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Dynamic dark-energy (DDE) models are often designed to solve the cosmic coincidence (why, just

now, is the dark-energy density �de the same order of magnitude as the matter density �m?) by

guaranteeing �de � �m for significant fractions of the age of the Universe. However, such behavior is

neither sufficient nor necessary to solve the coincidence problem. Cosmological processes constrain the

epochs during which observers can exist. Therefore, what must be shown is that a significant fraction of

observers see �de � �m. Precisely when, and for how long, must a DDE model have �de � �m in order to

solve the coincidence? We explore the coincidence problem in dynamic dark-energy models using the

temporal distribution of terrestrial-planet-bound observers. We find that any realistic DDE model which

can be parametrized as w ¼ w0 þ wað1� aÞ over a few e-folds has �de � �m for a significant fraction of

observers in the Universe. This demotivates DDE models specifically designed to solve the coincidence

using long or repeated periods of �de � �m.
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I. INTRODUCTION

In 1998, using supernovae Ia as standard candles, Riess
et al. [1] and Perlmutter et al. [2] revealed a recent and
continuing epoch of cosmic acceleration—strong evidence
that Einstein’s cosmological constant �, or something else
with comparable negative pressure pde ���de, currently
dominates the energy density of the Universe [3]. � is
usually interpreted as the energy of zero-point quantum
fluctuations in the vacuum [4,5] with a constant equation of
state w � pde=�de ¼ �1. This necessary additional en-
ergy component, construed as � or otherwise, has become
generically known as ‘‘dark energy’’ (DE).

A plethora of observations have been used to constrain
the free parameters of the new standard cosmological
model, �CDM, in which � does play the role of the dark
energy. Hinshaw et al. [6] find that the Universe is expand-
ing at a rate ofH0 ¼ 71� 4 km=s=Mpc; that it is spatially
flat and therefore critically dense (�tot0 ¼ �tot0

�crit0
¼

8�G
3H2

0

�tot0 ¼ 1:01� 0:01); and that the total density is com-

prised of contributions from vacuum energy (��0 ¼
0:74� 0:02), cold dark matter (CDM; �CDM0 ¼ 0:22�
0:02), baryonic matter (�b0 ¼ 0:044� 0:003) and radia-
tion (�r0 ¼ 4:5� 0:2� 10�5). Henceforth we will as-
sume that the Universe is flat (�tot0 ¼ 1) as predicted by
inflation and supported by observations.

Two problems have been influential in moulding ideas
about dark energy, specifically in driving interest in alter-
natives to�CDM. The first of these problems is concerned
with the smallness of the dark-energy density [4,7,8].
Despite representing more than 70% of the total energy
of the Universe, the current dark-energy density is �120
orders of magnitude smaller than energy scales at the end
of inflation (or �80 orders of magnitude smaller than
energy scales at the end of inflation if this occurred at the
GUT rather than Planck scale) [7]. Dark-energy candidates
are thus challenged to explain why the observed DE den-
sity is so small. The standard idea, that the dark energy is
the energy of zero-point quantum fluctuations in the true
vacuum, seems to offer no solution to this problem.
The second cosmological constant problem [9–11] is

concerned with the near coincidence between the current
cosmological matter density (�m0 � 0:26� �crit0) and the
dark-energy density (�de0 � 0:74� �crit0). In the standard
�CDM model, the cosmological window during which
these components have comparable density is short ( just
105 e-folds of the cosmological scale factor a) since matter
density dilutes as �m / a�3 while vacuum density �de is
constant [12]. Thus, even if one explains why the DE
density is much less than the Planck density (the smallness
problem), one must explain why we happen to live during
the time when �de � �m.
The likelihood of this coincidence depends on the range

of times during which we suppose we might have lived. In
works addressing the smallness problem, Weinberg
[7,13,14] considered a multiverse consisting of a large
number of big bangs, each with a different value of �de.
There he asked, suppose that we could have arisen in any
one of these universes; what value of �de should we expect
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our Universe to have? While Weinberg supposed we could
have arisen in another universe, we are simply supposing
that we could have arisen in another time in our Universe.
We ask, what time tobs, and corresponding densities
�deðtobsÞ and �mðtobsÞ should we expect to observe?
Weinberg’s key realization was that not every universe
was equally probable: those with smaller �de contain
more Milky-Way-like galaxies and are therefore more
hospitable [7,13]. Subsequently, he and other authors
used the relative number of Milky-Way-like galaxies to
estimate the distribution of observers as a function of �de,
and determined that our value of �de was indeed likely [15–
17]. Our value of �de could have been found to be unlikely
and this would have ruled out the type of multiverse being
considered. Here we apply analogous reasoning to the
cosmic coincidence problem. Our observerhood could
not have happened at any time with equal probability
[12]. By estimating the temporal distribution of observers,
we can determinewhether the observation of �de � �m was
likely. If we find �de � �m to be unlikely while considering
a particular DE model, that will enable us to rule out that
DE model.

In a previous paper [12], we tested �CDM in this way
and found that �de � �m is expected. In the present paper
we apply this test to dynamic dark-energy models to see
what dynamics is required to solve the coincidence prob-
lem when the temporal distribution of observers is being
considered.

The smallness of the dark-energy density has been
anthropically explained in multiverse models with the
argument that, in universes with much larger DE compo-
nents, DE driven acceleration starts earlier and precludes
the formation of galaxies and large scale structure. Such
universes are probably devoid of observers [13,16,17]. A
solution to the coincidence problem in this scenario was
outlined by Garriga et al. [18], who showed that if �de is
low enough to allow galaxies to form, then observers in
those galaxies will observe r� 1.

To quantify the time-dependent proximity of �m and
�de, we define a proximity parameter,

r � min

�
�de

�m

;
�m

�de

�
; (1)

which ranges from r � 0, when many orders of magnitude
separate the two densities, to r ¼ 1, when the two densities
are equal. The presently observed value of this parameter is
r0 ¼ �m0

�de0
� 0:35. In terms of r, the coincidence problem is

as follows. If we naively presume that the time of our
observation tobs has been drawn from a distribution of
times PtðtÞ spanning many decades of cosmic scale factor,
we find that the expected proximity parameter is r � 0 �
0:35. In the top panel of Fig. 1 we use a naive distribution
for tobs that is constant in logðaÞ to illustrate how observing
r as large as r0 � 0:35 seems unexpected.

In Lineweaver and Egan [12] we showed how the ap-
parent severity of the coincidence problem strongly de-
pends upon the distribution PtðtÞ from which tobs is
hypothesized to have been drawn. Naive priors for tobs,
such as the one illustrated in the top panel of Fig. 1, lead to
naive conclusions. Following the reasoning of Weinberg
[7,13,14], we interpret PtðtÞ as the temporal distribution of

FIG. 1. (Top) The history of the energy density of the Universe
according to standard �CDM. The dotted line shows the energy
density in radiation (photons, neutrinos, and other relativistic
modes). The radiation density dilutes as a�4 as the Universe
expands. The dashed line shows the density in ordinary non-
relativistic matter, which dilutes as a�3. The thick solid line
shows the energy of the vacuum (the cosmological constant)
which has remained constant since the end of inflation. The thin
solid peaked curve shows the proximity r of the matter density to
the vacuum energy density [see Eq. (1)]. The proximity r is only
�1 for a brief period in the logðaÞ history of the cosmos.
Whether or not there is a coincidence problem depends on the
distribution PtðtÞ for tobs. If one naively assumes that we could
have observed any epoch with equal probability (the light gray
shade) then we should not expect to observe r as large as we do.
If, however, PtðtÞ is based on an estimate of the temporal
distribution of observers (the dark gray shade) then r0 � 0:35
is not surprising, and the coincidence problem is solved under
�CDM [12]. (Bottom) The dark-energy density history is modi-
fied in DDE models. Observational constraints on the dark-
energy density history are represented by the light gray shade
(details in Sec. III).
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observers. The temporal and spatial distribution of observ-
ers has been estimated using large (1011M�) galaxies
[13,15,16,18] and terrestrial planets [12] as tracers. The
top panel of Fig. 1 shows the temporal distribution of
observers PtðtÞ from Lineweaver and Egan [12].

A possible extension of the concordance cosmological
model that may explain the observed smallness of �de is the
generalization of dark-energy candidates to include dy-
namic dark-energy (DDE) models such as quintessence,
phantom dark energy, k essence, and Chaplygin gas. In
these models the dark energy is treated as a new matter
field which is approximately homogenous, and evolves as
the Universe expands. DDE evolution offers a mechanism
for the decay of �deðtÞ from the expected Planck scales
(1093 g=cm3) in the early Universe (10�44 s) to the small
value we observe today (10�30 g=cm3). The light gray
shade in the bottom panel of Fig. 1 represents contempo-
rary observational constraints on the DDE density history.
Many DDE models are designed to solve the coincidence
problem by having �deðtÞ � �mðtÞ for a large fraction of the
history/future of the Universe [19–42]. With �de � �m for
extended or repeated periods, the hope is to ensure that r�
1 is expected.

Our main goal in this paper is to take into account the
temporal distribution of observers to determine when, and
for how long, a DDEmodel must have �de � �m in order to
solve the coincidence problem? Specifically, we extend the
work of Lineweaver and Egan [12] to find out for which
cosmologies (in addition to �CDM) the coincidence prob-
lem is solved when the temporal distribution of observers is
considered. In doing this we answer the question: Does a
dark-energy model fitting contemporary constraints on the
density �de and the equation of state parameters, neces-
sarily solve the cosmic coincidence? Both positive and
negative answers have interesting consequences. An an-
swer in the affirmative will simplify considerations that go
into DDE modeling: any DDE model in agreement with
current cosmological constraints has �de � �m for a sig-
nificant fraction of observers. An answer in the negative
would yield a new opportunity to constrain the DE equa-
tion of state parameters more strongly than contemporary
cosmological surveys.

A different coincidence problem arises when the time of
observation is conditioned on and the parameters of a
model are allowed to slide. The tuning of parameters and
the necessity to include ad hoc physics are large problems
for many current dark-energy models. This paper does not
address such issues, and the interested reader is referred to
Hebecker and Wetterich [43], Bludman [44], and Linder
[45]. In the coincidence problem addressed here, we let the
time of observation vary to see if rðtobsÞ 	 0:35 is unlikely
according to the model.

In Sec. II we present several examples of DDE models
used to solve the coincidence problem. An overview of
observational constraints on DDE is given in Sec. III. In

Sec. IV we estimate the temporal distribution of observers.
Our main analysis is presented in Sec. V. Our main result—
that the coincidence problem is solved for all DDE models
fitting observational constraints—is illustrated in Fig. 7.
Finally, in Sec. VI, we end with a discussion of our results,
their implications, and potential caveats.

II. DYNAMIC DARK-ENERGY MODELS IN THE
FACE OF THE COSMIC COINCIDENCE

Though it is beyond the scope of this article to provide a
complete review of DDE (see Copeland et al. [46],

FIG. 2. The energy density history of the Universe according
to �CDM [panel (a)], and seven DDE models selected from the
literature (see text for references). In each panel the radiation and
matter densities are the dotted and dashed lines, respectively.
The DE density is given by the thick black line. The proximity
parameter r is given by the thin black line at the base of each
panel. Of the DDE models shown here, tracker quintessence and
k essence [panels (b), (c), and (g)] have r� 1 for a small fraction
of the life of the Universe (whether the abscissa is t, logðtÞ, a,
logðaÞ, or any other of a large number of measures). On the other
hand, tracking oscillating energy, interacting quintessence, phan-
tom DE, and Chaplygin gas [panels (d), (e), (f), and (h)] exhibit
r� 1 for a large fraction of the life of the Universe. For the
phantom DE example [panel (f)] this is true in t, but not in a or
logðaÞ. In phantom models the future Universe grows super-
exponentially to a ¼ 1 (a ‘‘big rip’’) shortly after matter-DE
equality. Thus the Universe spends a large fraction of time with
r� 1; however, this is not seen in logðaÞ space. For each of the
models in this figure, numerical values for free parameters were
chosen to crudely fit observational constraints and are given in
the Appendix.
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Szydłowski et al. [47]), here we give a few representative
examples in order to set the context and motivation of our
work. Figure 2 illustrates density histories typical of
tracker quintessence, tracking oscillating energy, interact-
ing quintessence, phantom dark energy, k essence, and
Chaplygin gas. They are discussed in turn below.

A. Quintessence

In quintessence models, the dark energy is interpreted as
a homogenous scalar field with Lagrangian density

Lð�;XÞ ¼ 1
2
_�2 � Vð�Þ [48–54]. The evolution of the

quintessence field and of the cosmos depends on the postu-
lated potential Vð�Þ of the field and on any postulated
interactions. In general, quintessence has a time-varying

equation of state w ¼ pde

�de
¼ _�2=2�Vð�Þ

_�2=2þVð�Þ . Since the kinetic

term _�2=2 cannot be negative, the equation of state is
restricted to values w 	 �1. Moreover, if the potential
Vð�Þ is non-negative then w is also restricted to values
w 
 þ1.

If the quintessence field only interacts gravitationally

then energy density evolves as ��de

�de
¼ �3ðwþ 1Þ �aa and

the restrictions�1 
 w 
 þ1mean �de decays (but never
faster than a�6) or remains constant (but never increases).

1. Tracker quintessence

Particular choices for Vð�Þ lead to interesting attractor
solutions which can be exploited to make �de scale
(‘‘track’’) subdominantly with �r þ �m.

The DE can be forced to transit to a �-like (w � �1)
state at any time by fine-tuning Vð�Þ. In the �-like state
�de overtakes �m and dominates the recent and future
energy density of the Universe. We illustrate tracker quin-
tessence in Fig. 2 using a power law potential Vð�Þ ¼
M��� [panel (b)] [49,51,53] and an exponential potential
Vð�Þ ¼ M expð1=�Þ [panel (c)] [20].

The tracker paths are attractor solutions of the equations
governing the evolution of the field. If the tracker quintes-
sence field is initially endowed with a density off the
tracker path (e.g. an equipartition of the energy available
at reheating), its density quickly approaches and joins the
tracker solution.

2. Oscillating dark energy

Dodelson et al. [20] explored a quintessence potential
with oscillatory perturbations Vð�Þ ¼ M expð���Þ�
½1þ A sinð��Þ�. They refer to models of this type as
tracking oscillating energy. Without the perturbations (set-
ting A ¼ 0) this potential causes exact tracker behavior:
the quintessence energy decays as �r þ �m and never
dominates. With the perturbations the quintessence energy
density oscillates about �r þ �m as it decays [Fig. 2(d)].
The quintessence energy dominates on multiple occasions
and its equation of state varies continuously between posi-

tive and negative values. One of the main motivations for
tracking oscillating energy is to solve the coincidence
problem by ensuring that �de � �m or �de � �r at many
times in the past or future.
It has yet to be seen how such a potential might arise

from particle physics. Phenomenologically similar cos-
mologies have been discussed in Ahmed et al. [26], Feng
et al. [37], and Yang and Wang [55].

3. Interacting quintessence

Nongravitational interactions between the quintessence
field and matter fields might allow energy to transfer
between these components. Such interactions are not for-
bidden by any known symmetry [56]. The primary moti-
vation for the exploration of interacting dark-energy
models is to solve the coincidence problem. In these mod-
els the present matter/dark-energy density proximity rmay
be constant [19,23,27,30–32,34,36,39–41,57] or slowly
varying [29,35].
We plot a density history of the interacting quintessence

model of Amendola [19] in Fig. 2(e). This model is char-
acterized by a DE potential Vð�Þ ¼ A exp½B�� and DE-

matter interaction term Q ¼ �C�m
_�, specifying the rate

at which energy is transferred to the matter fields. The free
parameters were tuned such that radiation domination ends
at a ¼ 10�5 and that rt!1 ¼ 0:35.

B. Phantom dark energy

The analyses of Riess et al. [58] and Wood-Vasey et al.
[59] have mildly (� 1�) favored a dark-energy equation
of state wde <�1. These values are unattainable by stan-
dard quintessence models but can occur in phantom dark-
energy models [60], in which kinetic energies are negative.
The energy density in the phantom field increases with
scale factor, typically leading to a future ‘‘big-rip’’ singu-
larity where the scale factor becomes infinite in finite time.
Figure 2(f) shows the density history of a simple phantom
model with a constant equation of state w ¼ �1:25. The
big-rip (a ¼ 1 at t ¼ 57:5 Gyrs) is not seen in logðaÞ
space.
Caldwell et al. [61] and Scherrer [33] have explored how

phantommodels may solve the coincidence problem: since
the big rip is triggered by the onset of DE domination, such
cosmologies spend a significant fraction of their total time
with r large. For the phantom model with w ¼ �1:25
[Fig. 2(f)], Scherrer [33] finds r > 0:1 for 12% of the total
lifetime of the Universe. Whether this solves the coinci-
dence or not depends upon the prior probability distribu-
tion PtðtÞ for the time of observation. Caldwell et al. [61]
and Scherrer [33] implicitly assume that the temporal
distribution of observers is constant in time [i.e. PtðtÞ ¼
constant]. For this prior the coincidence problem is solved
because the chance of observing r 	 0:1 is large (12%).
Note that for the ‘‘naive PtðtÞ’’ prior shown in Fig. 1, the
solution of Caldwell et al. [61] and Scherrer [33] fails
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because r > 0:1 is brief in logðaÞ space. It fails in this way
for many other choices of PtðtÞ including, for example,
distributions constant in a or logðtÞ.

C. k-essence

In k-essence the DE is modeled as a scalar field with
noncanonical kinetic energy [62–65]. Noncanonical ki-
netic terms can arise in the effective action of fields in
string and supergravity theories. Figure 2(g) shows a den-
sity history typical of k-essence models. This particular
model is from Armendariz-Picon et al. [64] and Steinhardt
[11]. During radiation domination the k-essence field
tracks radiation subdominantly (with wde ¼ wr ¼ 1=3) as
do some of the other models in Fig. 2. However, no stable
tracker solution exists for wde ¼ wmð¼ 0Þ. Thus after
radiation-matter equality, the field is unable to continue
tracking the dominant component, and is driven to another
attractor solution (which is generically �-like with wde �
�1). The onset of DE domination was recent in k-essence
models because matter-radiation equality prompts the tran-
sition to a �-like state. The k-essence thereby avoids fine-
tuning in any particular numerical parameters, but the
Lagrangian has been constructed ad hoc.

D. Chaplygin gas

A special fluid known as Chaplygin gas motivated by
braneworld cosmology may be able to play the role of dark
matter and the dark energy [66,67]. Generalized Chaplygin
gas has the equation of state pde ¼ �A���

de which behaves

like pressureless dark matter at early times (wde � 0 when
�de is large), and like vacuum energy at late times (wde �
�1 when �de is small). In Fig. 2(h) we show an example
with � ¼ 1.

E. Summary of DDE models

Two broad classes of DDE models emerge from our
comparison:

(1) In�CDM, tracker quintessence and k-essence mod-
els, the dark-energy density is vastly different from
the matter density for most of the lifetime of the
Universe [panels (a), (b), (c), and (g) of Fig. 2]. The
coincidence problem can only be solved if the
probability distribution PtðtÞ for the time of obser-
vation is narrow, and overlaps significantly with an
r� 1 peak. If PtðtÞ is wide, e.g. constant over the
life of the Universe in t or logðtÞ, then observing r�
1 would be unlikely in these models and the coin-
cidence problem is not resolved.

(2) Tracking oscillating energy, interacting quintes-
sence, phantom models, and Chaplygin gas models
[panels (d), (e), (f), and (h) of Fig. 2] employ
mechanisms to ensure that r� 1 for large fractions
of the life of the Universe. In these models the
coincidence problem may be solved for a wider

range of PtðtÞ including, depending on the DE
model, distributions that are constant over the whole
life of the Universe in t, logðtÞ, a, or logðaÞ.

The importance of an estimate of the distribution PtðtÞ is
highlighted: such an estimate will either rule out models of
the first category because they do not solve the coincidence
problem, or demotivate models of the second because their
mechanisms are unnecessary to solve the coincidence
problem. This analysis does not address the problems
associated with fine-tuning, initial conditions, or ad hoc
mechanisms of many DDE models [43–45].
We leave this line of enquiry temporarily to discuss

contemporary observational constraints on the dark-
energy density history, because we wish to test what DE
dynamics are required to solve the coincidence, beyond
those which models must exhibit to satisfy standard cos-
mological observations.

III. CURRENT OBSERVATIONAL CONSTRAINTS
ON DYNAMIC DARK ENERGY

A. Supernovae Ia

Observationally, possible dark-energy dynamics is ex-
plored almost solely using measurements of the cosmic
expansion history. Recent cosmic expansion is directly
probed by using type Ia supernova (SNIa) as standard
candles [1,2]. Each observed SNIa provides an indepen-
dent measurement of the luminosity distance dl to the
redshift of the supernova zSN. The luminosity distance to
zSN is given by

dlðzSNÞ ¼ ð1þ zSNÞ c

H0

Z zSN

z¼0

dz

EðzÞ ; (2)

where

EðzÞ ¼ HðzÞ
H0

¼
�
�r0ð1þ zÞ4 þ�m0ð1þ zÞ3 þ�de0

�deðzÞ
�de0

�
1=2

(3)

and thus depends onH0,�m0, and the evolution of the dark
energy �deðzÞ=�de0. The radiation term, irrelevant at low
redshifts, can be dropped from Eq. (3).�de0 is a dependent
parameter due to flatness (�de0 ¼ 1��m0).
Contemporary data sets include �200 supernovae at red-
shifts zSN 
 2:16 (a 	 0:316) [59,68] and provide an ef-
fective continuum of constraints on the expansion history
over that range [69,70]. The redshift range probed by SNIa
is indicated in both panels of Fig. 3.

B. Cosmic microwave background

The first peak in the cosmic microwave background
(CMB) temperature power spectrum corresponds to den-
sity fluctuations on the scale of the sound horizon at the
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time of recombination. Subsequent peaks correspond to
higher-frequency harmonics. The locations of these peaks
in l space depend on the comoving scale of the sound
horizon at recombination, and the angular distance to
recombination. This is summarized by the so-called
CMB shift parameter R [71,72] which is related to the
cosmology by

R ¼ ffiffiffiffiffiffiffiffiffiffi
�m0

p Z zrec

z¼0

dz

EðzÞ ; (4)

where zrec � 1089 [73] is the redshift of recombination.
The three-year WMAP data gives a shift parameter R ¼
1:71� 0:03 [73,74]. Since the dependence of Eq. (4) onH0

and �m0 differs from that of Eq. (2), measurements of the
CMB shift parameter can be used to break degeneracies

betweenH0,�m0 and DE evolution in the analysis of SNIa.
In the top panel of Fig. 3 we represent the CMB observa-
tions using a bar from z ¼ 0 to zrec.

C. Baryonic acoustic oscillations and large scale
structure

As they imprinted acoustic peaks in the CMB, the
baryonic oscillations at recombination were expected to
leave signature wiggles—baryonic acoustic oscillations
(BAO)—in the power spectrum of galaxies [75]. These
were detected with significant confidence in the Sloan
Digital Sky Survey (SDSS) luminous red galaxy power
spectrum [76]. The expected BAO scale depends on the
scale of the sound horizon at recombination, and on trans-
verse and radial scales at the mean redshift zBAO, of gal-
axies in the survey. Eisenstein et al. [76] measured the
quantity

AðzBAOÞ ¼
ffiffiffiffiffiffiffiffiffiffi
�m0

p
EðzBAOÞ1=3

�
1

zBAO

Z zBAO

z¼0

dz

EðzÞ
�
2=3

(5)

to have a value AðzBAO ¼ 0:35Þ ¼ 0:469� 0:017, thus
constraining the matter density and the dark-energy evo-
lution parameters in a configuration which is complemen-
tary to the CMB shift parameter and the SNIa luminosity
distance relation. Ongoing BAO projects have been de-
signed specifically to produce stronger constraints on the
dark-energy equation of state parameter w. For example,
WIGGLEZ [77] will use a sample of high-redshift galaxies
to measure the BAO scale at zBAO � 0:75. As well as
reducing the effects of nonlinear clustering, this redshift
is at a larger angular distance, making the observed scale
more sensitive to w. Constraints from the BAO scale
depend on the evolution of the Universe from zrec to
zBAO to set the physical scale of the oscillations. They
also depend on the evolution of the Universe from zBAO
to z ¼ 0, since the observed angular extent of the oscilla-
tions depends on this evolution. The bar representing BAO
scale observations in the top panel of Fig. 3 indicates both
these regimes.
The amplitude of the BAOs—the amplitude of the large

scale structure (LSS) power spectrum—is determined by
the amplitude of the power spectrum at recombination, and
how much those fluctuations have grown (the transfer
function) between zrec and zBAO. By comparing the recom-
bination power spectrum (from CMB) with the galaxy
power spectrum, the LSS linear growth factor can be
measured and used to constrain the expansion history of
the Universe (independently of the BAO scale) over this
redshift range. In practice, biases hinder precise normal-
ization of the galaxy power spectrum, weakening this
technique. The range over which this technique probes
the DE is indicated in Fig. 3.

FIG. 3. The energy densities of radiation �r, matter �m, and
the cosmological constant �� are shown as a function of scale
factor, by the dotted, dashed, and solid lines, respectively.
Cosmological probes of dark energy include SNIa, CMB,
BAO, the LSS linear growth factor and constraints from BBN
(see text). Each of these probes is sensitive to the effects of dark
energy over different redshift intervals, as indicated. The light
gray band envelopes w0 � wa-parametrized DDE models al-
lowed at <2� by Davis et al. [74] (the contour in w0 � wa

space is shown explicitly in Fig. 7). The dark gray band enve-
lopes w0-parametrized DDE models (wa ¼ 0 assumed) allowed
at <2� by Wood-Vasey et al. [59]. The constraint is w ¼
�1:09� 0:16 at 2�.
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D. Ages

Cosmological parameters from SN1a, CMB, LSS, BAO,
and other probes allow us to calculate the current age of the
Universe to be 13:8� 0:1 [6] assuming �CDM.
Uncertainties on the age calculated in this way grow dra-
matically if we drop the assumption that the DE is vacuum
energy (w ¼ �1).

An independent lower limit on the current age of the
Universe is found by estimating the ages of the oldest
known globular clusters [78]. These observations rule out
models which predict the Universe to be younger than
12:7� 0:7 Gyrs (2� confidence):

t0 ¼ H�1
0

Z 1

z¼0

dz

ð1þ zÞEðzÞ * 12:7� 0:7 Gyrs: (6)

Other objects can also be used to set this age limit [79], but
generally less successfully due to uncertainties in dating
techniques.

Assuming �CDM, an age of 12.7 Gyrs corresponds to a
redshift of z � 5:5. Contemporary age measurements are
sensitive to the dark-energy content from z � 5:5 to z ¼ 0.
In the top panel of Fig. 3 we show this redshift interval. The
evolution and energy content of the Universe before
12.7 Gyrs ago is not probed by these age constraints.

E. Nucleosynthesis

In addition to the constraints on the expansion history
(SN1a, CMB, BAO, and t0), we know that �de=�tot <
0:045 (at 2� confidence) during big bang nucleosynthesis
(BBN) [80]. Larger dark-energy densities imply a higher
expansion rate at that epoch (z� 6� 108) which would
result in a lower neutron to proton ratio, conflicting with
the measured helium abundance, YHe.

F. Dark-energy parametrization

Because of the variety of proposed dark-energy models,
it has become usual to summarize observations by con-
straining a parametrized time-varying equation of state.
Dark-energy models are then confronted with observations
in this parameter space. The unique zeroth order parame-
trization of w is w ¼ w0 (a constant), with w ¼ �1 char-
acterizing the cosmological constant model. The
observational data can be used to constrain the first deriva-
tive of w. This additional dimension in the DE parameter
space may be useful in distinguishing models which have
the same w0. From an observational standpoint, the ob-
vious choice of 1st order parametrization is wðzÞ ¼ w0 þ
dw
dz z [81]. This is rarely used today since currently consid-

ered DDE models are poorly portrayed by this functional
form. The most popular parametrization is wðaÞ ¼ w0 þ
wað1� aÞ [82,83], which does not diverge at high redshift.

Linder and Huterer [84] have argued that the extension
of this approach to second order, e.g.wðaÞ ¼ w0 þ wað1�
aÞ þ waað1� aÞ2, is not motivated by current DDE mod-

els. Moreover, they have shown that next generation ob-
servations are unlikely to be able to distinguish the
quadratic from a linear expansion of w. Riess et al. [68]
have illustrated this recently using new SN1a.
An alternative technique for exploring the history of

dark energy is to constrain wðzÞ or �deðzÞ in independent
redshift bins. This technique makes fewer assumptions
about the specific shape of wðzÞ. In the absence of any
strongly motivated parametrization of wðzÞ this binwise
method serves as a good reminder of how little we actually
know from observation. Using luminosity distance mea-
surements from SNIa, DE evolution has been constrained
in this way in �z� 0:5 bins out to redshift zSN � 2
[68,85,86]. In the future, BAO measurements at various
redshifts may contribute to these constraints, however zBAO
will probably never be larger than zSN. Moreover, because
the recombination redshift zrec � 1089 is fixed, only the
cumulative effect (from z ¼ zrec to z ¼ 0) of the DE can be
measured with the CMB and LSS linear growth factor.
With only this single data point above zSN, the binwise
technique effectively degenerates to a parametrized analy-
sis at z > zSN.

G. Summary of current DDE constraints

If one assumes the popular w0 � wa parametrization
until last scattering, then all cosmological probes can be
combined to constrain w0 and wa. In a recent analysis of
SN1a, CMB, and BAO observations, Davis et al. [74]
found w0 ¼ �1:0� 0:4 and wa ¼ �0:4� 1:8 at 2� con-
fidence (the contour is shown in Fig. 7). Using the same
observations, Wood-Vasey et al. [59] assumed wa ¼ 0 and
found w ¼ w0 ¼ �1:09� 0:16 (2�).
The evolution of �de is related to w by covariant energy

conservation [87]:

��de

�de

¼ �3ðwðaÞ þ 1Þ�a
a

: (7)

The dark-energy density corresponding to the w0 � wa

parametrization of w is thus given by

�deðzÞ ¼ �de0e
3waða�1Þa�3ð1þw0þwaÞ: (8)

The cosmic energy density history is illustrated in Fig. 3.
Radiation and matter densities steadily decline as the
dotted and dashed lines. With the DE equation of state
parametrized as wðaÞ ¼ w0 þ wað1� aÞ, its density his-
tory is constrained to the light- gray area [74]. If the
evolution of w is negligible, i.e. we condition on wa � 0,
then wðaÞ � w0 and the DE density history lies within the
dark- gray band [59]. If the dark energy is pure vacuum
energy (or Einstein’s cosmological constant) then w ¼ �1
and its density history is given by the horizontal solid black
line.
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IV. THE TEMPORAL DISTRIBUTION OF
OBSERVERS

The energy densities �r, �m, and �de, and the proximity
parameter r we imagine we might have observed, depend
on the distribution PtðtÞ from which we imagine our time
of observation tobs has been drawn. What we can expect to
observe must be restricted by the conditions necessary for
our presence as observers [88]. Thus, for example, it is
meaningless to suppose we might have lived during infla-
tion, or during radiation domination, or before the first
atoms [89].

We can, however, suppose that we are randomly selected
cosmology-discovering observers, and we can expect our
observations of �m and �de to be typical of observations
made by such observers. This is Vilenkin’s principle of
mediocrity [90]. Accordingly, the distribution PtðtÞ for the
time of observation tobs is proportional to the temporal
distribution of cosmology-discovering observers (referred
to henceforth as simply ‘‘observers’’). Thus, to solve the
coincidence problem one must show that the proximity
parameter we measure, r0, is typical of those measured
by other observers.

The most abundant elements in the cosmos are hydro-
gen, helium, oxygen, and carbon [91]. In the past decade
>200 extra solar planets have been observed via doppler,
transit, or microlensing methods. Extrapolation of current
patterns in planet mass and orbital period are consistent
with the idea that planetary systems like our own are
common in the Universe [92]. All this does not necessarily
imply that observers are common, but it does support the
idea that terrestrial-planet-bound carbon-based observers,
even if rare, may be the most common observers. In the
following estimation of PtðtÞ, we consider only observers
bound to terrestrial planets.

A. First the planets . . .

Lineweaver [93] estimated the terrestrial planet forma-
tion rate (PFR) by making a compilation of measurements
of the cosmic star formation rate (SFR) and suppressing a
fraction of the early stars fðtÞ to correct for the fact that the
metallicity was too low for those early stars to host terres-
trial planetary systems,

PFR ðtÞ ¼ const� SFRðtÞ � fðtÞ: (9)

In Fig. 4 we plot the PFR reported by Lineweaver [93] as a
function of redshift, z ¼ 1

a � 1. As illustrated in the figure,

there is large uncertainty in the normalization of the for-
mation history. The number of stars orbited by terrestrial
planets normalizes the distribution of observers but, im-
portantly, does not shift the distribution in time. Thus our
analysis will not depend on the normalization of this
function and this uncertainty will not propagate into our
analysis. There are also uncertainties in the location of the
turnover at high redshift, and in the slope of the formation

history at low redshift—both of these will affect our
results.
The conversion from redshift to time depends on the

particular cosmology, through the Friedmann equation,�
da

dt

�
2 ¼ HðaÞ2a2

¼ H2
0½�r0a

�2 þ�m0a
�1

þ�de0 exp½3waða� 1Þ�a�3w0�3wa�1�: (10)

In Fig. 5 we plot the PFR from Fig. 4 as a function of time
assuming the best-fit parametrized DDE cosmology.

B. . . . then first observers

After a star has formed, some nontrivial amount of time
�tobs will pass before observers, if they arise at all, arise on
an orbiting rocky planet. This time allows planets to form
and cool and, possibly, biogenesis and the emergence
observers. �tobs is constrained to be shorter than the life
of the host star. If we consider that our �tobs has been
drawn from a probability distribution P�tobsðtÞ. The ob-

server formation rate (OFR) would then be given by the
convolution

OFR ðtÞ ¼ const�
Z 1

0
PFRð	ÞP�tobsðt� 	Þd	: (11)

In practice we know very little about P�tobsðtÞ. It must be

very nearly zero below about �tobs � 0:5 Gyrs—this is the
amount of time it takes for terrestrial planets to cool and
the bombardment rate to slow down. Also, it is expected to
be near zero above the lifetimes of sunlike stars (much
above �10 Gyrs). If we assume that our �tobs is typical,
then P�tobsðtÞ has significant weight around

�tobs ¼ 4Gyrs—the amount of time it has taken for us to
evolve here on Earth.
A fiducial choice, where all observers emerge 4 Gyrs

after the formation of their host planet, is P�tobsðtÞ ¼ �ðt�
4 GyrsÞ. This choice results in an OFR whose shape is the

FIG. 4. The terrestrial planet formation rate as estimated by
Lineweaver [93]. It is based on a compilation of SFR measure-
ments and has been corrected for the low metallicity of the early
Universe, which prevents the terrestrial planet formation rate
from rising as quickly as the stellar formation rate at z * 4.
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same as the PFR, but is shifted 4 Gyrs into the future,

OFR ðtÞ ¼ const� PFRðt� 4 GyrsÞ (12)

(see the lower panel of Fig. 5). Even for nonstandard w0

andwa values, this fiducial OFR aligns closely with the rðtÞ
peak and the effect of a wider P�tobs is generally to increase

the severity of the coincidence problem by spreading ob-
servers outside the rðtÞ peak. Hence, using our fiducial
P�tobs (which is the narrowest possibility) will lead to

conclusions which are conservative in that they underesti-
mate the severity of the cosmic coincidence. If another
choice for P�tobs could be justified, the cosmic coincidence

would be more severe than estimated here. We will discuss
this choice in Sec. VI.

The OFR is then extrapolated into the future using a
decaying exponential with respect to t (the dashed segment
in the lower panel of Fig. 5). The observed SFR is con-
sistent with a decaying exponential. We have tested other
choices (linear and polynomial decay) and our results do
not depend strongly on the shape of the extrapolating
function used.

The temporal distribution of observers PtðtÞ is propor-
tional to the observer formation rate,

PtðtÞ ¼ const� OFRðtÞ: (13)

This observer distribution is similar to the one used by
Garriga et al. [18] to treat the coincidence problem in a
multiverse scenario. By comparison, our OFRðtÞ distribu-
tion starts later because we have considered the time
required for the build up of metallicity, and because we
have included an evolution stage of 4 Gyrs. Our distribu-
tion also decays more quickly than theirs does. Some of our
cosmologies suffer big-rip singularities in the future. In
these cases we truncate PtðtÞ at the big rip.

V. ANALYSIS AND RESULTS: DOES FITTING
CONTEMPORARY CONSTRAINTS NECESSARILY

SOLVE THE COSMIC COINCIDENCE?

For a given model the proximity parameter observed by
a typical observer is described by a probability distribution
PrðrÞ calculated as

PrðrÞ ¼
X dt

dr
PtðtðrÞÞ: (14)

The summation is over contributions from all solutions of
tðrÞ (typically, any given value of r occurs at multiple times
during the lifetime of the Universe). In Fig. 6 we plot PrðrÞ
for the w0 ¼ �1:0, wa ¼ �0:4 cosmology. In this case,
observers are distributed over a wide range of r values,
with 71% seeing r > r0, and 29% seeing r < r0.
We define the severity S of the cosmic coincidence

problem as the probability that a randomly selected ob-
server measures a proximity parameter r lower than we do:

S ¼ Pðr < r0Þ ¼ 1� Pðr > r0Þ ¼
Z r0

r¼0
PrðrÞdr: (15)

For the w0 ¼ �1:0, wa ¼ �0:4 cosmology of Figs. 5 and
6, the severity is S ¼ 0:29� 0:09. This model does not
suffer a coincidence problem since 29% of observers
would see r lower than we do. If the severity of the cosmic
coincidence would be near 0.95 (0.997) in a particular
model, then that model would suffer a 2� (3�) coincidence
problem and the value of r we observe really would be
unexpectedly high.
We calculated the severities S for cosmologies spanning

a large region of the w0 � wa plane and show our results in
Fig. 7 using contours of equal S. The severity of the
coincidence problem is low (e.g. S & 0:7) for most combi-
nations of w0 and wa shown. There is a coincidence prob-
lem, where the severity is high (S * 0:8), in two regions of
this parameter space. These are indicated in Fig. 7.
Some features in Fig. 7 are worth noting:
(i) Dominating the left of the plot, the severity of the

coincidence increases towards the bottom left-hand
corner. This is because as w0 and wa become more

FIG. 5. The terrestrial planet formation from Fig. 4 is shown
here as a function of time. The transformation from redshift to
time is cosmology dependent. To create this figure we have used
best-fit values for the DDE parameters, w0 ¼ �1:0 and wa ¼
�0:4 [74]. The y axis is linear (cf. the logarithmic axis in Fig. 4)
and the family of curves have been renormalized to highlight the
sources of uncertainty important for this analysis: uncertainty in
the width of the function, and in the location of its peak. The
observer formation rate (OFR) is calculated by shifting the
planet formation rate by some amount �tobs ( ¼ 4 Gyrs) to
allow the planet to cool, and the possible emergence of observ-
ers. These distributions are closed by extrapolating exponentially
in t.
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negative, the r peak becomes narrower, and is ob-
served by fewer observers.

(ii) There is a strong vertical dipole of coincidence
severity centered at (w0 ¼ 0, wa ¼ 0). For (w0 �
0, wa > 0) there is a large coincidence problem
because in such models we would be currently wit-

nessing the very closest approach between DE and
matter, with �de � �m for all earlier and later times
[see Fig. 8(c)]. For (w0 � 0, wa < 0) there is an
anticoincidence problem because in those models
we would be currently witnessing the DDE’s furthest
excursion from the matter density, with �de and �m

in closer proximity for all relevant earlier and later
times, i.e., all times when PtðtÞ is non-negligible.

(iii) There is a discontinuity in the contours running
along wa ¼ 0 for phantom models (w0 <�1). The
distribution PtðtÞ is truncated by big-rip singularities
in strongly phantom models (provided they remain
phantom; wa > 0). This truncation of late-time ob-
servers means that early observers who witness large
values of r represent a greater fraction of the total
population.

To illustrate these features, Fig. 8 shows the density
histories and observer distributions for four specific ex-
amples selected from the w0 � wa plane of Fig. 7.
We find that all observationally allowed combinations of

w0 and wa result in low severities (S < 0:4), i.e., there are
large (> 60%) probabilities of observing the matter and
vacuum density to be at least as close to each other as we
observe them to be.
It is not suggested that for arbitrary models Pobs should

be large when and only when �de � �m. Indeed, it is easy
to imagine �de � �m when there are not observers.
Moreover, in some nonstandard cosmological models it is
possible to contrive �de � �m during times when observ-
ers do exist. What our results suggest is that, for models
parametrized withw0 andwa satisfying current constraints,
most observers (> 60%) will see �de and �m nearly equal
(r > 0:35).

VI. DISCUSSION

Particle-theoretic approaches to the cosmic coincidence
problem have focused on the generation of a constant or
slowly varying density ratio r. However, it has not been
made clear precisely how slowly the ratio r must evolve in
order to solve the coincidence problem. In other words, the
question ‘‘What DDE dynamics are required to solve the
coincidence problem?’’ has not been addressed.
In the present work we adopt the principle of mediocrity:

that we should be typical observers, to try to answer this
question. We estimate the temporal distribution of observ-
ers and devise a scheme for quantifying how unlikely the
observation r 	 0:35 is for an arbitrary DDE model. This
scheme is applied to w0 � wa parametric models, and we
identify regions of the w0 � wa parameter space in which
the coincidence problem is most severe; however, these are
already strongly excluded by observations (see Fig. 7).
Thus the main result of our analysis is that any realistic

DDE model which can be parametrized as w ¼
w0 þ wað1� aÞ over a few e-folds, has �de � �m for a
significant fraction of observers.

FIG. 6. The predicted distribution of observations of r is
plotted for the parametrized DDE model which best fits cosmo-
logical observations: w0 ¼ �1:0 and wa ¼ �0:4. The proximity
parameter we observe r0 ¼ �m0

�de0
� 0:35 is typical in this cosmol-

ogy since only 29% of observers (vertical striped area) observe
r < 0:35. The upper and lower limits on this value resulting from
uncertainties in the SFR are 38% and 20%, respectively. Thus
the severity of the cosmic coincidence in this model is S ¼
0:29� 0:09. This model does not suffer a coincidence problem.

FIG. 7. Here we plot contours of equal severity S in w0 � wa

parameter space. S is the fraction of observers who see r < r0. If
S is large, a large percentage of observers should see r lower than
we do—those models suffer coincidence problems. The thick
black contour represents the observational constraints on w0 and
wa from Davis et al. [74] (2� confidence and marginalized over
other uncertainties). In Lineweaver and Egan [12] we showed
that the severity of the coincidence problem is low for �CDM
(indicated by the ‘‘þ’’). Values of w0 and wa that result in a mild
coincidence problem (e.g. S * 0:7) are already strongly ex-
cluded by observations. This leads to our main result: none of
the models in the observationally allowed regime suffer a cosmic
coincidence problem when our estimate of the temporal distri-
bution of observers PobsðtÞ is used as a selection function.

CHAS A. EGAN AND CHARLES H. LINEWEAVER PHYSICAL REVIEW D 78, 083528 (2008)

083528-10



Central to our approach is the temporal distribution of
observers as estimated using the distribution of terrestrial
planets. Such observer selection effects are operating.
Thus, while they may be difficult to quantify, they need
to be considered whenever the cosmic coincidence is used
to motivate new physics. These anthropic considerations
operate in conjunction with (not in place of) fundamental
explanations of the dark energy.

Interacting quintessence models in which the proximity
parameter asymptotes to a constant at late times
[19,23,27,30–32,34,36,39–41,57] have been proposed as
a solution to the coincidence problem. More recently, del
Campo et al. [29,35] have argued for a broader class of
interacting quintessence models that ‘‘soften’’ the coinci-
dence problem by predicting a very slowly varying (though
not constant) proximity parameter. Our analysis finds that r
need not asymptote to a constant, nor evolve particularly
slowly, partially undermining the motivations for these
interacting quintessence models.

Caldwell et al. [61] and Scherrer [33] have proposed that
the coincidence problem may be solved by phantom mod-
els in which there is a future big-rip singularity because

such cosmologies spend a significant fraction of their life-
times in r� 1 states. In our work PtðtÞ is terminated by
big-rip singularities in ripping models. In nonripping mod-
els, however, the distribution is effectively terminated by
the declining star formation rate. Therefore the big rip
gives phantom models only a marginal advantage over
other models. This marginal advantage manifests as the
discontinuity along wa ¼ 0 on the left side of Fig. 7.
A running cosmological constant �ðtÞ could arise from

the renormalization group (RG) in quantum field theory
[94,95]. The running lambda term can mimic quintessence
or phantom behavior and transit smoothly between the two
[96]. RG models represent interesting alternatives to
scalar-field models of dark energy. In some variants [97]
additional fields are introduced to address the cosmic
coincidence problem by predicting a slowly varying den-
sity ratio r. Our results demotivate such additions and favor
simplistic RG models.
How strongly do these results depend on the assumed

time it takes for observers to arise, �tobs? In Lineweaver
and Egan [12], where we performed an analysis similar to
the present one (but limited to w ¼ �1), we demonstrated

FIG. 8. History of the energy densities in radiation (dotted line), matter (dashed line), and dark energy (thick black line) for four
parametrized DE models from Fig. 7. The proximity parameter r (thin black line) and the temporal distribution of observers PtðtÞ ( gray
shade) are also given. Panel (a) shows a phantom model with a constant equation of state w ¼ �3:5. In this model the phantom density
increases quickly and the rðtÞ peak is narrow. As a result, a large fraction of observers live while the matter and dark-energy densities
are vastly different (r � 0) and there is a mild coincidence problem (S � 0:8). This might be used to rule out the model shown in panel
(a), except that it is already strongly excluded by direct cosmological observations (refer to Fig. 7). Panel (b) shows a phantom model
which lies within the observationally allowed 2� region. There is no coincidence problem in this model (S � 0:4). Panel (c) shows a
model in which there is a coincidence problem (S � 0:95). This models lies within the cluster of contours in the upper right-hand
corner of Fig. 7. In this model the dark energy dominates the past and future energy budget. Again however, the coincidence problem
can tell us nothing new, as this model is already strongly excluded by observations. Panel (d) shows a model in which there is an
anticoincidence problem. This models lies within the cluster of contours in the lower right-hand corner of Fig. 7. In this model the dark
energy and matter densities are more similar (r is greater) in the recent past and near future (although r ! 0 further into the past or
future). According to the observer distribution PtðtÞ most observers live near the current epoch, during r > 0:35, with just 7% living
during r < 0:35 (S ¼ 0:07) in this particular model. One might argue that this model can be ruled out because our value of r is
anomalously small. However, this model too is already strongly excluded by observations.
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that the results were robust to any choice �tobs �
½0; 11� Gyrs. However, for �tobs * 12 Gyrs that analysis
resulted in an unavoidable coincidence problem because
most observers would arise late (during DE domination)
and would observe �de � �m. The validity of the results of
the present analysis are similarly limited.

We could improve our analysis, in the sense of getting
tighter coincidence constraints (larger severities), if we
used a less conservative P�tobs . We used the most conser-

vative choice—a delta function—because the present
understanding of the time it takes to evolve into observers
is too poorly developed to motivate any other form of
P�tobs . Another possible improvement is the DE equation

of state parametrization. We used the current standard,
w ¼ w0 þ wað1� aÞ, which may not parametrize some
models well for very small or very large values of a.

We conclude that DDE models need not be fitted with
exact tracking or oscillatory behaviors specifically to solve
the coincidence by generating long or repeated periods of
�de � �m. Also, particular interactions guaranteeing �de �
�m for long periods are not well motivated. Moreover,
phantom models have no significant advantage over other
DDE models with respect to the coincidence problem
discussed here.

ACKNOWLEDGMENTS

C. E. acknowledges the UNSW School of Physics. C. E.
thanks the ANU’s RSAA for its kind hospitality, where this
research was carried out.

APPENDIX: NUMERICALVALUES FOR
PARAMETERS OF MODELS ILLUSTRATED IN

FIG. 2

In Fig. 2 we illustrate various DDE models from the
literature. Values for the free parameters of these models
were chosen such that the observational constraints are
crudely satisfied. The values used are given in Table I.
These are by no means the only combinations fitting
observations.
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TABLE . Free parameters of the DDE models illustrated in
Fig. 2. These values were chosen such that observational con-
straints are crudely satisfied. These are by no means the only
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