter and radiation. With the potential added, the field
equations become

3H2 ¼ 
m þ ~
r þ 1
2 _’

2 þ Vð’Þ þ 
�; (13)

€’þ 3H _’þ V 0ð’Þ ¼ 0; (14)

_
m þ 3H
m ¼ 0; (15)

_~
 r þ 4H~
r ¼ 0; (16)

in which we have defined ~
r � 
r expð�2’Þ. We shall
discuss two particular potentials in turn below in prepara-

tion for the discussion of the situation where varying � is
introduced.

A. Exponential potential

For the exponential potential it is well-known [44,45]
that scaling solutions for ’ exist when the Universe is
dominated by either radiation or matter. We summarize
these solutions here and also derive a leading-order solu-
tion for the scalar field in a universe dominated by dark
energy (the dark energy is not due to the scalar field’ here,
but to the other matter).

1. Radiation-dominated solution

In the radiation-dominated era, we could neglect the
nonrelativistic matter species and vacuum energy density
(
m ¼ 
� ¼ 0) and obtain the following solution:

a / t1=2; (17)

H ¼ 1

2t
; (18)

~
 r ¼ ~
r0

t20
t2
; (19)

’ ¼ ’0 þ 2

�
log

t

t0
; (20)

where ~
r0, t0, and ’0 are constants. It is easy to see that the
scalar-field energy density is given by


’ ¼ 1

2
_’2 þ Vð’Þ �

�
2

�2
þ ~V0t

2
0

�
1

t2
(21)

in which we have defined ~V0 ¼ V0 expð��’0Þ. Thus,

’ / t�2 scales in proportion to the radiation energy den-

sity ~
r and their ratio is kept constant during the evolution.
Note the Friedmann equation and the scalar-field equa-

tion of motion give two algebraic relations between the
constants defining the scaling solution,

3

4
¼

�
~
r0t

2
0 þ

2

�2
þ ~V0t

2
0

�
and 1 ¼ �2 ~V0t

2
0;

and so

~V 0t
2
0 ¼

1

�2
and ~
r0t

2
0 ¼

3ð�2 � 4Þ
4�2

:

Hence, the constant fractional energy densities are given by

�r ¼ �2 � 4

�2
; (22)

�’ ¼ 4

�2
: (23)
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2. Matter-dominated solution

Similarly, in the matter-dominated era we can neglect
the radiation and vacuum densities to obtain the following
solution:

a / t2=3; (24)

H ¼ 2

3t
; (25)


m ¼ 
m0

t20
t2
; (26)

’ ¼ ’0 þ 2

�
log

t

t0
; (27)

where 
m0; t0 and’0 are new constants. Here, Eq. (21) still
holds and 
’ now scales as 
m. The Friedmann equation

and the scalar-field equation of motion give two algebraic
relations between these quantities

4

3
¼

�

m0t

2
0 þ

2

�2
þ ~V0t

2
0

�
and 2 ¼ �2 ~V0t

2
0;

which lead to

~V 0t
2
0 ¼

2

�2
and 
m0t

2
0 ¼

4ð�2 � 3Þ
3�2

;

and so the constant fractional energy densities are given by

�m ¼ �2 � 3

�2
; (28)

�’ ¼ 3

�2
: (29)

Note that in order for �’ < 1 during the radiation era,

�2 > 4 is required, and this then ensures�’ < 1 during the
dust era and �m > 0.

3. Dark-energy-dominated solution

Recent observations suggest that the Universe is cur-
rently, and will remain, dominated by a gravitationally
repulsive form of matter dubbed dark energy. In the sim-
plest scenario, this is just a cosmological constant for
which the expansion rate of the Universe will tend to a
constant, while in other models it can be exotic matter, or
changes to the law of gravitation, which drive a different
future evolution of the Universe. Here we consider the
evolution of our ’ driven by the exponential potential in
the background of simple dark-energy domination. For
simplicity we consider just two cases, where the cosmic
expansion factor is either exponential, a ¼ expðH0tÞ, H0

constant, or a power law in time, a / t� with �> 1.

(a) Case 1: This is a cosmological constant (�) domi-
nated universe, for which the scale factor evolves as

a / expð&tÞwhere & � ffiffiffiffiffiffiffiffiffi
�=3

p
and so the equation of

motion for ’ becomes

€’þ 3& _’ ¼ W expð��’Þ (30)

where we have defined W � �V0. This equation is
very similar to the scalar field equation of motion for
the BSBM model in the dust-dominated era. It has
no closed analytical solution and we shall seek a
self-consistent approximate solution following the
logic in Ref. [31]. We start from the ansatz that in the
� dominated era the field ’ is slowly rolling, and it
is easy to obtain the slow-roll solution ’� 1

� �
logð�Wt=3&Þ by setting €’ ¼ 0. Let us next make
the following approximation by an asymptotic se-
ries:

’ ¼ 1

�
log

�
�W

3&
t

�
þ X1

n¼1

ant
�n

where an are some constant coefficients.
Substituting this back into the scalar field equation
of motion Eq. (30) we have

� 1

�t2
þ X1

n¼1

nðnþ 1Þ an
tnþ2

þ 3&

�t
� X1

n¼1

n
an
tnþ1

¼ 3&

�t
exp

�
��

X1
n¼1

an
tn

�
! 3&

�t
;

as t ! 1. Choose appropriate an so that the terms
1=tr with r � 2 cancel, we find that the solution for
’ can be written as

’ ¼ 1

�
log

�
�W

3&
t

�
� 1

2

�
1

t
þ 1

t2
þ 2

t3
þ � � �

þ ðr� 1Þ!
tr

þ � � �
�
: (31)

It is clear that as time grows, the asymptotic series
becomes less important and so the slow-roll solution
is ever improved. Equation (31) is a good approxi-
mation when t is large as we have seen in the
derivation; when t is small, Eq. (30) could be line-
arized as

€’þ 3& _’ ¼ W

where we assume the initial value of ’ is zero. The
solution is then

’ ¼ ’c þ A expð�3&tÞ þWt

3&
! ’c þWt

3&
(32)

where ’c and A are constants of integration. The
linear term in t seems to be the second Taylor term
of the slow-roll solution. We can see that in both
solutions the scalar field ’ will not tend to constant
when t goes large, which is in contrast to the case of
BSBM.
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(b) Case 2: This is described by a / tn (n > 1), for
which the scalar field equation of motion could be
written as

€’þ 3n

t
_’ ¼ W expð��’Þ (33)

which has an exact solution

’ ¼ 1

�
log

�W

2ð3n� 1Þ þ
2

�
logt: (34)

Again, we find a logarithmic behavior of ’ in the
acceleration era, which means that ’ will never
approach a constant. This is, of course, not surpris-
ing because we know that the exponential potential
has tracking behavior for any power-law back-
ground expansion with n > 1=3, no matter whether
it is n < 1 (matter and radiation dominations) or n >
1 (dark-energy domination).

Of course, we also need to justify the assumption that the
energy density in the scalar-field is always subdominant. In
case 1 this is obvious because the � has a constant energy
density while the scalar field has a p=
 ratio which is
greater than �1, meaning that its energy density decays
continuously. For case 2 we have 
’ / t�2 / 
DE and it

again exactly tracks the dominant component in the
Universe. In both cases there is no way for ’ to come to
dominate the total energy density.

B. Inverse power-law potential

We turn next to the inverse power-law potential V ¼
V
’��; with � a positive constant. It is well-known [46]
that this potential also permits tracking behavior of the
scalar field ’.

1. Radiation- and matter-dominated solutions

Suppose the background universe expands according to
a / tn and the energy density in ’ is only subdominant,
then ’ has the solution

’ ¼ At2=�þ2 (35)

where A is constant to be fixed. To determine the value of
A, take the time derivatives of ’

_’ ¼ 2A

�þ 2
t�ð�=�þ2Þ; €’ ¼ � 2A�

ð�þ 2Þ2 t
�ð2�þ2=�þ2Þ

(47)

and insert them together with H ¼ n=t into the scalar field
equation of motion, we get an algebraic equation for A
which has the solution

A ¼
�

�ð�þ 2Þ2V

6nð�þ 2Þ � 2�

�
1=�þ2

: (36)

Since ’ / t1=�þ2, it is easy to see that 
’ ¼
1
2 _’2 þ Vð’Þ / t�ð2�=�þ2Þ ! t�2 for �  1. As the domi-

nant component in the Universe also has an energy density
scaling as t�2, we see that the energy density of ’ simply
tracks the dominant component, which is radiation in the
radiation era and dust in the matter era.
Note that this tracking behavior is only approximate for

�  1, while in reality 
’ decays slower than 
dominant.

This means that the fractional energy density of the scalar
field ’ is ever increasing and eventually will no longer be
subdominant. However, for enough large � this will take a
very long time so the issue will not bother us for some time.

2. Dark-energy-dominated solution

We next consider the evolution of ’ in a dark-energy-
dominated universe. Again, we consider two cases, case 1
for � domination where H is a constant and case 2 for a
power-law inflation a / tn (n > 1). Obviously case 2 has
the same behavior as in the radiation or matter-dominated
universes but with the value of n in Eq. (36) changed, and
so we will not consider it again here except stating that in
the a / tn dark-energy era the field ’ does not stop
growing.
In the first case, of � domination, we now write the

scalar field equation of motion as

€’þ 3& _’ ¼ �V

’�þ1

: (37)

The slow-roll solution to this equation is

’�
�
�ð�þ 2ÞV


3&
t

�
1=�þ2

: (38)

When t goes large, the €’ term will be less and less
important because €’= _’ / 1=t and so the slow-roll solution
is ever improved. Also, again the energy density in the
scalar field ’ decays in time so that its fractional energy
density always decreases and it will never dominate the
total energy density. Equation (38) indicates that ’ will
continue to grow in the �-dominated era; however the rate
of growth is lower than that in the case of a / tn

[c.f. Eq. (35)], and can be very low when � ! 1. If
needed, we could improve Eq. (38) by adding an asymp-
totic series, of which the leading terms are

’�þ2 � �ð�þ 2ÞV

3&

tþ �ð�þ 1ÞV

9&2

logtþ const

þO
�
logt

t

�
:

VI. THE GENERAL CASE OF � � 0AND V � 0

Our ultimate aim is to consider the evolution of the
scalar field ’ when both the bare potential (c.f. Sec. IV)
and the matter coupling term (c.f. Sec. III) are present,
from which we can learn how the fine-structure constant �
evolves in time. To that end we draw the contents of the
above two sections together to get a picture of the whole
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evolution of ’ in the presence of both terms. We consider
again the two cases: an exponential potential and an in-
verse power-law potential.

A. Exponential potential

Before going to the general radiation and matter-
dominated solutions for the exponential potential and a
matter coupling term, we first consider the special case
that arises when � ¼ 8. The scalar-field equation now
becomes Eq. (10)

€’þ 3H _’þ @Vð’Þ
@’

¼ 2
j	j
!


me
�2’ (39)

and we still use the exponential potential given above.
We can see that Eqs. (17)–(20) remain as in the

radiation-dominated solution. This is easy to check be-

cause for a / t1=2, we have 
m / a�3 / t�3=2, e�2’ ¼
ðe��’Þ2=� / t�4=� ¼ t�1=2, so � grows as expð2’Þ / t1=2,
and both sides of Eq. (39) scale as t�2. In this special case
the presence of the coupling term does not influence the
overall form of the solution, although Eqs. (22) and (23)
might be changed (slightly) so that the (constant) fractional
energy density �’ is shifted in value. For the case � ¼ 8,

originally we had �’ ¼ 1=16 when & ¼ 0, and in the

radiation-dominated era 
m 	 ~
r so we expect the shift
to be tiny.

This discussion can be generalized to include a subse-
quent era dominated by a fluid with general equation of
states (p � 0). However, for a matter-dominated era,
Eqs. (28)–(31) no longer remain an exact solution unless
� ! 1.

Let us now turn to the more general 	 � 0 cases. The
effective total potential for the scalar field ’ consists of
two parts, the bare potential, Vð’Þ and the electromagnetic
matter couplings, which depends on aðtÞ, via 
m / a�3, so
we can combine them as

Veffð’Þ ¼ Vð’Þ þ j	j
!


m expð�2’Þ: (40)

The parameters used in this section are not specifically
chosen to reproduce the observed time variation of the fine-
structure constant (which we defer to the next section),
rather here we are concerned with the general dynamics
under the effective potential, which might also be useful
for models of a scalar field with self-potential coupling to
dark matter.

1. Radiation-dominated era

No matter which of the two parts to the scalar effective
potential Veff dominates, the field ’ will grow at most
logarithmically in the radiation era, and (except � ¼ 8)
the only difference between the bare-potential-dominated
and the coupling-dominated solutions is the coefficient in
front of logt. However, if that coefficient is very small then

’ will remain approximately constant during the radiation
era, as in BSBM with V ¼ 0 discussed above.
As it is the radiation era, if the scalar field makes a

significant contribution to the energy budget of the

Universe then 
’ � Vð’Þ  j	j
! 
m expð�2’Þ, (notice

also that j	j
! 	 1 which reduces the possible influence of

the coupling terms even further), and thus Veffð’Þ � Vð’Þ.
On the other hand, if the scalar field constitutes only a very
small part of the total energy density (for example, if � 
1), then Vð’Þ might be comparable to, or even much

smaller than, j	j! 
m expð�2’Þ.
Since the scale factor evolves as a / t1=2 whichever part

of the effective potential dominates, we shall take this as
the leading-order solution to the Friedmann equation and
look at the evolution of ’ under this condition. We then
could rewrite the scalar field equation of motion as

e�x d

dx

�
e1=2x

d

dx
’ðxÞ

�
¼ N exp½�2’ðxÞ� þW exp

�
3

2
x

�

� exp½��’ðxÞ� (41)

where we have defined x � logt, with N � 2 j	 j
! 
ma

3 and

W � �V0 constants. Clearly, the larger N is, the easier it is
for the coupling term on the right-hand side to dominate,
and the largerW is, the easier it is for the potential term to
dominate.
As discussed above, we adopt a value of � > 2; the

larger � is, the less important is the potential term for large
’. Because � > 2, the potential term decays faster than the
coupling term, so if the coupling term dominates at initial
time, the potential term will never become important. On
the other hand, if the potential term dominates at initial
time, at some later time (if the radiation era is long enough)
the effective potential will become dominated by the cou-
pling term and the evolution of ’ changes accordingly.
These behaviors are easy to verify numerically by solv-

ing Eq. (41), and an example is given in Fig. 1.

2. Matter-dominated era

Now we turn to the matter-dominated era in which

m  ~
r and thus the latter can be neglected. If the bare
potential is the major part of the effective potential then,
according to previous analysis, the scale factor scales as

a / t2=3; if the coupling term dominates, Barrow et al. also

showed [31–34,41] that a / t2=3 in the leading-order solu-
tion. So here we also assume that this is a good approxi-
mation in the matter-dominated era and look at the
evolution of ’ on this background.
In this case the scalar field equation of motion becomes

e�x d

dx

�
ex

d

dx
’ðxÞ

�
¼ N exp½�2’ðxÞ�

þW expð2xÞ exp½��’ðxÞ�: (42)
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A qualitative analysis can be made as in the case of
radiation domination, by considering the evolution without
the potential or coupling term present, respectively. In the
case where only the potential term is included, we have
’ / logt; if only the coupling term is presented then ’
evolves as 1=2 logð2N logtÞ approximately. Now suppose
that initially the potential term dominates over the coupling

term, then because the former scales as t�2 while the latter

scales as 
m expð�2’Þ / t�2�4=� and falls faster, the po-
tential term will become increasingly dominant and the
coupling term will never become important. On the other
hand, if initially the coupling term dominates, then the

potential term and the coupling term scale as ðlogtÞ��=2
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FIG. 1. The evolution of ’ as a function of logt in a radiation-
dominated universe. The solid, dashed, and dotted curves rep-
resent the total evolution, the evolution governed solely by the
coupling term, and that governed only by the bare-potential term,
respectively. The parameters are � ¼ 10, N ¼ 0:001, and W ¼
0:1; the initial conditions in the upper, middle, and lower panels
are _’i ¼ 0 and ’i ¼ 0, 2.5, and 5, respectively.
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FIG. 2. The evolution of ’ as a function of logt in a matter-
dominated background universe. The solid, dashed, and dotted
curves represent the total evolution, the evolution governed
solely by the coupling term, and that governed only by the
bare-potential term, respectively. The parameters chosen are � ¼
50, N ¼ 1, and W ¼ 0:1; the initial conditions in the upper,
middle, and lower panels are _’i ¼ 0 and ’i ¼ 0, 1, and 2,
respectively.
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and t�2½logðtÞ��1, respectively, and the former always falls
off slower than the latter (however, depending on the value
of �, the dominance of the potential term could occur very
late, much later than the transition to an acceleration era, so
probably we will not see this transition during the matter
epoch). Thus, in this case, the potential term will finally
overwhelm the coupling term, and the full solution will
then track the no-coupling one. These features can also be
checked numerically. Note that increasing N or � will help
the coupling term to dominate. The tracking is excellent in
both regions. When the coupling term dominates the fine-
structure constant evolves as � / 2N logt, but when the

potential term dominates, � / ðt=t0Þ4=�.
A numerical example of the behaviors discussed above

is shown in Fig. 2.

3. Dark-energy-dominated era

A later times the Universe will become dominated by
any cosmological constant � and then the scalar field
equation of motion becomes

€’þ 3& _’ ¼ W expð��’Þ þ N expð�3&tÞ expð�2’Þ:
If the evolution is initially dominated by the bare-

potential term (W), then we know from the above analysis
that ’� 1

� logt. So the bare-potential term in the above

equation scales as 1=t while the coupling term scales

exponentially with respect to t; as t�ð2=�Þ expð�3&tÞ. For
large t; the latter decays faster, and the bare-potential term
will eventually dominate over the coupling term and the
fine-structure constant will evolve all the time in the future.
A numerical example is shown in Fig. 3. Note that for this
analysis we have defined a different set of parameters x �
loga, withW � �V0=&

2 andN � 2j	j
m0=&
2 constants, so

that the above equation of motion is rewritten as

d2

dx2
’ðxÞ þ 3

d

dx
’ðxÞ ¼ N expð�3xÞ expð�2’Þ

þW expð��’Þ:
If the dark energy drives power-law inflation a / tn (n >

1) of the Universe today, then the analysis of the whole
evolution is qualitatively the same as for a radiation-
dominated universe and will not be repeated here.

B. Inverse power-law potential

Next, we consider the evolution of ’ under the controls
of the coupling term and a bare inverse power-law
potential.

1. Radiation-dominated era

In the radiation-dominated era the cosmic scale factor

scales as a / t1=2, while the energy densities of the scalar
field and dust can be neglected. So, just as in the case of
exponential potential, we can write the scalar field equation

of motion as

e�x d

dx

�
e1=2x

d

dx
’ðxÞ

�
¼ N exp½�2’ðxÞ�

þW exp

�
3

2
x

�
’�ð�þ1Þ; (43)

where again x ¼ logt; but now W � �V
.
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FIG. 3. The evolution of ’ as a function of loga in a
�-dominated universe. The solid, dashed, and dotted curves
represent the total evolution, the evolution governed solely by
the coupling term, and that governed only by the bare-potential
term, respectively. The parameters chosen are � ¼ 50, N ¼
0:01, and W ¼ 0:0002; the initial conditions in the upper,
middle, and lower panels are _’i ¼ 0 and ’i ¼ 0, 0.0005, and
0.001, respectively.
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According the above analysis, if the bare-potential term

dominates then ’ evolves as ’� t2=�þ2 � expð 2
�þ2 xÞ, (so

’ is exponential in x), while if the coupling term dominates
then ’� 1

4 logt� 1
4 x (so ’ is linear in x). These features

can be seen clearly in the numerical example given in
Fig. 4. Note that in the scalar field equation of motion the

bare-potential term decays as �’�ð�þ1Þ, while the cou-

pling term scales like the terms �
m expð�2’Þ �
t�ð3=2Þ expð�2’Þ � ’�ð3=4Þð�þ2Þ expð�2’Þ, (when the ef-
fective potential Veff is dominated by the bare potential), or

as �
m expð�2’Þ � t�ð3=2Þ expð�2’Þ � expð�8’Þ,
(when Veff is dominated by the coupling term), so obvi-
ously in both cases when eventually ’ is large enough the
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FIG. 4. The evolution of ’ as a function of logt in a radiation-
dominated universe. The solid, dashed, and dotted curves rep-
resent the total evolution, the evolution governed solely by the
coupling term, and that governed only by the bare-potential term,
respectively. The parameters used are � ¼ 50, N ¼ 0:001, and
W ¼ 0:005; the initial conditions in the upper, middle, and lower
panels are _’i ¼ 0 and ’i ¼ 1, 5, and 10, respectively.
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FIG. 5. The evolution of ’ as a function of logt in a matter-
dominated universe. The solid, dashed, and dotted curves rep-
resent the total evolution, the evolution governed solely by the
coupling term, and that governed only by the bare-potential term,
respectively. The parameters chosen are � ¼ 100, N ¼ 10, and
W ¼ 0:005; the initial conditions in the upper, middle, and lower
panels are _’i ¼ 0 and ’i ¼ 1, 2, and 3, respectively.
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bare-potential term will dominate over the coupling term
driving the evolution of ’. This can also be seen in the
figure.

2. Matter-dominated era

In the matter-dominated era the scale factor evolves as

a / t2=3, while the energy densities of the scalar field and
radiation can be neglected. In this case the scalar field
equation of motion becomes

e�x d

dx

�
ex

d

dx
’ðxÞ

�
¼ N exp½�2’ðxÞ�

þW expð2xÞ’�ð�þ1Þ; (44)

where x and W are as defined above.
From the above analysis we know that if the bare-

potential term dominates then ’ evolves as ’� t2=�þ2 �
expð 2

�þ2 xÞ (i.e.,’ is exponential in x), while if the coupling

term dominates then to the leading order’� 1
2 logðlogtÞ �

1
2 logx (i.e., ’ is logarithmic in x). We can also see these

behaviors clearly in the numerical results plotted in Fig. 5.

In the scalar field equation of motion the bare-potential

term decays as �’�ð�þ1Þ, while the coupling term scales

either as �
m expð�2’Þ � t�2 expð�2’Þ �
’�ð�þ2Þ expð�2’Þ, (when Veff is dominated by the bare
potential), or as �
m expð�2’Þ � t�2 expð�2’Þ �
exp½�2 expð2’Þ� expð�2’Þ (when Veff is dominated by
the coupling). Therefore, when ’ eventually grows large
enough, the bare-potential term will dominate over the
coupling term and drive the evolution of ’. This is verified
in the numerical results, where we can see specific tracking
solutions in different epochs.

3. Dark-energy-dominated era

In a universe dominated by a cosmological constant, the
field equation for’ in the case of a power-law potential can
be written as

d2

dx2
’ðxÞ þ 3

d

dx
’ðxÞ ¼ W

’�þ1
þ N expð�3xÞ expð�2’Þ;

where x � loga, W � �V
=&2, and N � 2j	j
m0=&
2.

According to the above analysis, when the effective
potential Veff is dominated by the coupling term, ’ will
approach a constant in the�-dominated era, while if Veff is

dominated by the bare potential then ’ evolves as ’�
t1=�þ2 / ðlogaÞ1=�þ2. These qualitative behaviors can be
observed in Fig. 6. As ’ goes large, the bare-potential term

in Veff decreases as �’�ð�þ1Þ while the coupling term
decays as � expð�3&tÞ expð�2’Þ, so eventually the for-
mer will always dominate over the latter, driving the
continuous growth of ’ in contrast to the asymptotically
constant behavior seen in BSBM where W ¼ 0.

C. Summary of the behaviors of ’ðtÞ and �ðtÞ
We summarize the possible behaviors of ’ðtÞ found in

the different varying-� models that we have discussed, in
the three different cosmic eras and different situations
(bare potential Veff dominated or coupling 	 dominated)
in Table I. The time evolution of � is obtained from that of
’ by using � / expð2’Þ. Recall from the figures above
that the transitions from bare-potential domination to cou-
pling domination (or vice versa) are smooth, so there is a
simple pattern for the overall ’ evolution. However, note
that depending on the initial conditions for ’, the above
‘‘tracking’’ solutions may only be reached after a long time
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FIG. 6. The evolution of ’ as a function of loga in a
�-dominated universe. The solid, dashed, and dotted curves
represent the total evolution, the evolution governed solely by
the coupling term, and that governed only by the bare-potential
term, respectively. The parameters are � ¼ 50, N ¼ W ¼ 0:01,
and the initial conditions are _’i ¼ 0, and ’i ¼ 1:1.

TABLE I. Tracking behaviors of � in different varying-� models in different limits. V denotes the bare-potential term and C is the
coupling term; ! means an asymptotic approach.

Model Radiation Era Matter Era Acceleration Era

BSBM �� t1=2 �� logt � ! const

BSBMþ V0 expð��’Þ ��
�
t4=�; V dom
t1=2; C dom

��
�
t4=�; V dom
logt; C dom

�

��t4=�; a / tn

! t2=�; H ¼ const

BSBMþ V
’�� ��
�
expð2t2=�þ2Þ; V dom
t1=2; C dom

��
�
expð2t2=�þ2Þ; V dom
logt; C dom

�

�� expð2t2=�þ2Þ; a / tn

! expð2t1=�þ2Þ; H ¼ const
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(as can be seen in the figures). In this analysis we have
focussed upon extracting the evolution of ’ðtÞ, and hence
of �ðtÞ, but a more detailed study with a different emphasis
could also seek the best-fit observational parameter set
when varying alpha are included, as was done in Ref. [47].

VII. NUMERICAL EXAMPLES OF THE ’ AND �
EVOLUTION

We shall now consider the numerical evolution of ’ and
� through the entire cosmological history, and try to con-
nect this evolution to the observations constraining pos-
sible time variation in �. As we have seen above, the
evolution in ’ is controlled by the competition between
the coupling term and bare-potential term in the effective
potential. The parameter j	j=! determines the strength of
coupling and so increasing it will increase the rate of
variation of ’. In addition, in the case of the exponential
potential, V ¼ V0e expð��’Þ, the parameter � controls
the scaling solution of ’, and the larger it is, the smaller
the fraction of the total energy density�’ tends to be; note

also that � governs the slope of the evolution of ’ : if there
is no coupling term then the solution of � / expð2’Þ is
given by � / a�ð8=�Þ in the radiation era and� / a�ð6=�Þ in
the radiation era. This power-law evolution means that in
order that the fractional variation of � between now and
z� 6 should not exceed the observational bounds, i.e.,
��=�<Oð10�5), � must be very large. Similarly, in the
case of an inverse power-law potential, � controls the
scaling solution of ’; and larger values of � correspond
to smaller variations of ’ in time, so that an observational
constraint that the allowed variation of � / expð2’Þ be
small requires � to be very large.

Finally, the initial value ’i, is also an important quan-
tity; although for the exponential potential one can always
choose ’i ¼ 0 by adjusting V0 correspondingly. For the
coupling term we do not have this freedom—a larger ’i

will weaken the coupling through expð�2’iÞ and thus
reduce the change in ’.

In Figs. 7 and 8 we have plotted the evolution of ’ðtÞ for
some choices of the model parameters for the two above-
mentioned potentials, respectively. For comparison, we
also plot the result for the BSBM model (where V ¼ 0)
with the same choice of the parameter j	j=!. In both cases
’ is initially dominated by the bare-potential term but later
becomes dominated by the coupling term because the
largeness of � (or �) means that the slope of the bare-
potential-dominated evolution is smaller that the coupling-
dominated evolution at later matter-dominated times.
When the Universe becomes dominated by the cosmologi-
cal constant, the coupling-dominated solution for ’ ap-
proaches a constant and the bare-potential-dominated
solution grows very slowly, so the total solution grows
very slowly too (almost constant in the figure). Note that
the addition of a bare-potential term makes ’ begin evolv-
ing earlier. This produces an earlier onset of variation for �

than in the pure BSBM model (the late-time evolution,
which is relevant for the quasistellar object observations, is
however almost the same as in BSBM because at this late
stage the total solution is dominated by the coupling term).
Figures 9 and 10 show the evolution of �=�0 (where �0

is the current value of the fine-structure constant) in the two
models when compared with the prediction of the BSBM
model (dashed curves). The qualitative feature in a model
with self-potential for ’ is the same as in BSBM: at early
times � remains a constant; during the matter-dominated
era there is a slow growth; and then, when the cosmological
constant begins to dominate, the growth stops. The differ-
ences are: first, the commencement of growth for � starts
earlier than the BSBM case because in this model the bare-
potential term could drive the evolution of ’ even in the
radiation-dominated era; second, the late-time evolution is
dominated by the coupling term and so the late-time evo-
lution of ’ is similar to that in BSBM, but the earlier
commencement of the growth means that the total variation
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FIG. 7. Comparison of the entire cosmological evolution of ’
as a function of loga in the BSBM model (dashed curve) and the
model with an exponential potential V ¼ V0 expð��’Þ plus
coupling term (solid curve). The parameters for the upper panel
are, respectively, � ¼ 5� 106, j	j=! ¼ 10�4 and � ¼ 5� 106,
j	j=! ¼ 2� 10�4. In both cases the initial conditions are ’i ¼
3, _’i ¼ 0.
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of � is greater than that in BSBM. The fractional change of
� between z� 4 and now is about 0:5� 10�5 which is
consistent with the quasistellar object observations. The

current rate of _’ is given by _’0 ¼ ðd’dxÞ0H0 where H0 �
70 kms�1 Mpc�1 is the present Hubble expansion rate. For

the parameters in Fig. 9, we have ðd’dxÞ0 � 0:8� 10�6 and

so we have _’0 � 0:6� 10�16=yr which leads to ð _�=�Þ0 �
2 _’0 � 1:2� 10�16=yr. This rate is well within all old
limits [6–9] but is about an order of magnitude above the
proposed new upper bound [19] on the current rate of �
variation from atomic clocks, which is ð _�=�Þ0 ¼ ð�1:6�
2:3Þ � 10�17=yr, although the uncertainties may be modu-
lated slightly by accounting for seasonal variations in the
local gravitational potential [20].

VIII. SUMMARYAND CONCLUSIONS

In this paper we have considered the dynamics of the
varying-� theories which arise when the original BSBM
theory is generalized by introducing an exponential or
inverse power-law self-potential for the scalar field driving
the variation of �. These two representative potentials
capture the essential ingredients of general potentials with-
out minima. There are two situations to distinguish and
analyze separately: according as to whether or not the
scalar-field potential comes to dominate the late-time dy-
namics of the Universe. In combination with the coupling
with matter, the additional bare potential forms an effective
total potential Veff for the scalar field ’ which governs the
allowed time variation of �. We have presented the solu-
tions to the scalar-field equation of motion in cases where
Veff is dominated solely by the coupling term or the bare
potential, respectively, in different cosmic eras. In most
cases the bare-potential-dominated solution differs from
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FIG. 10. The evolution of �=�0 versus loga in the BSBM
model (dashed curve) and in the model with an inverse power-
law potential plus coupling term (solid curve). The parameters
chosen are � ¼ 5� 106, j	j=! ¼ 2� 10�6.
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FIG. 9. The evolution of �=�0 versus loga in the BSBM
model (dashed curve) and in the model with an exponential
potential plus coupling term (solid curve). The parameters
chosen are � ¼ 5� 106, j	j=! ¼ 10�4.
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FIG. 8. Comparison of the entire cosmological evolution of ’
as a function of loga in the BSBM model (dashed curve) and the
model with an inverse power-law potential V ¼ V
’�� plus
coupling term (solid curve). The parameters for the upper panel
are, respectively, � ¼ 5� 106, j	j=! ¼ 2� 10�6 and � ¼ 1�
107, j	j=! ¼ 2� 10�6. In both cases the initial conditions are
’i ¼ 1, _’i ¼ 0.
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the coupling-dominated one; the contributions of these two
terms to Veff vary with time, and it is possible for there to
be a transition from one solution type to another. The
numerical results show that the transition between solu-
tions types can be very smooth, and for most of the time the
solution for the scalar field tracks either the bare-potential-
dominated or the coupling-dominated solution. These fea-
tures ensure that the evolution of ’ under Veff has a very
simple pattern. The main results are briefly summarized in
Table I, and these results are quite general, not depending
on whether the parameters defining the potential (� and �)
are extremely large or not.

The consequences for the time evolution of the fine-
structure constant of adding potentials Vð’Þ to the BSBM
theory are summarized as follows. In light of the observa-
tional constraints on how much variation in � there can be
over redshifts z < 6, we find that the restrictions on the
interaction potential parameters (� in the exponential po-
tential and � in the inverse power-law potential) must be
very strong, in order to prevent the bare potentials from
becoming unacceptably dominant and driving unaccept-
able fast time variation of �. For example, in the case of an

exponential potential, V ¼ V0 expð��’Þ, we must have
� * 106 � 107 with j	j=!�Oð10�6Þ, and for the inverse
power-law potential, V ¼ V
’��, we need � * 106 � 107

with j	j=!�Oð10�6Þ (the exact constraint, of course,
depends also on the initial conditions). This means that
the � and � are constrained to be so large that if they appear
in quintessence models then the scalar field is practically
indistinguishable from a cosmological constant, which has
no dynamics at all. The total variation of � can be en-
hanced compared to the case of no bare potential (BSBM),
and the variation commences much earlier. Finally, be-
cause with an exponential or inverse power-law potential
the scalar field will not approach a constant even in the
dark-energy-dominated era, the fine-structure constant �
will continue to increase for all future time, until eventu-
ally there will no stable atoms in the Universe at all [32].
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