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We study a set of universe models where the dark sector is described by a perfect fluid with an affine

equation of state P ¼ P0 þ ��, focusing specifically on cosmological perturbations in a flat universe. We

perform a Monte Carlo Markov Chain analysis spanning the full parameter space of the model using the

WMAP 5-yr data and the SDSS LRG4 survey. The affine fluid can either play the role of a unified dark

matter, accounting for both dark matter and a cosmological constant, or work alongside cold dark matter

(CDM), as a form of dark energy. A key ingredient is the sound speed, that depends on the nature of the

fluid and that, for any given background model, adds a degree of freedom to the perturbations: in the

barotropic case the square of the sound speed is simply equal to the affine parameter �; if entropic

perturbations are present the effective sound speed has to be specified as an additional parameter. In

addition to the barotropic case, we consider the two limiting cases of effective sound speed equal to 0 or 1.

For � ¼ c2s ¼ 0 our unified dark matter model is equivalent to the standard �CDM with adiabatic

perturbations. Apart of a trivial subcase, all models considered satisfy the data constraints, with quite

standard values for the usual cosmological parameters. In general our analysis confirms that cosmological

data sets require both a collisionless massive and cold component to form the potential wells that lead to

structure formation, and an effective cosmological constant that drives the late accelerated expansion.

DOI: 10.1103/PhysRevD.78.083510 PACS numbers: 98.80.Jk, 95.35.+d, 95.36.+x

I. INTRODUCTION

In the last few years cosmological observations have
become increasingly accurate, allowing various models
to be tested or even ruled out. The one that currently seems
to satisfy most observational requirements is the so-called
concordance or �CDM model [1,2]: a flat universe, with
�4% of baryons,�20% of an unknown weakly interacting
heavy component (or dark matter), leaving the remaining
�76% in the form of a cosmological constant (or vacuum
energy density) responsible for the late time acceleration of
the Universe [3,4]. However, despite its simplicity, this
model lacks solid theoretical motivations and actually
seems to require ad hoc assumptions, both on dark matter
and the cosmological constant. Many hypotheses have
been proposed to alleviate the problem of the cosmological
constant and the related one of why the density of the two
unknown components are of the same order of magnitude
in the present Universe (the so-called coincidence prob-
lem). For an incomplete list see [5–13] and the recent
review on dark energy [14].

Observationally, the dark sector is degenerate: by defi-
nition, dark components can be probed only through gravi-
tational effects, leaving open a wide range of possibilities
regarding their nature and possible interactions [15]. In this
paper we investigate an effective model for the dark sector,
based on the affine parametrization of the equation of state
[16]:

pX ¼ P0 þ ��X; (1)

where pX is the pressure, �X is the energy density, and P0

and � are constant parameters; this leads to a time depen-
dent equation of state parameter

wX ¼ P0

�X

þ �: (2)

An interesting property of this parametrization is that it
results in a constant energy density term mimicking an
effective cosmological constant, with�� ¼ �P0=½�cð1þ
�Þ�, plus an evolving term that can reproduce a dark matter
behavior for certain choices of the parameter �. This
allows one to either treat the affine fluid as a single unified
dark component, or to use it to model dark energy alone.
As shown in [17], when � is negative, this description

can be seen as the attractor solution for a quintessence
scalar field dynamics. Alternatively, when treating pertur-
bations, a barotropic affine fluid can be interpreted as a k-
essence scalar field (naturally describing an effective cos-
mological constant plus dark matter), while a scalar field
with sound speed c2s ¼ 1 acts as a dark energy component.
In addition, an affine fluid description can also be inter-
preted as the result of two interacting dark components
(one of them being a cold dark matter component), as we
discussed in detail in [18]. In the present work we explore
several different cases resulting from the affine fluid de-
scription. We consider two classes of models: one where
the affine fluid describes a unified dark component, the
other containing a cold dark matter component as well. For
each class, we also study three separate subcases, identified
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by the value of the speed of sound: the barotropic case,
with c2eff ¼ �, the case c2eff ¼ 1, and the ‘‘silent’’ case

[19,20] with c2eff ¼ 0.
To study the properties of the model, we calculate the

evolution of scalar perturbations in the affine fluid by
modifying the publicly available CAMB code, and set
constraints to the parameters of the model by performing
a Monte Carlo Markov Chain analysis using the cosmic
microwave background (CMB) anisotropy WMAP 5-yr
data [21] and the large-scale matter distribution derived
from the Sloan Digital Sky Survey (SDSS) Luminous Red
Galaxy (LRG) 4-yr data [22].

In the next section we describe our model and the
theoretical framework adopted, in Sec. III we discuss the
results of our numerical calculations and comparison with
observations, and in Sec. IV we draw our final conclusions.

II. AFFINE FLUID MODEL

A. General framework

We perform our calculations in the context of a flat,
homogeneous and isotropic universe, whose unperturbed
evolution is described by the Friedman equation

H2 �
�
_a

a

�
2 ¼ 8�G

3
� (3)

where � is the total energy density, sum of the densities of
all the components in the Universe, each of them satisfying
a continuity equation that, in the case of noninteracting
components, reads

_� ðiÞ þ 3Hð�ðiÞ þ pðiÞÞ ¼ 0: (4)

According to the specific properties of each component
one has different scaling behavior: for example, for pho-
tons and baryons �� / a�4 and �B / a�3, respectively. We

will refer to the decaying in time of the energy density as
‘‘standard’’ behavior; when the energy density grows in
time, i.e. when �ðiÞ þ pðiÞ < 0 (the null energy condition is
violated), the behavior is called ‘‘phantom’’ [23].

When treating perturbations of the background line
element, we adopt the synchronous gauge [24]. The per-
turbed metric then reads:

ds2 ¼ að�Þ2ðd�2 � ð�ij þ hijðx; �ÞÞdxidxjÞ (5)

where � is the conformal time and jhijj � 1 is the metric

perturbation. We then compute the Einstein’s equations at
first order from the metric given above and from the
perturbed energy-momentum tensor

T�� ¼ X
i

TðiÞ
�� (6)

where the index i runs over the components in the
Universe, photons, baryons, and dark components. The
perturbed energy-momentum tensor components are

TðiÞ0
0 ¼ �ðiÞ

b ð1þ �ðiÞÞ; TðiÞ0
k ¼ �ðiÞ

b ð1þ wðiÞÞVðiÞ
k ;

TðiÞj
k ¼ ðpðiÞ

b þ �pðiÞÞ�j
k; (7)

where �ðiÞ is the density contrast for the i component, VðiÞ is
the velocity, wðiÞ is the equation of state parameter (not
necessary constant) and the subscript b refers to the back-
ground (i.e. unperturbed) quantities.
In the next subsections we study in detail the behavior of

the affine dark component.

B. Background evolution

The basic property of the phenomenological model we
consider is the affine form of the pressure as a function of
the density of the dark component, Eq. (1). Even if the
equation of state (EoS) parameter of the dark component is
not constant, a simple solution for Eq. (4) exists and it is
given by

�X ¼ �� þ ð�X0 � ��Þa�3ð1þ�Þ; � � �1; (8)

�X ¼ �X0 � 3P0 lna; � ¼ �1; (9)

where �X0 is the density of the dark component at the
present time (i.e. a ¼ 1) and �� � �P0=ð1þ �Þ, with �
and P0 free parameters of the model. This density evolves
in time in a way that can be either standard or phantom,
depending on the particular choice of the parameters. A
full description of the background properties of such a dark
component is given in [25]. Here we want to stress that, in
the absence of cold dark matter, this component should
both be able to create the gravitational potential necessary
to form structures at high redshifts, and to drive the late
time acceleration of the Universe. With respect to a flat
�CDM model, we have an additional degree of freedom,
�, which is the square of the barotropic sound speed, that
allows us to investigate the effective equation of state of the
clustering part of the component.
Since the perturbation equations of the dark component

will be written in terms of its equation of state parameter,
Eq. (2), it is interesting to explicitly consider the time
evolution of wX.
We first comment on the case �X0 � �� > 0 (Fig. 1). In

this case, if �>�1, wXðaÞ evolves from the value �
approaching the value �1; conversely, if �<�1, it ap-
proaches the value � moving away from w ¼ �1. In the
former situation,�3ð1þ �Þ< 0 and the dynamical part of
the affine component dominates at early times. When �<
�1, then �3ð1þ �Þ> 0, so that the evolving dark com-
ponent increases in time, i.e. it has a phantom behavior,
becoming dominant at late times. The slope of the curve
obviously depends on �X0, P0 and �.
Let us now consider the case when �X0 � �� < 0

(Fig. 2). The behavior is opposite to the previous case,
with the phantom evolution appearing when �>�1. In
this case there is a divergence of w in the past, making this
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choice of parameters more problematic. In this paper we
will restrict the analysis only to cases with �X0 � �� > 0.

C. Fluid perturbations

Einstein’s equations in the synchronous gauge and in
Fourier space give the following system of coupled equa-

tions:

_� ðiÞ ¼ �ð1þ wðiÞÞ
�
	ðiÞ þ

_h

2

�
þ 3H

�
dpðiÞ
d�ðiÞ

� wðiÞ
�
�ðiÞ;

(10)

FIG. 2 (color online). Evolution of the dark component energy density (top) and equation of state parameter (bottom), for two values
of �: � ¼ �0:01 (left) and � ¼ �1:5 (right). In both cases, �X0 � �� < 0: in this case, �>�1 results in a phantom regime,
characterized by an energy density which increases in time.

FIG. 1 (color online). Evolution of the dark component energy density (top) and equation of state parameter (bottom), for two values
of �: � ¼ �0:01 (left) and � ¼ �1:5 (right). In both cases, �X0 � �� > 0: in this case, �<�1 results in a phantom regime,
characterized by an energy density which increases in time.
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_	 ðiÞ ¼ �Hð1� 3wðiÞÞ	� _wðiÞ
1þ wðiÞ

	ðiÞ

þ dpðiÞ=d�ðiÞ
1þ wðiÞ

k2�ðiÞ; (11)

where we defined ikVðiÞ � 	ðiÞ.
A pure barotropic fluid with a negative EoS parameter

has imaginary adiabatic sound speed that causes a runaway
growth of perturbations. Not only does this have unpleas-
ant consequences for structure formation, but it also creates
an instability in the set of coupled perturbation equa-
tions. (10) and (11). A viable way to overcome this incon-
venience is to allow for entropy perturbations in the dark
component, assuming that the effective speed of sound,
sum of the adiabatic and entropic one, is positive or null.
We follow the formalism developed in the context of
generalized dark matter [26], where

c2X;eff �
�pX

��X

¼ c2X;ad þ
wX

�X;rest

�X; (12)

c2X;ad �
_pX

_�X

¼ �: (13)

Here �X is a constant parameter we will not use since we
prefer to specify the more fundamental quantity c2eff ; �X;rest

is the density contrast in the rest frame of the dark compo-
nent, defined as

�X;rest ¼ �X þ 3
_a

a

	X
k2

: (14)

The fact that, in our fluid description, the effective speed of
sound is a free parameter not tied to the behavior of
equation of state parameter wX allows us to evade the tight
constraints to unified dark matter models pointed out in
[27] and arising from the runaway growth of perturbations.

To perform numerical predictions for the evolution of
perturbations, we modified the publicly available code
CAMB1 adding a new component whose perturbations
are described by the following equations in the synchro-
nous gauge:

_�X ¼ �ð1þ wXÞ
�
	X þ

_h

2

�
� 3

_a

a
ðc2X;eff � �Þ�X;rest

þ _w

ð1þ wÞ�X; (15)

_	 X ¼ � _a

a
	X þ c2X;eff

ð1þ wÞ k
2�X;rest: (16)

We adopt adiabatic initial conditions for the dark compo-

nent [28,29]. We first investigate the constraints coming
from the CMB anisotropy power spectrum on a single dark
component governed by an affine equation of state. As we
already mentioned, this can account for both dark matter
with a nonvanishing EoS parameter and a cosmological
constant; we label this unified model as the �DM model.
The affine component can also be employed as a pure dark
energy component, if standard cold dark matter is present.
We denominate this model as the �CDM model. In addi-
tion to comparing our CMB anisotropy predictions with
actual data from theWMAP 5-yr observations, we improve
our results by adding the SDSS data set in order to remove
degeneracies among parameters.
In the next section we discuss the results obtained for

both �DM and �CDM models.

III. RESULTS

A. Methods

We performed a full analysis of the two classes of
models arising from an affine equation of state (i.e. the
�DM and �CDM models) using the Monte Carlo Markov
Chain approach implemented in a modified version of the
public CosmoMC software2 [30]. We span the parameter
space defined by the baryon density, �bh

2, the cold dark
matter density, �ch

2, the current expansion rate of the
Universe,H0, the reionization optical depth, �, the spectral
index ns and the normalization amplitude As that parame-
trize the primordial curvature fluctuation power spectrum

PðkÞ ¼ Asðk=k0Þns : (17)

This results in a galaxy power spectrum PgðkÞ ¼
b2L9=25PðkÞ. The affine dark component is characterized
by the two parameters �� (defined, as usual, as
8�G��=3H

2
0) and �. Its effective sound speed squared

has been fixed to three different values, namely, 0, 1 and
�, in order to consider the three possible clustering possi-
bilities, namely, cold dark matter–like behavior, scalar field
limit and barotropic fluid. We assumed a flat universe and
set a Gaussian prior on the Hubble parameter with mean
value and standard deviation consistent with the Hubble
Space Telescope Key Project, 72� 8 km= sec =Mpc [31].
We computed the likelihood function of the data using

the public code provided by the WMAP team3 that in-
cludes both the temperature and the polarization CMB
power spectrum (the main effect of the latter being a tighter
constraint on the optical depth �).
Even if at the background level the �DM model is

equivalent to a dark matter with nonvanishing EoS parame-
ter plus a cosmological constant, there are differences at
the perturbation level; moreover, the difference is concep-
tual, since the �DM model treats the dark sector as a

1http://camb.info/.

2http://cosmologist.info/cosmomc/.
3http://lambda.gsfc.nasa.gov/product/map/dr2/

likelihood_get.cfm.

PIETROBON, BALBI, BRUNI, AND QUERCELLINI PHYSICAL REVIEW D 78, 083510 (2008)

083510-4



TABLE II. Best fit parameter values for �CDM.

Models/parameters �CDM, bar �CDM; c2eff ¼ 0 �CDM; c2eff ¼ 1
CMB MPS CMB MPS CMB MPS

�bh
2 0:0224� 0:0007 0:0220� 0:0007 0:0223� 0:0006 0:0224� 0:0006 0:0224� 0:0006 0:0224� 0:0006

�ch
2 0:07� 0:03 0:106� 0:004 0:109� 0:006 0:107� 0:006 0:109� 0:006 0:107� 0:006

H0 74� 4 72� 2 71� 6 73� 3 73� 5 74� 3
� 0:087� 0:017 0:083� 0:017 0:085� 0:018 0:088� 0:017 0:086� 0:016 0:085� 0:018
ns 0:975� 0:019 0:964� 0:015 0:962� 0:014 0:964� 0:014 0:963� 0:014 0:963� 0:015
logð1010AsÞjk¼0:002 3:15� 0:06 3:19� 0:05 3:18� 0:05 3:17� 0:04 3:18� 0:05 3:17� 0:05
�� 0:76� 0:03 0:74� 0:02 0:5� 0:2 0:3� 0:2 0:5� 0:2 0:2� 0:2
� ð6� 9Þ � 10�3 ð1:9� 1:4Þ � 10�2 �1:1� 0:4 �1:0� 0:3 �1:2� 0:4 �1:1� 0:2

TABLE I. Best-fit parameter values for �DM.

Models/parameters �CDMþ �DM, bar �DM; c2eff ¼ 0
SNe & BAO (WMAP5) CMB MPS CMB MPS

�bh
2 0:02265� 0:00059 0:0223� 0:0007 0:0223� 0:0006 0:0224� 0:0006 0:0224� 0:0003

�ch
2 0:1143� 0:0034 - - - -

H0 70:1� 1:3 75� 5 71� 2 69� 6 67� 4
� 0:084� 0:016 0:090� 0:018 0:083� 0:016 0:086� 0:017 0:085� 0:017
ns 0:960� 0:014 0:99� 0:03 0:960� 0:014 0:959� 0:015 0:957� 0:014
logð1010AsÞjk¼0:002 3:20� 0:08 3:10� 0:08 3:19� 0:04 3:19� 0:05 3:19� 0:04
�� 0:721� 0:015 0:76� 0:04 0:73� 0:02 0:70� 0:09 0:69� 0:05
� - ð8� 11Þ � 10�4 ð0:2� 4Þ � 10�7 ð�1:5� 3Þ � 10�3 ð�2� 2Þ � 10�3

0.021 0.022 0.023 0.024 0.025
Ω

b
 h2

65 70 75 80 85 90
H

0

0.02 0.04 0.06 0.08 0.1 0.12 0.14
τ

0.65 0.7 0.75 0.8 0.85
Ω

l

−0.01 −0.005 0 0.005 0.01
α

0.95 1 1.05
n

s

2.9 3 3.1 3.2 3.3
log[1010 A

s
]

0.021 0.022 0.023 0.024
Ω

b
 h2

66 68 70 72 74 76
H

0

0.02 0.04 0.06 0.08 0.1 0.12 0.14
τ

0.7 0.75 0.8
Ω

l

−10 −5 0 5

x 10
−7α

0.92 0.94 0.96 0.98 1
n

s

3.05 3.1 3.15 3.2 3.25 3.3
log[1010 A

s
]

FIG. 3. �DM-c2eff ¼ �: Parameter likelihoods computed for the �DMmodel under the assumption of barotropic fluid, i.e. a fluid that
fulfils the relation c2eff ¼ �. The left panel is CMB alone; the right panel is CMB combined with the matter power spectrum. When the

matter power spectrum is taken into account the constraints on the equation of state parameter are much tighter. The other parameters
are fully consistent with the results of 5-yr WMAP release.
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whole, and can even be the result of interacting dark
components [18]. We discuss this class of models in
Sec. III B. The �CDM models are discussed in Sec. III C.
Tables I and II summarize the best-fit parameter values for
the two classes of models.

B. �DM models

In this section we investigate the properties of a single
dark component described by an affine equation of state.
The parameters of this model are ð�bh

2; 	; �; ln1010As;
��; �Þ. We expect the model with sound speed c2eff ¼ 1
to be ruled out by the current cosmological data sets: a
quintessence scalar field able to drive the late time accel-
eration of the Universe expansion prevents structure for-
mation [17]. We tested our pipeline in the limit of the
standard �CDM model, i.e. for the choice � ¼ 0, obtain-
ing results that are in excellent agreement with the 5-yr
WMAP release [32]. In the following we describe the
results obtained for the three subclasses of models we
analyzed.

�DM; c2eff ¼ �
We investigated the barotropic model, namely, the one

with c2eff ¼ c2ad ¼ �, which does not require any assump-

tion concerning entropy perturbations. As we mentioned
earlier, this model has an equivalent description in terms of
a k-essence scalar field. Our findings are shown in Fig. 3.

With this choice of the sound speed we tested the
equation of state of dark matter. Our best-fit model from
the 5-yr WMAP CMB data has � ¼ ð8� 11Þ � 10�4 and
�� ¼ 0:76� 0:04: we confirm that an almost pressureless
component is the most likely one. Since we know that the

effect of a nonvanishing sound speed is to strongly modify
the clustering properties, we investigated the constraints
which the matter power spectrum data put on this specific
model. As expected, the constraint on � shrinks to j�j &
10�7, in excellent agreement with what was found in [33].
For �� we find �� ¼ 0:73� 0:02. In Figs. 4 and 5 the
effect of even such a tiny barotropic EoS parameter is
shown.
�DM; c2eff ¼ 0
The parameter likelihoods for the case of c2eff ¼ 0 are

shown in Fig. 6. The main difference with respect to the
barotropic model is a weaker constraint on �, due to the
presence of a vanishing effective sound speed that cancels
the pressure term in the perturbation equations, guarantee-
ing the clustering properties of the dark component. We get
� ¼ ð�1:5� 3Þ � 10�3 and �� ¼ 0:70� 0:09. When
the matter power spectrum is considered, the limit on the
square of the barotropic sound speed � shrinks to ð�2�
2Þ � 10�3 at 1
 level, and �� ¼ 0:69� 0:05.
�DM; c2eff ¼ 1
For completeness, we also performed the analysis in the

weakly clustering limit, described by c2eff ¼ 1; as expected,
the model fails completely in fitting the observational data.
A fluid with a luminal speed of sound prevents the cluster-
ing at scales even close to the horizon [17].

FIG. 5 (color online). To further illustrate the point, for the
barotropic �DM model we plot against real data the power
spectra for values of � at 2
 from the best fit. It is clear that
the data constrain the value of � in two ways: 1) the theoretical
curve has to fit the overall shape of the data distribution; 2) the
data points at smaller scales pin down the value of j�j, con-
straining it to be small enough to i) give a small enough Jeans
scale �J for �> 0, such that enough power is produced for � >
�J , and ii) for �< 0, to produce an explosive growth of
perturbations only at small enough scales, again such that above
the Jeans length, where gravity dominates against the pressure
effects, the spectrum is undisturbed. It is clear from the figure
that the second effect is dominant, in that it is extremely sensitive
to the value of �.

FIG. 4 (color online). Matter power spectrum dependence on
�. The black solid line is the matter power spectrum computed
for � ¼ 0, i.e. for the concordance �CDM model. The dashed
curve is for the value � ¼ �1� 10�6; the dot-dashed curve is
for � ¼ 1� 10�6. The perturbation instability is clear when a
negative EoS parameter is chosen.
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FIG. 6. �DM-c2eff ¼ 0: Parameter likelihoods for the �DM model with sound speed c2eff ¼ 0. The left panel is for CMB alone; the
right panel is for CMB combined with the matter power spectrum. The barotropic sound speed squared � is still consistent with 0, but
the constraints are weaker than in the case of a pure barotropic fluid. The other parameters do not change significantly with respect to
the concordance model.
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FIG. 7. �CDM-c2eff ¼ 1: Parameter likelihoods computed for the �CDM model when the sound speed is fixed to c2eff ¼ 1. The left
panel is CMB alone; the right panel is CMB combined with the matter power spectrum. The almost flat likelihood for�� together with
the broad one for � reflect the degeneracies of the model. Adding matter power spectrum data helps to break this degeneracy since it
forces �ch

2 to be of the order of 0.11 and ���1. However, �� remains essentially unconstrained.
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FIG. 8. �CDM-c2eff ¼ 0: Parameter likelihoods for the �CDM model when the sound speed is fixed to c2eff ¼ 0. The left panel is
from CMB alone; the right panel is from CMB combined with the matter power spectrum. The results are very close to those obtained
in the case of sound speed equal to 1.
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FIG. 9. �CDM-c2eff ¼ �: CMB alone, left panel, and CMB combined with MPS; right panel, likelihoods for the pure barotropic
�CDM model (c2eff ¼ �). The CMB alone likelihoods show the degeneracy between �ch

2 and ��, being � close to 1. Adding the

matter power spectrum �ch
2 and �� are better constrained, but we lost any information on � (this is because we assume a flat

universe).
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C. �CDM models

In what follows we present the results we obtained for
the �CDM model, i.e. when we consider a flat universe
filled with baryons, cold dark matter and a dark energy
component described by the affine equation of state
Eq. (1). The choice can help to distinguish the cosmologi-
cal constant from a more general dynamical field. In this
framework the most natural value for the speed of sound is
c2eff ¼ 1: with this choice, our fluid description represents

well the attractor dynamics of a quintessence scalar field,
when �< 0 [17].

�CDM; c2eff ¼ 1
In Fig. 7 we show the results for the �CDM model with

c2eff ¼ 1. Also this case, as the previous one, has an equiva-
lent description in terms of a scalar field, but with a
standard kinetic term. The main effect of dark energy is
to modify the low multipoles region of the CMB power
spectrum, unfortunately the one where high cosmic vari-
ance prevents a precise determination of the cosmological
parameters. Even worse, the model suffers from intrinsic
degeneracies. At zeroth order, i.e. in the background, 1) if
�� 0 the dynamical part of the affine component behaves
like dark matter, while, 2) if ���1 it can replace the
cosmological constant. Since we fixed the speed of sound
equal to 1, the first degeneracy is not present because dark
matter and the affine component are different at the per-
turbation level. We are left with the second degeneracy,
that is clearly visible in the flat likelihood for �� and the
broad likelihood for �. We get a rather loose constraint on
�, i.e. � ¼ �1:2� 0:4, while �� ¼ 0:5� 0:2. When we
add the matter power spectrum, the�� � � degeneracy is
partially removed. The result is a slightly tighter constraint
on �, which is � ¼ �1:1� 0:2.

�CDM; c2eff ¼ 0
The results are only marginally affected by the value of

the sound speed of the dark component (Fig. 8), since the
CMB is basically insensitive to the sound speed of dark
energy. We find � ¼ �1:1� 0:4 and �� ¼ 0:5� 0:2.
When the matter power spectrum is included in the analy-
sis these change to � ¼ �1:0� 0:3 and �� ¼ 0:3� 0:2

�CDM; c2eff ¼ �
When the dark component is forced to be barotropic the

only degeneracy we are left with is the first degeneracy
mentioned above, since �� 0. The result is�� ¼ 0:76�
0:03while�c and� are badly constrained (� ¼ ð6� 9Þ �
10�3): a lower value of �c can be balanced by the dy-
namical part of the affine component. When the matter
power spectrum is added we obtain a slightly tighter con-
straint on �� (�� ¼ 0:74� 0:02), while �c is deter-
mined by the shape of the spectrum. This implies
actually a broad likelihood for the parameter �, since the
coefficient ð�X0 � ��Þ ’ 0. We obtain � ¼ ð1:9� 1:4Þ �
10�2. The Fig. 9 summarizes the results described above.

IV. CONCLUSIONS

We studied the effect of an affine EoS fluid model
applied to the dark sector, both as a unified description of
dark matter and an effective cosmological constant, and as
a pure dark energy component. Our model makes use of a
dynamical parametrization relating p and �, as opposed to
the usual cynematical description of the EoS parameter in
terms of its current value and its first derivative. In a
previous paper [25] we carried on a comparison of the
background evolution of this model with existing cosmo-
logical observations. In the present work, we focused on
the behavior of cosmological perturbations, and compared
the theoretical predictions with the CMBWMAP 5-yr data,
and with the SDSS large-scale structure data.
As a first result, we obtained much tighter constraints on

the parameters of the model with respect to the analysis
carried on the background observables in [25], confirming
that perturbations should be properly included in the cal-
culations when developing effective models for the dark
sector [34].
In the case when the fluid is treated as a unified dark

component, we get values of the effective cosmological
constant�� ’ 0:7, essentially independent of the speed of
sound. For the equation of state parameter �, the con-
straints vary when the fluid is treated as barotropic (result-
ing in a slightly positive �) or a vanishing speed of sound is
assumed (resulting in a slightly negative �). Both cases are
however compatible with � ¼ 0 at one sigma confidence
level. The inclusion of the matter power spectrum in the
analysis has generally the effect of shrinking the confi-
dence interval on the parameters, in particular, in the
barotropic case, due to the effect of � on the Jeans length
of the perturbations [17].
When standard dark matter is included, the effects of �

on the clustering process is less relevant, because the
matterlike component of the unified fluid is forced to
mimic the cosmological constant behavior. This is appar-
ent from the fact that the � best-fit value moves to ���1
which is typical of a cosmological constant. The con-
straints in the barotropic case remain quite tight, but get
larger when the sound speed is set to zero. We also con-
sidered the case with a speed of sound equal to unity, which
describes a scalar field behavior. Also in this case the
constraints on � are rather loose.
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