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While the topology of the Universe is at present not specified by any known fundamental theory, it may

in principle be determined through observations. In particular, a nontrivial topology will generate pairs of

matching circles of temperature fluctuations in maps of the cosmic microwave background, the so-called

circles-in-the-sky. A general search for such pairs of circles would be extremely costly and would

therefore need to be confined to restricted parameter ranges. To draw quantitative conclusions from the

negative results of such partial searches for the existence of circles we need a concrete theoretical

framework. Here we provide such a framework by obtaining constraints on the angular parameters of

these circles as a function of cosmological density parameters and the observer’s position. As an example

of the application of our results, we consider the recent search restricted to pairs of nearly back-to-back

circles with negative results. We show that assuming the Universe to be very nearly flat, with its total

matter-energy density satisfying the bounds 0< j�0 � 1j & 10�5, compatible with the predictions of

typical inflationary models, this search, if confirmed, could in principle be sufficient to exclude a

detectable nontrivial cosmic topology for most observers. We further relate explicitly the fraction of

observers for which this result holds to the cosmological density parameters.
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I. INTRODUCTION

One of the central open questions regarding our under-
standing of the Universe concerns its shape (topology),
and, in particular, whether it is finite or infinite (see, e.g.,
the reviews [1]). A major difficulty in this regard is that
general relativity, being a metric theory, does not specify
the topology of the Universe.1 Despite our present-day
inability to predict the topology of the Universe from a
fundamental theory, it may in principle be determined
through observations. This requires high resolution obser-
vations, which have increasingly become available in re-
cent years. Most notably, the ongoing accumulation of data
by the Wilkinson Microwave Anisotropy Probe (WMAP)
[2] and other cosmic microwave background (CMB) sur-
veys have, on the one hand, provided strong support for the
inflationary scenario [3], and the very near flatness of the
Universe, and on the other hand made it feasible to perform
systematic searches for possible evidence of a nontrivial
topology of the Universe [4–7] (see also the related
Refs. [8]).

In the context of general relativity, the observable
Universe seems to be well described by a 4-manifoldM ¼
R�M with locally homogeneous and isotropic spatial
sections M and endowed with a Robertson-Walker metric

ds2 ¼ �dt2 þ a2ðtÞ½d�2 þ S2kð�Þðd�2 þ sin2�d�2Þ�;
(1)

where aðtÞ is the scale factor and Skð�Þ takes the forms �,
sin�, or sinh� depending upon whether the geometry of
the spatial sections is Euclidian, spherical or hyperbolic
with curvature parameters k ¼ 0;�1. These geometries in
turn are determined by finding out whether the total
energy-matter density of the Universe, �0, is equal to,
greater than or smaller than 1. Often the homogeneous
and isotropic spatial sections M are assumed to be the
simply connected 3-manifolds: Euclidian R3, spherical
S3 or hyperbolic H3. However, given the metrical (local)
nature of general relativity, they can also be multiply
connected 3-manifolds (which we assume to be compact
and orientable) M ¼ ~M=�, where the covering space ~M is
respectively R3, S3 or H3 depending on k, and � is a
discrete and fixed point-free group of isometries of ~M
called the holonomy group. The local geometry of the
spatial sections M thus constrains, but does not dictate,
its topology.
The immediate observational consequence of such mul-

tiple connectedness is that an observer could potentially
detect multiple images of radiating sources. In particular,
in a universe with a detectable nontrivial topology the last
scattering surface (LSS) intersects its topological images in
the so-called circles-in-the-sky [9], i.e., pairs of matching
circles of equal radii, centered at different points of the
LSS with the same distribution of temperature fluctuations
along both circles. In this way, to observationally probe a
nontrivial topology on the largest available scales, one
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1In this work, in line with the usage in the literature, by

topology of the Universe we mean the topology of its three
dimensional spatial sections M.
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needs to scrutinize the CMB sky maps in order to extract
such correlated circles in order to determine the topology
of the Universe. Thus, a detectable nontrivial cosmic to-
pology is an observable attribute, which can be probed
through the circles-in-the-sky for all locally homogeneous
and isotropic universes with no assumptions on the cos-
mological density parameters.

The conditions for the detectability of cosmic topology
were studied in Refs. [10] for classes of hyperbolic and
spherical manifolds, as a function of cosmological density
parameters. These studies were extended to the case of
generic manifolds, and general qualitative results were
obtained for the inflationary limit in Ref. [11] (see also
Ref. [12]). Furthermore, the inverse question of whether
the detection of a nontrivial cosmic topology can be used to
set constraints on cosmological density parameters has
been studied for specific topologies [13,14].

Our aims here are twofold. First, to extend the previous
general results by the authors [11], in order to give, for
generic detectable nontrivial topologies, a concrete rela-
tionship between the angular parameters associated with
the circles-in-the-sky and the cosmological density pa-
rameters in the inflationary limit. Second, by using these
relations, and taking into account the observer positions,
we provide a setup to interpret the negative results of recent
and future searches for circles-in-the-sky in the WMAP
data. In this way, we can concretely specify, for example,
the extent to which the recent searches for circles-in-the-
sky may be used to exclude detectable nontrivial cosmic
topologies for most observers.

The structure of the paper is as follows. In Sec. II we
give a brief account of the prerequisites necessary for the
following sections, including a brief discussion of the so-
called inflationary limit, which we use to obtain bounds on
the detectability of cosmic topology. In Sec. III we com-
bine these bounds with our previous results to obtain
bounds for the parameters of detectable holonomies in
the inflationary limit. We quantify these bounds by giving
a concrete measure of the observers for whom the detect-
ability holds. In Sec. IV we recast our bounds on detectable
holonomies in terms of bounds on the angular parameter
that measures the deviation from antipodicity in pairs of
matching circles generated by detectable holonomies.
These bounds are then compared in Sec. V to the parame-
ters adopted in the recent searches for circles-in-the-sky to
determine whether and under which conditions it is pos-
sible to rule out a detectable nontrivial cosmic topology
given the inflationary limit. Finally, in Sec. VI, we con-
clude with a brief discussion of the significance of our
results to draw quantitative conclusions from such negative
results of searches for circles.

II. PRELIMINARIES

A natural way to study the detectability of a topology is
through the lengths of its closed geodesics. For a holonomy

� 2 � and a point x 2 M, the length of the closed geode-
sic generated by � is given by its distance function dðx; �xÞ
in the covering space, i.e., the distance between x and its
image �x. This readily allows the definition of the local
injectivity radius rinjðxÞ as half the length of the smallest

closed geodesic passing through the point x.
A necessary condition for detectability of cosmic topol-

ogy is then given by

rinjðxÞ< �obs; (2)

where �obs is the redshift distance evaluated at the maxi-
mum redshift (z ¼ zobs) of the survey used. We assume
throughout a �CDM model. In globally homogeneous
manifolds, rinjðxÞ is by definition position independent,

and in this case it suffices to use the global injectivity
radius rinj (defined in general as rinj ¼ infx2MrinjðxÞ, which
is the radius of the smallest sphere inscribable in M) to
determine sufficient conditions for detectability. There are,
however, significant classes of 3-manifolds which are not
globally homogeneous, including the totality of hyperbolic
manifolds and the majority of the multiply connected
spherical manifolds. One must therefore allow for the
fact that the detectability of cosmic topology may be
dependent on the observer’s position.
Generally, a full systematic search for multiple images

or pattern repetitions of topological origin is a daunting
task, as the very diverse set of potential holonomies gen-
erate very different patterns often dependent on the ob-
server’s position. Given, however, that the fraction of the
Universe which is effectively accessible to observations is
limited, we shall in this work concentrate only on detect-
able holonomies, that is those for which at least two images
of some radiating sources may be observable. In this
connection, we have shown in Ref. [11] that, assuming
(i) The spatial sections of the Universe are not exactly

flat;
(ii) The Universe has undergone a phase of inflationary

expansion, such that j�0 � 1j � 1; which ensures
that �obs � 12;

(iii) The cosmic topology, or more properly some ele-
ment of its holonomy group, is detectable, i.e.,
Eq. (2) holds for some point x 2 M;

then any detectable holonomy is (nearly) indistinguishable
from a Clifford translation (or CT, defined as a holonomy �
under which the distance between each point x and its
image �x is constant for all points in the manifold for
most observers. As a consequence, a generic compact
nonflat manifold is ‘‘locally’’ well approximated by either
a cylindrical (R2 � S1) or toroidal (R� T2) manifold,
irrespective of its global topology.

2Here and in the following we express distances in units of the
curvature radius a0 ¼ jkjH�1

0 j�0 � 1j�1=2.
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In typical inflationary scenarios, achieving a sufficient
number of e-foldings required to generically solve the
flatness and horizon problems imposes bounds on the total
density parameter which is estimated as [3,15]

j�0 � 1j & 10�5 � 1: (3)

In what follows, we shall refer to this bound as the infla-
tionary limit.

For the bound given by Eq. (3) one can numerically
calculate �obs. By using this value along with Eq. (2) we
obtain an estimate of the detectability condition in the
inflationary limit

rinjðxÞ & �obs & 0:01; (4)

where we have taken �m0 ¼ 0:28 and zobs ¼ 1089 [2].

III. BOUNDS ON THE HOLONOMY PARAMETERS

As was discussed in the previous section, an important
observational signature of any nontrivial detectable topol-
ogy is the existence of the circles-in-the-sky in the CMB
maps, in which matching pairs of circles are identified by a
holonomy � 2 �. Reciprocally, each detectable holonomy
corresponds to a pair of matching circles. Thus the detec-
tion of the matching circles in the CMB maps would
effectively amount to the detection of the holonomy group
(or some subgroup thereof), and in turn the topology of the
Universe. In general, for a given radius �obs of the LSS, the
relative position of any pair of matching circles depends on
the specific holonomy which connects the circles, the
position of the observer and the value of �obs. In the case
of Clifford translations, however, the pairs of circles gen-
erated are always antipodal (or back-to-back) for all ob-
servers and radii. A search that could be restricted to such
back-to-back pairs would of course be far less computa-
tionally intensive than a full search covering the entire
parameter space.3 More generally, if one were able to
somehow restrict the permissible holonomy parameters
from theoretical and observational considerations, one
could in turn restrict the parameter space that needs to be
spanned, thereby greatly simplifying the search. This is
what we aim to do here for most observers by assuming the
inflationary limit.

To obtain the holonomy parameters, we recall that the
main outcome of our earlier results [11] is that, for most
observers (in the sense made precise below), the detectable
holonomies of nearly flat manifolds will deviate only by a
small amount from being Clifford translations (i.e., are CT-
like), in the sense that within the observable Universe the
lengths dðx; �xÞ of the closed geodesics generated by any

detectable holonomy � will be such that

�d

d0
� 2�obs

jz2jjz1j ; (5)

and for hyperbolic manifolds

�d

d0
� 2�obs: (6)

In these expressions �d � dmax � dmin, where dmax and
dmin are, respectively, the maximum and minimum lengths
of the geodesics generated by this holonomy inside the
detectable sphere of radius �obs, d0 is the distance function
of the holonomy � evaluated at the center of the sphere,
and z1 and z2 are a pair of complex numbers that parame-
trize the 3-sphere (thus jz1j2 þ jz2j2 ¼ 1), which are used
to express the holonomy � in its canonical form. Of course,
for true Clifford translations, �d=d0 ¼ 0 (for more details
see Ref. [11]).
For all observers able to detect a holonomy � in hyper-

bolic cusplike manifolds, and for most such observers in a
spherical manifold (i.e., those bounded away from the
equators, so that jz1j; jz2j � �obs), the bounds (5) and (6)
imply that �d=d0 is very small, which means that the
holonomy is CT-like. It is easy to show that the fraction
of the volume of the manifold where jz1j< Z or jz2j<Z,
for any Z � 1, is proportional to Z2. This can be seen by
writing Z ¼ sin�max, jz1j ¼ cos�, and jz2j ¼ sin�, where
0 � � � �=2 and 0 � �max � �=4. The holonomy group
� of manifold S3=� tiles the 3-sphere S3 into Oð�Þ iden-
tical copies of the fundamental domain, where Oð�Þ is the
order of �. Therefore, the volume of the region where
either � � �max or, conversely, � 	 �=2� �max, corre-
sponds to the sum of the volumes of two tori in the 3-
sphere jz1j2 þ jz2j2 ¼ 1 centered at jz1j ¼ 0 and jz2j ¼ 0
(with radii �max and �=2� �max respectively), divided by
Oð�Þ. In toroidal, or Hopf, coordinates, this volume is
given by

V�max
¼ 1

Oð�Þ
Z 2�

0

Z 2�

0

�Z �max

0
þ
Z �=2

�=2��max

�
� cos� sin�d�1d�2d�

¼ 4�2Z2

Oð�Þ : (7)

Now, the volume of the manifold S3=� is given by the
volume of the 3-sphere divided by Oð�Þ, i.e., VS3=� ¼
VS3=Oð�Þ ¼ V�=2 ¼ 2�2=Oð�Þ. Thus the fraction R of

S3=� where jz1j � Z or jz2j � Z is given by

R ¼ V�max
=VS3=� ¼ 2Z2: (8)

It is then clear from (8) that the volume of the region where
z1 
 �obs or z2 
 �obs, as a fraction of the volume of the
manifold, is of the order of 2�2

obs, which is very small if the

inequality �obs � 1 holds. The smallness of R then im-

3A general search requires the computation of a correlation
function spanning a six-dimensional parameter space, whose
parameters give the location of the first and the second circles
centers [ð�1;�1Þ and ð�2;�2Þ, say], their angular radius � and
the relative phase of the two circles �.
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plies that the probability of finding an observer in such
regions is small (in the same sense as that defined by the so-
called injectivity profiles [16]), which means that (5) im-
poses stringent bounds on �d=d0 in all but a small region
of the 3-sphere whose volume is of the order of �2

obs. In

what follows, therefore, we shall confine ourselves to the
case of typical observers, i.e., those that reside away from
these small probability regions.

Now, in the limit (5) and (6), the geometry of the (non-
flat) spatial sections of the observable universe will be well
approximated by the geometry of flat space R3. Therefore,
any detectable holonomy will likewise be locally well
approximated by some isometry of R3. It is known, how-
ever, that any orientation-preserving flat isometry (and, in
particular, any flat holonomy) can be expressed as a screw
motion [17], which consists of a rotation around a suitable
axis followed by a translation along the same axis. In what
follows, we shall write a generic nonflat detectable holon-
omy � in the limit (5) and (6) as a generic screw motion,
and use our previous bounds on nearly flat detectable
holonomies to constrain the parameters characterizing
such holonomy.

Let us consider, without loss of generality, a typical
observer at a point P (see Fig. 1) with coordinates chosen
such that P ¼ ð�; 0; 0Þ, where � is the distance from the
axis of rotation. Let the image of the point P under the
action of a holonomy � be P0 ¼ �P with coordinates
ð� cos	;� sin	; LÞ, where 	 is the phase angle and L is
the translation length corresponding to the screw motion
isometry. The length of the closed geodesic connecting P
and P0 is given by

d0 ¼ jP0 � Pj ¼ j�ð1� cos	Þ; � sin	;Lj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2ð1� cos	Þ þ L2

q
: (9)

To proceed, we need to calculate not only the length of
the geodesic passing through the observer’s position given
by Eq. (9), but also the lengths of the longest and shortest
closed geodesics within the observable Universe, which
are, respectively, given by

dmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�þ �obsÞ2ð1� cos	Þ þ L2

q
; (10)

dmin ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð�� �obsÞ2ð1� cos	Þ þ L2
p

if � 	 �obs;
L if � � �obs:

(11)

Since L � ½2ð�� �obsÞ2ð1� cos	Þ þ L2�1=2 holds

identically, it follows that dmin � ½2ð�� �obsÞ2 �
ð1� cos	Þ þ L2�1=2. Thus, combining Eqs. (9)–(11) we
obtain

�d

d0
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

d20
ð4��obs þ 2�2

obsÞð1� cos	Þ
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

d20
ð�4��obs þ 2�2

obsÞð1� cos	Þ
s

: (12)

The terms on the right-hand side are, respectively, greater
and smaller than 1. Also, according to (5) and (6), the
difference between the two terms must be� 1. Therefore,
both terms must be
1, which allows them to be expanded
to obtain

�d

d0
	 4��obs

d20
ð1� cos	Þ þOð	4Þ: (13)

Note that since 4��obs=d
2
0 � 1, then in order to keep the

first term <1 we must have ð1� cos	Þ � 1, which im-
plies that 	 is very small.
Now let the angle between the axis of the screw motion

and the segment ðP0 � PÞ be 
 (see Fig. 1), such that
cos
 ¼ L=d0. It can then be shown that

tan
 ¼ �

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos	Þ

p
: (14)

Using (14) to express 	 in terms of 
, it is possible to write
Eq. (13) as

�d

d0
	 2�obs

�
sin2
þOð	4Þ: (15)

Combining the above results with the bounds (5) and (6)
we finally obtain

�

jz2jjz1j 	 sin2
; for spherical manifolds; (16)

� 	 sin2
; for hyperbolic manifolds: (17)

P

P'

α

L

θ

ρ

σ

FIG. 1. Depiction of a screw motion isometry �, whose action
takes the point P to P0. This amounts to a translation by L along
the axis of isometry (dotted line), and a rotation by 	 around the
same axis. The LSS sphere (thick solid line) centered at P
intersects its images (also in thick solid lines) centered at �P
and ��1P along two matched circles-in-the-sky.
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IV. BOUNDS ON THE PARAMETERS OF THE
CIRCLES-IN-THE-SKY

In the previous section we used our previous bounds
(c.f. [11]) on�d=d0 to constrain the screw motion parame-
ters ð�;	; LÞ. To relate these to the corresponding parame-
ters ð�; �;�Þ for the circles-in-the-sky (see Fig. 2), one
needs the relations between the circles-in-the-sky and the
screw motion parameters, which are given by [18]

cos� ¼ 1� sin2
ð1� cos	Þ; (18)

and

cos� ¼ L

2�obs cos

: (19)

Now, in the inflationary limit 	 is small, which accord-
ing to (18) implies that � is small. We can then write, up to
the second order in �,

� ¼ 1ffiffiffi
2

p sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos	

p
:

Using (14) and employing the bounds on sin
 from (16)
and (17), together with the expression (19) for cos�, we
obtain

� �
ffiffiffi
2

p
cos�

jz2jjz1j �obs for spherical manifolds; (20)

� � ffiffiffi
2

p
cos��obs for hyperbolic manifolds: (21)

Clearly, these inequalities provide upper bounds on the
values of the angle � that characterizes the deviation from

antipodicity of pairs of circles-in-the-sky as a function of
the circles’ radii �, the distance to the LSS �obs, and the
observer’s position (for the spherical case). The depen-
dence of these bounds on � on the density parameters
can be made explicit by recalling that for the small values
of j�0 � 1j given by the bound (3), the contour curve
�obsð�m0;��0Þ ¼ rinj can be well approximated by the

secant line joining its intersections with the �m0 ¼ 0 and
��0 ¼ 0 axes [19]. Using this approximation we obtain

�obs ’ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�0 � 1j
�m0

s
; (22)

which can be substituted in inequalities (20) and (21) to
give the bounds

� &
2

ffiffiffi
2

p
cos�

jz2jjz1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�0 � 1j
�m0

s
; (23)

and

� & 2
ffiffiffi
2

p
cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�0 � 1j
�m0

s
; (24)

for, respectively, spherical and hyperbolic manifolds.
Thus given observational bounds on the density parame-

ters they allow constraints to be set on the parameter � for
any radii � of matching circles to be considered in order to
perform a comprehensive search for matching circles in the
observable Universe.
Finally, as is clear from our discussion in Sec. III, there

are some observers in spherical manifolds—namely, those
close to the equators (z1 ’ 0 or z2 ’ 0)—for whom the
bounds on � derived here are not applicable. However, as
can be seen from Eq. (8), the set of such observers is very
small in the inflationary limit.

V. IMPLICATIONS OF OUR RESULTS AND
SEARCHES FOR CIRCLES-IN-THE-SKY

To illustrate the application of the bounds (20) and (21),
we consider the recent search for circles-in-the-sky using
the WMAP data [5], in order to determine the sets of
topologies that can be ruled out. Given the prohibitive
numerical cost of a full search, this search was confined
to antipodal or nearly-antipodal circles with deviation from
antipodicity � � 10� and with radii � 	 18�. This search
found no statistically significant pairs of matching circles.
If confirmed, an important question regarding this search

would be to determine concretely whether it is sufficient to
rule out detectable nontrivial, nonflat, cosmic topologies,
assuming the inflationary limit (3). To answer this question
we have, employing the inequalities (20) and (21), plotted
in Fig. 3 an upper bound, �max, for the maximum deviation
from antipodicity of a pair of matching circles as a function
of the fraction of the observers in spherical and hyperbolic
manifolds. As can be seen from this figure, and concretely

ν
φχobs

θ

FIG. 2. This figure depicts the circles at the intersection of the
LSS with its images. The parameter � is a measure of the
deviation of the circles from being antipodal, and � measures
the phase difference between the circles of radius �.
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estimated from inequalities (20) and (21), in the inflation-
ary limit (3), the angle �max is less than 0.8� for any
observer in a hyperbolic manifold.4 On the other hand,
for 98.7% of the observers in spherical manifolds �max �
10�. In both cases we have confined ourselves to circles
with radii � 	 18� (following [5]); but had we considered
circles of arbitrarily small radii, the upper bounds on �
would increase only by a factor of 1.05. This implies that, if
one accepts the negative result of the search for circles of
Ref. [5], then the assumption of the inflationary limit
considered here is sufficient to rule out detectable non-
trivial cosmic topologies for the overwhelming majority of
the potential observers. Thus to detect a nontrivial topol-
ogy an observer must either live in a restricted region of
some spherical manifolds or the Universe must have a total
density parameter which is not too close to the critical
density. This latter statement can be made precise by
plotting �max as a function of the density parameter (j�0 �
1j) for different sets of observers (Fig. 4). So, for instance,
the search undertaken in Ref. [5] is sufficient to rule out a
detectable cosmic topology for all observers in hyperbolic
manifolds, and for at least 99.9% of the observers in
spherical manifolds, if j�0 � 1j � 10�6. On the other
hand, if j�0 � 1j � 10�4, then such a detectable topology
is still definitively excluded for all observers in hyperbolic
manifolds, but only for 90% of observers in spherical
manifolds.

Future searches for pairs of correlated circles may of
course study different regions of the circles-in-the-sky

parameter space. As Fig. 4 illustrates, for all observers in
hyperbolic manifolds, even searches restricted to small
values of � (if confirmed) would be sufficient to exclude
a detectable nontrivial cosmic topology for relatively large
values of total density, i.e., for 1��0 
 10�4. On the
other hand, the fraction of observers in spherical manifolds
that may observe pairs of circles with � 	 �max varies
significantly with the value of �max. Thus, for example, a
search for pairs with � � 5� would be able to exclude a
detectable nontrivial cosmic topology for 99.9% of observ-
ers only if�0 � 1 � 1:2� 10�7, a value almost 1 order of
magnitude smaller than that for � � 10�. Conversely, it
would take a search for � � 35� to exclude a detectable
nontrivial topology for the same 99.9% of observers for the
range of values of �0 given by the inflationary limit (3).
Of course, for sufficiently low values of j�0 � 1j, a

detectable nontrivial (nonflat) topology can be excluded
for an arbitrarily small fraction of potential observers and
arbitrarily small values of �max. However, one can not
completely exclude all potentially detectable spherical
holonomies for all observers, since one can always find
one such holonomy that is well approximated in some
neighborhood around the equator z1 ¼ 0 by a screw mo-
tion of arbitrarily large twist, which will in turn generate,
for some values of �obs, circle pairs with arbitrary devia-
tion from antipodicity.
A nondetection in a limited search for pairs of correlated

circles would likewise not rule out the possibility of a
detectable flat nontrivial topology. Since flat holonomies
lack a characteristic scale factor, there is some consider-
able leeway in choosing the holonomy parameters, and it is
easy to obtain holonomies that produce circle pairs of
arbitrary � for typical observers. Indeed, if one assumes
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FIG. 3. Upper bound �max for the maximum deviation from
antipodicity as a function of the fraction of potential observers
for which � � �max in the inflationary limit. This figure shows,
for example, that for 98.7% of all observers in spherical mani-
folds, � � 10�. It also shows that for all observers in hyperbolic
manifolds, � � 0:8�. In this figure, we have taken �m0 ¼ 0:28
and circles with radii � 	 18�, but for circles with arbitrarily
small radii, the value of �max would increase by a factor of at
most 1.05.
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sponds to the inflationary limit as defined in the text. Again,
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4We note, however, that for most such observers the topology
is undetectable to begin with (see Ref. [16] for details).
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the inflationary limit, then the detection of a pair of corre-
lated circles with high � would strongly suggest that the
Universe has flat spatial sections, since pairs of correlated
circles with high values of � would be present for no
observers in a hyperbolic Universe, and for only a small
fraction of observers in a spherical Universe.

Although it is not possible to exclude the possibility of
detection of the cosmic topology by all observers, the
combination of such negative results of any search (present
or forthcoming), together with the results derived in this
paper, would allow precise bounds to be put on the fraction
of the potential observers for whom a nontrivial cosmic
topology would be ruled out, for any given value of the
density parameters.

VI. FINAL REMARKS

An important model-independent observational signa-
ture of a detectable nontrivial cosmic topology is the
occurrence of pairs of matching circles of temperature
fluctuations in maps of the cosmic microwave background
radiation. Here, by employing some recent results concern-
ing the local nature of generic nonflat detectable nontrivial
topology in the inflationary limit, we have obtained con-
crete bounds on the angular parameter characterizing the
deviation from antipodicity of circles-in-the-sky as a func-
tion of the cosmological density parameters and the posi-
tion of the observer, for any radius � of the circles.

As an example of the application of our results, we have
considered the most recent search restricted to nearly back-
to-back circles, which has found no statistically significant
pairs of matching circles. Using our bounds we have found

that, assuming the total density parameter satisfies 0<
j�0 � 1j & 10�5, this search, if confirmed, could in prin-
ciple be sufficient to exclude a detectable nontrivial cosmic
topology for most observers.
Our results also provide a framework to draw quantita-

tive conclusions from the negative results of such partial
searches, past and future, for circles-in-the-sky as a generic
signature of nontrivial cosmic topology. More specifically,
they allow us to quantify the fraction of the potential
observers for which the absence of pairs of matching
circles-in-the-sky in CMB maps rules out a nontrivial
(nonflat) topology for the spatial sections of the
Universe, as a function of the cosmological density pa-
rameters. We emphasize that these results apply generi-
cally to all potential nonflat manifolds with nontrivial
topology rather than specific classes. In particular, if the
negative results of the recent searches are confirmed, then
in the inflationary limit a detectable nontrivial (nonflat)
topology is excluded for all observers apart from a very
small subset, if the Universe has positively curved spatial
sections, and for all observers if the spatial sections turn
out to be negatively curved.

ACKNOWLEDGMENTS

This work is supported by Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico (CNPq)–
Brasil, under Grant No. 472436/2007-4. M. J. R. and R. T.
thank CNPq and PCI-CBPF/MCT/CNPq for the grants
under which this work was carried out. We would also
like to thank G. Gomero for fruitful discussions.

[1] G. F. R. Ellis, Gen. Relativ. Gravit. 2, 7 (1971); M.
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B. MOTA, M. J. REBOUÇAS, AND R. TAVAKOL PHYSICAL REVIEW D 78, 083521 (2008)

083521-8


