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Because of the noncommutation of spatial averaging and temporal evolution, inhomogeneities and

anisotropies (cosmic structures) influence the evolution of the averaged Universe via the cosmological

backreaction mechanism. We study the backreaction effect as a function of averaging scale in a

perturbative approach up to higher orders. We calculate the hierarchy of the critical scales, at which

10% effects show up from averaging at different orders. The dominant contribution comes from the

averaged spatial curvature, observable up to scales of�200 Mpc. The cosmic variance of the local Hubble

rate is 10% (5%) for spherical regions of radius 40 (60) Mpc. We compare our result to the one from

Newtonian cosmology and Hubble Space Telescope Key Project data.
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Various cosmological observations, interpreted in the
framework of spatially flat, homogeneous, and isotropic
cosmogonies, have now confirmed the accelerated expan-
sion of the Universe. The most direct evidence comes from
the study of supernova (SN) of type Ia [1]. Many attempts
have been proposed to understand this mystery, e.g.,
dark energy in the form of a cosmological constant,
quintessence field or modification of gravity. However,
these suggestions always rely on the homogeneity and
isotropy of the cosmic medium, which are rather rough
approximations.

The Universe hosts enormous structures. In our neigh-
borhood, there seem to exist two voids, both 35 to 70 Mpc
across, associated with the so-called velocity anomaly [2],
a large filament known as the Sloan great wall about
400 Mpc long [3] and the Shapely supercluster with a
core diameter of 40 Mpc at a distance of �200 Mpc
from us [4]. Furthermore, based on the Hubble Space
Telescope (HST) Key Project data [5], evidence for a
significant anisotropy in the local Hubble expansion at
distances of �100 Mpc was found [6], and an anisotropy
of SN Ia Hubble diagrams extending to larger distances has
been reported recently [7]. Therefore, spatial homogeneity
and isotropy seem to be valid only on scales larger than
�100 Mpc [8], and effects of local inhomogeneities are
worthy of investigation. More specifically, observables
from within a few 100 Mpc must be revisited critically.
The most fundamental of those are cosmic distances and
the Hubble constant H0.

In this paper, we study the averaging of the inhomoge-
neous and anisotropic Universe over a local domain in
space-time. We stick to the idea of cosmological inflation,
assuming that the Universe approaches homogeneity and
isotropy at scales as large as the Hubble distance.

Many cosmological observables are averaged quantities.
For instance, the matter power spectrum is a Fourier trans-
form and thus a volume average weighted by a factor eik�x.
Another very important example is the idealized measure-
ment of H0 [9]. One picks N standard candles in a local
volume V (e.g., SN Ia in the Milky Way’s neighborhood
out to �100 Mpc), measures their luminosity distances di
and recession velocities vi ¼ czi (zi being the redshift of
each candle) and performs the average H0 � 1

N

PN
i¼1

vi

di
. In

the limit of a very big sample, it turns into a volume
average H0 ¼ 1

V

R
v
d dV.

Cosmological observations are made on the past light
cone, so one should average over a light-cone volume.
However, for objects at z � 1, spatial averaging on a
constant-time-hypersurface is a good approximation, as
the Universe does not change significantly on the temporal
scale involved.
Because of the nonlinearity of the Einstein equations,

spatial averaging and temporal evolution do not commute.
Hence, inhomogeneities and anisotropies affect the evolu-
tion of the averaged Universe via the so-called ‘‘backreac-
tion mechanism’’ [10–16]. Below, we utilize Buchert’s
averaging method [12] to estimate the order of magnitude
of backreaction effects and study the signatures of averag-
ing from the local measurement of H0.
Buchert’s setup is well adapted to the situation of a real

observer, if we are allowed to neglect the difference be-
tween baryons and cold dark matter (CDM). On scales
* 10 Mpc, baryon pressure is insignificant, and a real
observer comoves with matter, uses her own clock and
regards space to be time-orthogonal. These conditions
define a comoving synchronous coordinate system. There
are no primordial vector perturbations from cosmological
inflation, so we assume the Universe to be irrotational. As
we are concerned about the present Universe, radiation is
thus neglected. Moreover, the cosmological constant is
also supposed to vanish, as we ask whether averaging could
mimic a component of dark energy. Following Buchert, we
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use physically comoving boundaries to thoroughly fix the
averaging procedure.

In the synchronous coordinates, the metric of the inho-
mogeneous and anisotropic Universe is ds2 ¼ �dt2 þ
gijðt;xÞdxidxj. The spatial average of an observable

Oðt;xÞ at time t is defined as

hOiD � 1

VDðtÞ
Z
D
Oðt;xÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
detgij

q
dx: (1)

VDðtÞ �
R
D

ffiffiffiffiffiffiffiffiffiffiffiffi
detgij

p
dx is the volume of a comoving do-

main D, introducing an effective scale factor

aD
aD0

�
�
VD

VD0

�
1=3

: (2)

The subscript 0 denotes the present time. The effective
Hubble rate is thus defined as HD � _aD=aD ¼ h�iD=3 (�
being the volume expansion rate) [12].

Effective Friedmann equations for a dust Universe fol-
low from averaging Einstein’s equations [12],

�
_aD
aD

�
2 ¼ 8�G

3
�eff ; � €aD

aD
¼ 4�G

3
ð�eff þ 3peffÞ:

(3)

Here �eff and peff are the energy density and pressure of an
effective fluid,

�eff � h�iD � 1

16�G
ðhQiD þ hRiDÞ; (4)

peff � � 1

16�G

�
hQiD � 1

3
hRiD

�
; (5)

where � is the energy density of dust. hQiD � 2
3 ðh�2iD �

h�i2DÞ � 2h�2iD denotes the kinematical backreaction (�2

being the shear scalar) and hRiD the averaged spatial
curvature. They are related by an integrability condition
[12],

ða6DhQiDÞ: þ a4Dða2DhRiDÞ: ¼ 0: (6)

We further define an effective equation of state,

weff � peff

�eff

¼ hRiD � 3hQiD
2h�i2D

:

So we find that cosmological backreaction gives rise to a
nontrivial equation of state, even for a dust Universe [16].

Alternatively, we may map this effective fluid on a
model with dust and dark energy. Let n be the number
density of dust particles, and m be their mass. For any
comoving domain, hniD ¼ hniD0

ðaD0
=aDÞ3. In the dust

Universe, �ðt;xÞ � mnðt;xÞ, and we identify �m �
h�iD ¼ mhniD. From Eq. (4), dark energy is consequently
�de ¼ �ðhQiD þ hRiDÞ=ð16�GÞ, with the relevant equa-
tion of state reading

wde � pde

�de

¼ peff

�de

¼ � 1

3
þ 4hQiD

3ðhQiD þ hRiDÞ :

It is �1, iff hQiD ¼ � 1
3 hRiD [14], corresponding to a

cosmological constant � ¼ hQiD.
Equations (3) and (6) are not closed, as the four un-

known variables hQiD, hRiD, h�iD and aD are constrained
by only three equations. Below, we close these dynamical
equations for the averaged Universe by means of cosmo-
logical perturbation theory.
We wish to estimate the scale dependence of hQiD,

hRiD, h�iD, HD, and weff . We start from a spatially flat
dust model. In the comoving synchronous gauge, the linear
perturbed metric is ds2 ¼ �dt2 þ a2ðtÞ½ð1� 2�Þ�ij þ
ð@i@j � 1

3�ij�Þ��dxidxj. Here, its scale factor aðtÞ (a0 �
1) is different from aD, and their relation was provided in
Ref. [16]. � and � are the scalar metric perturbations, and
� is the three-dimensional Laplace operator. The solutions
for � and � are given in terms of the time-independent

peculiar gravitational potential ’ðxÞ: � ¼ 1
2 �’t

4=3
0 t2=3 þ

5
3’ and � ¼ �3’t4=30 t2=3 (only growing modes are taken

into account) [16]. Moreover, ’ is related to the

hypersurface-invariant variable � [17] by � ¼
1
2 �’t

4=3
0 t2=3 � 5

3’.

Following Ref. [16], we use the metric perturbations
attained from linear perturbation theory together with the
nonperturbative integrability condition to obtain the aver-
aged physical observables up to second order. We focus on
the dominant contributions from the growing modes and
neglect the decaying ones, since we are interested in the
late-time effects of cosmic averaging. Thus, we find

hQiD ¼ aD0

aD
Bð’Þt20; (7)

hRiD ¼ 20

3

a2D0

a2D
h�’i � 5

aD0

aD
Bð’Þt20; (8)

h�iD ¼ 1

6�Gt20

a3D0

a3D
; (9)

HD ¼ 2

3t0

a3=2D0

a3=2D

�
1� 5

4

aD
aD0

t20h�’i

þ 3

4

a2D
a2D0

t40

�
Bð’Þ � 25

24
h�’i2

��
; (10)

weff ¼ 5

6

aD
aD0

t20h�’i �
a2D
a2D0

t40

�
Bð’Þ � 25

12
h�’i2

�
; (11)

with Bð’Þ � h@ið@i’�’Þ � @ið@j’@j@i’Þi � 2
3 h�’i2 and

hOi � R
D Odx=

R
D dx. We see from Eqs. (7)–(11) that

these quantities are polynomials of surface terms. Thus,
all information is encoded on the boundaries of the comov-
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ing domainD. The temporal dependence of these averaged
quantities can be found in Ref. [16], and their leading terms
are gauge invariant [16].

Our perturbative results suggest that we could write
hQiD and hRiD in a Laurent series of aD. (Recently, a
power-law ansatz for the integrability condition was inves-
tigated in Ref. [18].) We know from Eqs. (7) and (8) that
hQiD and hRiD start from different powers: a�1

D and a�2
D ,

so hQiD ¼ P
n¼�1Qnð aDaD0

Þn and hRiD ¼ P
n¼�2Rnð aDaD0

Þn.
The integrability condition then connects the coefficients:
ðnþ 6ÞQn þ ðnþ 2ÞRn ¼ 0. Thus, Q0 ¼ � 1

3R0 at third

order in perturbation theory. Therefore, cosmological
backreaction can mimic a cosmological constant, but in-
duces extra terms as well. The third order results will be
presented elsewhere [19].

The effect of cosmological backreaction in the early
Universe is tiny and is undistinguishable from that of a
homogeneous curvature, as wde ! �1=3 when aD ! 0.
This result seems inconsistent with our intuition of a
vanishing cosmological backreaction at early times, sug-
gesting that wde should also vanish. However, as we have
seen above, cosmological averaging gives rise to extra
degrees of freedom in the dynamics of the averaged
Universe.

The effect of averaging over a typical domain is pro-
vided by the ensemble average. From Eq. (11), we find

�weff ¼ 11
4 ð aDaD0

Þ2t40h�’i2 > 0. This means that cosmological

backreaction is expected to lead to a positive definite
equation of state. However, we should pay attention that
�weff is of second order, but the root of its variance

½VarðweffÞ�1=2 ¼ 5
6

aD
aD0

t20ðh�’i2Þ1=2 is of first order and

therefore larger than �weff . Thus, the possibilities of weff <
0 and the effective acceleration of the averaged Universe
cannot be easily excluded. Looking only at mean values of
the ensemble obviously causes an underestimation of the
possible backreaction effects, as we often observe just one
particular domain in the Universe.

We now turn to estimate the order of magnitude of
cosmological backreaction as a function of the averaging

scale r� V1=3
D0

. We show that cosmological averaging pro-

duces important modifications to local physical observ-
ables and determine the averaging scale, at which
corrections show up at a 10% level.

Effective acceleration of the averaged Universe occurs if
�eff þ 3peff < 0, i.e., hQiD > 4�Gh�iD. From Eqs. (7) and
(9) we have

��������
hQiD

4�Gh�iD
��������¼ 3

2

a2D
a2D0

Bð’Þt40 ¼
8

27

R4
H

ð1þ zÞ2 Bð’Þ; (12)

with RH ¼ 2:998� 103h�1 Mpc being the present Hubble
distance. In Eq. (12), we can safely use the results for the
background Universe: aD=aD0

¼ 1=ð1þ zÞ and t0 ¼
2RH=3, because Bð’Þ is of second order. Since the ratio

in Eq. (12) is dimensionless, a dimensional analysis im-
mediately implies jhQiD=4�Gh�iDj / ðRH=rÞ4, where for
an almost scale-invariant power spectrum the unique rele-
vant scale is the averaging scale r. The order of magnitude
of Eq. (12) can be estimated as��������

hQiD
4�Gh�iD

���������
8

75

1

ð1þ zÞ2
�
RH

r

�
4
P � : (13)

P � ¼ 2:457� 10�9 is the dimensionless power spectrum

[20]. We pick the second term in Bð’Þ, h@ið@j’@j@i’Þi, to
demonstrate how to obtain this estimate. In the Fourier
space, @i’ ! iki’� ’=r. The latter step comes from the
observation that only structure of the size of the averaged
volume cannot be averaged out. At much smaller scales,
structures contribute a negligible amount to Bð’Þ, because
it is not positive definite and is expected to fluctuate on
small scales. Thus,

h@ið@j’@j@i’Þi ! 1

r4
h’2i � 1

r4
P’ ¼ 9

25

1

r4
P � ;

i.e., each derivative in Bð’Þ contributes a factor 1=r. Also,
h’2i in the Fourier space is estimated as the power spec-
trum P’. Since ’ is constant in time, and � � �5’=3 on

superhorizon scales, we can identify today’s P’ with

9P �=25. Similar estimation works for the other two terms

in Bð’Þ.
The kinematical backreaction induces 10% and larger

modifications if jhQiD=4�Gh�iDj * 0:1. This happens if

rQ &
21h�1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p Mpc: (14)

For observations at z � 1, rQ & 30 Mpc (h ¼ 0:7).
The averaged spatial curvature hRiD is the most impor-

tant correction to energy density. The criterion for the
scale, at which its effect emerges, is estimated analogously
by��������

�eff

h�iD � 1

���������
��������

hRiD
16�Gh�iD

���������
2

3

1

1þ z

�
RH

r

�
2 ffiffiffiffiffiffiffi

P �

q
:

(15)

We find effects larger than 10% within

rR &
54h�1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p Mpc: (16)

At small redshifts, rR & 77 Mpc. Furthermore, effects
above 1% are expected up to a scale of �240 Mpc. Note
that the curvature of the Universe has been measured at the
few per cent accuracy in the cosmic microwave back-
ground (CMB) [20]. It was shown in Ref. [21] that even
small curvature might affect the analysis of high-z SNe
significantly.
Finally, we turn to the Hubble rate. To go beyond the

order of magnitude estimates above, we calculate the
ensemble mean and its variance (cosmic variance) of the
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relative fluctuation of the Hubble rate �H � ðHD �
H0Þ=H0. Before doing so, let us stress that the analogous
order of magnitude estimate for �H agrees with the result

for ½Varð�HÞ�1=2 given below up to a factor of �2. For a
spherical domain of radius r, we find from Eq. (10),

��H ¼ � 41

32

a2D
a2D0

t40h�’i2; Varð�HÞ ¼ 25

16

a2D
a2D0

t40h�’i2;

(17)

where

h�’i2 ¼
Z dx1dx2

V2

dk1dk2

ð2�Þ6 k21k
2
2’k1

’k2
eiðk1�x1þk2�x2Þ

¼
Z dx1dx2

V2

dk

32�4
kP’ðkÞeik�ðx1þx2Þ;

with V ¼ 4�r3=3 (a top-hat window). Above, we intro-
duce the dimensionless power spectrum as ’k1

’k2
�

2�2�ðk1 þ k2ÞP’ðk1Þ=k31 (k � jkj). So

Var ð�HÞ ¼ 25

144�2

1

ð1þ zÞ2
�
RH

r

�
4

�
Z 1

0
dxP’ðx=rÞJ23=2ðxÞ: (18)

J3=2ðxÞ is the Bessel function of first kind (x � kr). For a
scale-invariant power spectrum, we must introduce an

ultraviolet cutoff P’ðkÞ ¼ P’e
�k=kc . No cutoff is required

for a red-tilted spectrum P’ðkÞ ¼ P’ðk=k0Þns�1 (ns < 1

being the spectrum index), consistent with WMAP5 [20].

Here, let us stress that although ½Varð�HÞ�1=2 is only a first
order quantity, the next contribution is already of third
order, if we consult the perturbed metric to second order.
Since we constrain our attention to the leading order ef-
fects, these higher order terms are negligible [19].

Nowwe can link the effect of cosmological backreaction
in Buchert’s setup (evaluated in a perturbative approach up
to second order) to actual cosmological observations. The
trick is to consider the scale dependence but not the time
dependence. The value of the relative fluctuation of the
Hubble rate in Eq. (17) is dominated by its variance, and
thus the sign of the observed value of �H cannot be
predicted. A comparison of the mean and the root of the
variance of �H tells us that perturbation theory breaks
down below �20 Mpc.

The scale dependence of the cosmic variance of �H has
previously been studied in the context of Newtonian cos-
mology [22,23], largely based on CDM simulations. In this
setting, the variance of �H is due to peculiar motions
(besides sampling variance and observational errors). In a
relativistic and comoving approach, peculiar velocities
vanish identically, and the cosmic variance of the Hubble
rate turns into a curvature effect, because Eqs. (8) and (17)

give Varð�HÞ / hRi2D.

In Fig. 1, we compare the relativistic (correct up to
second order) result Eq. (18) to Newtonian ‘‘standard
CDM’’ case in Ref. [23]. We find that up to �400 Mpc,
our results for scale-invariant power spectra (kc ¼ 1=kpc
corresponding to a typical cutoff in CDM simulations and
1=pc to the physical cutoff in the primordial CDM spec-
trum) agree with Newtonian simulations. This agreement is
not unexpected, as metric perturbations and peculiar ve-
locities are small at �100 Mpc scales.
The consistency between the relativistic and Newtonian

approaches encourages the comparison of our perturbative
results with experimental data. We compare Eq. (18) with
observations from the HST Key Project [5]. We use 54
individual measurements of H0 in the CMB rest frame
(corrected for local flow) from SN Ia and the Tully-
Fisher relation (Tables (6) and (7) in Ref. [5]). We have
checked explicitly that the SN and Tully-Fisher measure-
ments of H0 are consistent with each other, while we
cannot confirm that for the fundamental plane method
and thus dropped them from a former analysis.
We restrict our analysis to objects between 31.3 to

467.0 Mpc, as Eq. (18) can be trusted only above
30 Mpc. Be ri, Hi and �i the distance, Hubble rate and
1� error for the i0th datum, with distances increasing. We
calculate the mean distance for the nearest k objects by
�rk ¼

P
k
i¼1 giri=

P
k
i¼1 gi, with weights gi ¼ H2

0=�
2
i . An

analogue holds for the averaged Hubble rate �Hk, i.e., HD

for different subsets. The empirical variance of each subset
is ��2

k ¼ ½Pk
i¼1 giðHi � �HkÞ2�=½H2

0ðk� 1ÞPk
i¼1 gi�. Notice

that Eq. (18) is insensitive to global calibration issues.
The comparison of the result Eq. (18) with the HST

Key Project data is shown in Fig. 2. We now normalize
to the WMAP5 best-fit power-law spectrum, with pivot

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 100  150  200  250  300  350  400

[V
ar

(δ
H

)]
1/

2

r (Mpc)

Newtonian cosmology
relativistic cosmology, kc=1/pc

relativistic cosmology, kc=1/kpc

FIG. 1 (color online). Scale dependence of the cosmic variance
of the Hubble rate. Data are from the Newtonian CDM model in
Ref. [23], with h ¼ 0:5,�m ¼ 1 and a COBE-normalized power
spectrum. Thick and thin lines correspond to the relativistic
result Eq. (18) for a scale-invariant power spectrum with cutoffs
at kc ¼ 1=kpc (simulation) and 1=pc (physical), respectively.
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k0 ¼ 0:002=Mpc and spectral index ns ¼ 0:960 and use
H0 ¼ 72 km=s=Mpc [20]. We see that the theoretical band
matches the experimental data well, without any fit pa-
rameter in the panel. Moreover, we see from Fig. 2 that the
value of �H is positive within �100 Mpc. This is consis-
tent with the result in a recent paper [24] that we are
located in a 200–300 Mpc underdense void, which is
expanding faster than the global Hubble rate.

Before we can claim that we have observed the expected
1=r2 behavior in Eq. (18) and thus the evidence for cos-
mological backreaction, we must make sure that statistical
noise cannot account for it. In the case of a perfectly
homogeneous coverage of the averaged domain with stan-

dard candles, we would expect a 1=r3=2 behavior. In Fig. 2,
we show the statistical noise for the actual data set

(1=ðPk
i¼1 giÞ1=2), which is smaller than our result

Eq. (18). It turns out that the sampling noise for this small
data set is still too large to claim that the inhomogeneity of
the Universe can be detected in the relative fluctuation of
the Hubble rate observed by the HST Key Project.
However, it is fully consistent with our theoretical expec-
tations. Actually the fluctuation �H appears to be smaller

than expected, and one might wonder why that is so. From
the theoretical expectation plotted in Fig. 2, we find that at
�40ð60Þ Mpc, the value ofHD differs from its global value
72 km=s=Mpc (WMAP5) by about 10% (5%), whereas the
expected variance for a perfectly homogeneous and iso-
tropic Universe is 8% (2%).
A similar analysis of the Hubble diagram was pioneered

in Refs. [25–28], in which the velocity field of the local
Universe and its influence on the correlated fluctuations in
luminosity distance and the Hubble rate was analyzed. Two
essential differences to this work are that our analysis
includes effects to higher orders and we study the scale
dependence of the averaged observables. Although the
relative fluctuation of the Hubble rate was not explicitly
analyzed in Refs. [25–27], it seems to us that our results are
consistent with those findings.
To summarize, we argue that cosmological averaging

(backreaction) gives rise to observable effects up to scales
of �200 Mpc. However, it is not sufficient to explain the
observed accelerated expansion at this point.
We find a hierarchy of backreaction effects. The aver-

aged spatial curvature hRiD leads to 10% (1%) effects up
to �80ð240Þ Mpc in a dust model with h ¼ 0:7. Below
�40 Mpc, the cosmic variance of the Hubble rate is larger
than 10%, which coincides with the estimate from the
effect of peculiar motions in Newtonian setup. Within
�30 Mpc, the kinematical backreaction hQiD, due to sec-
ond order perturbations caused by local inhomogeneities
and anisotropies, enters the game. Cosmological backreac-
tion may put some of the steps on the cosmological dis-
tance ladder in question, as they are deeply in the domain
of large backreaction, i.e., large fluctuations among small
averaged volumes.
Our findings call for revisiting local observations, like

galaxy redshift surveys, in terms of possible backreaction
signatures. The large scale physics of primordial CMB
anisotropies is not affected. However, this statement cannot
be made for secondary effects, e.g., the late integrated
Sachs-Wolfe effect.
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and David L. Wiltshire for discussions. The work of N. L.
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