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We study the dynamics of the scalar field Friedmann-Lemaitre-Robertson-Walker flat cosmological

models within the framework of the unified dark matter (UDM) scenario. In this model we find that the

main cosmological functions such as the scale factor of the Universe, the scalar field, the Hubble flow, and

the equation of state parameter are defined in terms of hyperbolic functions. These analytical solutions can

accommodate an accelerated expansion, equivalent to either the dark energy or the standard � models.

Performing a joint likelihood analysis of the recent supernovae type Ia data and the baryonic acoustic

oscillations traced by the Sloan Digital Sky Survey galaxies, we place tight constraints on the main

cosmological parameters of the UDM cosmological scenario. Finally, we compare the UDM scenario with

various dark energy models namely � cosmology, parametric dark energy model and variable Chaplygin

gas. We find that the UDM scalar field model provides a large and small scale dynamics which are in fair

agreement with the predictions by the above dark energy models although there are some differences

especially at high redshifts.
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I. INTRODUCTION

The detailed analysis of the available high quality
cosmological data (Type Ia supernovae [1,2]; cosmic
microwave background (CMB) [3,4], etc.) leads to the
conclusion that we live in a flat and accelerating universe.
In order to investigate the cosmic history of the observed
universe, we have to introduce a general cosmological
model which contains cold dark matter to explain the large
scale structure clustering and an extra component with
negative pressure, the vacuum energy (or in a more general
setting the ‘‘dark energy’’), to explain the observed ac-
celerated cosmic expansion (Refs. [1–4] and references
therein). The nature of the dark energy is one of the most
fundamental and difficult problems in physics and cosmol-
ogy. There are many theoretical speculations regarding the
physics of the above exotic dark energy, such as a cosmo-
logical constant (vacuum), quintessence, k essence, vector
fields, phantom, tachyons, Chaplygin gas, and the list goes
on (see [5–18] and references therein).

Such studies are based on the general assumption that
the real scalar field � rolls down the potential Vð�Þ and
therefore it could resemble the dark energy [6,8,11,19–22].
This is very important because scalar fields could provide
possible solutions to the cosmological coincidence prob-
lem. In this framework, the corresponding stress-energy
tensor takes the form of a perfect fluid, with density �� ¼
_�2=2þ Vð�Þ and pressure P� ¼ _�2=2� Vð�Þ. From a

cosmological point of view, if the scalar field varies slowly

with time, so that _�2=2V � 1, then w � P�=�� � �1,

which means that the scalar field evolves like a vacuum
energy. Of course in order to investigate the overall dy-
namics we need to define the functional form of the poten-
tial energy. The simplest example found in the literature is

a scalar field with Vð�Þ / �2 (see for review [11,23]) and
it has been shown that the time evolution of this scalar field
is dominated by oscillations around � ¼ 0. Of course, the
issue of the potential energy has a long history in scalar
field cosmology (see [24–28] and references therein) and
indeed several parametrizations have been proposed (ex-
ponential, power law, hyperbolic, etc.).
The aim of the present work is to investigate the obser-

vational consequences of the overall dynamics of a family
of flat cosmological models by using a hyperbolic scalar
field potential which appears to act both as dark matter and
dark energy [29]. To do so, we use the traditional Hamil-
tonian approach. In fact, the idea to build cosmological
models in which the dark energy component is somehow
linked with the dark matter is not new in this kind of
studies. Recently, alternative approaches to the unification
of dark energy and dark matter have been proposed in the
framework of the generalized Chaplygin gas [30,31] and in
the context of supersymmetry [32].
The structure of the paper is as follows. The basic theo-

retical elements of the problem are presented in Sec. II by
solving analytically [for spatially flat unified dark matter
(UDM) scalar field models] the equations of motion. In
Sec. III, we present the functional forms of the basic cos-
mological functions [aðtÞ, �ðtÞ and HðtÞ]. In Sec. IV we
place constraints on the main parameters of our model by
performing a joint likelihood analysis utilizing the SNIa
data [2] and the observed baryonic acoustic oscillations
(BAO) [33,34]. In particular, we find that the matter density
at the present time is �m ’ 0:25 while the corresponding
scalar field is �0 ’ 0:42 in geometrical units (0.084 in
Planck units). Section V outlines the evolution of matter
perturbations in the UDM model. Also we compare the
theoretical predictions provided by the UDM scenario with
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those found by three different types of dark energy models
namely � cosmology, parametric dark energy model, and
variable Chaplygin gas. We verify that at late times (after
the inflection point) the dynamics of the UDM scalar
model is in a good agreement with those predicted by the
above dark energy models although there are some differ-
ences especially at early epochs: (i) the UDM equation of
state parameter takes positive values at large redshifts,
(ii) it behaves well with respect to the cosmic coincidence
problem, and (iii) before the inflection point the cosmic
expansion in the UDM model is much more decelerated
than in the other three dark energy models implies that the
large scale structures (such as galaxy clusters) are more
bound systems with respect to those cosmic structures
which produced by the other three dark energy models.
Finally, we draw our conclusions in Sec. VI.

II. ANALYTICAL SOLUTIONS IN THE FLAT
SCALAR FIELD COSMOLOGY

Within the framework of homogeneous and isotropic
scalar field cosmologies it can be proved (see Ref. [35])
that the main cosmological equations (the so-called
Friedmann-Lemaitre equations) can be obtained by a
Lagrangian formulation:

L ¼ �3a _a2 þ a3
� _�2

2
� Vð�Þ

�
þ 3ka; (1)

where aðtÞ is the scale factor of the universe, �ðtÞ is the
scalar field, Vð�Þ is the potential energy, and kð¼ �1; 0; 1Þ
is the spatial curvature. Indeed the equations of motion
take the following forms [36]:

3

��
_a

a

�
2 þ k

a2

�
¼

_�2

2
þ Vð�Þ (2)

2

�
€a

a

�
þ

�
_a

a

�
2 þ k

a2
¼ �

_�2

2
þ Vð�Þ (3)

and

€�þ 3
_a

a
_�þ V 0ð�Þ ¼ 0; (4)

where the overdot denotes derivatives with respect to time
while prime denotes derivatives with respect to �. We
would like to stress here that in this work we consider a
spatially homogeneous scalar field�, ignoring the possible
coupling to other fields and quantum-mechanical effects.
On the other hand, introducing in the global dynamics a
new degree of freedom, in a form of the scalar field �, it is
possible to make the vacuum energy a function of time (see
[20,37,38]). Note of course that the geometry of the space-
time is described by the Friedmann-Lemaitre-Robertson-
Walker (FLRW) line element.

In order to study the above system of differential equa-
tions we need to define explicitly the functional form of the

scalar field potential energy, Vð�Þ, which is not an easy
task to do. Indeed, in the literature, due to the unknown
nature of the dark energy, there are many forms of poten-
tials proposed by several authors (for a review see
[10,16,39]) which describe differently the physics of the
scalar field. It is worth pointing out that for some special
cases analytical solutions have been found (Refs. [25–
28,40–42] and references therein). As an example, if
the potential Vð�Þ is modeled as a power law �n, then

the energy density of the scalar field evolves like �� /
a�6n=ðnþ2Þ which means that, for n ¼ 2 or n ¼ 4 the cor-
responding energy density behaves either like non relativ-
istic or relativistic matter. In this work, we have used a
functional form of Vð�Þ (see [43]) for which we solve the
previous dynamical problem analytically. This potential
corresponds to the so calledUnified Dark Matter (hereafter
UDM) scenario [28,29,44]:

Vð�Þ ¼ c1cosh
2ðD�Þ þ c2 D; c1; c2 2 <: (5)

Following the Bertacca et al. [29] nomenclature, the
real constants in Eq. (5) are selected such as c1 ¼ c2 >
0. As expected there is one minimum at the point � ¼ 0,
which reads

Vmin ¼ Vð0Þ ¼ c1 þ c2: (6)

We would like to point out that as long as the scalar field is
taking negative and large values the UDM model has the

attractive feature due to Vð�Þ / e�2D� [24]. This property
simply says that the energy density in � tracks [42] the
radiation (matter) component. In fact the UDM potential
was designed to mimic both the dark matter and the dark
energy. Indeed, performing a Taylor expansion to the po-
tential around its minimum we get

Vð�Þ ¼ Vmin þ c1D2�2 þ c1D4

3
�4 þ � � � (7)

which means that at an early enough epoch the ’’cosmic’’
fluid behaves like radiation [45] [Vð�Þ / �4], then evolves
to the matter epoch [Vð�Þ / �2], and finishes with a phase
that looks like a cosmological constant (see also [29]).
Changing now the variables from ða;�Þ to ðx1; x2Þ using

the relations

x1 ¼
ffiffi
8
3

q
a3=2 sinhðD�Þ x2 ¼

ffiffi
8
3

q
a3=2 coshðD�Þ (8)

with D2 ¼ 3=8 the Lagrangian (1) is written

L ¼ 1
2½ð _x12 þ 3

4c2x
2
1Þ � ð _x22 þ 3

4ðc1 þ c2Þx22Þ�
þ 1

2½34=3kðx22 � x21Þ1=3�: (9)

The scale factor (a > 0) in the UDM scenario is now
given by

a ¼
�
3ðx22 � x21Þ

8

�
1=3

; (10)
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which means that the new variables have to satisfy the
following inequality: x2 � jx1j.

It is straightforward now from the Lagrangian (9) to
write the corresponding Hamiltonian:

H ¼ 1
2½ðp2

x1 �!2
1x

2
1Þ � ðp2

x2 �!2
2x

2
2Þ�

� 1
2½34=3kðx22 � x21Þ1=3�; (11)

where px1 ¼ _x1, px2 ¼ � _x2 denote the canonical mo-

menta, and!2
1 ¼ 3

4 c2, !
2
2 ¼ 3

4 ðc1 þ c2Þ are the oscillators’
‘‘frequencies’’ with units of inverse of time and

!2
2

!2
1

¼ 1þ c2
c1

¼ � ð� ¼ 2Þ: (12)

The dynamics of the closed FLRW scalar field cosmol-
ogies has been investigated thoroughly in [43]. In particu-
lar, for a semiflat geometry (k ! 0) we have revealed cases
where the dynamics of the system (see Sec. 3.1 in [43],
orbit 5 in Fig. 1 scale factor vs time, and Fig. 4) is close to
the concordance � cosmology, despite the fact that for the
semiflat UDM model there is a strong indication of a
chaotic behavior. In this paper we would like to investigate
the potential of a spatially flat UDM scenario (k ¼ 0) since
the analysis of the CMB anisotropies have strongly sug-

gested that the spatial geometry of the universe is flat [3].
Technically speaking, in the new coordinate system our
dynamical problem is described well by two independent
hyperbolic oscillators and thus the system is fully inte-
grable. Indeed in the new coordinate system the corre-
sponding equations of motion can be written as

_p x1 ¼ � @H
@x1

¼ !2
1x1; _px2 ¼ �@H

@x2
¼ �!2

2x2

and it is routine to perform the integration to find the
analytical solutions:

x1ðtÞ ¼ A1 sinhð!1tþ �1Þ x2ðtÞ ¼ A2 sinhð!2tþ �2Þ;
(13)

where A1, A2, �1, and �2 are the integration constants of the
problem. With the aid of Eq. (13) and assuming that the
total energy (H ) of the system is zero, the above constants
satisfy the following restriction:

A2
1!

2
1 � A2

2!
2
2 ¼ 0 ) A2

1

A2
2

¼ !2
2

!2
1

¼ �: (14)

As expected, the phase space of the current dynamical
problem is simply described by two hyperbolas p2

xi �
!2

i x
2
i ¼ !2

i A
2
i whose axes have a ratio 1=!i (i ¼ 1, 2).

III. THE EVOLUTION OF THE UDM
COSMOLOGICAL FUNCTIONS

In this section, with the aid of the basic hyperbolic
functions, we analytically derive the predicted time depen-
dence of the main cosmological functions in the UDM
cosmological model.

A. Scalar field—potential versus time

If we combine Eq. (13) together with the initial parame-
trization [see Eq. (8)], we immediately obtain the follow-
ing expressions:

x1
x2

¼ tanhðD�Þ ¼
ffiffiffiffi
�

p
sinhð!1tþ �1Þ

sinhð!2tþ �2Þ ¼ �ðtÞ (15)

and after some algebra the evolution of the scalar field
becomes

�ðtÞ ¼ 1

2D
ln

�
1þ�ðtÞ
1��ðtÞ

�
: (16)

Using Eqs. (5) and (16) one can prove that

VðtÞ ¼ 4!2
1

3

�
���2ðtÞ
1��2ðtÞ

�
: (17)

Now the range of� values for which the UDM scalar field
is well defined [due to Eq. (16)] is� 2 ð�1; 1Þ. Evidently,
when the system reaches the critical point � ¼ 0 then
�ðtmÞ ¼ 0 (or Vmin ¼ 4!2

1�=3). For this to be the case
we must have tm ¼ ��1=!1 and therefore �1 < 0.

FIG. 1. Likelihood contours in the ð�m; j�1jÞ plane. The con-
tours correspond to 1�, 2�, and 3� confidence levels. The thick
(thin) contours correspond to the SNIa (BAOs) likelihoods while
the solid square is the best-fit solution: �m ’ 0:25 and �1 ’
�0:39. Inset panel: The solutions within 1� contours in the
ð�m;�0Þ plane, where �0 is the present value of the scalar field
in geometrical units (8�G ¼ c � 1). Note that for Planck units
(G ¼ c � 1) we have to multiply the �0 axis with ð8�Þ�1=2.
Using the best-fit solution we find �0 ’ 0:42 or 0.084 in Planck
units.
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B. Scale factor—Hubble flow versus time

Inserting Eq. (13) into Eq. (10) the scale factor, normal-
ized to unity at the present epoch, evolves in time as

aðtÞ � a

a0
¼

�
sinh2ð!2tþ �2Þ � �sinh2ð!1tþ �1Þ
sinh2ð!2t0 þ �2Þ � �sinh2ð!1t0 þ �1Þ

�
1=3

;

(18)

where t0 is the present age of the universe in billion years.
The constant �1 is related to �2 because at the singular-
ity (t ¼ 0), the scale factor has to be exactly zero [see
Eq. (18)]. After some algebra, we find that

�2 ¼ lnð� ffiffiffiffi
�

p
sinh�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sinh2�1 þ 1

q
Þ � 0: (19)

Furthermore, we investigate the circumstances under
which an inflection point exists and therefore have an
acceleration phase of the scale factor. This crucial period
in the cosmic history corresponds to €aðtIÞ ¼ 0 which im-
plies that the condition

Vð�IÞ � _�I
2 ¼ 0

should contain roots which are real and such that a 2
ð0; 1Þ. The above equation is solvable because for c1, c2 >
0 the potential energy [Vð�Þ] takes only positive values.
Knowing the integration constants ð!1; �1; !2; �2Þ of the
current dynamical problem, we can calculate the inflection
point by solving numerically the following equation:

2 _�2ðtIÞ �!2
1½���2ðtIÞ�½1��2ðtIÞ� ¼ 0 (20)

with

_�ðtÞ ¼
ffiffiffiffi
�

p
!1

P
2
i¼1 �i sinhð!3�itþ �3�iÞ coshð!itþ �iÞ

sinh2ð!2tþ �2Þ
;

(21)

where �1 ¼ 1 and �2 ¼ � ffiffiffiffi
�

p
.

In addition, the Hubble function predicted by the UDM
model can be viewed as the sum of basic hyperbolic
functions:

HðtÞ � _a

a
¼ 2ðx2 _x2 � x1 _x1Þ

3ðx22 � x21Þ
¼ 2

3
!2fðtÞ ¼ H0

fðtÞ
fðt0Þ (22)

with

fðtÞ ¼
P

2
i¼1 �i sinhð!3�itþ �3�iÞ coshð!3�itþ �3�iÞ

sinh2ð!2tþ �2Þ � �sinh2ð!1tþ �1Þ
;

(23)

where H0 is the Hubble constant. In this work we use
H0 ¼ 100h Kms�1 Mpc�1 with h ¼ 0:72 [46] or H0 ¼
h=9:778 ’ 0:0736 Gyr�1 corresponding to t0 � H�1

0 ’
13:6 Gyr. Also we can relate the frequency !2 of the
hyperbolic oscillator in the x2 axis with the well-known
cosmological parameters. Indeed, !2 is given by

!2 ¼ 3H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��m

p
2

; (24)

while �1 / H0t0 has no units. Notice that �m is the matter
density at the present time.

IV. COSMOLOGICAL CONSTRAINTS
AND PREDICTIONS

In this work we use the so-called baryonic acoustic os-
cillations (BAOs) in order to constrain the current cosmo-
logical models. BAOs are produced by pressure (acoustic)
waves in the photon-baryon plasma in the early universe,
generated by dark matter overdensities. First evidence of
this excess was recently found in the clustering properties
of the luminous Sloan Digital Sky Survey (SDSS) red
galaxies [33,34] and it can provide a ’’standard ruler’’
with which we can put constraints on the cosmological
models. For a spatially flat FLRW we use the following
estimator:

AðpÞ ¼
ffiffiffiffiffiffiffiffi
�m

p
½z2sHðasÞ=H0�1=3

�Z 1

as

dy

y2HðyÞ=H0

�
2=3

(25)

measured from the SDSS data to be A ¼ 0:469� 0:017,
where zs ¼ 0:35 [or as ¼ ð1þ zsÞ�1 ’ 0:75]. Therefore,
the corresponding �2

BAO function is simply written

�2
BAOðpÞ ¼

½AðpÞ � 0:469�2
0:0172

; (26)

where p is a vector containing the cosmological parameters
that we want to fit.
Also, we additionally utilize the sample of 192 super-

novae of Davies et al. [2]. In this case, the �2
SNIa function

becomes

�2
SNIaðpÞ ¼

X192
i¼1

�
	thðai;pÞ �	obsðaiÞ

�i

�
2
; (27)

where ai ¼ ð1þ ziÞ�1 is the observed scale factor of the
Universe, zi is the observed redshift, 	 is the distance
modulus 	 ¼ m�M ¼ 5 logdL þ 25, and dLða;pÞ is
the luminosity distance

dLða;pÞ ¼ c

a

Z 1

a

dy

y2HðyÞ ; (28)

where c is the speed of light ( � 1 here). Finally we can
combine the above probes by using a joint likelihood
analysis:

L totðpÞ ¼ LBAO 	LSNIa �2
totðpÞ ¼ �2

BAO þ �2
SNIa;

in order to put even further constraints on the parameter
space used. Note that we define the likelihood estimator
[47] as Lj / exp½��2

j=2�.
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A. The standard � cosmology

Without wanting to appear too pedagogical, we remind
the reader of some basic elements of the concordance �
cosmology. In this framework, the normalized scale factor
of the universe is

a�ðtÞ ¼
�

�m

1��m

�
1=3

sinh2=3!2t: (29)

The Hubble function is written as

HðtÞ ¼ 2
3!2fðtÞ ¼ 2

3!2 coth!2t: (30)

Comparing the � model with the observational data (we
sample �m 2 ½0:1; 1� in steps of 0.01), we find that the
best-fit value is �m ¼ 0:26� 0:01 with �2

totð�mÞ ’ 195
(dof ¼ 192) in a very good agreement with the 5 years
WMAP data [4]. The inflection point takes place at

t�I ¼ 1

!2

sinh�1

�
1

2

�
a�I ¼

�
�m

2ð1��mÞ
�
1=3

: (31)

Therefore, we estimate !2 ’ 1:29H0 ’ 0:095 Gyr�1, t�I ’
0:51t0, and a�I ’ 0:56. The deceleration parameter at the
present time is q0 � � €a= _a2ja¼1 ’ �0:61.

B. The parametric dark energy model

In this case we use a simple parametrization for the dark
energy equation of state parameter which is based on a
Taylor expansion around the present time (see Chevallier
and Polarski [48] and Linder [49], hereafter CPL)

wðaÞ ¼ w0 þ w1ð1� aÞ: (32)

The Hubble parameter is given by

HðaÞ ¼ H0½�ma
�3 þ ð1��mÞa�3ð1þw0þw1Þe3w1ða�1Þ�1=2;

(33)

where w0 and w1 are constants. We sample the unknown
parameters as follows: w0 2 ½�2;�0:4� and w1 2
½�2:6; 2:6� in steps of 0.01. We find that for �m ¼ 0:26
the overall likelihood function peaks at w0 ¼ �1:20þ0:28

�0:20

and w1 ¼ 1:14þ1:0
�1:9 while the corresponding �2

totðw0; w1Þ is
193.6 (dof ¼ 191). The deceleration parameter at the
present time is q0 ’ �0:83.

C. The variable Chaplygin gas as an alternative
to dark energy

Let us consider now a completely different model,
namely, the variable Chaplygin gas (hereafter VCG) which
corresponds to a Born-Infeld tachyon action [50,51].
Recently, an interesting family of Chaplygin gas models
was found to be consistent with the current observational
data [52]. In the framework of a spatially flat FLRW
metric, it can be shown that the Hubble function takes
the following formula:

HðaÞ ¼ H0½�ba
�3 þ ð1��bÞ

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bsa

�6 þ ð1� BsÞa�n
q

�1=2; (34)

where �b ’ 0:021h�2 is the density parameter for the
baryonic matter [53] and Bs 2 ½0:01; 0:51� in steps of
0.01 and n 2 ½�4; 4� in steps of 0.02. The corresponding
effective equation of state parameter wðaÞ ¼ PDE=�DE is
related to HðaÞ according to

wðaÞ ¼ �1� 2
3a

d lnH
da

1� ðH0

H Þ2�ma
�3

; (35)

while the effective matter density parameter is �eff
m ¼

�b þ ð1��bÞ
ffiffiffiffiffiffi
Bs

p
. We find that the best-fit parameters

are Bs ¼ 0:07� 0:02 and n ¼ 1:06� 0:33 (�eff
m ’ 0:29)

with �2
totðBs; nÞ ¼ 193:7 (dof ¼ 191) and the present value

of the deceleration parameter is q0 ’ �0:60.

D. The UDM comparison with other
dark energy models

In order to predict analytically the time evolution of the
main cosmological functions [�ðtÞ, aðtÞ, HðtÞ, and wðtÞ],
we have to define the corresponding unknown constants of
the problem ð!1; �1; !2; �2Þ. At the same time, from the
restrictions found in Sec. III [see Eqs. (12), (19), and (24)],
we can reduce the parameter space to ð�m; �1Þ. We do so
by fitting the predictions of the UDM cosmological model
and recent observational data. Here, we use �m 2 ½0:1; 1�
and �1 2 ½�1; 0� in steps of 0.01.
Figure 1 (thin dashed lines) shows the 1�, 2�, and 3�

confidence levels in the ð�m; j�1jÞ plane when using BAOs.
Obviously, the �1 parameter is not constrained by this
analysis and all the values in the interval �1 
 �1 
 0
are acceptable. However, the BAOs statistical analysis puts
constraints on the matter density parameter �m ’ 0:25.
Therefore, in order to put further constraints on �1 we

additionally utilize the SNIa data. In Fig. 1 (thick solid
lines), we present the SNIa likelihood contours and we find
that the best-fit solution is �m ’ 0:4 and �1 ’ �0:05. The
joint likelihood function peaks at �m ¼ 0:25þ0:02

�0:01 and

�1 ¼ �0:39þ0:04
�0:08 (�2 ’ 0:54) with �2

totð�m; j�1jÞ ’ 194:1
(dof ¼ 191). Note that the errors of the fitted parameters
represent 1� uncertainties. In the inset plot of Fig. 1 we
provide the solutions (circles—BAOs and triangles—
SNIa) within 1� contours in the ð�m;�0Þ plane, where
�0 is the present value of the scalar field. The corre-
sponding best-fit value of the scalar field [see Eqs. (15)
and (16)] is �0 ’ 0:42 or 0.084 in Planck units (G ¼ c �
1), while the frequencies are !1 ’ 0:067 Gyr�1 and !2 ’
0:095 Gyr�1. It is interesting to mention that, although the
frequency (!1 � 0:9H0) of the hyperbolic oscillator in the
x1 axis is somewhat less than the present expansion rate of
the universe, the!2 is equal to the value predicted by the�
cosmology (see Sec. IVA).
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Knowing now the parameter space ð!1; �1; !2; �2Þ
we investigate, in more detail, the correspondence of the
UDM model with the different dark energy models (see
Secs. IVA, IVB, and IVC) in order to show the extent to
which they compare. Our analysis provides an evolution of
the UDM scale factor seen in the upper panel of Fig. 2 as
the solid line, which closely resembles, especially at late
times (0:6< a 
 1:5), the corresponding scale factor of
the � (short dashed), VCG (dot dashed), and CPL (long
dashed). Note that the UDM deceleration parameter at the
present time is q0 ’ �0:62. However, for a > 1:5, the CPL
and the VCG scale factors evolve more rapidly than the
other two models (UDM and� cosmology). Also it is clear
that an inflection point [ €aðtIÞ ¼ 0] is present in the evolu-
tion of the UDM scale factor. The UDM inflection point is
located at tI ’ 0:46t0 which corresponds to aI ’ 0:61 and

is somewhat different than the value predicted from the
usual � cosmology (see Sec. IVA). Before the inflection
point, the UDM appears to be more decelerated from the
other three dark energy cosmological models due to the
fact that the second term [ / sinh2ð!1tþ �1)] in Eq. (18)
plays an important role. From Fig. 2 it becomes clear that
the UDM model reaches a maximum deviation from the
other three dark energy models prior to a� 0:15 (z� 5:5).
In order to investigate whether the expansion of the ob-
served universe follows such a possibility, we need a
visible distance indicator (better observations) at redshifts
z > 2.
The evolution of the scalar field is presented in the

bottom panel of Fig. 2, while in the inset figure we plot
the scalar field dependence of the potential energy normal-
ized to unity at the present time. As we have stated in
Sec. III A there is one minimum at � ¼ 0 that corresponds
to tm ¼ ��1=!1 � 0:4t0. To conclude, we plot in Fig. 3
the relative deviations of the distance modulus,�ðm�MÞ,
of the dark energy models used here from the traditional�
cosmology. Notice that the open points represent the fol-
lowing deviation: ðm�MÞSNIa � ðm�MÞ�. Within the
SNIa redshift range 0:016 
 z 
 1:775 (0:360 
 a 

0:984), the VCG distance modulus is close to the � one.
The largest deviations of the distance moduli occur at
redshifts around 0.5–1 for the UDM and 1.1–1.5 for the
CPL model, respectively.

E. The equation of state parameter

We would like to end this section with a discussion on
the dark energy equation of state. As we have stated al-
ready in the introduction, there is a possibility for the
equation of state parameter to be a function of time rather

α

FIG. 2. Upper panel: Comparison of the scale factor provided
by the UDM model (solid line) with the traditional � cosmology
(short dashed line), VCG (dot dashed), and CPL (long dashed)
dark energy models. Bottom panel: The evolution of the scalar
field. In the inset panel we present the behavior of the potential
normalized to unity at the present time. Note that t0 � H�1

0 ’
13:6 Gyr is the present age of the universe.

FIG. 3. Residual magnitudes (relative to the traditional �� ¼
0:74,�m ¼ 0:26model) of 192 SNIa data (open points) from [2]
as a function of redshift. For comparison we plot the �ðm�
MÞUDM-� (solid line), �ðm�MÞCPL-� (long dashed line), and
�ðm�MÞVCG-� (dot dashed line).
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than a constant ratio between the pressure and the energy
density. Within the framework of the scalar field cosmol-
ogy, the equation of state parameter is derived from the
field model and in general it is a complicated function of
time, even when the potential is written as a simple func-
tion of the scalar field. In our case we have

wðtÞ ¼ P�

��

¼
_�2 � 2Vð�Þ
_�2 þ 2Vð�Þ (36)

or else [see Eqs. (16) and (17)]

wðtÞ ¼
_�2ðtÞ �!2

1½���2ðtÞ�½1��2ðtÞ�
_�2ðtÞ þ!2

1½���2ðtÞ�½1��2ðtÞ� : (37)

Note that�models can be described by scalar models with
w strictly equal to �1. Using our best-fit parameters we
present in the left panel of Fig. 4 the equation of state
parameter as a function of the scale factor for the different
dark energy models. The UDM model (solid line) is the
only case that provides positive values for the equation of
state parameter at early epochs. We have checked the UDM
scenario against the cosmic coincidence problem (why the
matter energy density and the dark energy density are of
the same order at the present epoch) by utilizing the basic
tests proposed by [42]. These are: (a) at early enough times
the equation of state parameter tends to its maximum
value, w ! þ1, which means that the dark energy density
initially takes large values. So as long as the scalar field
rolls down the potential energy Vð�Þ decreases rapidly and
the kinetic energy T� ¼ _�2=2 takes a large value, (b) then

� continues to roll down, the dark energy density de-

creases and the equation of state parameter remains close
to unity for a quite long period of time (a < 0:2), and
(c) for 0:2 
 a 
 0:95 the equation of state parameter is
a decreasing function of time and it becomes negative at
a > 0:56. Before that epoch, the potential energy of the
scalar field remains less than the kinetic energy (see the
inset plot in the left panel of Fig. 4) and the equation of
state parameter (or the scalar field) resembles background
matter. In a special case where w ¼ 0 [or T� ’ Vð�Þ], the
equation of state behaves exactly like that of pressureless
matter. For w ¼ �1=3 we reach the same expansion as in
an open universe, because the dark energy density evolves
as a�2 and has no effect on €a. In fact, we verify that prior to
the inflection pointwðtIÞ ’ �0:334, which means that after
tI the accelerating expansion of the Universe starts. Finally,
w ’ �1 close to the present epoch a� 1 and the scalar
field is effectively frozen (the same situation seems to hold
also in the limit a � 1). This is to be expected because at
this period the scalar field varies slowly with time (see the
inset panel of Fig. 4), so that T� � Vð�Þ and the dark

energy fluid asymptotically reaches the de-Sitter regime
(cosmological constant).
In order to conclude this discussion, it is interesting to

point out that we also investigate the sensitivity of the
above results to the matter density parameter. As an ex-
ample, in the right panel of Fig. 4 we present the evolution
of the equation of state parameter for ð�m; �1Þ ¼
ð0:73;�1Þ [upper line] and ð�m; �1Þ ¼ ð0:19;�0:1Þ [bot-
tom line]. We confirm that in the range �m 2 ð0:19; 0:73Þ
and �1 2 ð�1;�0:1Þ the general behavior (described be-
fore) of the functional form of the equation of state pa-

α

α α

FIG. 4. Left panel: The equation of state parameter as a function of the scale factor of the Universe. The lines correspond to UDM
(solid), CPL (long dashed), and VCG (dot dashed). In the inset panel we present the time evolution of T�=Vð�Þ. Note that T� is the

kinetic energy of the scalar and Vð�Þ is the potential. Right panel: The functional form of the equation of state parameter for various
UDM models. The upper line corresponds to ð�m; �1Þ ¼ ð0:73;�1Þ while the bottom line corresponds to ð�m; �1Þ ¼ ð0:19;�0:1Þ.
Note that the solid thick line corresponds to the best-fit parameters ð�m; �1Þ ¼ ð0:25;�0:39Þ. We find that initially all the UDM
models [�m 2 ð0:19; 0:73Þ, �1 2 ð�1;�0:1Þ] start from w ! þ1 and they reach w ’ Oð�1Þ close to the present time.
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rameter is an intermediate case between the above lines for
a 
 1 and thus it depends weakly on the values of the
parameter space (�m; �1). Therefore, our main cosmologi-
cal results for the UDM scenario persist for all physical
values of�m and it strongly indicates that the UDMmodel
overpasses the cosmic coincidence problem.

V. EVOLUTION OF MATTER PERTURBATIONS

In this section we attempt to study the dynamics at small
scales by generalizing the basic linear and nonlinear equa-
tions which govern the behavior of the matter perturbations
within the framework of a UDM flat cosmology. Also we
compare our predictions with those found for the dark
energy models used in this work (see Secs. IVA, IVB,
and IVC). This can help us to understand better the theo-
retical expectations of the UDM model as well as the
variants from the other dark energy models.

A. The Evolution of the linear growth factor

The evolution equation of the growth factor for models
where the dark energy fluid has a vanishing anisotropic
stress and the matter fluid is not coupled to other matter
species is given by [54–56]

d2D

dN2
þ

�
2þ 1

H

dH

dN

�
dD

dN
� 3

2
�mðaÞD ¼ 0; (38)

where N ¼ lna and �mðaÞ ¼ �ma
�3H2

0=H
2ðaÞ. Useful

expressions of the growth factor can be found for the
�CDM cosmology in [54], for the quintessence scenario
(w ¼ const) in [57–60], for dark energy models with a time
varying equation of state in [61], and for the scalar tensor
models in [62]. In the upper panel of Fig. 5 we present the
growth factor evolution which is derived by solving nu-
merically Eq. (38), for the four dark energy models (in-
cluding the UDM). Note that the growth factors are
normalized to unity at the present time. The behavior of
the UDM growth factor (solid line) has the expected form,
i.e. it is an increasing function of the scale factor. Also we
find that the growth factor in the UDM model is almost an
intermediate case between the VCG (dot dashed line) and
CPL (long dashed line) models, respectively. In the bottom
panel of Fig. 5 we show the deviation, ð1�DDE=D�Þ%, of
the growth factors DDEðaÞ for the current dark energy
models with respect to the � solution D�ðaÞ. Assuming
now that clusters have formed prior to the epoch of zf ’
1:4 (af � 0:42), in which the most distant cluster has been

found [63], the UDM scenario (open triangles) deviates
from the � solution by 4.2% while the CPL (open circles)
and VCG (solid squares) deviate by �1:5% and 5.1%,
respectively. Also at the �-inflection point (a�I ’ 0:56),
we find the following results: (i) UDM-� 3.3%, (ii) CPL-�
�0:4%, and (iii) VCG-� 3.2%. To conclude this discus-
sion it is obvious that for a � 0:7 the UDM growth factor

tends to the � solution (the same situation holds for the
CPL model but with a � 0:55).

B. The spherical collapse model

The so-called spherical collapse model, which has a long
history in cosmology, is a simple but still a fundamental
tool for understanding how a small spherical patch [with
radius RðtÞ] of homogeneous overdensity forms a bound
system via gravitation instability [64]. From now on, we
will call at the scale factor of the universe where the
overdensity reaches its maximum expansion ( _R ¼ 0) and
af the scale factor in which the sphere virializes, while Rt

andRf the corresponding radii of the spherical overdensity.

Note that in the spherical region, �mc / R�3 is the matter
density while ��c

will denote the corresponding density of

the dark energy. In order to address the issue of the dark
energy in the gravitationally bound systems (clusters of
galaxies), we can consider the following assumptions:
(i) clustered dark energy considering that the whole system
virializes (matter and dark energy), (ii) the dark energy

α

α
α

FIG. 5. Upper panel: The evolution of the growth factor for
different dark energy models. The lines correspond to UDM
(solid), VCG (dot dashed), � (short dashed), and CPL (long
dashed) models. Bottom panel: The deviation ð1�DDE=D�Þ%
of the growth factor for various dark energy models with respect
to the � solution. The points represent the comparison:
(a) UDM-� (open triangles), (b) VCG-� (solid squares), and
(c) CPL-� (open circles).
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remains clustered but now only the matter virializes, and
(iii) the dark energy remains homogeneous and only the
matter virializes (for more details see [65–68]). Note, that
in this work we are using the third possibility.

Here we review only some basic concepts of the problem
based on the assumption that the dark energy component
under a scale of galaxy clusters can be treated as being
homogeneous: ��c

ðtÞ ¼ ��ðtÞ, �cðtÞ ¼ �ðtÞ, and wcðtÞ ¼
wðtÞ. In general the evolution of the spherical perturbations
as the latter decouple from the background expansion is
given by the Raychaudhuri equation:

3 €R ¼ �4�GR½�mc þ ��c
ð1þ wcÞ� here 4�G � 1=2:

(39)

Now within the cluster region the evolution of the dark
energy component is written as (see [65])

_��c
þ 3

_R

R
ð1þ w�c

Þ��c
¼ � (40)

while if we consider a scalar field the above equation
becomes

€� c þ 3
_R

R
_�c þU0ð�cÞ ¼ �

_�
; (41)

where

� ¼ �3

�
_a

a
� _R

R

�
_�2
c: (42)

Figure 6 presents examples of RðtÞ obtained for the UDM
(solid line) and for the concordance�model (dashed line).

The time needed for a spherical shell to recollapse is twice
the turn-around time, tf ’ 2tt.

On the other hand, utilizing both the virial theorem
and the energy conservation we reach to the following
condition:�

1

2
R

@

@R
ðUG þU�c

Þ þUG þU�c

�
a¼af

¼ ½UG þU�c
�a¼at (43)

where UG ¼ �3GM2=5R is the potential energy and
U�c

¼ �4�GMð1þ 3wcÞ��c
R2=5 is the potential energy

associated with the dark energy for the spherical overden-
sity (see [65,66]; in our case 4�G � 1=2). Using the above
formulation, we can obtain a cubic equation that relates the
ratio between the virial Rf and the turn-around outer radius

Rt the so-called collapse factor (
 ¼ Rf=Rt). Notice that

Eq. (43) is valid when the ratio of the system’s dark energy
to the matter’s densities at the time of the turn-around takes
relatively small values [67]. Of course in the case of wc ¼
�1 the above expressions get the usual form for � cos-
mology [59,69] while for an Einstein–de-Sitter model
(�m ¼ 1) we have 
 ¼ 1=2. Finally solving numerically
Eq. (43) [it can be done also analytically], we calculate the
collapse factor. In particular, Fig. 7 shows the behavior of
the collapse factor for the current cosmological models
starting from the UDM (solid line),� (short dashed), VCG
(dot dashed), and CPL (long dashed). We find that the
collapse factor lies in the range 0:43 
 
 
 0:50 in agree-
ment with previous studies [59,65–68,70,71]. Prior to the
cluster formation epoch (zf ’ 1:4), the UDM scenario
appears to produce more bound systems with respect to
the other dark energy models. Indeed, we find the follow-
ing values: 
UDM ’ 0:44, 
� ’ 0:49, 
CPL ’ 0:48, and

VCG ’ 0:50. Also it becomes clear that the UDM collapse
factor decreases slowly with the redshift of virialization zf,

due to its positive equation of state parameter. This is also

FIG. 6. Evolution of radius of a collapsing overdense region.
The solid and the dashed line corresponds to the UDM (�m ¼
0:25) and � cosmology (�m ¼ 0:26), respectively. FIG. 7. The collapse factor versus the redshift of virialization

for various dark energy models.
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incorporated by the fact that at early epochs the cosmic
expansion of the UDM model is much more decelerated
than in the other three dark energy models. The latter result
is in agreement with those obtained by [65]. They found a
similar behavior for the collapse factor by considering
several potentials with an exponential phase.

VI. CONCLUSIONS

In this work we investigate analytically and numerically
the large and small scale dynamics of the scalar field
FLRW flat cosmologies in the framework of the so-called
unified dark matter scenario. In particular, using a Ham-
iltonian formulation we find that the time evolution of the
basic cosmological functions is described in terms of
hyperbolic functions. This theoretical approach yields
analytical solutions which can accommodate a late time
accelerated expansion, equivalent to either the dark energy
or the standard � models. Furthermore, based on a joint
likelihood analysis using the SNIa data and the baryonic
acoustic oscillations, we put tight constraints on the main
cosmological parameters of the UDM cosmological model.
In particular, we find �m ’ 0:25 and the scalar field at the
present time is �0 ’ 0:42 or 0.084 (in Planck units). Also,
we compare the UDM scenario with various dark energy
models: namely, � cosmology, parametric dark energy
model, and variable Chaplygin gas. We find that the cos-
mological behavior of the UDM scalar field model is in a
good agreement, especially after the inflection point, with

those predicted by the above dark energy models although
there are some differences especially at early epochs. In
particular, we reveal that the UDM scalar field cosmology
has three important differences over the other three dark
energy models considered:

(i) It can pick up positive values of the equation of
state parameter at large redshifts (z > 0:8). Also, it
behaves relatively well with respect to the cosmic
coincidence problem.

(ii) At early enough epochs (a� 0:15 or z� 5:5), the
cosmic expansion in the UDMmodel is much more
decelerated than in the other three dark energy
models. In order to investigate whether the expan-
sion of the observed universe has the above prop-
erty, we need a visible distance indicator (better
observations) at high redshifts (2 
 z 
 6).

(iii) Close to the cluster formation epoch, its collapse
factor 
UDM is less than 12% of the corresponding
factor of the other three dark energy models. This
feature points to the direction that perhaps the 

parameter can be used as a cosmological tool.
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